
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

My IoT Puzzle: Debugging IF-THEN Rules Through the Jigsaw Metaphor / Corno, Fulvio; DE RUSSIS, Luigi; MONGE
ROFFARELLO, Alberto. - STAMPA. - 11553(2019), pp. 18-33. ((Intervento presentato al convegno IS-EUD: the 7th
International Symposium on End-User Development tenutosi a Hertfordshire, UK nel 10-12 July, 2019.

Original

My IoT Puzzle: Debugging IF-THEN Rules Through the Jigsaw Metaphor

springer

Publisher:

Published
DOI:10.1007/978-3-030-24781-2_2

Terms of use:
openAccess

Publisher copyright

Copyright Springer. The final publication is available at link.springer.com

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2731417 since: 2019-07-08T15:58:41Z

Springer International Publishing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234928531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

My IoT Puzzle: Debugging IF-THEN Rules
Through the Jigsaw Metaphor

Fulvio Corno1, Luigi De Russis1, and Alberto Monge Roffarello1

Politecnico di Torino, Corso Duca degli Abruzzi, 24 Torino, Italy 10129
{fulvio.corno,luigi.derussis,alberto.monge}@polito.it

Abstract. End users can nowadays define applications in the format
of IF-THEN rules to personalize their IoT devices and online services.
Along with the possibility to compose such applications, however, comes
the need to debug them, e.g., to avoid unpredictable and dangerous be-
haviors. In this context, different questions are still unexplored: which
visual languages are more appropriate for debugging IF-THEN rules?
Which information do end users need to understand, identify, and cor-
rect errors? To answer these questions, we first conducted a literature
analysis by reviewing previous works on end-user debugging, with the
aim of extracting design guidelines. Then, we developed My IoT Puz-
zle, a tool to compose and debug IF-THEN rules based on the Jigsaw
metaphor. My IoT Puzzle interactively assists users in the debugging
process with different real-time feedback, and it allows the resolution of
conflicts by providing textual and graphical explanations. An exploratory
study with 6 participants preliminary confirms the effectiveness of our
approach, showing that the usage of the Jigsaw metaphor, along with
real-time feedback and explanations, helps users understand and fix con-
flicts among IF-THEN rules.

Keywords: End-User Debugging · Internet of Things · Trigger-Action
Programming · Visual Languages.

1 Introduction

The potential of the Internet of Things (IoT) is being increasingly recognized [7]:
people daily interact with a growing number of Internet-enabled devices [13] in
many different contexts, ranging from smart homes to smart cities. The IoT
ecosystem is nowadays further enriched by online services such as messaging
platforms and social networks [1]. By means of an Internet connection, users can
therefore access a complex network of smart objects, either physical or virtual,
able to interact and communicate with each other, with humans, and with the
environment. Nowadays, end users can personalize such a complex network by
programming the joint behavior of their IoT devices and online services. Sev-
eral works in the literature demonstrate the effective applicability of End-User
Development (EUD) techniques [23] for the creation of applications in various do-
mains [22,11], including the IoT [36,14]. Particularly in this context, professional

2 F. Corno et al.

programmers cannot foresee all the possible situations end users may encounter
when interacting with their IoT ecosystem. By placing the personalization of
IoT devices and online services in the hands of end users, i.e., the subjects
who are most familiar with the actual needs to be met, EUD is a viable way to
make IoT applications comply with users’ expectations [14]. Typically, users who
want to personalize their IoT devices and online services can exploit the trigger-
action programming approach, as implemented in popular visual programming
platforms such as IFTTT1 or Zapier2. Through trigger-action (IF-THEN) rules
such as “if the Nest camera in the kitchen detects a movement, then send me a
Telegram message”, users can connect a pair of devices or online services in such
a way that, when an event (the trigger) is detected on one of them, an action is
automatically executed on the second.

Along with the possibility to create such rules, however, comes the need to
debug them. Despite apparent simplicity, in fact, trigger-action programming is
often a complex task for non programmers [17], and errors in trigger-action rules
can lead to unpredictable and dangerous behaviors such as a door that is un-
expectedly unlocked. One of the most urgent challenges is, therefore, to provide
users with tools to avoid possible conflicts [5] and assess the correctness [12] of
the developed applications. Unfortunately, even if few recent works started to
explore end-user debugging in the IoT [8,26], open questions still remain. Which
visual languages are more appropriate for debugging rules? Which information
do end users need to understand, identify, and correct errors?

