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Enforcing passivity of parameterized LTI
macromodels via Hamiltonian-driven multivariate

adaptive sampling
Alessandro Zanco, Student Member, IEEE, Stefano Grivet-Talocia, Fellow, IEEE, Tommaso Bradde, Student

Member, IEEE, Marco De Stefano, Student Member, IEEE

Abstract—We present an algorithm for passivity verification
and enforcement of multivariate macromodels whose state-space
matrices depend in closed form on a set of external or design
parameters. Uniform passivity throughout the parameter space
is a fundamental requirement of parameterized macromodels of
physically passive structures, that must be guaranteed during
model generation. Otherwise, numerical instabilities may occur,
due to the ability of non-passive models to generate energy.

In this work, we propose the first available algorithm that,
starting from a generic parameter-depedent state-space model,
identifies the regions in the frequency-parameter space where the
model behaves locally as a non-passive system. The approach we
pursue is based on an adaptive sampling scheme in the parameter
space, which iteratively constructs and perturbs the eigenvalue
spectrum of suitable Skew-Hamiltonian/Hamiltonian (SHH) pen-
cils, with the objective of identifying the regions where some
of these eigenvalues become purely imaginary, thus pinpointing
local passivity violations. The proposed scheme is able to detect
all relevant violations. An outer iterative perturbation method
is then applied to the model coefficients in order to remove
such violations and achieve uniform passivity. Although a formal
proof of global convergence is not available, the effectiveness of
the proposed implementation of the passivity verification and
enforcement schemes is demonstrated on several examples.

Index Terms—Passivity, Hamiltonian matrices, Data-driven
Model Order Reduction, Scattering, Immittance, Descriptor Sys-
tems.

I. INTRODUCTION AND MOTIVATION

This paper addresses the problem of constructing accurate
and robust behavioral reduced-order models (ROM), hence-
forth denoted as macromodels, of complex dynamical systems,
including explicit dependence on external parameters. Macro-
models aim at reproducing with the required level of accuracy
the response of a given system, but with a drastically reduced
complexity in the constitutive equations, allowing for reliable
simulations in a fraction of the runtime that would be required
by solving the complete system using a first-principle solver.

Adoption of reduced-order models in computer-aided design
flows is widespread in several application areas, ranging from
microelectronics [1]–[3] to power systems [4], [5], multi-
physics systems including thermal, mechanical and electrical
domains [6]–[9], and many others. Although highly efficient
and reliable macromodeling algorithms exist and are embed-
ded in modern CAD tools, research in Model Order Reduction
(MOR) is very active both in applied engineering fields and
in mathematics, since various open problems still exist.

There are two main approaches for macromodeling, de-
pending on the initial description of the system. Classical

reduction approaches start from an internal description, usu-
ally in terms of state-space or descriptor equations, which
are truncated or projected onto lower-dimensional subspaces.
See [6], [10]–[14] for an overview. Conversely, data-driven
approaches start from a black-box description of the system
in terms of its input-output responses in time or frequency
domain, and perform some interpolation or fitting of a given
model structure to these data through an approximation or
identification process [15]–[18]. The latter approach derives
models from direct measurements or from results of numerical
field simulations, e.g. from commercial field solvers, without
any a priori assumption on the internal structure of the system
under modeling. The main focus of this work is on the latter
data-driven approach, although the proposed algorithms are
general and can be applied to models obtained by any preferred
MOR technique.

We consider general Linear Time-Invariant (LTI) systems,
whose responses depend on a set of parameters. These may be
related to geometry, material, temperature or any other variable
the system responses may depend on. We assume to know
sampled frequency responses over a prescribed frequency band
and over the parameter space, and we want to derive param-
eterized macromodels in state-space form, whose responses
match as closely as possible the original responses. Several
algorithms are available for this task, including multivariate
rational fitting [6], [19], [20], Loewner-based approaches [21],
and interpolation methods [22]–[26]. We assume in particular
that some initial parameterized model is already available, as
resulting from one of these methods, so our starting point will
be a parameter-dependent state-space (descriptor) system. The
main problem that we address in this work is the verification
and the enforcement of uniform passivity of this model.

A passive system is unable to generate energy on its
own. This fundamental physical property must be reflected
numerically in any model that intends to represent the system,
since a non-passive model may result in unrealistic results
during system-level simulation, including unstable behavior.
Construction of passive non-parameterized models can be
considered as a solved problem, thanks to many reliable
algorithms, see [6], [27] for an overview. Conversely, the con-
struction of parameterized models that are uniformly passive
throughout the parameter space is stil a partially open prob-
lem. Some existing algorithms for data-driven parameterized
macromodeling [19] are not able to guarantee model passivity
throughout the parameter space, and this motivates our work.
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Some other approaches are available that guarantee passivity
by construction. These approaches usually perform an inter-
polation of a set of non-parameterized passive macromod-
els using passivity-preserving interpolation schemes. Some
of these approaches [22]–[25] produce models with higher
complexity than necessary. Some other approaches control
both complexity and passivity but perform interpolation of
state-space matrices [26], which may be questionable due to
the non-unicity of state-space realizations.

Our starting point is a possibly non-passive macromodel
known as a parameterized state-space (descriptor) form. We
first present an algorithm that is able to verify passivity, by
extending to the parametric case the class of Hamiltonian-
based methods originally presented in [28] and later extended
in [29]. Our framework starts from the formulation [28],
where however only a single parameter was considered, and
extends it to the general case of a multivariate parameter
space. A second contribution involves a more general model
structure, hence granting wider applicability. A further novel
contribution is a new formulation of a multivariate adaptive
sampling algorithm in the parameter space, based on a first-
order perturbation of the eigenvalue spectrum of a suitably-
defined Skew-Hamiltonian Hamiltonian (SHH) pencil, which
allows to localize the passivity violations in the frequency-
parameter space, and which proves much more reliable than
the method based on the spectral abscissa presented in [28].
Once the passivity violations are detected, an iterative per-
turbation scheme is presented that is able to remove them
by minimizing model error while enforcing local passivity
constraints. This paper presents the complete framework and
extends some preliminary results presented in [30].

II. PRELIMINARIES AND NOTATION

We consider a general descriptor (non-impulsive) system
with a square P × P transfer matrix

H(s,ϑ) = C(ϑ) (sE−A(ϑ))
−1

B (1)

with real realization matrices E,A ∈ RN̄×N̄ , B ∈ RN̄×P and
C ∈ RP×N̄ . In addition to complex frequency s, the transfer
matrix depends on a set of external parameters, collected in
vector ϑ ∈ Θ ⊆ Rρ. The parameter space is here assumed to
be a ρ-dimensional box, whose edges along the ν-th dimension
are [ϑνmin, ϑ

ν
max]. Without loss of generality, we will assume

in the following a normalized hypercube with ϑνmin = 0 and
ϑνmax = 1.

