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Abstract

The simulation of composite structures demands the introduction of novel computationally-
efficient models that must overcome the limitations of traditional metallic-oriented FEM
codes. The multiscale nature of composite materials represents a great challenge from the
modeling perspective and has reduced the confidence of engineers in the simulation tools,
leading to the introduction of higher safety margins in the industry. As a consequence, the
use of innovative solutions that exploit the advantages of composite materials in terms of
specific properties and design variables is always penalized and, therefore, less attractive.

Addressing this issue, this thesis focuses on the development of a robust formulation
for the mechanical analysis of composite structures at different scales. The Carrera unified
formulation (CUF) is employed to generate a new beam theory based on a hierarchical non-
local expansion of the mechanical variables over the cross-section: the hierarchical Legendre
expansion (HLE). The finite element method (FEM) is employed to solve the governing
equations of static and dynamic problems. Two classes of locking-free straight and curved
beam elements are implemented by means of the mixed interpolation of tensorial components
(MITC) method. The modeling of composites is based on a component-wise (CW) approach,
for which the different constituents of the structure are kinematically independent.

The applications of the proposed model are divided in two parts: the first addresses the
efficient computation of 3D stress fields, covering topics such as micromechanics, mixed
elements based on the Reissner mixed variational theorem (RMVT) and free-edge analysis;
the second part addresses the structural health monitoring (SHM) of metallic and composite
structures, focusing on the use of higher-order structural theories for the time-domain analysis
of Lamb waves. All the proposed theories and applications presented in this thesis are verified
via analytical and numerical references.
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5.6 Radial displacement, ūξ , against the number of four-noded curved elements.

Slenderness ratios L/h = 5 and L/h = 500. . . . . . . . . . . . . . . . . . 75
5.7 Features of the hollow laminated disk and proposed beam model. . . . . . . 76
5.8 Radial displacement, uξ , through the thickness of the laminated disk. Refer-

ences from [187]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.9 Radial, σξ ξ , and circumferential, σss, stress fields through the thickness of

the laminated disk. References from [187]. . . . . . . . . . . . . . . . . . . 78
5.10 Stress fields over the eight-layer curved beam for the third order HL3 model. 78



List of figures xvii

6.1 Reference system of the current frame for meso-scale analysis. . . . . . . . 84
6.2 Assembly procedure of the stiffness matrix through ESL and LW approaches 85
6.3 Reference system of the current frame for micro-scale analysis. . . . . . . . 87
6.4 Different approaches available via HLE modeling. . . . . . . . . . . . . . . 88
6.5 HLE model of the curved sandwich. . . . . . . . . . . . . . . . . . . . . . 89
6.6 Deformed of the sandwich beam. . . . . . . . . . . . . . . . . . . . . . . . 90
6.7 Stress distributions across the thickness at point B and y = L/2. . . . . . . . 91
6.8 Longitudinal and shear stress fields at midspan. . . . . . . . . . . . . . . . 92
6.9 Geometry of the cross-ply beam. . . . . . . . . . . . . . . . . . . . . . . . 92
6.10 Discretizations and stress fields computed using different approaches: LW

(a), (d) and (g); CW (b), (e) and (h); and mixed LW-CW (c), (f) and (i). . . . 94
6.11 Stresses distributions through the thickness at [5b/8,L/2,:] computed by the

HL6 model. The figure attached to the bottom of the graphs represent a
vertical strip of the composite structure and the vertical black lines are added
to indicate the domains of the fiber, matrix and layer in the model. Note:
HEXA8 = solid, model 1 = LW, model 2 = CW, model 3 = mixed CW-LW. . 96

6.12 Geometry and section of the fiber-matrix microstructure. Distances in mm
and forces in N. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.13 Contour plots of the displacements (m). . . . . . . . . . . . . . . . . . . . 98
6.14 Longitudinal stresses (Pa) over the naked fibers. . . . . . . . . . . . . . . . 98
6.15 Radial stresses (Pa) over the naked fibers. . . . . . . . . . . . . . . . . . . 99
6.16 Shear stresses, σsξ , (Pa) over the naked fibersl. . . . . . . . . . . . . . . . 99

7.1 Coordinate reference systems of a periodic heterogeneous material and its UC.103
7.2 Reference system for the beam modeling of the UC. . . . . . . . . . . . . . 106
7.3 HLE beam model of the hexagonal pack UC. . . . . . . . . . . . . . . . . 110
7.4 Longitudinal stress σ11 generated by a unitary longitudinal strain ε11. Refer-

ence values from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.5 Shear stress σ13 generated by a unitary shear strain ε13. Reference values

from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Shear stress σ23 generated by a unitary shear strain ε23. Reference values

from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.7 Shear stress σ12 generated by combined strains ε11 and ε13. Reference values

from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.1 Typical displacement and transverse stress fields across the thickness of
multilayered structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



xviii List of figures

8.2 Representation of the proposed refined beam element (a) and the distribution
of the unknowns over the cross-section (b) in a two-layer laminate. . . . . . 120

8.3 Loading case of the laminates. . . . . . . . . . . . . . . . . . . . . . . . . 124
8.4 Longitudinal stress of the symmetric 3 layer laminate at y=L/2. References

from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.5 Transverse normal stress of the symmetric 3 layer laminate at y=L/2. Refer-

ences from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.6 Transverse shear stress of the symmetric 3 layer laminate at y=0. References

from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.7 Longitudinal displacements of the anti-symmetric laminate at y=0. Refer-

ences from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.8 Transverse normal stress of the anti-symmetric layer laminate at y=L/2.

References from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.9 Transverse shear stress of the anti-symmetric layer laminate at y=0. Refer-

ences from [25]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.10 Transverse shear stresses of the [0/90/0] and [0/90/0/90] laminates with

imposed stress-free boundary conditions. References from [25]. . . . . . . 129
8.11 Loading case of the composite sandwich. . . . . . . . . . . . . . . . . . . 130
8.12 Longitudinal stress of the composite sandwich at y = L/2. References from

[83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.13 Transverse shear stress of the composite sandwich at y = 0. References from

[83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.14 Transverse normal stress of the composite sandwich at y = 0. References

from [83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.1 Free-edge stresses in generic composite beams. . . . . . . . . . . . . . . . 134
9.2 Representation of the FEM modeling of composite laminates using CUF

elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.3 Geometry and mesh of the laminated beam under axial extension. . . . . . 139
9.4 Transverse shear stresses along x at y = L/2 and z = h/4 computed via HLE

mixed models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.5 Transverse shear stresses along z at y = L/2 and x=b/2 computed via HLE

mixed models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.6 Transverse shear stresses along x computed by the HLM4 model for different

thicknesses computed via HLE mixed models. . . . . . . . . . . . . . . . . 141
9.7 Transverse shear stresses along z at x = b/2 computed via displacement-

based LE models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of figures xix

9.8 Dimensions and loading conditions of the tensile specimen . . . . . . . . . 142
9.9 Out-of-plane stress components at the free-edge. . . . . . . . . . . . . . . . 143
9.10 Failure index for matrix tension . . . . . . . . . . . . . . . . . . . . . . . . 145
9.11 Failure index for delamination . . . . . . . . . . . . . . . . . . . . . . . . 145
9.12 Failure index for fiber tension . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.13 Failure index for fiber tension using the modified criteria . . . . . . . . . . 146
9.14 Illustration of the capabilities of refined beam elements for free-edge analysis.146

10.1 Symmetric and antisymmetric first Lamb wave modes. . . . . . . . . . . . 150
10.2 Dispersion curves of a 5 mm thick aluminum plate. Data from GUIGUW

software [20]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.3 Possible deformations of the beam’s section for various theories. The dashed

line corresponds to the Euler-Bernouilli model. . . . . . . . . . . . . . . . 153
10.4 HLE modeling of beams . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.5 Geometrical features of the metallic strip used in the numerical assessment.