To answer these questions, we firstly conducted a literature analysis by re-
viewing previous works on end-user debugging in different contexts, with the
aim of extracting design guidelines. Then, we used the extracted guidelines to
implement My IoT Puzzle, a tool to compose and debug IF-THEN rules based
on the Jigsaw metaphor. The tool interactively assists users in the composition
process by representing triggers and actions as complementary puzzle pieces,
and by providing real-time feedback to test on-the-fly the correctness of the rule
under definition. Puzzle pieces, for example, deteriorate over time according to
their usage (Figure 2), while the tool is able to warn users in case of conflicts,
namely infinite loops, inconsistencies, and redundancies (Figure 3). Furthermore,
the tool empowers end users in resolving problems through textual and graphical
explanations. Following the Interrogative Debugging paradigm [18], for instance,
the tool is able to answer questions such as “why it is not working?”, thus provid-
ing the user with a textual explanation of the detected problem (Figure 4). An
exploratory study with 6 participants preliminary confirms the effectiveness of
our approach. During the study, each participant used My IoT Puzzle to compose
a set of different IF-THEN rules that generated different conflicts. By collecting
quantitative and qualitative measures, we observed that participants appreciated
the intuitiveness of the adopted visual languages, including the Jigsaw metaphor.
Furthermore, the provided feedback and explanations helped them understand,
identify, and correct the conflicts they encountered.

1 https://ifttt.com, last visited on February 26, 2019
2 https://zapier.com, last visited on February 26, 2019

https://ifttt.com
https://zapier.com

My IoT Puzzle 3

2 Background

Following the explosion of the IoT, in the last 10 years several commercial plat-
forms for end-user personalization such as IFTTT or Zapier were born. The aim
of such platforms is to empower end users in customizing the behavior of IoT de-
vices and online services through the trigger-action paradigm, typically. Despite
the trigger-action programming expressiveness [2] and popularity [12], the defi-
nition of trigger-action rules can be difficult for non-programmers. Platforms like
IFTTT have been criticized since they often expose too much functionality [17],
and they adopt technology-dependent representation models that force users to
have a deep knowledge of all the involved devices and online services [12,9]. As
a result, users frequently misinterpret the behavior of IF-THEN rules [4], often
deviating from their actual semantics, and are prone to introduce errors [16].

Therefore, one of the most urgent challenges in EUD solutions for personal-
izing IoT ecosystems is to provide users with tools to avoid possible conflicts [5]
and assess the correctness [12] of the developed IF-THEN rules. In this con-
text, work on end-user debugging is still in its early stage. While the majority
of previous studies focus on mashup programming [6], spreadsheets [15], and
novice developers [18], only a few recent works started addressing the problem
of end-user debugging in the IoT. In EUDebug [8], in particular, the authors
integrated an end-user debugging tool on top of IFTTT. EUDebug exploits a
user interface modeled after IFTTT to warn users when they are defining any
troublesome or potentially dangerous behavior. Through a formalism based on
Petri Nets and Semantic Web ontologies, EUDebug is able to detect 3 types of
problems among trigger-action rules: loops, redundancies, and inconsistencies.
In My IoT Puzzle, we used the same approach for identifying and displaying
problems between the composed rules. A similar tool for end-user debugging in
this context is ITAD (Interactive Trigger-Action Debugging) [26]. In addition to
warn users in case of rule conflicts, ITAD allows the simulation of trigger-action
rules in fixed contexts.

In this work, we stem from both EUDebug and ITAD, i.e., the first two works
that investigated how to detect conflicts and simulate IF-THEN rules, for taking
a step forward: with My IoT Puzzle, our aim is to understand how we can make
debug of trigger-action rules more understandable by end users.

3 Literature Analysis and Design Guidelines

To reach our goal, we firstly reviewed previous works on end-user debugging in
different contexts, with the aim of extracting design guidelines (Table 1). The
analysis was guided by the following research questions:

RQ1. Which information, e.g., feedback and explanations, do end users need to
understand, identify, and correct errors in trigger-action rules?

RQ2. Which visual languages are more appropriate for debugging trigger-action
rules?

4 F. Corno et al.

3.1 End-User Debugging: How to Avoid and Correct Errors (RQ1)

Debugging is the process of finding the cause of an identified misbehavior and
fixing or removing it. Different previous studies, e.g., [27,19], investigated how
developers try to fix bugs, and discovered many slow, unproductive strategies.
If it is challenging for programmers, the debugging process can become an in-
surmountable barrier for end users. In different contexts, ranging from spread-
sheets [15] to mashup programming [6], studies have demonstrated that end users
try to fix problems by following a “debugging into existence” approach [34], i.e.,
they continuously twist and fiddle their solutions until the failure “miraculously”
goes away. Cao et al. [6], however, demonstrated that, if prompted with the right
information, end users are also able to design applications and programs. In
the context of mashup programming, for example, they proposed to add micro-
evaluations of local portions of the mashup during the implementation phase,
with the aim of reducing the effort of connecting the run-time output with the
program’s logic itself. We envision similar approaches also for our context, i.e.,
IF-THEN rules for personalizing IoT devices and online services. By providing
real-time feedback during the composition of trigger-action rules, an EUD tool
may empower users in frequently testing the correctness of their solutions (GL1),
thus allowing them to update on-the-fly problematic rules (GL2), Table 1. This
may increases the chances of fixing possible conflicts [6].