As typical in most applications, the system parameterization
in (1) assumes a constant input-state map B and a constant
descriptor matrix E. The latter assumption is not essential and
can be released, as far as the pencil (A(ϑ),E) is regular1

∀ϑ ∈ Θ. This condition ensures that the transfer matrix
H(s,ϑ) is well-defined throughout the frequency and parame-
ter ranges. There is no additional restriction on E, which may
be singular.

1a pencil (A,E) is regular if ∃s ∈ C such that |sE−A| 6= 0.

The specific parameterization scheme that we consider in
this work is based on the following linear expansions

A(ϑ) =

¯̀∑
`=1

A` ξ`(ϑ), C(ϑ) =

¯̀∑
`=1

C` ξ`(ϑ) (2)

of the two parameter-dependent matrices into a set of multi-
variate basis functions ξ`(ϑ) with constant coefficients A`,C`,
where ` = 1, . . . , ¯̀ denotes a global linear index that spans
the adopted multivariate basis. The above parameterization
generalizes in several aspects the expected transfer function
dependence of arbitrary RLC lumped circuits, when viewed
as functions of frequency and individual circuit parameters.
It is well-known that any such transfer function is a rational
function of complex frequency s,

H(s;ϑ) =
N(s,ϑ)

D(s,ϑ)
=

∑n̄
n=0 Rn(ϑ)ϕn(s)∑n̄
n=0 rn(ϑ)ϕn(s)

, (3)

with coefficients Rn(ϑ), rn(ϑ) that are multiaffine in the cir-
cuit parameters ϑ, with ϕn(s) = sn. We preserve the rational
form of (3) as a function of s, so that our model corresponds
to a finite-order Ordinary Differential Equation (ODE) system
in time-domain, but we replace the monomials sn with the
partial fraction basis ϕ0(s) = 1 and ϕn(s) = (s − qn)−1

for n > 0, where qn are predefined stable “basis poles”, in
order to improve numerical conditioning in the initial model
extraction phase. Then, we extend the multi-affine dependence
of the coefficients to higher-order polynomials, in order to
allow for general parameters (not only circuit element values)
and to extend applicability to more general electromagnetic
structures, and not necessarily lumped circuits. The resulting
model structure is equivalent to a parameterized barycentric
form, which is a standard [6], [8], [15], [16]. The assumed
descriptor form (1) is easily derived from (3), see e.g. [19], in
which case the state-space size is obtained as N̄ = (n̄+ 1)P .
We remark that the above structure implicitly parameterizes
the model poles (which may have non-smooth trajectories
in the parameter space) through smoothly varying numerator
and denominator coefficients. The identification of the model
coefficients from frequency response data is textbook material
and is not repeated here, see [6] and also [29], [31].

In this work, we will consider each basis function ξ`(ϑ)
in (2) to be the product of univariate basis functions

ξ`(ϑ) = ξ`1(ϑ1) · ξ`2(ϑ2) · · · ξ`ρ(ϑρ) (4)

where a suitable mapping between global index ` and the
multi-index (`1, `2, . . . , `ρ) is established. In particular, all
numerical examples in this work are based on (first kind)
Chebychev polynomials along each direction in the parameter
space, so that ξ`ν (ϑν) is the Chebychev polynomial defined
on interval [ϑνmin, ϑ

ν
max] with degree `ν , up to a maximum

degree ¯̀
ν . This results in (1 + ¯̀

ν) univariate basis functions
along each direction ν, which results in a cardinality ¯̀ of the
global index ` expressed by the product

¯̀=

ρ∏
ν=1

(1 + ¯̀
ν). (5)
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We remark that this choice of basis functions is not restrictive,
as any structured/nonstructured bases can be used to expand
A(ϑ) and C(ϑ) through (2). Chebychev polynomials have
been chosen here for their good numerical properties. How-
ever, as proposed in [20] where the Fourier basis was used to
handle a periodically-varying dependence, other bases can be
chosen according to the problem at hand. For our purposes,
ξ`(ϑ) must be differentiable throughout Θ.

An important requirement that we will assume in the fol-
lowing is the uniform asymptotic stability of H(s,ϑ), which
implies that all finite eigenvalues of pencil (A(ϑ),E) have
a strictly negative real part ∀ϑ ∈ Θ. Using the constrained
Parameterized Sanathanan-Koerner (PSK) algorithm outlined
in [29] to construct the model, the above assumptions on
both model structure and uniform stability are verified by
construction.

Some remarks on the adopted notation are in order. We
denote scalars with lowercase italic fonts x, vectors with
lowercase bold fonts x, and matrices with uppercase bold fonts
X. Throughout this paper, ∗ denotes the complex conjugate;
XT and XH are the transpose and hermitian transpose of
matrix X, respectively. A positive semi-definite symmetric
(or hermitian symmetric) matrix is denoted as X ≥ 0. We
generally denote the upper limit of some index ` through an
overbar, as ¯̀. The spectrum of eigenvalues and singular values
of X are denoted as λ(X) and σ(X), respectively.

III. PASSIVITY CONDITIONS

The conditions that characterize a passive transfer matrix
H(s,ϑ) depend on its particular input-output representa-
tion [32], [33]. Here we consider the two most common cases
of immittance (including impedance, admittance or hybrid)
and scattering representations. The following two conditions
must hold in all cases

a) H(s,ϑ) is regular for <{s} > 0 and ∀ϑ ∈ Θ,
b) H∗(s,ϑ) = H(s∗,ϑ), ∀s ∈ C and ∀ϑ ∈ Θ,

Condition a) is related to the uniform model stability, which
is here assumed a priori, whereas b) implies a real impulse
response and is here guaranteed by the real-valued descriptor
realization.

Passivity is fully characterized by an additional dissipation
condition, which ensures that the system is unable to generate
energy. The particular form of this condition depends on the
system representation

A. Immittance representations

In the immittance case, a passive transfer matrix must be
Positive-Real (PR). In our parameterized setting, PR-ness will
be required to hold uniformly in the parameter space ∀ϑ ∈ Θ
through

c) ΨI(s,ϑ) = H(s,ϑ) + HH(s,ϑ) ≥ 0 for <{s} > 0.
Given our working assumptions, a simpler but equivalent form
for this condition can be stated as

λmin(H(jω,ϑ) + HH(jω,ϑ)) ≥ 0 ∀ω ∈ R,∀ϑ ∈ Θ (6)

where λmin(·) denotes the smallest eigenvalue of its matrix
argument. It is sufficient to check this minimum eigenvalue

for s = jω thanks to the assumed uniform asymptotic stability,
which guarantees that the transter matrix H(s,ϑ) is regular
when restricted to the imaginary axis.