Distances in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.6 Time signal of the normalized vertical displacement of the anti-symmetric

Lamb wave at points A and B. . . . . . . . . . . . . . . . . . . . . . . . . 159
10.7 Convergence analyses for the A0 and S0 waves propagating along the alu-

minum strip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
10.8 Comparison between full integrated elements and MITC elements (A0). . . 161
10.9 Convergence of the p-order on the transverse direction for A0 and S0 modes. 162
10.10A0 and S0 modes in a metallic strip for a single force excitation of 200 kHz. 163
10.11A0 and A1 waves at three different stations (yA = 100 mm in blue, yB = 200

mm in red and yC = 300 mm in grey) for a signal burst of 1.2 MHz. . . . . 164
10.12A0 and A1 modes at t = 6×10−5 for a signal burst of 1.2 MHz. . . . . . . 165
10.13Geometry and cross-section mesh of the C-section beam. . . . . . . . . . . 165
10.14Screeshoot of the propagating waves at 5.6 ×10−5 s. . . . . . . . . . . . . 166
10.15Cut of the C-beam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

11.1 Illustration of the fundamental modes of Lamb waves in an anisotropic plate,
including out-of-plane symmetric (S0), out-of-plane antisymmetric (A0),
shear horizontal symmetric (SH-S0) and shear horizontal antisymmetric
(SH-A0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11.2 Coordinate reference systems for plate elements. . . . . . . . . . . . . . . 170



xx List of figures

11.3 Illustration of the different multi-layered approaches implemented in the
present chapter. The curved lines represent possible displacement solutions
over the thickness and the dots show the location of the pure displacement
unknowns. For the sake of clarity, the stretching effects are not included. . 176

11.4 Top view of the composite plate studied. Units in m. . . . . . . . . . . . . 177
11.5 Contour plot of the vertical displacements (uz) at t = 7.5×10−5 s showing

the A0 mode over the unidirectional composite plate. . . . . . . . . . . . . 178
11.6 Contour plots of the in-plane displacements along x (a) and along y (b) at

t = 5×10−5 s showing the S0 mode and the SH0 mode, respectively. . . . . 179
11.7 Plots of the vertical displacements, uz, at t = 7.5× 10−5 s (a-c) and t =

1.5×10−4 s (d-f) showing the A0 waves over the [0◦2/90◦2]S laminate. . . . 181
11.8 Plots of the vertical displacements, uz, at t = 1.125×10−4 s showing the A0

waves over the [45◦/-45◦/0◦/90◦]S laminate. . . . . . . . . . . . . . . . . . 181
11.9 Characteristics and model kinematics of the composite single-lap joint. Units

in mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11.10Scaled plots showing the S0 waves propagating over the pristine, (a) and (c),

and the damaged, (b) and (d), lap joints. . . . . . . . . . . . . . . . . . . . 184
11.11Contour plot showing the A0 waves over the lap joint at t = 1.2×10−4 s. . 185
11.12In-plane displacements,uy, over time obtained at point A. . . . . . . . . . . 185



List of tables

2.1 Pascal triangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Model features: degrees of freedom and expansion terms. . . . . . . . . . . 24
2.3 Solutions of displacements and stresses of the square beam example. . . . . 25
2.4 Displacement and stress results of the wing with point load. . . . . . . . . . 27
2.5 Displacement and stress results of the wing with distributed loading. . . . . 28

3.1 Vertical displacement solutions obtained at point A using Lagrange beam
elements for all HLE orders. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Vertical displacement solutions obtained at point A using one Legendre
element of increasing order for all HLE orders. . . . . . . . . . . . . . . . 46

3.3 Comparison of the normalized displacements, uz/ure f , against various results
from the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Displacements and shear stresses computed by the different beam elements. 58

5.1 Elastic properties of the materials. E2 = 1 GPa. . . . . . . . . . . . . . . . 73

6.1 Displacements and stress values of the curved sandwich at the evaluating
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Material properties of the carbon/epoxy composite. . . . . . . . . . . . . . 93
6.3 Displacements and stresses of the cross-ply beam for the different models. . 95
6.4 Material properties of the carbon/epoxy composite, taken from [98]. . . . . 97
6.5 Maximum deflection, umax, of the curved microstructure. DOF between

brackets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1 Effective properties of the hexagonal pack (Ei and Gi j in GPa). References
from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Computational time (s) of the homogenization and dehomogenization. Ref-
erence values from [181]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



xxii List of tables

8.1 Convergence analysis of the beam element discretization based on the max-
imum transverse displacement ūz = uz
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100E2h3

q0L4 , at z = 0 of the thick
laminates considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.3 Mechanical properties of the materials for the composite sandwich example.
The values of Young’s moduli and shear moduli are normalized with respect
to G12 of the honeycomb (hc). . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Normalized solutions of the maximum axial and transverse shear stresses.
All the references are obtained from [83]. . . . . . . . . . . . . . . . . . . 131

9.1 Pipes and Pagano’s problem: DOF of each HLE mixed model. . . . . . . . 139
9.2 Mechanical properties of the IM7/8552 lamina. . . . . . . . . . . . . . . . 142
9.3 Material strength values of the IM7/8552 lamina. . . . . . . . . . . . . . . 142
9.4 Model discretizations for the tensile specimen. . . . . . . . . . . . . . . . . 143
9.5 Comparison of the failure indices computed by the different models consid-

ered under the same loading value . . . . . . . . . . . . . . . . . . . . . . 144
9.6 Values of the tensile load corresponding to the onset of failure of each mode

considered . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10.1 Material properties of the Aluminum strip. . . . . . . . . . . . . . . . . . . 158

11.1 Computed group velocities of the fundamental Lamb waves propagating in
the unidirectional laminate. . . . . . . . . . . . . . . . . . . . . . . . . . 179

11.2 Computed group velocities of the A0-wave propagating in the unidirectional
laminate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