Previous studies on end-user debugging also highlight the benefits of pro-
viding users with textual and graphical explanations, to represent the run-time
behaviors of the defined programs and their possible problems [24,25] (GL3). In-
deed, Ko et al. [18] discovered that programmers’ questions at the time of failure
are typically one of two types: “why did” questions, which assume the occurrence
of an unexpected run-time action, and “why didn’t” questions, which assume the
absence of an expected run-time action [18]. The same authors extended the Al-
ice programming environment [38], a platform for creating interactive 3D virtual
worlds, to support a “whyline” that allows users to receive answers concerning
program outputs. Their work opened the way for a new paradigm, named Inter-
rogative Debugging, that has been adopted in many different works on end-user
debugging, ranging from tools to support more experienced developers [20] to
interactive machine learning [21]. As preliminary suggested by Manca et al. [26],
the Interrogative Debugging paradigm may effectively help end users debug their
trigger-action rules (GL4). The event-driven nature of trigger-action rules, in
particular, naturally leads to questions such as “why this action have been exe-
cuted?” or “why this event did not trigger?”

3.2 Visual Languages for End-User Development (RQ2)

Besides the question of identifying which information end users need for debug-
ging trigger-action rules, another important question is which visual languages
are more appropriate in this context. Despite visual programming languages
strive to simplify the intricate process of programming, in fact, they need to be
tailored towards the domains in which they will be used [31]. The most common

My IoT Puzzle 5

visual languages adopted in End-User Development tools can be categorized into
3 main categories: a) form-filling, b) block programming, and c) data-flow.

Form-filling visual languages, also known as wizard-based languages, are ex-
tensively used in commercial platforms such as IFTTT and Zapier [12]. Also
EUDebug [8] and ITAD [26], i.e., the first two works that explore end-user de-
bugging in the context of trigger-action rules, exploit wizard-based interfaces.
To compose applications with the form-filling approach, be they rules or other
types of programs, the user makes use of menus and fields to be completed. Tools
that exploit form-filling visual languages, in particular, guide the user through a
predefined, bounded procedure, by reducing the user interaction in completing
a series of forms step-by-step. Despite form-filling approaches have been proved
to be intuitive and easy to use for simple use cases, their closed form can be
perceived as restrictive [30,29].

Another popular approach in End-User Development is block programming.
A popular example of the approach can be seen in Scratch [32], a block-based
visual programming language targeted primarily at children. With block pro-
gramming, users can connect blocks of different sizes and shapes by dragging
and dropping them on a work area. Differently from form-filling approaches,
tools based on block programming are less restrictive, and stimulate the user
creativity. One of the most appreciated ways of representing blocks, in particu-
lar, is the Jigsaw metaphor. Here, blocks are represented as puzzle pieces that
can be combined on the go, thus decreasing the learning curve and motivat-
ing users to explore the underlying tool. An application example is Puzzle, a
visual environment for opportunistically creating mobile applications in mobile
phones [11]. We envision that block programming approaches based on the Jig-
saw metaphor could be easily adapted to the composition of IF-THEN rules for
IoT personalization (GL5).

Finally, the last category of visual languages commonly adopted in EUD is
data-flow. Differently from the previous approaches, which were useful for simple
use case such as the composition of a single rule, the process-oriented nature of
data-flow programming languages makes them one of the best choice to repre-
sent complex use cases [3]. Process-oriented notations have been employed to
provide increased expressiveness while still retaining easy-to-comprehend visual-
izations [33,10]. The expressiveness of such notations, however, is often coupled
with complex user interfaces [3]. This makes them difficult to be used at compo-
sition time, but useful to visualize complex information such as triggers, actions,
and their relationships. For this reason, we envision that a data-flow visual lan-
guage could be adopted for representing the behavior of multiple trigger-action
rules (GL6), with the aim of helping users understand and identify unwanted
run-time behaviors.

4 My IoT Puzzle: Design and Implementation

We integrated the extracted guidelines (Table 1) in My IoT Puzzle, our tool for
composing and debugging IF-THEN rules. Under the hood, the tool exploits the

6 F. Corno et al.

Table 1. The design guidelines extracted by reviewing previous works on end-user
debugging in different contexts.

Guideline Description

GL1 A debugging tool for IF-THEN rules should empower users in fre-
quently testing their solutions, e.g., by providing real-time feedback
about possible run-time problems the rules may generate.

GL2 During the debugging of trigger-action rules it is important to provide
users with tools for updating on-the-fly their solutions, e.g., to remove
possible errors during the rule composition process.

GL3 In case of problems, a debugging tool for IF-THEN rules should pro-
vide users with textual and graphical explanations about the run-time
behavior of the defined applications.

GL4 The Interrogative Debugging paradigm, with which users can ask
questions like “why something happens?”, can be easily adapted to
the event-driven nature of trigger-action rules.