B. Scattering representations

In the scattering case, a passive transfer matrix must be
Bounded-Real (BR). This condition is expressed in our pa-
rameterized setting ∀ϑ ∈ Θ as

d) ΨS(s,ϑ) = I−HH(s,ϑ)H(s,ϑ) ≥ 0 for <{s} > 0

Also in this case a simpler equivalent form is available as

λmin(I−HH(jω,ϑ)H(jω,ϑ)) ≥ 0 ∀ω ∈ R,∀ϑ ∈ Θ (7)

or, equivalently,

σmax(H(jω,ϑ)) ≤ 1 ∀ω ∈ R,∀ϑ ∈ Θ (8)

where σmax(·) denotes the largest singular value of its matrix
argument.

IV. PROBLEM STATEMENT

The main objective of this work is enforcing uniform
passivity of a given parameterized model in form (1). This
operation requires two main steps, discussed below.

A. Passivity check

This step involves a localization and a quantification of any
passivity violations. This is achieved by finding the regions
Θα ⊂ Θ for α = 1, 2, . . . where conditions (6) or (8) do
not hold. Within each such region, we are interested in the
worst-case local passivity violation extent, defined as

λ̄αmin = inf
ω∈R,ϑ∈Θα

λmin(H(jω,ϑ) + HH(jω,ϑ)) (9)

for immittance systems and

σ̄αmax = sup
ω∈R,ϑ∈Θα

σmax(H(jω,ϑ)) (10)

for scattering systems, together with their localization
(ω̄α, ϑ̄α) in the frequency-parameter space. Since these denote
local passivity violations, we have λ̄αmin < 0 and σ̄αmax > 1.
Our approach to this passivity check is addressed in detail in
Sec. VI.

B. Passivity enforcement

This step formulates a perturbation scheme that corrects
the realization matrices by enforcing passivity constraints.
These constraints are best defined based on the information on
the passivity violations collected during the check, expressed
by the triplets {ω̄µ, ϑ̄µ; λ̄µmin} in the immittance case and
{ω̄µ, ϑ̄µ; σ̄µmax} in the scattering case. In the following, these
sets will be denoted by the common notation Wµ for both
representations, with W = {Wµ, µ = 1, 2, . . . }.

Our proposed perturbation scheme will iteratively correct an
initially non-passive model by enforcing approximate passivity
constraints at each iteration, thus requiring repeated passivity
checks for setting up these constraints. The iterations will
stop whenW becomes empty. The main passivity enforcement
scheme is described in Sec. VII.



4

V. HAMILTONIAN-BASED PASSIVITY CHARACTERIZATION

Both proposed passivity check and enforcement algo-
rithms are based on the spectral properties of some Skew-
Hamiltonian/Hamiltonian (SHH) pencils associated to (1),
which are reviewed below [6], [34]–[36]. For immittance
representations, we define the SHH pencil (MI(ϑ),KI) as

MI(ϑ) =

A(ϑ) 0 B
0 −AT(ϑ) −CT(ϑ)

C(ϑ) BT 0

 (11)

KI =

E 0 0
0 ET 0
0 0 0


while for scattering models we define the SHH pencil
(MS(ϑ),KS) as

MS(ϑ) =

(
A(ϑ) BBT

−CT(ϑ)C(ϑ) −AT(ϑ)

)
(12)

KS =

(
ET 0
0 E

)
.

The following theorems (see [37] and [6, Chapter 9]) hold for
the two representations, respectively.

Theorem 1: Let the matrix pencil (A(ϑ),E) have no purely
imaginary eigenvalues. Then, jωi is a generalized eigenvalue
of (MI(ϑ),KI) if and only if λ = 0 is an eigenvalue of
ΨI(jωi,ϑ).

Theorem 2: Let the matrix pencil (A(ϑ),E) have no purely
imaginary eigenvalues. Then, jωi is a generalized eigenvalue
of (MS(ϑ),KS) if and only if λ = 0 is an eigenvalue of
ΨS(jωi,ϑ) or, equivalently, σ = 1 is a singular value of
H(jωi,ϑ).

Assuming the parameters to be fixed to some nominal value
ϑ = ϑq , the above results can be exploited to localize all pas-
sivity violations of the corresponding model H(s,ϑq) through
a purely algebraic test. The purely imaginary eigenvalues jωi
of the appropriate SHH pencil are first computed. At the
corresponding frequencies ωi, one eigenvalue of ΨI(jω,ϑq)
or ΨS(jω,ϑq) changes sign2. Therefore, these frequencies
subdivide the frequency axis into disjoint subbands which
are locally passive or locally non-passive. A local eigenvalue
sampling in each non-passive subband can thus be used
to determine the worst-case passivity violations Wq . This
characterization for fixed ϑ = ϑq is illustrated in Fig. 1. We
remark that the above procedure is standard and is generally
considered as the method of choice for passivity check of non-
parameterized models.

Let us now consider the model behavior for a parameter
configuration that deviates from the above nominal value as
ϑ = ϑq+δϑ. Correspondingly, the SHH pencil is modified, as
well as its eigenspectrum. Figure 2 illustrates the trajectories
that the SHH eigenvalues follow (blue dotted lines) starting
from a nominal parameter configuration (yellow dots). It may
happen that some non-imaginary eigenvalues become purely
imaginary (thus inducing new passivity violation bands), and
vice-versa. Therefore, the characterization of all passivity

2we avoid here technical conditions on Hamiltonian eigenvalue multiplicity
by assuming simple eigenvalues only, see [38] for a complete discussion.

Fig. 1: Representation of one eigenvalue of ΨI(jω,ϑq) cor-
responding to a fixed parameter value ϑq . The eigenvalue λ
(solid black line) crosses the zero baseline for ω = ωi (the
imaginary SHH eigenvalues, blue large dots), delimiting non-
passive frequency bands Ωq,1, Ωq,2 (highlighted as thick red
lines). Local minima are denoted as small black dots.

Fig. 2: First-order approximation (red solid lines) of SHH
eigenvalue trajectories (blue dotted lines) along a one-
dimensional path in the parameter space. Circles denote the
nominal eigenvalues, while crosses are the first-order eigen-
value estimates.

violations is inevitably parameter-dependent and requires a
multivariate extension of the standard Hamiltonian check to
the entire parameter space. This is investigated next.

VI. PREDICTIVE PASSIVITY VERIFICATION VIA SHH
PENCIL PERTURBATION

The main approach that we follow for multivariate (parame-
terized) passivity verification is based on an adaptive sampling
process in the parameter space Θ. This process is summarized
as follows.

1) We start from an initial distribution of parameter values
ϑq for q = 1, . . . , q̄;

2) we determine the finite SHH spectra Λq at each available
parameter value ϑq;

3) based on the above spectra, we determine whether
the available samples ϑq are sufficient to completely
characterize all passivity violations ∀ϑ ∈ Θ, or whether
some refinement in the sampling density is needed in
some regions;
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4) in case a refined sampling is required, new ∆q̄ samples
are added. The process is repeated from step 2) until
no new samples are required or a maximum number
of iterations is reached. We denote these as “inner”
iterations.