Nomenclature

Latin symbols

a, b cross-section dimensions
C stiffness matrix of the material in the material frame
C̃ stiffness matrix of the material in the global frame
cg group velocity of the wave
cp phase velocity of the wave
D geometrical differential operator
e envelope of the displacement signal
E Young’s modulus
Eτs cross-section integrals
f frequency
Fτ cross-section expansion functions of the displacements
G shear modulus
g determinant of the metric tensor
Gτ cross-section expansion functions of the stresses
H square root of the determinant of the metric tensor
i, j nodal indexes
L length of the beam
Lext work done by the external loads
Line work done by the inertial loads
Lint strain energy
III3 3×3 identity matrix
Ii j FEM integrals
JJJy Jacobian matrix of the beam element
JJJΩ Jacobian matrix of the cross-section expansion
JJJS Jacobian matrix of the plate element
k layer index
K global stiffness matrix
Ki jτs fundamental nucleus of the stiffness matrix
M number of expansion terms



xxiv Nomenclature

M global mass matrix
Mi jτs fundamental nucleus of the mass matrix
Ni, N j shape functions of the finite element
Nm, Nn assumed interpolation functions of the strains
nc number of constituents
nn number of nodes per element
nl number of layers
p polynomial order
pb polynomial order of the shape functions of the beam
Ps j fundamental nucleus of the loading vector
r natural coordinate
R radius
S surface
t,b,n tangent, normal and binormal vectors of the curvilinear frame
uuu displacement vector
U vector of the displacement unknowns
uuuτ , uuus generalized displacement vector
uuuτi, uuus j generalized nodal vector
V volume
x,y,z Cartesian global coordinates

Greek symbols

εεε strain vector in the beam coordinate system
φi Legendre modes
η natural coordinate
κ initial curvature of the beam
ν Poisson ratio
σσσ stress vector in the beam coordinate system
ρ density
τ expansion index
T initial torsion of the beam
ξ natural coordinate
χχχ fluctuations vector
ω angular frequency
Ω Cross-section surface



xxv

Acronyms and abbreviations

Bn 1D Lagrangian element of n nodes
BFM Blending Function Method
CUF Carrera Unified Formulation
CW Component Wise
DOF Degrees Of Freedom
ESL Equivalent Single Layer
EBBT Euler Bernoulli Beam Theory
EBBT First-order Shear Deformation Theory
GUW Guided Ultrasonic Waves
HLE Hierarchical Legendre Expansion
HLp HLE model of order p
HLMp HLE mixed model of order p
IC Interlaminar Continuity
LE Lagrange Expansion
L4, L9 four-noded and nine-noded LE
LW Layer Wise
FEM Finite Element Method
MITC Mixed Interpolation of Tensorial Components
MITCn 1D MITC element of n nodes
MSG Mechanics of Structure Genome
MSC Micromechanics Simulation Challenge
PVD Principle of Virtual Displacements
Pp 1D Legendre element of order p
RMVT Reissner’s Mixed Variational Theorem
SBC Stress Boundary Conditions
SLJ Single Lap Joint
SHM Structural Health Monitoring
SVT Saint Venant Theory
TBT Timoshenko Beam Theory
TE Taylor Expansion
TOF Time Of Flight
UC Unit Cell
VAM Variational Asymptotic Method
ZZ Zig-Zag effect





Chapter 1

Introduction

1.1 Motivation

Composite materials are shaping today’s aerospace. Not only that, applications in other
fields such as automotive, energy, civil or biomedical are becoming more common every
year. These materials are used in structural engineering due to their outstanding combination
of mechanical properties and lightness, which make them appropriate for high performance
applications. Both major aerospace companies, Airbus and Boeing, have been increasing
the relative weight of composites in their commercial models since the 70’s, leading to their
latest releases, the A350 and the B787 respectively, which are made of more than 50 % of
these materials.

Briefly, a composite is a material made of two or more constituents that have different
mechanical or chemical properties, which combined exhibit properties that differ from those
of the separate components. A well-known example are the fiber-reinforced polymers, which
combine the high stiffness of the fibers (carbon, glass, aramid,...) with the ductile properties
of the polymer matrix. In engineering applications, these materials are used to create lay-ups
and textiles which can be manufactured for a broad variety of shapes in a more automated
process. From the design standpoint, a major advantage resides in the increment of design
variables, such as the material selection, the volume ratio between fibers and matrix, the ply
orientation or the total number of plies, among others, which are not available in traditional
metallic designs. As a consequence, the composite structure can be better optimized for the
given load cases, thus reducing the total weight and cost.

Although the heterogeneity of composites is the driver of all these advantages, it comes
with a price in terms of uncertainty and modeling assumptions. Multiscale approaches must
be adopted to understand the mechanical response of composite structures under different
working conditions. Therefore, the structural analysis is usually decoupled into different



2 Introduction

Fig. 1.1 Pyramidal diagram of multiscale design of composite materials. Image from [74].

models that address the physics involved in a certain scale. The effects of the arrangement
of the constituents in the effective properties of the homogenized material are studied at
the micro-scale. The lay-ups and woven fabrics that conform the test coupons are included
in structural models at the meso-scale. Finally, the load bearing capabilities and dynamic
response of the structural component is analyzed at the macro-scale with standard simulation
tools, such as the finite element method (FEM) [224]. In this computational framework, the
constitutive information acquired at each scale is typically transmitted following a bottom-up
strategy [119], i.e. from the micro-structure to the component and final structure. However,
most of the models used in this process were initially oriented to metallic structures, especially
at the larger scales. Consequently, the confidence of the engineers in the simulation is reduced
and a huge amount of resources is allocated to experimental tests throughout the design
process. Figure 1.1 shows the pyramidal diagram of the virtual testing of composites. In this
framework, the ideal scenario is to boost the development of reliable and efficient models for
composites which will increase the confidence in the simulation.

One of the main limitations of the metal-oriented simulation tools is the inability to
provide the correct state of stress of the structure. Unlike in isotropic thin-walled structures,
the transverse and shear deformations play an important role in the response of the composite
structure, especially in the failure mechanisms. In general, composite materials exhibit a
brittle fracture which is difficult to predict and monitor. Typically, the cause of failure is the
coalescence of many intralaminar microcracks and fiber debonds, which lead to delamination
and, then, ply failure. Figure 1.2 shows a crack propagating inwards in a tensile coupon which
is failing due to the free-edge effects [129]. In order to be able to predict such responses, the
structural analysis must be capable of giving an accurate approximation of the strain and
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Fig. 1.2 X-radiograph of a [25,-25,90]s tensile specimen from [54].

stress fields at the ply level. Indeed, the capabilities of any damage model of composites
must be deeply questioned if the correct stress distributions are not appropriately included.

Although the knowledge of composite materials has increased exponentially during the
last few decades, its application in the large aerospace market is considerably recent and,
therefore, a constant monitoring of the structure is demanded. In this line, the field of
structural health monitoring (SHM) is gaining importance, in particular focusing on the
implementation of on-line systems that inspect the structure during service. The goal of SHM
is twofold: first, to assess the nature and severity of eventual structural flaws, allowing it for
a rapid response before catastrophic failure; and, also, to optimize the inspection schedules
and reduce the maintenance cost.

One of the most popular techniques under investigation for the on-line monitoring of
composite structures is the use of ultrasonic guided waves, a.k.a Lamb waves. The concept is
based on the deployment of a network of sensor/actuators in the structural parts of interest
in such a manner that the eventual scattering of the waves determines the location and
type of damage, as illustrated in Fig. 1.3. Given the high frequencies involved in the
dynamic problem, the numerical modeling of these systems is a very demanding task from
the computational point of view, especially in composite structures.