GL5 Block programming based on the Jigsaw metaphor is understandable
and easily adaptable to the composition of trigger-action rules.

GL6 The data-flow visual language is suitable for representing complex
information such as the run-time behavior of a set of trigger-action
rules.

EUDebug server [8], thus allowing the composition and the debug of IFTTT
rules. Thanks to the RESTful API exposed by the server, the tool is able to
detect the following problems among trigger-action rules:

– Loops arise when multiple rules are continuously activated without reaching
a stable state. An example of a loop is:
• if I post a photo on Facebook, then save the photo on my iOS library;
• if I add a new photo on my iOS library, then post the photo on Insta-

gram;
• if I post a photo on Instagram, then post the photo on Facebook.

– Redundancies arise when rules that are activated at the same time have
replicated functionality. An example of a set of rules that produce a redun-
dancy is:
• if I play a new song on my Amazon Alexa, then post a tweet on Twitter;
• if I play a new song on my Amazon Alexa, then save the track on Spotify;
• if I save a track on Spotify, then post a tweet on Twitter.

Here, the three rules are executed at the same time because the first two
rules share the same trigger, while the second rule implicitly activates the
third rule. They produce two redundant actions, i.e., the first and the third
rule post the same content on Twitter.

– Inconsistencies arise when rules that are activated at the same time try
to execute contradictory actions. An example of a set of rules that produces
an inconsistency is:

My IoT Puzzle 7

• if my Android GPS detects that I exit the home area, then lock the
SmartThings entrance door;

• if my Android GPS detects that I exit the home area, then set the Nest
thermostat to Away mode;

• if the SmartThings entrance door is locked, then set the Nest thermostat
to Manual mode.

Here, the three rules are executed at the same time because the first two
rules share the same trigger, while the first rule implicitly activates the third
rule. They produce two inconsistent actions, since they set 2 contradictory
modes on the Nest thermostat, i.e., Away and Manual.

The user interface of My IoT Puzzle has been implemented with the the
Angular framework3, by exploiting the jQuery4 and Bootstrap5 libraries. The
interface iteratively assists end users in composing and debugging IF-THEN in
3 main phases, i.e., composition, problem detection, and problem resolution.

Composition. Trigger-action rules are composed through a block program-
ming approach based on the Jigsaw metaphor (GL5). To design the composition
metaphor 3 researchers produced and evaluated different mockups.

(a) (b)

Fig. 1. Two mockups priduced to design the the composition methaphor.

Figure 1 shows an example of the produced mockups: to avoid complex solu-
tions, we decided to use 2 types of puzzle pieces, only, one for triggers and one for
actions. Triggers and actions are therefore represented as complementary puzzle
pieces that can be dragged and dropped in a Drop Area.

Figure 2 shows an example of the composition phase. Mary selects a device
(her Android smartphone) on which monitoring an event, and drops a specific

3 https://angular.io/, last visited on February 26, 2019
4 https://jquery.com/, last visited on February 26, 2019
5 https://getbootstrap.com/, last visited on February 26, 2019

https://angular.io/
https://jquery.com/
https://getbootstrap.com/

8 F. Corno et al.

Fig. 2. Mary, the user of our example, starts to compose a new rule by dragging a new
trigger on the Drop Area. The tool provides Mary with an initial feedback: the piece
of puzzle is worn, since it has been already used in other rules.

trigger on the drop area (“You enter an area”). Then, she completes the trigger
details by specifying the geographical area of her home. The tool uses initial
feedback to preliminary allow the user assess her solution (GL1). Indeed, due to
the complementary nature of the puzzle pieces, some wrong operations are pre-
vented by construction: pieces of the same type, e.g., two trigger pieces, cannot
be connected. Furthermore, as shown in Figure 2, the dropped trigger piece is
worn, since it has been already used in other rules. In My IoT Puzzle, in partic-
ular, puzzle pieces deteriorate over time according to their usage history. Using
the same trigger in multiple rules, in fact, means that the involved rules will be
executed at the same time, thus increasing the chances of introducing conflicts
such as redundancies and inconsistencies.

Problem Detection. The problem detection phase starts every time that My
IoT Puzzle detects loops, inconsistencies, or redundancies during the composition
phase. Figure 3 shows the problem detection phase experienced by Mary. Having
defined the trigger, she selects her kitchen Philips Hue lamp. She connects to
the “You enter an area” trigger an action (“Turn off lights”) that is inconsistent
with some previously saved rules. Therefore, the system warns Mary with a red
feedback (GL1), and allows her to get more information on how to solve the
issue.