The above procedure may seem straightforward, but it is in fact
quite challenging: we need to infer that some passivity viola-
tions exist (or do not exist) in a continuous parameter space
Θ, based only on a finite number of “measurement” points
ϑq . Therefore, the verification method must be equipped with
some prediction capability that is able to provide information
on passivity violations in a neighborhood of each point ϑq ,
and not only exactly at ϑq . This information is sought for in
form of presence (or guaranteed absence) of purely imaginary
SHH eigenvalues.

A. Notation

We first introduce a compact notation that will prove
useful in the following. Consider a matrix-valued function
X(ϑ) ∈ Rm,n, where ϑ ∈ Rρ. We collect the first-order
partial derivatives with respect to ϑ in a 3-way tensor, denoted
as D{X(ϑ)} ∈ Rm,n,ρ, where

D{X(ϑ)}i,j,ν =
∂Xi,j(ϑ)

∂ϑν
. (13)

Evaluation of the partial derivative tensor at ϑq will be
denoted as Dϑq{X(ϑ)}.

A first-order Taylor expansion of matrix element Xi,j(ϑ)
centered at ϑq reads

Xi,j(ϑq + δϑ) ≈ Xi,j(ϑq) +∇ϑqXi,j(ϑ)T · δϑ (14)

where ∇ denotes the gradient operator, which can be written
for the entire matrix X(ϑ) through the compact notation

X(ϑq + δϑ) ≈ X(ϑq) +Dϑq{X(ϑ)} ×3 δϑ (15)

where the operator ×r denotes the r-mode tensor product [39].

B. Differentiating SHH pencils and SHH eigenvalues

Let us consider the descriptor realization matrices defined in
Sec. II. The derivative tensors associated to A(ϑ),C(ϑ) can
be evaluated in closed form, since their parameter dependence
is induced by the known basis functions ξ`(ϑ). We have

D{A(ϑ)} =

¯̀∑
`=1

A` ◦ ∇ξ`(ϑ), (16)

and similarly for C(ϑ), where ◦ denotes the outer prod-
uct [39]. Based on these expressions, we can construct the
derivative tensors of the SHH pencils through simple algebraic
manipulations (omitted). For both immittance and scattering
representations (we therefore omit subscripts I,S), we can then
write the following first-order perturbation

M(ϑq + δϑ) ≈M(ϑq) +Dϑq{M(ϑ)} ×3 δϑ. (17)

Let us now consider a finite eigenvalue λi(ϑq) of the pencil
(M(ϑq),K) centered at some prescribed point ϑq in the pa-
rameter space, and let us denote with ui,vi its associated right

and left eigenvectors. Using standard eigenvalue perturbation
theory results [38], [40], we can estimate the trajectory of this
eigenvalue along the path ϑ = ϑq + δϑ as

λ̂i(ϑ) ≈ λi(ϑq) + δλi(ϑq), (18)

where the first-order perturbation term reads

δλi(ϑq) ≈
Dϑq{M(ϑ)} ×1 v∗i ×2 ui ×3 δϑ

vH
i ·K · ui

(19)

We remark that the above tensor notation does not lead to
computational advantages but rather allows for a more clear
definition of the various operations to be performed, as well
as to a cleaner coding.

Figure 2 depicts the above eigenvalue perturbation results
on an illustrative case. The yellow dots represent the nominal
finite SHH eigenvalues {λi(ϑq)}, the blue dotted lines denote
the exact trajectories {λi(ϑq+δϑ)} on a one-dimensional cut
δϑ = p δt along some direction p ∈ Rρ with ‖p‖ = 1; the
red solid lines represent the linearization of these trajectories,
leading to the linear predictions (crosses) based on (18)–(19).
As expected, the linear predictions are only valid for small δt
and are tangent to the exact trajectories for δt = 0.

C. Adaptive sampling via SHH spectral perturbation

The above derivation showed that a linear perturbation anal-
ysis allows to predict the location of all SHH eigenvalues in a
neighborhood of a given expansion point ϑq . We now exploit
this capability to set up an adaptive sampling scheme for
the localization of passivity violations in the parameter space
Θ. To this end, we consider a dynamically and adaptively
constructed partition. We proceed in steps.

1) Initialization: We first subdivide each parameter space
direction ν = 1, . . . , ρ into 2j

ν
0 identical sub-intervals, with jν0

the initial refinement level, whose end points are collected in
set Sjν0 = {k 2−j

ν
0 , k = 0, . . . , 2j

ν
0 }. The Cartesian product:

V0 = Sj10 × Sj20×, . . . ,×Sjρ0 (20)

defines the set of vertices ϑq ∈ V0, identified by a global
index q = 1, . . . , q̄, of a (hyper)-cubic lattice providing an
initial uniform partition of Θ (see top-left panel of Fig. 5 for
a 2D example with ρ = 2). This partition is described through
a data structure P0 = {V0, E0,F0}, where edges connecting
any pair of adjacent vertices are collected in set E0, and all
(hyper)-cubic cells Γτ for τ = 1, . . . , τ̄ are collected in set
F0.

Then, we extract and store all the (finite) SHH eigen-
values λq,i = λi(ϑq) ∈ Λq with associated left and right
eigenvectors. Note that only the eigenvalues in any closed
quadrant (we consider the second quadrant in the following)
are sufficient, due to the four-quadrant symmetry of the SHH
spectrum. The frequencies ωq,i corresponding to the purely
imaginary eigenvalues λq,i = jωq,i are sorted in ascending
order and collected in a set Ωq . If Ωq = Ø, then ϑq is
labelled as “passive” (green empty dots in Fig. 5) based on
Theorems 1-2. Otherwise ϑq corresponds to a non-passive
vertex (red filled dots in Fig. 5). With reference to Fig. 1, we
perform a local fine frequency sampling on each non-passive
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(a) ρ = 2 (b) ρ = 3

Fig. 3: Elementary cell Γτ in 2D (left) and 3D (right) being
refined along the first direction ν = 1. Filled yellow dots
and red dashed dots represent vertices and edge midpoints,
respectively.

band Ωq,β (highlighted in red) for β = 1, . . . , β̄q to detect
the worst-case passivity violations, occurring at frequencies
ω̄µ = ω̄q,β . These will be collectively identified as Wµ, with
µ a unique index whose upper bound µ̄ is increased anytime
a new violation is added.

2) Grid refinement: We consider grid refinement starting
from a generic refinement iteration J = 0, 1, . . . , where J = 0
corresponds to the above initialization. We process all cells
Γτ ∈ FJ in a loop for τ = 1, . . . , τ̄ . For each current cell
Γτ (see Fig. 3) we extract all support edges eτ,m ∈ EJ
for m = 1, . . . , ρ 2ρ−1, we calculate the coordinates of the
corresponding midpoints ϑτ,m (dashed red dots), and we
denote the two local vertices at their endpoints as ϑvτ,m ∈ VJ
for v = 1, 2 (yellow dots).