1.2 Objectives

In view of the aforementioned issues in composite modeling, the present thesis represents an
advance towards the efficient implementation of numerical solutions for composite problems.
The structural analysis of composites constitutes a broad research topic and it is not the
intention here to introduce a new multiscale theory. The focus is on the implementation of
a novel modeling framework, based on a unified formulation of structural theories and the
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damage
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waves
wave

scattering

piezoelectric sensor-actuators

Fig. 1.3 Illustration of the operation of Lamb wave-based SHM systems.

FEM, that is convenient for the solution of composite problems at different scales. The main
objectives can be summarized in:

1. Development of a new class of hierarchical models based on a computationally-efficient
one-dimensional formulation and the FEM.

2. Computation of the 3D stress fields in generic composite problems with acceptable
computational efforts.

3. Simulation of Lamb waves in metallic and composite thin-walled structures for SHM
purposes.

1.3 Outline

The thesis is organized in three parts, each of one addresses one of the objectives mentioned
previously. The content of the thesis is described in the following.

1.3.1 Part I

Chapter 2 discusses the topic of structural theories for beams and introduces the Carrera
unified formulation (CUF) as a generator of 1D models. Based on the latter formulation, a
hierarchical beam theory, the hierarchical Legendre expansion (HLE) is presented and several
mapping techniques for the cross-section surface are discussed, with particular attention to
the blending function method.

Chapter 3 introduces the finite element framework which is used to solve the structural
problem. The principle of virtual displacements is recalled and the weak form of the
governing equations is obtained. Different polynomial basis are employed to interpolate
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the unknowns along the beam axis. The fundamental nucleus of the formulation is written,
which acts as the building block of the stiffness matrix.

Chapter 4 presents the implementation of a locking-free beam element based on the
mixed interpolation of tensorial components (MITC). The issue of shear locking in the
FEM is reviewed and the geometrical and constitutive equations rewritten. The fundamental
nucleus of the new beam element is obtained.

Chapter 5 extends the formulation of locking-free elements based on MITC to general
curved beams. The topics of curved finite elements and membrane locking are briefly
discussed. All the previous equations are written in the Frenet-Serret curvilinear system. The
fundamental nucleus of the stiffness matrix is also computed in this frame.

1.3.2 Part II

Chapter 6 presents the application of HLE models for the accurate stress evaluation
of composite structures. Equivalent single layer (ESL) and layer wise (LW) approaches
are described for the analysis of laminates at the meso-scale. The component wise (CW)
approach is introduced as an extension of the LW for the modeling of the different constituents
of fiber-reinforced composites at lower scales.

Chapter 7 shows the implementation of the current modeling framework in the mi-
cromechanics field. The mechanics of structure genome (MSG) is employed to compute
the homogenized properties of the composite material and the local stress fields over the
microstructure. The CW approach and the HLE are used to introduced a p-refinement scheme
in micromechanics models.

Chapter 8 introduces a mixed formulation of displacements and stresses for laminates
based on the Reissner’s mixed variational theorem (RMVT). The fulfillment of the compati-
bility and equilibrium conditions at the interfaces is imposed a priori. Both the displacement
and stresses are assumed via HLE and the fundamental nuclei of the mixed beam elements
are obtained straightforwardly by following the same statements of displacement-based
formulations.

Chapter 9 applies the proposed models to the computation of the 3D stress fields at
the free edges of laminated structures. It shows the potential of refined beam theories to
reduce drastically the computational costs of the simulation of real composite problems
without compromising the accuracy. The onset of failure is approximated using the Hashin
3D criteria for the plies and the mixed mode quadratic criteria for the interfaces.
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1.3.3 Part III

Chapter 10 discusses the topics of Lamb wave-based SHM and the propagation of
ultrasonic waves in thin-walled media. Higher-order beam elements are employed to evaluate
the time signals directly at all points of the structure. The time integration scheme, based on
the Newmark’s solver, is presented. The quality of the numerical solutions is assessed via
benchmark tests.

Chapter 11 deals with the simulation of ultrasonic waves in composite laminates. A
2D finite element framework based on the CUF and HLE is introduced and different multi-
layered theories are tested. The simultaneous computation of all the Lamb modes is attained.
A novel model for the analysis of multi-component structures is derived by mixing ESL and
LW theories in the thickness expansion.



Part I

Hierarchical one-dimensional finite
elements





Chapter 2

Hierarchical beam theories based on the
unified formulation

One-dimensional models, a.k.a. beam models, are widely employed in the design and
analysis of slender structures. These dimensionally reduced models exploit the geometry of
the structure to assume simple deformations of the cross-section, thus reducing the number of
unknowns in the structural problem. In few words, it is assumed that the contribution of the
deformation of the cross-section to the global response of the structure is reduced. Therefore,
these classical assumptions are valid when the structure is considerably slender and may
incur in high errors for medium to short beams. Moreover, the stress analysis of the structure
requires more refined tools if non-homogeneous, thin-walled structures are considered.

This chapter provides a brief overview of the most relevant beam theories that are used
by engineers and researchers in their structural analysis, paying especial attention to the
ability of the different kinematics to capture the deformation of the beam’s cross-section.
Subsequently, a unified formulation of structural theories, known as the Carrera unified
formulation (CUF), is presented as a tool to overcome the insufficiencies of the classical
models. In order to improve the existing higher-order models implemented in the CUF
framework, a hierarchical beam theory is presented which includes some interesting features
for the structural modeling: p-refinement, exact mapping of the cross-section and non-local
kinematics. The capabilities of this novel model are demonstrated through a few numerical
examples of compact and thin-walled beams.

The contents of the present chapter can be found partially in journal papers [31, 145].
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Fig. 2.1 Cartesian coordinate system used for a beam structure.

2.1 Preliminaries

Consider the beam structure of Fig. 2.1, whose length is L and cross-section surface Ω= a×b.
The Cartesian reference system is defined in such a manner that the longitudinal direction
corresponds to the y axis, whereas the cross-section lies on the xz plane. The displacements
of any point of the structure can be written as:

uuu(x,y,z) =


ux(x,y,z)
uy(x,y,z)
uz(x,y,z)

 . (2.1)

According to the present nomenclature, the second component, uy, correspond to the lon-
gitudinal displacements, whereas ux and uz are the transverse displacements. Note that the
dynamic effects are not included in this discussion, i.e. the time dependency is neglected.

Assuming small deformations, the strain-displacement relations are provided by the
Cauchy strain tensor:

εi j =
1
2
(
ui, j +u j,i

)
, (2.2)

where εi j is a second order tensor. According to classical elasticity, by exploiting the
symmetry of the strain tensor the deformations can be expressed in vectorial form, as follows:

εεε
T =

{
εyy εxx εzz εxz εyz εxy

}
. (2.3)
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Subsequently, the 3D geometrical relations can be written in matrix form as

εyy

εxx

εzz

εxz

εyz

εxy


=



0 ∂

∂y 0
∂

∂x 0 0
0 0 ∂

∂ z
∂

∂ z 0 ∂

∂x
0 ∂

∂ z
∂

∂y
∂

∂y
∂

∂x 0




ux

uy

uz

 , (2.4)

or, in short:

εεε = Duuu, (2.5)

where D is the linear differential operator.