Problem Resolution. The problem resolution phase helps users understand
and fix conflicts detected during the previous phases. Figure 4 shows the phase as

My IoT Puzzle 9

Fig. 3. Mary connects to the trigger an action that is inconsistent with some previously
saved rules. The system warns Mary with a red feedback.

experienced by Mary. She can see textual and graphical explanations of the de-
tected inconsistency (GL3). For graphically explaining the problem, a data-flow
visual language is used (GL6). Instead, the textual explanation follow the Inter-
rogative Debugging paradigm (GL4), by explicitly describing why the problem
is happening. Both the textual and graphical explanations, in particular, show
that it already exists a saved rule that shares the same trigger, i.e., entering
the home geographical area, but with an inconsistent action, i.e., turning on the
kitchen Philips Hue lamp. Mary has the possibility of updating on-the-fly the
problematic rule by changing the trigger, the action, and/or the related details
(GL2).

5 Evaluation

We preliminary evaluated My IoT Puzzle through an exploratory study with
6 participants. Our aim was to assess whether the different features offered by
My IoT Puzzle, ranging from the provided feedback to the graphical and textual
explanations, helped participants correctly understand and fix potential conflicts
in trigger-action rules.

Study Procedure. We recruited 6 university students (3 males and 3 females)
with a mean age of 21.5 years (SD = 2.88) who had very limited or no experience
in computer science and programming: on a Likert scale from 1 (No knowledge
at all) to 5 (Expert), participants declared their experience with programming

10 F. Corno et al.

Fig. 4. By opening the Resolve Problems area, Mary can see textual and graphical
explanation of the inconsistency, and she can resolve the problem by changing the rule.

(M = 1.16, SD = 0.40) and with the trigger-action approach (M = 1.00, SD =
0).

We brought each participant to our lab for a 45-minute session using My IoT
Puzzle. At the beginning of the study, participants were introduced to trigger-
action programming and the evaluated tool with an example of a rule composi-
tion. We then presented a task involving the composition of 12 rules (composition
phase). Rules were presented one at a time on a sheet of paper in a counter-
balanced order, and were artificially constructed to generate 2 inconsistencies,
2 redundancies, and 1 loop6. When My IoT Puzzle highlighted some problems
(problem detection phase), participants were free to decide whether to save, up-
date, or delete the problematic rule (problem resolution phase). All the sessions
were video recorded for further analysis.

Measures. We quantitatively measured the number of problematic rules that
were saved, updated, or deleted. Furthermore, after each highlighted problem,
we asked participants to qualitatively provide an explanation for their choices.
When they decided to update or delete a rule that generated a problem, for

6 A detailed description of the rules used in the evaluation can be found in the Ap-
pendix.

My IoT Puzzle 11

example, they had to demonstrate to understand the problem by retrospectively
explaining why the rule generated the issue. At the end of each session, we
asked participants to quantitatively evaluate, on a Likert scale from 1 (Not
understandable at all) to 5 (Very understandable), the understandability of a)
the visual languages and feedback used in the composition and problem detection
phases, b) the textual explanations, and c) the graphical explanations in the
problem resolution phase. Finally, we performed a debriefing session with each
participant.

5.1 Results

Table 2 reports the quantitative measures collected during the evaluation. In
total, participants saved a rule that generated a problem in a limited number of
cases, i.e., 3 out of 30 (10%), thus preliminary demonstrating that My IoT Puzzle
helped them in identifying problems in trigger-action rules. In 2 cases, the saved
rule generated a redundancy, while in the remaining case a participant saved a
rule that generated a loop. Participants deleted a rule that generated a problem
in 18 cases out of 30 (60%), while they updated and successfully fixed the problem
in 9 cases out of (30%). By analyzing the type of the problems, we found that
rules that generated loops or redundancies were deleted most of the time (66.66%
and 75%, respectively), while rules that generated an inconsistency were more
frequently updated (58.33%) than deleted (41.67%). Such results are promising
and suggest that feedback and explanations effectively assisted participants in
understanding the highlighted problems. Both loops and redundancies, indeed,
result in some functionality that are replicated, thus motivating the deletion.
Inconsistencies, instead, are typically caused by a mistake over a set of rules
with different and specific purposes, thus making the “update” choice the most
appropriate.

Table 2. The number of times a rule that generated a problem was deleted, updated,
or saved in the study.

Rules Deleted Updated Saved

Loop 6 4 (66.66%) 1 (16.67%) 1 (16.67%)

Redundancy 12 9 (75%) 1 (8.33%) 2 (16.67%)

Inconsistency 12 5 (41.67%) 7 (58.33%) 0 (0%)

TOTAL 30 18 (60%) 9 (30%) 3 (10%)

We further investigated the results by analyzing the qualitative explanations
given by the participants in case of a detected problem. We first tried to un-
derstand whether the participants who saved a problematic rule were aware of
what would happened in the real world, or whether they simply made a mistake,
thus unconsciously introducing a potential conflict at run-time. Both the users

12 F. Corno et al.

that saved a rule that generated a redundancy provided a sound explanation.
When 2 rules simultaneously turned on the same lamp with different colors,
for example, P1 said “I don’t care about the color, the important thing is that
the lamp is turned on.” On the contrary, P3 failed in providing an explanation
for saving the rule that generated a loop. She said “I don’t know how to solve
the problem. I would save the rule, and then I would try the involved rules in
the real world, to see what happens.” For what concerns the problematic rules
that were deleted, participants provided a sound explanation in 17 cases out of
18 (94.44%). Only in 1 case a participant discarded a rule without providing
any explanation. Finally, participants made a reasonable change in all the rules
that were updated, by successfully fixing the problem and by providing a sound
explanation.