Since all SHH eigenvalues and eigenvectors at all vertices
are available from previous iterations, we calculate the two
first-order predictions λ̂vτ,m;i of each SHH eigenvalue at the
midpoint ϑτ,m of each edge eτ,m, starting from the reference
eigenvalues λvτ,m;i at the two endpoints ϑvτ,m. Based on these
estimates, we add ϑτ,m as a new vertex if

• <{λ̂vτ,m;i − λvτ,m;i} > 0 for some v, implying that the
eigenvalue is moving closer to the imaginary axis, and at
the same time

• <{λ̂vτ,m;i} > −ε for the same v fulfilling above condi-
tion, where ε > 0 is a small threshold.

Three significant cases are illustrated in Fig. 4. Case 1 (top
eigenvalue) verifies both above conditions and will trigger
edge refinement. Cases 2 and 3 will not trigger edge refinement
since the linear eigenvalue predictions are sufficiently far from
the imaginary axis.

When a midpoint ϑτ,m is added, also all other edge mid-
points that complete the set of 2ρ−1 vertices of the (ρ − 1)-
dimensional hyperrectangle that partitions current cell Γτ into
two equal subcells are added to construct the vertex set VJ+1

for next iteration (see Fig. 3). Anytime a new vertex is added,
all SHH eigenvalues and eigenvectors are precomputed and
stored. Then, if the vertex is labelled as non-passive, all worst-
case violations are detected and added to the set W .

In order to save computation time, the above linear predic-
tions are not performed

Fig. 4: Graphical representation of the adaptive refinement
rules. Yellow dots: SHH eigenvalues λvτ,m;i computed at vertex
ϑvτ,m; green and red dots: linear prediction (red thick lines with
arrows) of perturbed eigenvalues λ̂vτ,m;i at the edge midpoint
ϑτ,m; blue dotted lines: exact eigenvalue trajectories along the
edge eτ,m.

• if both edge endpoints are non-passive (in such case local
passivity violations have already been detected at these
endpoints and an additional refinement is not necessary);

• if one of the two endpoints is passive and the other is
non-passive (in which case the midpoint is added without
any further check, in order to track more precisely the
boundary of the passivity violation region that inevitably
occurs between these two points;

• if the reference cell Γτ was not refined at some previous
iteration: such cells are flagged and will not be checked
at any subsequent iterations.

Figure 5 shows3 that, as the number of refinements increases,
the boundaries of the passivity violation areas become better
and better resolved, and even violations with a small footprint
in the parameter space are detected.

The above-described adaptive subgridding scheme guaran-
tees the subdivision of the parameter space Θ into elementary
hyper-rectangular cells through iterative binary subdivision
along selected directions. In order to provide a safe termination
of the iterative process in case of locally nearly lossless
systems, characterized by SHH eigenvalues that are uniformly
very close to the imaginary axis in some parameter space re-
gions, we stop refining when a maximum number of iterations
Jmax is reached. It is therefore possible that marginal passivity
violations are missed, although this case was never observed in
our tests. In any case, setting Jmax to a sufficiently large value
ensures that any undetected passivity violation has no practical
importance. In our experiments we set Jmax in the range 5–10,
following the guideline of using a larger Jmax (corresponding
to more refinements) for larger parameter orders. Choosing
a larger or smaller Jmax is a tradeoff between resolution in

3For this illustrative example we demonstrate the passivity characterization
on a linearized buffer model parameterized by supply voltage and temperature.
This device is known to be locally active and locally passive in different
parameter space regions, which we want to characterize.
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tracking the boundaries between passive/non-passive regions
and computational cost.

Iteration 1 Iteration 2

1

2

Iteration 3 Iteration 4

Fig. 5: Successive adaptive refinement (inner) iterations (ρ =
2) for the detection of passivity violation regions Θα of
a linearized buffer model. Locally passive and non-passive
regions are depicted by empty green and filled red dots,
respectively.

D. Comparison with existing approaches

The proposed eigenvalue perturbation approach provides
two major improvements with respect to the preliminary work
in [28]. First, we extend applicability to multivariate param-
eter spaces, whereas [28] is limited only to one parameter
ρ = 1. Second, grid refinement based on full-spectrum SHH
perturbation proves to be much more robust with respect to the
adaptive sampling of [28], where the basis for grid refinement
was a bisection process on the the normalized Hamiltonian
spectral distance from the imaginary axis

ψ(ϑ) = min
λ(ϑ)∈Λ(ϑ)

| <{λ(ϑ)}|
%(ϑ)

(21)

where %(ϑ) is the spectral radius of the SHH pencil and
Λ(ϑ) its finite eigenspectrum. Such function ψ(ϑ) is easily
proved to be non-smooth, being computed as a minimum real
part among all eigenvalue trajectories. This fact was already
noted (see Fig. 14 in [28]), where however it was inferred
that increasing bisection iterations would identify also corner
points where ψ(ϑ) is not differentiable. This turns out to be not
true, as Fig. 6 shows. The right panel depicts ψ(ϑ) obtained by
postprocessing all grid points obtained by the proposed scheme
(tested on the model described in Sec. VIII-A), showing the

20 25 30
 (mm)

0

2

4

6

(
)

10-4

20 25 30
 (mm)

0

2

4

6

(
)

10-4

Fig. 6: Left: parameter sampling based on the bisection of
ψ(ϑ) as in [28]. Right: ψ(ϑ) is computed for all parameter
grid points resulting from proposed perturbation approach.

Fig. 7: SHH eigenvalue trajectories corresponding to the
example of Fig. 6 (picture not to scale).

onset of a sharp passivity violation region (characterized by
ψ(ϑ) = 0) with a very small footprint in the parameter
space. This violation is missed completely using the check
proposed in [28], which relies on the smoothness of ψ(ϑ)
(left panel). Figure 7 provides another illustration of this case
by depicting the trajectories of the two SHH eigenvalues
closest to the imaginary axis as ϑ sweeps in an interval
[ϑ1, ϑ2] which encapsulates the narrow violation region. The
check in [28] detects only the slowly varying trajectory of
λ1, which remains far from the imaginary axis, and misses
the trajectory of λ2 which undergoes a fast transition from ϑ1

to ϑ2 hitting the imaginary axis. The proposed full-spectrum
perturbation approach is able to detect the faster “speed” of
λ2, thus tracking its trajectory and spotting the small passivity
violation.