2.2 Classical beam theories

Among the classical beam models, the simplest one corresponds to the Euler-Bernoulli beam
theory (EBBT) [73]. The EBBT assumes that the cross-section of the beam remains always
undeformed and orthogonal to the beam axis. Mathematically, the kinematic field of the
EBBT can be expressed as:

ux(x,y,z) =ux1(y),

uy(x,y,z) =uy1(y)− x
∂ux1(y)

∂y
− z

∂uz1(y)
∂y

,

uz(x,y,z) =uz1(y),

(2.6)

where ux, uy and uz are the components of the displacement vector and ux1 , uy1 and uz1 are
the unknowns of the problem, which correspond to the displacements of the beam axis.
According to the definition of the beam kinematics in Eq. 2.6, all the shear deformations
are null. For instance, considering the shear deformation εyz and according to the Cauchy
definition (Eq. (2.2)), we have:

εyz =
1
2
(
uy,z +uz,y

)
=

1
2
(∂uz1

∂y
− ∂uz1

∂y

)
= 0. (2.7)

The Timoshenko beam theory (TBT) [196] overcomes this inconsistency of the EBBT
model by adding the rotations of the cross-section around x and z, leading to the following
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displacement field:

ux(x,y,z) =ux1(y),

uy(x,y,z) =uy1(y)+ xφz(y)− zφx(y),

uz(x,y,z) =uz1(y),

(2.8)

being now 5 the number of unknowns: 3 displacements (ux1 , uy1 and uz1) and 2 rotations (φz

and φx).
The TBT beam model is suitable for the analysis of slender compact beams under

shear and bending, but it cannot foresee with torsional effects. To achieve this, the Saint
Venant theory (SVT) considers a long prismatic bar under torsion and defines the following
displacement field:

ux(x,y,z) =zφy(y),

uy(x,y,z) =ψ(x,z),

uz(x,y,z) =− xφy(y),

(2.9)

where φy is the twist angle around the beam axis and ψ(x,z) is the warping function. The
SVT assumes a constant rate of twist, i.e. ∂φy

y = c, and accounts for the primary warping of
the cross-section, which does not vary along the beam axis.

However, this description of the cross-section deformations is not suitable for the struc-
tural analysis of thin-walled beams, which undergo more complex deformations that cannot
be described mathematically by Eq. (2.9). On this behalf, Vlasov [203] introduced a torsion
theory that accounts for restrained warping. In his theory, the twist angle is not constant
anymore along the beam axis, but fulfills the following differential equation:

EJω

d4φy

dy4 −GJt
d2φy

dy2 = my, (2.10)

where EJω and GJt are the warping and torsion stiffnesses, respectively, and my is the moment
along y. In order to account for the secondary warping and the stress fields over the thin-
walled section described by Vlasov, the kinematics of the beam must include higher-order
terms, as it follows:

ux(x,y,z) =ux1(y)+ zφy(y),

uy(x,y,z) =uy1(y)+ f1(x)φz(y)+g1(x)
∂ux1(y)

∂y
+ f2(z)φx(y)+g2(z)

∂uz1(y)
∂y

,

uz(x,y,z) =uz1(y)− xφy(y),

(2.11)
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where f1(x), g1(x), f2(z) and g2(z) are third-order functions. A similar higher-order theory
was introduced by Reddy [165] for plates. This kind of theories are able to provide a parabolic
distribution of the transverse shear deformations, therefore the homogeneous conditions at
the free edges of the section can be fulfilled, diversely from the TBT and SVT theories, as
shown in Fig. 2.2

z

y

yz=0
uz1

uz1/ y

(a) EBBT

z

y

yz uz1

ϕx

(b) TBT

z

y

yz uz1

(c) Vlasov-Reddy

Fig. 2.2 Possible displacements and shear deformations that can be predicted by the different
classical theories.

To this point, the classical theories can be used to obtain a fair approximation of the
mechanical response of beams for a limited range of structural problems that include slender
beams under axial, bending and torsional loads. However, in many structural applications it
is indeed necessary to apply more generic boundary conditions and, therefore, engineers are
forced to rely on more computationally-expensive plate and solid formulations to perform
their numerical analysis. Another issue arises when the in-plane deformations over the
cross-sections are of interest, for instance in composite problems or short beams. In fact, if
we use the kinematics described in Eq. (2.11):

εxx = ux,x = 0, (2.12)

εzz = uz,z = 0, (2.13)

εxz =
1
2
(
ux,z +uz,x

)
=

1
2
(
φy −φy) = 0, (2.14)

which reflects that the SVT torsional terms alone cannot capture any deformation of the
cross-section, local or global, in its own plane. Additional higher-order terms are to be
added to include these mechanical responses in the model. In this regard, Prof. Washizu
wisely stated [207]: ’For a complete removal of the inconsistency and an improvement of
the accuracy of the beam theory,’ we may assume a generic expansion of the cross-sectional
terms, whose number ’should be chosen properly’.
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2.3 Carrera unified formulation

The introduction of advanced beam models which are able to deal with different structural
problems has been a topic of interest in the structural community for decades, specially in the
analysis of composite structures. Addressing some of the aforementioned issues of classical
theories, the Carrera unified formulation (CUF) was introduced as a generator of structural
theories for plates by Carrera [28], then extended to 1D formulations [34]. In 1D problems,
the CUF defines the kinematics of the beam theory in a compact form, as follows:

uuu(x,y,z) = Fτ(x,z)uuuτ(y) τ = 1,2, ...,M, (2.15)

that is a generic expansion of the displacement unknowns over the cross-section. In this
expression, uuuτ(y) are the generalized displacement unknowns, Fτ(x,z) are arbitrary functions
of the cross-section coordinates and M is the maximum number of terms in the expansion,
which is an input of the analysis. The Einsten notation is used hereinafter, thus the repeated
τ means summation. Making use of this form of kinematics, the accuracy of the beam model
is dictated by the type of function used as expansion, which is chosen axiomatically, and
the enrichment of the displacement field, which is represented by M. In the last decade,
many beam theories have been implemented in the framework of CUF, such as trigonometric,
polynomial, exponential and zig-zag, see [70]. Due to their versatility, polynomial expansions
are the most commonly used in the CUF analyses.

2.3.1 Taylor expansion

Beam models based on the Taylor expansion (TE) are created using a 2D series of expansion
of the type Fτ(x,z) = xpzq, with p and q taking values from 0 to the maximum polynomial
order, N, according to the Pascal triangle shown in Table 2.1.

Table 2.1 Pascal triangle.

order M Fτ

0 1 F1 = 1
1 3 F2 = x F3 = z
2 6 F4 = x2 F5 = xz F6 = z2

3 10 F7 = x3 F8 = x2z F9 = xz2 F10 = z3

...
...