The promising results arising from the interaction between participants and
My IoT Puzzle are confirmed by the answers they provided at the end of the
study. Participants positively evaluated the understandability of the composition
and problem detection phases (M = 4.50, SD = 0.54), and the understandability
of the textual (M = 4.50, SD = 0.81) and graphical (M = 4.50, SD = 0.30)
explanations in the problem resolution phase. Finally, users provided interesting
suggestions to improve My IoT Puzzle. P1, for example, focused on the com-
position phase, by suggesting the possibility of composing multiple rules at the
same time. P4 and P5, instead, focused on the problem resolution phase, and
they asked to introduce recommendations and suggestions for updating prob-
lematic rules. P4, in particular, said that suggestions such as “try to replace the
trigger X with the trigger Y” would allow non-expert users to better understand
and fix the problem.

Discussion. Results are promising and demonstrate that My IoT Puzzle is
helpful for correctly identifying and fixing potential problems in trigger-action
rules. Results also confirm that the design guidelines presented in Section 3 are
valuable. The provided information and the exploited visual languages effectively
helped users understand, identify, and correct errors in trigger-action rules.

The Jigsaw metaphor, for example, was appreciated by the participants, and
turned to be easy to use and understand: all the participants composed the pro-
posed trigger-action rules without any problem. Also the feedback used in the
composition phase turned to be useful for preliminary assessing the correctness
of trigger-action rules. When using a worn piece of puzzle, for example, P3 said
“now I’m going to make a mistake, I need to stay focused.” Furthermore, if the
typical reaction to an highlighted problem was a mix of surprise and uncertainty,
the problem resolution phase progressively made participants aware of the de-
tected conflict: in most of the cases, the provided feedback and explanations
allowed them to successfully fix the problem, either by deleting or updating the
rule that generated it. This confirms that the usage of different representations
of the same information facilitates users in analyzing problems [35].

My IoT Puzzle 13

6 Conclusions and Future Works

Users are making use of End-User Development tools for trigger-action program-
ming to personalize their IoT devices and online services. Which information do
end users need to understand, identify, and correct errors in this context? Which
visual languages are more appropriate for debugging trigger-action rules? In this
paper, we investigated such questions by presenting My IoT Puzzle, a tool to
compose and debug IF-THEN rules, based on the Jigsaw metaphor. The tool fol-
lows design guidelines extracted from a literature analysis. It interactively assists
users in the composition process by representing triggers and actions as com-
plementary puzzle pieces, and it allows end users to debug their rules through
different real-time feedback, textual and graphical explanations. Results of an
exploratory study with 6 participants preliminary suggest that the adopted vi-
sual languages are easy to understand. Furthermore, results show that users can
successfully identify and fix conflicts between trigger-action rules with the help
of textual and graphical explanations.

Acknowledgments. The authors wish to thanks Alessia Carosella for conduct-
ing the literature review and implementing the user interface of My IoT Puzzle.

Appendix: Rules Used in the Evaluation

The following trigger-action rules were used in the evaluation of My IoT Puzzle:

R1. If your Android smartphone detects that you enter the home area, then turn
on the Philips Hue kitchen lamp.

R2. If your Android smartphone detects that you enter the home area, then turn
off the Philips Hue kitchen lamp.

R3. If your Android smartphone detects that you enter the home area, then turn
on a color loop on the Philips Hue kitchen lamp.

R4. If a new photo is added to the “ios” album on iOS Photo, then add the file
on the “drpb” Dropbox folder.

R5. If a new photo is added to the “drpb” Dropbox folder, then upload the
photo on Facebook.

R6. If there is a new photo post by you on Facebook, then add the photo to the
“ios” album on iOS Photo.

R7. If your iPhone detects that you exit the work area, then lock the Smart-
Things office door.

R8. If the SmartThings office door is locked, then arm the Homeboy office secu-
rity camera.

R9. If the Homeboy office security camera is armed, then unlock the SmarThings
office door.

R10. If a new song is played on Amazon Alexa, then post a tweet with the song
name on Twitter.

R11. If a new song is played on Amazon Alexa, then save the track on Spotify.

14 F. Corno et al.

R12. If a new track is saved track on Spotify, then post a tweet with the song
name on Twitter.