VII. PASSIVITY ENFORCEMENT

We now describe our proposed multivariate passivity en-
forcement scheme. We assume that H(s,ϑ) is detected as non-
passive in some regions Θα ⊂ Θ for α = 1, 2, . . . (delimited
by the red/green boundaries in Fig. 5). We seek for a perturbed
model

Ĥ(s,ϑ) = H(s,ϑ) + ∆H(s,ϑ) (22)

that is uniformly passive ∀ϑ ∈ Θ. We define the model
perturbation based on the parameterization scheme (2) as

∆H(s;ϑ) = ∆C(ϑ) (sE−A(ϑ))
−1

B (23)
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with

∆C(ϑ) =

¯̀∑
`=1

∆C` ξ`(ϑ), (24)

where the decision variables are the perturbations ∆C` in
the coefficients of the parameter-dependent state-output map,
which we collect in matrix X = (∆C1, . . . ,∆C¯̀). This
choice provides the natural generalization of widespread non-
parametric passivity enforcement schemes [6], [41]. The sys-
tem poles are preserved, since the dynamic matrix A(ϑ) is
left unchanged. This choice is appropriate since most common
realization schemes collect the (parameter-dependent) residues
of a pole-residue or barycentric form of H(s,ϑ) in matrix
C(ϑ), see [19]. Matrix ∆H(s,ϑ) can be equivalently written
as

∆H(s,ϑ) = X · Z(s,ϑ), (25)

with

Z(s,ϑ) =
{

[ξ1(ϑ), . . . , ξ¯̀(ϑ)]T ⊗ IN̄
}

[sE−A(ϑ)]−1B

and where ⊗ denotes the matrix Kronecker product.

A. Preserving model accuracy

In order to keep the perturbed model responses as ac-
curate as possible, we minimize the perturbation amount
‖∆H(sκ,ϑκ)‖ at κ = 1, . . . , κ̄ prescribed points in the
frequency-parameter space. These points may coincide with
(or be a subset of) the original data points that were used
to extract the initial model. Model accuracy is preserved by
minimizing the following cost function

F(x) =

κ̄∑
κ=1

‖X · Z(sκ,ϑκ)‖2F , x = vec(X) (26)

which is based on the Frobenius F norm. Other norm choices
including weighted norms are possible as in standard non-
parameterized passivity enforcement methods [6], [41], [42].

B. Formulating local passivity constraints

While minimizing (26), the passivity conditions detailed in
Sec. III must be enforced. This is possible by exploiting the
worst-case passivity violation information Wµ, µ = 1 . . . , µ̄,
available from the passivity check discussed in Sec. VI.

1) Immittance representations: Consider the worst-case
passivity violation Wµ = {ω̄µ, ϑ̄µ; λ̄µmin}, where λ̄µmin < 0.
Applying a first-order eigenvalue perturbation to ΨI(jω,ϑ),
centered at (ω̄µ, ϑ̄µ), to selectively modify the negative eigen-
value λ̄µmin, we can write

λ̂µmin = λ̄µmin + 2 <{vH
µ∆H(jω̄µ, ϑ̄µ)vµ}, (27)

where vµ is the right eigenvector of H(jω̄µ, ϑ̄µ) associated
with λ̄µmin. After few simple algebraic manipulations we can
write

λ̂µmin = λ̄µmin + yT
µ · x (28)

with
yT
µ = 2 <{[Z(jω̄µ, ϑ̄µ) vµ]T ⊗ vH

µ}. (29)

Enforcing now λ̂µmin ≥ 0 as required by (6) leads to the
following linear inequality constraint

−yT
µ · x ≤ λ̄

µ
min (30)

to be enforced for all µ local violations.
2) Scattering representations: For scattering representa-

tions we start with the worst-case passivity violations Wµ =
{ω̄µ, ϑ̄µ; σ̄µmax}, where σ̄µmax > 1. These singular values are
perturbed to enforce condition (8). Applying again a first-order
singular value perturbation centered at (ω̄µ, ϑ̄µ) to H(jω,ϑ)
leads to

σ̂µmax = σ̄µmax + <{uH
µ∆H(jω̄µ, ϑ̄µ)vµ} (31)

where uµ, vµ are the left and right singular vectors of
H(jω̄µ, ϑ̄µ) associated with σ̄µmax. Expressing (31) in terms
of our decision variables as

σ̂µmax = σ̄µmax + zTµ · x (32)

with

zTµ = <{[Z(jω̄µ, ϑ̄µ) vµ]T ⊗ uH
µ} (33)

leads to the linear inequality constraint

zTµ · x ≤ 1− σ̄µmax (34)

that must be enforced for all µ.

C. Collecting and enforcing local passivity constraints

Defining now

gµ = −yµ, hµ = λ̄µmin immittance, (35)
gµ = zµ, hµ = 1− σ̄µmax scattering, (36)

we can formulate our multivariate passivity enforcement prob-
lem as

min
x

F(x), s.t. gT
µ · x− hµ ≤ 0, µ = 1, . . . , µ̄ (37)

Due to the linearity of (26), implying that F(x) is quadratic
in the decision variables, the above problem is convex and is
readily solved with standard methods [43].

As in non-parameterized passivity enforcement schemes,
the passivity constraints are only finite and are not exact,
since based on a first-order approximation. Therefore, the
optimization problem (37) is formulated by repeating the pas-
sivity characterization and solved iteratively until a uniformly
passive model is obtained, i.e., the setW is empty. We denote
these as “outer” iterations.

A high-level description of the proposed passivity enforce-
ment scheme is reported in Algorithm (1), where the distinc-
tion between outer iterations (for passivity enforcement) and
inner iterations (for passivity characterization at each outer
iteration) can be appreciated.
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Algorithm 1 Multi-variate passivity enforcement

Require: Initial parameterized model in form (1)
1: repeat (outer passivity enforcement iterations)
2: Evaluate SHH eigenvalues at initial grid points
3: Initialize local passivity violations W
4: for J = 1, . . . , Jmax (inner refinement iterations) do
5: Determine which cells must be refined
6: if some cells must be refined then
7: Refine cells
8: Compute SHH eigs at new points
9: Update W

10: else
11: break
12: end if
13: end for
14: if W 6= ∅ (model is not passive) then
15: Assemble local passivity constraints and solve (37)
16: Update model coefficients
17: end if
18: until W = ∅ (model is passive)
19: return Passive model Ĥ(s,ϑ)

D. Some remarks about convergence

The proposed approach extends to the multi-parameter case
one of the well-established passivity enforcement schemes
available for non-parameterized models [6], [27]. Although
this scheme is widely used since implemented in several
commercial CAD tools, no proof of convergence exists even
in the non-parameterized case. Therefore, we are not able
to provide a proof of convergence of the proposed extended
parameterized scheme. In this Section, we provide a theoretical
justification of the main heuristics on which we base our
numerical implementation, whose convergence was always
observed in all test cases that we analyzed so far. This is of
course not a proof, whose completion is still an open problem.