...
N (N+1)(N+2)

2 F(N2+N+2)/2 = xN F(N2+N+4)/2 = xN−1 . . . FN(N+3)/2 = xzN−1 F(N+1)(N+2)/2 = zN
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For instance, a TE third-order model (N = 3) can be written as

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10 ,

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10 ,

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10 ,

(2.16)

including a total of 30 generalized unknowns over the cross-section. Note that the kinematics
defined via TE are hierarchical, that is the polynomial order of the transverse approximation is
increased by adding higher-order functions to the existing set. Consequently, the kinematics
of Eq. (2.16) accounts for constant, linear, quadratic and cubic terms. Also, it is worth
mentioning that the classical beam theories can be generated by truncating the kinematic
field of a TE. For instance, the TBT model is obtained using the expansion terms of the
following unknowns: ux1 , uy1 , uy2 , uy3 and uz1 .

2.3.2 Lagrange expansion

The Lagrange expansion (LE) makes use of Lagrangian polynomials to interpolate the un-
knowns over the cross-section domain. Different Lagrangian domains have been implemented
in the framework of CUF [41], including three-noded (L3), four-noded (L4), nine-noded (L9)
and sixteen-noded (L16). For example, the expansion functions of a bilinear L4 domain are:

Fτ =
1
4
(1− rτr)(1− sτs) τ = 1,2,3,4, (2.17)

where r and s are defined in the interval [-1, 1] and rτ and sτ are the roots of these polynomials,
a.k.a nodes. It is worth mentioning that in LE a Jacobian transformation is required between
the natural coordinates (r, s) and the cross-sectional domain defined in (x, z). In the case of a
biquadratic L9, these Fτ functions are:

Fτ =
1
4(r

2 + r rτ)(s2 + s sτ), τ = 1,3,5,7,

Fτ =
1
2s2

τ(s
2 + s sτ)(1− r2)+ 1

2r2
τ(r

2 + r rτ)(1− s2), τ = 2,4,6,8,

Fτ = (1− r2)(1− s2) τ = 9,

(2.18)

Subsequently, the displacement field of a L9 domain can be written as:

ux = F1 ux1 +F2 ux2 +F3 ux3 + ...+F9 ux9,

uy = F1 uy1 +F2 uy2 +F3 uy3 + ...+F9 uy9 ,

uz = F1 uz1 +F2 uz2 +F3 uz3 + ...+F9 uz9 .

(2.19)
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Note that the unknowns of the mechanical problem represent pure displacements over the 3D
beam. LE beam models possess some interesting features for the analysis of beam structures.
Since nodal unknowns are placed over the edges of the cross-section domain, the application
of the loads can be done in a 3D sense as for solid finite elements. Moreover, any geometry
of the cross-section can be discretized with a number of Lagrangian domains, making LE
appropriated for the analysis of thin-walled beams and civil structures, see for instance
[39, 36].

2.4 Hierarchical Legendre expansion

A non-local hierarchical theory is generated by using the 2D set of Legendre polynomials
as expansion functions of the cross-section coordinates. This set of interpolation functions,
defined by Szabó and Babuška [189] for the p-version of the finite element method (FEM),
exhibit some interesting properties for the generation of interpolation functions. They are
based on a orthogonal basis and form a fully hierarchical set. Also, the number of functions
with non-zero value at the edges of the domain is minimum.

The Legendre polynomials can be obtained from a recurrent definition:

L0 = 1, (2.20)

L1 = ς , (2.21)

Lk =
2k−1

k
ςLk−1(ς)−

k−1
k

Lk−2(ς), k = 2,3, ... (2.22)

The roots of Lk coincide with the Gauss points and the resultant polynomial set constitutes
an orthonormal basis. The set of interpolating functions in a 1D space can be written as

L̃1(r) =
1
2
(1− r), (2.23)

L̃2(r) =
1
2
(1+ r), (2.24)

L̃i(r) = φi−1(r), i = 3,4, ..., p+1, (2.25)

where φ j(r) are the normalized integrals of Lk:

φ j(r) =

√
2 j−1

j

∫ r

−1
L j−1(ς)dς , j = 2,3,4, ... (2.26)
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Fig. 2.3 Hierarchical set of Fτ 2D functions used to generate HLE.

Eqs. (2.23) and (2.24) are linear functions that vary between 0 and 1 along the domain
[-1, 1], thus they are known as nodal modes. The higher-order functions of Eq. (2.25) are
denominated internal modes and they vanish at the edges of the interval.

The orthogonality of the Legendre set of functions is defined by:

∫ 1

−1

dL̃i

dr
dL̃ j

dr
dx = δi j, for i ≥ 3 and j ≥ 1 or i ≥ 3 and j ≥ 1, (2.27)

δi j being:

δi j = 1 i f i = j, (2.28)

δi j = 0 otherwise. (2.29)

A 2D set of interpolating polynomials is defined by expanding the above procedure to
quadrilateral domains in the [-1, 1] × [-1, 1] domain. Accordingly, in a 2D domain it is
possible to defined three classes of expansions, nodal, side and internal, which are built from
the products of the 1D Legendre polynomials.

Nodal expansions The nodal expansions are the same of the linear Lagrangian shape
functions for quadrilateral domains, also used for linear LE models (L4):

Fτ =
1
4
(1− rτr)(1− sτs) τ = 1,2,3,4 (2.30)
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Side expansions The side modes are defined for p ≥ 2 and correspond to the following
functions

Fτ(r,s) =
1
2
(1− s)φp(r) τ = 5,9,13,18, ... (2.31)

Fτ(r,s) =
1
2
(1+ r)φp(s) τ = 6,10,14,19, ... (2.32)

Fτ(r,s) =
1
2
(1+ s)φp(r) τ = 7,11,15,20, ... (2.33)

Fτ(r,s) =
1
2
(1− r)φp(s) τ = 8,14,16,21, ... (2.34)

For each polynomial order p, there are 4 functions (one per side) which vanish at all edges
but one.

Internal expansions The internal modes are defined for p ≥ 4 and for a given polynomial
order the set includes (p−2)(p−3)/2 functions. They are obtained as from product of the
1D Legendre modes (Eq. (2.25)):

Fτ(r,s) = φp1(r)φp2(s), p1, p2 = 2,3,4, ... and p = p1 + p2. (2.35)

For instance, the internal functions of the 6th order are

F28(r,s) = φ4(r)φ2(s) (2.36)

F29(r,s) = φ3(r)φ3(s) (2.37)

F30(r,s) = φ2(r)φ4(s) (2.38)

Figure 2.3 shows the HLE from order p = 1 to p = 7. The hierarchical properties of
the 1D polynomial set are maintained, i.e. the functions of lower-order are a subset of the
higher-order model. For instance, for a 6th order model the kinematics of the beam include
all the expansion terms from τ = 1 to τ = 30. The explicit expressions all the Legendre
functions until the 8th order can be found in Appendix A.

HLE beam models include some of the features of other refined structural theories. The
displacement field is enriched hierarchically, as for TE models. On the other hand, the
cross-section of the beam can be discretized in a number of domains, as for LE models. From
the modeling point of view, the main advantage of HLE theories is that the cross-section can
be discretized just once, and the convergence of the solutions is attained by systematically
changing the input parameter of the polynomial order, p, with no need for re-meshing
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Fig. 2.4 Differences between various refined 1D CUF finite elements

procedures. Figure 2.4 illustrates the differences among the higher-order theories discussed
here.