The rules generate 2 inconsistencies, 2 redundancies, and 1 loop:

– R1 and R2 generate an inconsistency, because they share the same trigger
while producing contradictory actions on the same device;

– R7 and R9 generate an inconsistency, because they produce contradictory
actions on the same device and are activated nearly at the same time, since
R7 activates R8, and R8 activates R9;

– R1 and R3 generate a redundancy, because they share the same trigger
while producing two similar actions on the same device;

– R10 and R12 generate a redundancy, because they produce similar actions
on the same online service and are activated nearly at the same time, since
R10 and R11 share the same trigger and R11 activates R12.

– R4, R5, and R6 generate an infinite loop, because R4 activates R5, R5
activates R6, and R6 activates R4;

References

1. Akiki, P.A., Bandara, A.K., Yu, Y.: Visual simple transformations: Empowering
end-users to wire internet of things objects. ACM Transactions on Computer-
Human Interaction 24(2), 10:1–10:43 (Apr 2017)

2. Barricelli, B.R., Valtolina, S.: End-User Development: 5th International Sympo-
sium, IS-EUD 2015, Madrid, Spain, May 26-29, 2015. Proceedings, chap. Designing
for End-User Development in the Internet of Things, pp. 9–24. Springer Interna-
tional Publishing, Cham, Germany (2015)

3. Brich, J., Walch, M., Rietzler, M., Weber, M., Schaub, F.: Exploring end user
programming needs in home automation. ACM Transaction on Computer-Human
Interaction 24(2), 11:1–11:35 (Apr 2017)

4. Brush, A.B., Lee, B., Mahajan, R., Agarwal, S., Saroiu, S., Dixon, C.: Home au-
tomation in the wild: Challenges and opportunities. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 2115–2124. CHI ’11,
ACM, New York, NY, USA (2011)

5. Caivano, D., Fogli, D., Lanzilotti, R., Piccinno, A., Cassano, F.: Supporting end
users to control their smart home: design implications from a literature review and
an empirical investigation. Journal of Systems and Software 144, 295–313 (2018)

6. Cao, J., Rector, K., Park, T.H., Fleming, S.D., Burnett, M., Wiedenbeck, S.: A de-
bugging perspective on end-user mashup programming. In: 2010 IEEE Symposium
on Visual Languages and Human-Centric Computing. pp. 149–156 (Sept 2010)

7. Cerf, V., Senges, M.: Taking the Internet to the Next Physical Level. IEEE Com-
puter 49(2), 80–86 (Feb 2016)

8. Corno, F., De Russis, L., Monge Roffarello, A.: Empowering end users in debugging
trigger-action rules. In: Proceedings of the 2019 CHI Conference on Human Factors
in Computing Systems. CHI ’19, ACM, New York, NY, USA (2019), in press

9. Corno, F., De Russis, L., Monge Roffarello, A.: A high-level semantic approach to
end-user development in the internet of things. International Journal of Human-
Computer Studies 125, 41 – 54 (2019)

My IoT Puzzle 15

10. Dahl, Y., Svendsen, R.M.: End-user composition interfaces for smart environments:
A preliminary study of usability factors. In: Marcus, A. (ed.) Design, User Expe-
rience, and Usability. Theory, Methods, Tools and Practice. pp. 118–127. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

11. Danado, J., Paternò, F.: Puzzle: A mobile application development environment
using a jigsaw metaphor. Journal of Visual Languages and Computing 25(4), 297–
315 (Aug 2014)

12. Desolda, G., Ardito, C., Matera, M.: Empowering end users to customize their
smart environments: Model, composition paradigms, and domain-specific tools.
ACM Transactions on Computer-Human Interaction 24(2), 12:1–12:52 (2017)

13. Evans, D.: The Internet of Things: How the Next Evolution of the Internet Is
Changing Everything. Tech. rep., Cisco Internet Business Solutions Group (2011)

14. Ghiani, G., Manca, M., Paternò, F., Santoro, C.: Personalization of Context-
Dependent Applications Through Trigger-Action Rules. ACM Transactions on
Computer-Human Interaction 24(2), 14:1–14:33 (2017)

15. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., Kwan, I.:
End-user debugging strategies: A sensemaking perspective. ACM Transaction on
Computer-Human Interaction 19(1), 5:1–5:28 (May 2012)

16. Huang, J., Cakmak, M.: Supporting mental model accuracy in trigger-action pro-
gramming. In: Proceedings of the 2015 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing. pp. 215–225. UbiComp ’15, ACM, New York,
NY, USA (2015)

17. Huang, T.H.K., Azaria, A., Bigham, J.P.: Instructablecrowd: Creating if-then rules
via conversations with the crowd. In: Proceedings of the 2016 CHI Conference
Extended Abstracts on Human Factors in Computing Systems. pp. 1555–1562.
CHI EA ’16, ACM, New York, NY, USA (2016)

18. Ko, A.J., Myers, B.A.: Designing the whyline: A debugging interface for asking
questions about program behavior. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 151–158. CHI ’04, ACM, New York,
NY, USA (2004)