Consider a state-space model with constant A,C obtained
from (1) by removing parameter dependence. Assuming the
model is not passive, we perturb it as in (23), where now ∆C
is a constant perturbation applied to C. The cost function to be
minimized in order to guarantee optimal accuracy is still (26),
where Z is only evaluated at sκ. We denote as H(s; x) the
dependence of the model on the decision variables x (elements
of ∆C). This dependence, coherently with (23), is affine.

Assuming a scattering representation (the same can be
extended to the immittance case), a known convex formula-
tion [44] of the passivity enforcement problem is

min
x

F(x), s.t. ‖H(s; x)‖H∞
≤ 1 (38)

where
‖H(s; x)‖H∞

= sup
ω∈R

σmax(H(jω; x)) (39)

Since convex, the optimal solution (the most accurate passive
model) is attained through any convex optimization solver.
However, as discussed in [44], the constraint (38) in terms of
the H∞ norm defines a feasible set with non-smooth bound-
aries, thus requiring subgradient formulations that, although

with provable convergence, require an impractical number of
iterations (in the order of hundreds or thousands, even for very
simple low-order cases).

The lack of smoothness is due to the “sup” operator in (39).
However, each individual singular value trajectory σi(jω; x) is
smooth due to the assumed asymptotic stability. Therefore, an
equivalent (smooth) formulation of (38) is obtained as

min
x

F(x), s.t. σi(H(jω; x)) ≤ 1,∀i ∀ω ∈ R. (40)

Since equivalent to (38), also (40) is convex and its optimal
solution can in principle be computed with a proper convex
solver. However, the passivity constraint is ∞-dimensional
since formulated on the entire real line. Since all singular
values are smooth hence continuous, a further equivalent
formulation can be derived as

min
x

F(x), s.t. σ̄i(H(jω̄i,k; x)) ≤ 1,∀i, k (41)

where ω̄i,k denotes the frequency where the k-th local max-
imum of the i-th singular value occurs, and (i, k) span all
such local maxima (including possibly ω = ∞). So, if all
local maxima are identified, the formulation (41) is equivalent
to (38) and thus convex. Theorems 1 and 2 in Sec. V guarantee
that (in the non-parameterized case) all local maxima are
identified and computed algebraically.

At this stage we introduce some approximations, loosing
the possibility (to the best of Authors’ knowledge) to prove
formal convergence.
• First, we linearize all the constraints (41) through a first-

order singular value perturbation a analysis, as in (31).
Enforcing a single such linear constraint instead of (41)
is roughly equivalent to performing a single Newton
iteration, where the descent direction on x is such that the
corresponding singular value (which is larger than one)
is decreased.

• Instead of running a Newton iteration with a single
descent direction, we impose all constraints (41) at
the same time, leaving to the convex solver the role
of computing the descent direction that at the same
time decreases the value of all singular value maxima.
The concurrent constraints used in our approach thus
include at least all vertices whose convex hull defines the
subdifferential of the H∞ norm, whereas the provably
converging schemes of [44] adopt a descent direction
by picking any subgradient, i.e., any single vector in the
above subdifferential. These more aggressive concurrent
constraints enable (non-provable) convergence in usually
less than ten iterations, compared to the several hun-
dreds/thousands of [44].

• Clearly, there is no guarantee that decreasing locally all
the maxima will not generate new maxima at the next iter-
ation, located at different frequencies. For this reason, our
scheme embeds the so-called “robust iterations” (see [45],
[46]), which instead of solving (41) iteratively, performs
a number r of iterations (typically r = 1 or 2), evaluates
the location of new local maxima if any, and repeats
the same iteration by adding local constraints also at
the corresponding new frequencies. This scheme, detailed
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in [6, Sec. 10.10.5], proves very effective in avoiding the
emergence of new passivity violations as the iterations
progress.

• In any case, due to the linearization (31), the problem that
is solved at each iteration is not fully equivalent to (41),
and therefore outer iterations are required.

On top of the above considerations, the proposed parameter-
ized passivity enforcement scheme needs a further adaptive
sampling in the parameter space. Although particular care has
been taken in its formulation based on the SHH eigenspectrum
sensitivities, the number of points that can be sampled remains
only finite, and the prediction/interpolation criteria to infer that
there are no undetected violations are only based on first-order
approximations. This is why we are not able to prove global
convergence.

VIII. EXAMPLES

In this Section we will provide some numerical results of
the proposed passivity verification and enforcement methods,
applied to various test cases. All results were obtained using
a standard laptop (Intel Core-i7 2.3 GHz CPU with 16 GB of
RAM), using a prototypal MATLAB implementation.

A. Partially coupled multi-conductor line

We start with a single-parameter (ρ = 1) electrical inter-
connect structure made of 3 adjacent differential pairs, each
composed of two parallel circular wires (length 10 cm, center-
to-center distance 1.61 mm) forming a 6-wire multi-conductor
transmission line. The differential pairs are considered to be
electromagnetically coupled only over a length ϑ = Lc, which
is our free parameter ϑ ∈ Θ = [20, 40] mm. More details on
this structure are available in [28].

An initial parameterized model (n̄ = 30, ¯̀ = 5) was
computed using the PSK iteration [29], [31] applied to a
set of 11 frequency responses (linearly spaced in Θ), each
including k̄ = 500 samples in the range [1 Hz, 5 GHz].
Since this initial model is not passive, we applied our proposed
algorithm, which produced a passive model in 12 iterations.
As Fig. 8 shows for one representative response, the passive
model closely matches the initial data from which the model
was derived (worst-case relative RMS error 13 · 10−3).

The right panel of Fig. 6 depicts the results of proposed
adaptive sampling (using Jmax = 10) applied to the model re-
sulting from the passivity enforcement method as implemented
in [28]. This model is still not passive, due to the presence of a
small localized violation identified by a vanishing distance of
the SHH eigenspectrum from the imaginary axis. Compared
to the left panel of Fig. 6, based on [28] which is seen to miss
a localized passivity violation area, our new approach proves
much more reliable.

B. A parameterized multi-board interconnect

We now turn to a 2D example (ρ = 2), consisting of
a high-speed multi-board link that connects two multilayer
PCBs [47] through a connector, including vertical vias for
routing through the inner PCB layers. The parameters of

Fig. 8: Comparison between passive model and raw data
for one representative response S6,6(jω;ϑ) of the partially
coupled interconnect of Sec. VIII-A. The various response
pairs correspond to a linear sweep on ϑ in its range.

interest are the via pad (ϑ1) and anti-pad (ϑ2) radii varying,
respectively, in the ranges [100, 300] and [400, 600] µm. An
initial model (n̄ = 24, ¯̀

1 = ¯̀
2 = 3) was computed via the PSK

iteration starting from discrete scattering frequency samples
(courtesy of Prof. C. Schuster and Dr. J. Preibisch, Technische
Universität Hamburg-Harburg, Hamburg, Germany) spanning
the band [0, 5] GHz. The worst-case relative RMS error of this
model among all the port responses is 14 · 10−3.