2.5 Cross-section mapping

The higher-order polynomials used in HLE theories call for the generation of coarse dis-
cretizations based on large quadrilateral domains, as shown in Fig. 2.4. When dealing with
curved geometries, standard isoparametric elements represent the boundaries of the domain
using the same set of interpolating functions. Therefore a numerical error is introduced
when performing the integrals of the stiffness matrices due to the inability of the elements
to capture the exact geometry of curved boundaries. In the case of large domains, this error
may be unacceptably high and it becomes necessary to represent curved boundaries via
non-isoparametric techniques.

Consider the Jacobian transformation of a quadrilaterial domain defined in (r, s) into the
global coordinates (x, z) shown in Fig. 2.5, in which one of the sides is curved. The mapping
functions, QQQ, can be written as:

x = Qx(r,s), (2.39)

z = Qz(r,s). (2.40)
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Fig. 2.5 Jacobian transformation of the quadrilateral domains of the cross-section, based on
[189].

A brief description of the possible definitions of these mapping functions are included in the
following.

2.5.1 First-order mapping

In the case of isoparametric mapping with linear expansions, for instance L4, the boundaries
of the cross-section are approximated by piece-wise linear curves. The mapping functions
are built from the linear expansion functions, as follows:

x = Qx(r,s) = 1
4(1− r)(1− s)X1 +

1
4(1+ r)(1− s)X2 (2.41)

+1
4(1+ r)(1+ s)X3 +

1
4(1− r)(1+ s)X4,

z = Qz(r,s) = 1
4(1− r)(1− s)Z1 +

1
4(1+ r)(1− s)Z2 (2.42)

+1
4(1+ r)(1+ s)Z3 +

1
4(1− r)(1+ s)Z4,

or in compact form:
x = Fτ(r,s)Xτ τ = 1, ...,4, (2.43)

where x = {x z}T are the positions over the cross-section plane and Xτ = {Xτ Zτ}T corre-
spond to the vertex of the quadrilateral domain. Fτ are exactly the same linear functions as
used in the description of the kinematics of the L4 beam model. It is clear that this kind
of mapping is not able to represent the curved boundary and just represents a straight side
(dashed line).
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2.5.2 Second-order mapping

A similar procedure can be followed for the mapping of quadratic expansions like the L9.
Now the mapping functions are described by the Lagrangian polynomials included in Eq.
(2.18), as:

x = Fτ(r,s)Xτ τ = 1, ...,9, (2.44)

This isoparametric expansion allows one to represent curved geometries by a piece-wise
parabolic approximation, thus reducing the error with respect to the linear mapping.

2.5.3 The blending function method

If the exact geometry is to be captured, a parametric representation of the curved edges must
be generated. The blending function method (BFM), introduced by Gordon and Hall [81],
makes it possible to describe the actual geometry of the analyzed domain in the mapping
functions, ensuring that the exact domain is integrated in the energy terms. The BFM is
employed here to generate non-isoparametric HLE domains which are able to represent very
accurately the surface of arbitrary curved cross-sections.

Considering the quadrilateral domain of Fig. 2.5, the curved edge can be described
mathematically in the 2D space by a pair of parametric function of the type x = x2(s) and
z = z2(s). For instance, if cubic polynomials are employed to represent the geometry, we can
write the following functions:

x2(s) = ax +bxs+ cxs2 +dxs3 (2.45)

z2(s) = az +bzs+ czs2 +dzs3. (2.46)

which fulfill the following conditions:

x2(−1) = X2, x2(1) = X3, (2.47)

z2(−1) = Z2, z2(1) = Z3. (2.48)

Subsequently, the mapping functions are expressed as follows:

x = Qx(r,s) = Fτ(r,s)Xτ +
(

x2(s)−
(1− s

2
X2 +

1+ s
2

X3
))1+ r

2
, (2.49)

z = Qz(r,s) = Fτ(r,s)Zτ +
(

z2(s)−
(1− s

2
Z2 +

1+ s
2

Z3
))1+ r

2
, (2.50)

where τ = 1, ...,4. The first term of the right-hand side of these expressions corresponds to the
first-order mapping. The second adds the section between xxx2(s) and the straight line between
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Fig. 2.6 Mapping of the cross-section domain by the BFM.

vertexes 2 and 3, highlighted in grey in Fig. 2.5. Finally, the term 1+r
2 is denominated as

blending function and it is added to vanish the transformation at the opposite edge of the
quadrilateral domain.

If this operation is extended to all 4 sides of the quadrilateral domain, we obtain

x = Qx(r,s) = 1
2(1− s)x1(r)+ 1

2(1+ r)x2(s)+ 1
2(1+ s)x3(r)

+1
2(1− r)x4(s)−Fτ(r,s)Xτ ,

z = Qz(r,s) = 1
2(1− s)z1(r)+ 1

2(1+ r)z2(s)+ 1
2(1+ s)z3(r)

+1
2(1− r)z4(s)−Fτ(r,s)Zτ ,

(2.51)

being every side of the domain represented by parametric functions xi and zi, i = 1,2,3,4, as
shown in Fig. 2.6. The main advantage of this approach in the context of beam modeling
lies on the ability to separate the discretization of the cross-section from the quality of
the numerical approximation. In this manner, the surface of any curved section, such as
thin-walled or composite, can be modeled a priory and the polynomial order can be chosen
according to the level of accuracy desired, with no need to waste computational resources to
capture the exact geometry.

2.6 Examples

This section shows the potential of HLE theories through two numerical cases. The first
example is a simple assessment by comparison against classical and higher-order beam
theories, whereas the second shows the use of HLE to analyze curved thin-walled structures.
The solutions are obtained by means of the FEM, which is described in the next chapter (3).
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2.6.1 Square beam

The first case is a square beam similar to that of Fig. 2.1. The geometrical features are
described in [41], being the length L = 2 m and the cross-section dimensions a = b = 0.2 m.
The resulting slenderness ratio is then L/b = 10. The beam is clamped at one end (y = 0)
and two point forces of magnitude P = 25 N are applied downwards on the lower corners of
the other end (y = L), see Fig. 2.7. The properties of the material are those of an Aluminum
alloy: Young modulus, E, equal to 75 GPa and Poisson ratio, ν , equal to 0.33. A convergent
mesh of Lagrangian 1D elements is used along the beam axis.

z

x

P P

a

Fig. 2.7 Geometry and loading case of the squared beam example.

The assessment is done modeling the cross-section using only one HLE domain. Poly-
nomial orders until p = 8 are tested. Table 2.2 shows the number of degrees of freedom
(DOF) and the total number of expansions over the cross-section (M) for the HLE model here
developed and the reference TE and LE solutions from [41]. Table 2.3 includes the values
of displacements, longitudinal stresses and shear stresses at different locations of the beam
structure. Reference solutions are added, including those of a 3D model generated in Nastran
[51]. Figures 2.8 and 2.9 show graphs of the distributions of displacements and stresses at
y = L and y = L/2, respectively. The following remarks can be stated:

• In HLE models, the number of DOF and the expansion terms grows as the polynomial
order p increases.