19. Ko, A.J., Myers, B.A., Coblenz, M.J., Aung, H.H.: An exploratory study of how
developers seek, relate, and collect relevant information during software mainte-
nance tasks. IEEE Transactions on Software Engineering 32(12), 971–987 (Dec
2006)

20. Ko, A.J., Myers, B.A.: Finding causes of program output with the java whyline. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
pp. 1569–1578. CHI ’09, ACM, New York, NY, USA (2009)

21. Kulesza, T., Burnett, M., Wong, W.K., Stumpf, S.: Principles of explanatory de-
bugging to personalize interactive machine learning. In: Proceedings of the 20th
International Conference on Intelligent User Interfaces. pp. 126–137. IUI ’15, ACM,
New York, NY, USA (2015)

22. Lee, J., Garduño, L., Walker, E., Burleson, W.: A tangible programming tool for
creation of context-aware applications. In: Proceedings of the 2013 ACM Inter-
national Joint Conference on Pervasive and Ubiquitous Computing. pp. 391–400.
UbiComp ’13, ACM, New York, NY, USA (2013)

23. Lieberman, H., Paternò, F., Klann, M., Wulf, V.: End User Development, chap.
End-User Development: An Emerging Paradigm, pp. 1–8. Springer Netherlands,
Dordrecht, Netherlands (2006)

24. Lim, B.Y., Dey, A.K.: Toolkit to support intelligibility in context-aware applica-
tions. In: Proceedings of the 12th ACM International Conference on Ubiquitous
Computing. pp. 13–22. UbiComp ’10, ACM, New York, NY, USA (2010)

16 F. Corno et al.

25. Lim, B.Y., Dey, A.K., Avrahami, D.: Why and why not explanations improve the
intelligibility of context-aware intelligent systems. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 2119–2128. CHI ’09,
ACM, New York, NY, USA (2009)

26. Manca, M., Fabio, Paternò, Santoro, C., Corcella, L.: Supporting end-user debug-
ging of trigger-action rules for iot applications. International Journal of Human-
Computer Studies 123, 56 – 69 (2019)

27. Myers, B.A., Ko, A.J., Scaffidi, C., Oney, S., Yoon, Y., Chang, K., Kery, M.B., Li,
T.J.J.: Making End User Development More Natural, pp. 1–22. Springer Interna-
tional Publishing, Cham (2017)

28. Namoun, A., Daskalopoulou, A., Mehandjiev, N., Xun, Z.: Exploring mobile end
user development: Existing use and design factors. IEEE Transactions on Software
Engineering 42(10), 960–976 (Oct 2016)

29. Reisinger, M., Schrammel, J., Fröhlich, P.: Visual end-user programming in smart
homes: Complexity and performance. In: 2017 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). pp. 331–332 (Oct 2017)

30. Reisinger, M.R., Schrammel, J., Fröhlich, P.: Visual languages for smart spaces:
End-user programming between data-flow and form-filling. In: 2017 IEEE Sympo-
sium on Visual Languages and Human-Centric Computing (VL/HCC). pp. 165–169
(Oct 2017)

31. Repenning, A., Sumner, T.: Agentsheets: A medium for creating domain-oriented
visual languages. Computer 28(3), 17–25 (Mar 1995)

32. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Bren-
nan, K., Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch:
Programming for all. Commun. ACM 52(11), 60–67 (Nov 2009)

33. Rietzler, M., Greim, J., Walch, M., Schaub, F., Wiedersheim, B., Weber, M.: home-
blox: Introducing process-driven home automation. In: Proceedings of the 2013
ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication.
pp. 801–808. UbiComp ’13 Adjunct, ACM, New York, NY, USA (2013)

34. Rode, J., Rosson, M.B.: Programming at runtime: Requirements and paradigms for
nonprogrammer web application development. In: Proceedings of the 2003 IEEE
Symposium on Human Centric Computing Languages and Environments. pp. 23–
30. HCC ’03, IEEE Computer Society, Washington, DC, USA (2003)

35. Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., Beckwith,
L., Burnett, M.: Explaining debugging strategies to end-user programmers. In:
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing. pp. 127–136. VLHCC ’07, IEEE Computer Society, Washington, DC,
USA (2007)

36. Ur, B., Pak Yong Ho, M., Brawner, S., Lee, J., Mennicken, S., Picard, N., Schulze,
D., Littman, M.L.: Trigger-action programming in the wild: An analysis of 200,000
ifttt recipes. In: Proceedings of the 34rd Annual ACM Conference on Human Fac-
tors in Computing Systems. pp. 3227–3231. CHI ’16, ACM, New York, NY, USA
(2016)

37. Ur, B., McManus, E., Pak Yong Ho, M., Littman, M.L.: Practical trigger-action
programming in the smart home. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 803–812. CHI ’14, ACM, New York,
NY, USA (2014)

38. User Interface Group, U.: Alice: Rapid prototyping for virtual reality. IEEE Com-
puter Graphics and Applications 15(3), 8–11 (May 1995)