The initial model is not passive, as the top-left panel of
Fig. 9 confirms by highlighting with red dots the points in
the 2D parameter space that are adaptively processed by our
proposed algorithm (Jmax = 8), and for which at least one
imaginary SHH eigenvalue is detected. The other panels in
Fig. 9 depict the evolution of the passivity violation areas (red)
through iterations of our proposed enforcement algorithm.
After 5 iterations (requiring 12 minutes) the model becomes
passive, with a worst-case relative RMS error 14 ·10−3, which
is essentially preserved through the iterations. The two panels
in Fig. 10 compare the responses of the passive model to
the initial data by sweeping one parameter at the time while
keeping the other fixed. Almost no difference is visible in these
plots between model and data, confirming the effectiveness of
the adopted cost function (26) for accuracy preservation.

C. A transmission-line network

The last example is a transmission-line network made of
four cascaded lossy line segments with three internal loaded
stubs. We consider two different parameterizations (respec-
tively, 2D and 3D) for this structure. Initially we parameterize
just the central stub and its adjacent line lengths, that vary,
respectively, in ϑ1 ∈ [5, 7] mm and ϑ2 ∈ [9, 10] mm. A three-
dimensional case is obtained by parameterizing also the central
stub load by means of its reflection coefficient ϑ3 ∈ [0.1, 0.5],
and restricting the range of ϑ1 to [6, 7] mm (the original range
led to a first-pass passive model, for which no relevant results
could be shown). All other line and stub lengths are fixed to
their nominal values (7 mm for the direct lines and 1 mm for
the stubs). The non-parameterized loads reflection coefficients
are fixed to 0.5.
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Iteration 0 Iteration 1

Iteration 2 Iteration 5

Fig. 9: Passivity characterization of the multiboard intercon-
nect model illustrated after successive passivity enforcement
(outer) iterations. Empty green (filled red) dots highlight pas-
sive (non-passive) parameter values for which no (some) SHH
eigenvalues are detected by the proposed adaptive sampling
algorithm.

We extracted two initial models (n̄ = 20, ¯̀
1 = ¯̀

2 = 3
and n̄ = 20, ¯̀

1 = ¯̀
2 = 3, ¯̀

3 = 2, respectively) from
scattering responses, sampled both in the parameter space and
along frequency over a band [1 Hz, 10 GHz], obtained with
a frequency-domain 2D integral field solver combined with
a transmission-line solver. The worst-case RMS relative error
of this initial model with respect to available validation data
is 46.2 · 10−3 and 22.6 · 10−3 for bi- and tri-variate models,
respectively.

Both initial models are not passive (see Fig. 11). We thus
enforce their passivity with the proposed method (Jmax = 8
and Jmax = 6 for bi- and tri-variate models, respectively).
The bi-variate passive model is obtained in 9 iterations (22
minutes), while just 1 iteration (20 minutes) is required to
compensate the small violation occurring in the tri-variate case
(see Fig. 11). Figures 12a-b compare the responses of the final
passive bi-variate model to the original data used for model
extraction for fixed ϑ1 = 6.1 mm and ϑ2 = 9.5 mm while
sweeping ϑ2 and ϑ1, respectively. The same comparison is
done for the tri-variate model, as shown in Fig. 12c-d, for
fixed ϑ1 = 6.4 mm, ϑ3 = 0.26 and ϑ1 = 6.4 mm, ϑ2 =
9.4 mm, while sweeping ϑ2 and ϑ3, respectively. Also in this
case the models accuracy is preserved, with a final RMS error
46.2 · 10−3 and 22.7 · 10−3 for the bi- and tri-variate models,
respectively.

Fig. 10: Model responses compared to raw data for the
multiboard interconnect parameterized by via pad (ϑ1) and
antipad (ϑ2) radii.

D. Computational Times

We finally compare the performance of proposed algo-
rithm to the method in [28], for those cases for which this
comparison can be performed (i.e., single-parameter models
with ρ = 1). Figure 13 compares the runtime required
by the two approaches for passivity enforcement applied to
8 different test cases. We see that the CPU times of the
proposed approach (orange bars) are comparable to (and in
few cases lower than) those of [28] (empty bars). Hence, the
mentioned reliability improvement of this new Hamiltonian-
based adaptive sampling scheme does not come with extra
costs in terms of efficiency.

In some limited cases, the proposed algorithm may lead
to a slightly larger runtime than [28]. This occurs for nearly
lossless passive systems, which are characterized by SHH
eigenvalues that occur in clusters very close to the imaginary
axis. These cases do require a more aggressive sampling, and
the extra cost is tolerable in order to avoid missing important
passivity violations, as in Fig. 6.

IX. CONCLUSIONS

In this paper, we presented a novel multi-variate passivity
verification and enforcement approach. The proposed adaptive
sampling scheme is based on first-order SHH eigenvalue
perturbations that, combined with an ad-hoc tessellation of
the parameter space, enable to efficiently verify and enforce
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Iteration 0 Iteration 2

Iteration 5 Iteration 9

Iteration 0 Iteration 1

Fig. 11: As in Fig. 9, but for the transmission line network
models. Panels (a)–(d) refers to the bi-variate model, while
(e)–(f) show the parameter space for the tri-variate case.

passivity for multi-variate macromodels. The “predictive” as-
pect of this approach enables a considerable reliability im-
provement with respect to other existing schemes, with a
comparable computational cost. The uniformly passive models
obtained from our algorithm can be reliably used as blocks in
system-level (transient) simulations in what-if, optimization
and design centering flows, without the risk of incurring into
numerical instabilities.

The proposed algorithm is not expected to be the ulti-
mate solution to the multivariate passivity verification and
enforcement problem. Due to the structure of the parameter
space, a major drawback of proposed strategy is still related
to its complexity, that grows exponentially with the num-
ber of parameters despite the aggressive adaptive sampling
scheme that is adopted. Although the formulation is general,
practical applicability of this method is granted only up to
2-3 independent parameters. Embedding higher-dimensional

Fig. 12: a) and b): comparison between original data and
passive model responses for the bi-variate transmission line
model, parameterized by stub and line lengths, ϑ1 and ϑ2

respectively; c) and d) same for the tri-variate transmission
line model, parameterized by stub and line lengths (ϑ1, ϑ2

respectively) and load reflection coefficient ϑ3

.
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Fig. 13: Runtime of proposed passivity enforcement scheme
(orange bars) compared to [28] (empty bars).

parameterizations in a closed form into a black-box reduced-
order model in a data-driven setting will require different
approaches. Our future work will thus be focused on reduc-
ing this complexity by possibly exploiting structure and/or
smoothness properties in the parameter space, aiming at model
generation and passivity verification/enforcement at least with
polynomial complexity. The goal of this research line remains
the fully automated generation of robust, passive and accurate
behavioral models in a high-dimensional multivariate setting.
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