• The HLE solutions of the displacements evaluated at the loading points of the structure
tend monotonically to those of the refined solid model used as reference. Also, in Fig.
2.8 is it possible to observe that higher-order polynomial expansions are able to capture
the local peaks of the vertical displacements at the loading points.

• The computation of the longitudinal stresses is not challenging from the modeling
point of view (the linear model HL1 is enough). On the other hand, the evaluation
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of the transverse stresses is more troublesome and requires at least a third-order HL3
model to obtained satisfactory results, see Fig. 2.9 (b). The second order model HL2
provides similar results as the nine-noded LE.

Table 2.2 Model features: degrees of freedom and expansion terms.

model DOF M
SOLID [41] 18150 −

TE [41]
N=1 279 3
N=2 558 6
N=3 930 10
N=4 1395 15

LE [41]
L4 372 4
L9 837 9

HLE
HL1 372 4
HL2 744 8
HL3 1116 12
HL4 1581 17
HL5 2139 23
HL6 2790 30
HL7 3534 38
HL8 4371 47

2.6.2 Wing structure

The second example deals with a monocoque wing structure, which is illustrated in Fig. 2.10.
The airfoil corresponds to the NACA 2415 with a chord of 1 m and a total span of 6 m. The
material is the same of the previous example (E = 75 GPa and ν = 0.33) and clamped-free
boundary conditions are considered. A point load of magnitude P = 3000 N is applied at
1/4 of the chord in the lower wall at 2/3 of the total span.

Figure 2.11 shows the discretization of the airfoil via HLE. To demonstrate the capabilities
of the proposed approach for the efficient modeling of beam structures, only 5 curved
domains are used to represent the cross-section. Cubic polynomials are used to parametrize
the curved boundaries. The assembly of the different domains is carried out by merging the
corresponding nodal and edge DOF in the stiffness matrix of the structural problem. It is
worth pointing out that in case of distorted meshes like this one, the sign of the antisymmetric
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Table 2.3 Solutions of displacements and stresses of the square beam example.

model uz ×105 σyy ×10−4 σyz ×10−3

[−b/2,L,−h/2] [0,L/2,h/2] [0,L/2,0]
SOLID[41] −1.340 3.750 −1.708

Classical and higher-order TE [41]
EBBT −1.333 - -
TBT −1.343 - -
N=1 −1.343 - -
N=2 −1.327 - -
N=3 −1.329 - -
N=4 −1.330 - -

LE
L4[41] −1.115 - -
L9 −1.331 3.750 −1.198

HLE
HL1 −1.115 3.750 −1.250
HL2 −1.329 3.750 −1.198
HL3 −1.332 3.750 −1.746
HL4 −1.335 3.750 −1.761
HL5 −1.336 3.750 −1.734
HL6 −1.337 3.751 −1.734
HL7 −1.339 3.743 −1.741
HL8 −1.340 3.745 −1.738

-1.342
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Fig. 2.8 Vertical displacement, uz, along the bottom edge of the loaded section, [:,L,−h/2].
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Fig. 2.9 Longitudinal, σyy, and shear, σyz, stresses through the thickness at the center of the
beam structure, [0,L/2, :].
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Fig. 2.10 Illustration of the monocoque wing structure.
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Legendre side modes (odd p orders) has to be checked when assembling the domains to
ensure C0 displacement solutions over the section. Regarding the longitudinal mesh, 10
cubic 1D elements are employed.

1

2 3

4
5

A

B

C

P

Fig. 2.11 HLE discretization of the wing profile and loading.

The solutions of displacements and stresses are evaluated in points A and B of Fig. 2.11
at different span coordinates. In particular, point A is located in coordinates [0.282394,
0.093267] of the section, whereas point B coincides with the leading edge [0, 0]. The results
are shown in Table 2.4. A 3D FEM model is generated in Nastran for reference purposes.
The convergence the solutions with respect to the polynomial order is rather fast, being the
third-order HL3 model already acceptable. The second-order HL2 model fails for such a
coarse mesh. All the solutions of p > 3 agree well with the 3D model, showing remarkable
reductions in the computational costs. Finally, Fig. 2.12 includes the final configuration of
the section at y = 4 m, where it is possible to observe the in-plane deformation of the airfoil
caused by the application of the point load at the lower skin.

Table 2.4 Displacement and stress results of the wing with point load.

Model uz ×103 [m] σyy ×10−6 [Pa] σyz ×10−6 [Pa] DOF
Point A, y = L Point A, y = 1 m Point B, y = 1 m

MSC Nastran solid model
HEXA8 -85.52 38.40 -43.46 395280

Hierarchical Legendre Expansions, 10 B4
HL2 -33.06 16.54 -60.38 2325
HL3 -83.38 37.68 -41.98 3720
HL4 -84.15 38.50 -43.81 5580
HL5 -84.76 38.55 -44.98 7905
HL6 -84.46 38.47 -44.38 10695
HL7 -84.29 38.44 -41.82 13950
HL8 -84.26 38.50 -41.81 17670

A second loadcase is generated by applying a distributed line load over the span of
the wing in correspondence with point A. The magnitude of the loading is L = 1766 N/m.
Figure 2.13 shows an illustration of the loading configuration (a) and a plot of the resulting
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HL8

Solid
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Fig. 2.12 Deformations of the loaded section of the monocoque wing.

deformation of the structure (b). Table 2.5 reports the numerical results of the HL8 beam in
comparison to the 3D model of Nastran, which exhibit remarkable agreement as well.

X

Z

Y

1 m

 6 m

 L = 1766 N/m

(a) Loading (b) Deformed

Fig. 2.13 Monocoque wing under distributed line load.

Table 2.5 Displacement and stress results of the wing with distributed loading.

Model uz [m] σyy [MPa] σyz [MPa] DOF
Point A, y = L Point A, y = L/2 Point B, y = L/2 m

MSC Nastran 0.225 32.301 8.761 395280
HL8 0.223 32.000 8.839 17670



Chapter 3

Finite element method

The finite element method (FEM) is selected to solve the structural problem due to its
superior versatility in comparison to other analytical and numerical approaches. This chapter
presents the main theoretical formulations which are necessary for the implementation of
the FEM code based on the CUF theories. First, the constitutive equations are discussed for
different material types. Subsequently, a brief discussion of the development of the finite
element formulation from the weak form of the governing equations is presented and the
shape functions which are used to interpolate the generalized unknowns along the beam axis
are described. From the principle of virtual displacements, the fundamental nucleus of the
stiffness matrix is derived. This building block of the model represents one of the pillars of
the current formulation, as it allows the user to generate any class of structural theory using
the same formal statements.

Some of the contents presented in this chapter were included in [145].

3.1 Constitutive equations

As it is done previously for the strain tensor in Section 2.1, the symmetry of the stress tensor
can be exploited to write it in the form of a six-term vector:

σσσ
T =

{
σyy σxx σzz σxz σyz σxy

}
, (3.1)

where the components σi j correspond to the stress values at a certain point (x,y,z) expressed
in the global coordinates.

Consider the material system illustrated in Fig. 3.1. In the most general case, a second
coordinate system must be created to represent the material principal directions. Here, a
system (1,2,3)m is defined being the axis 3 parallel to the fiber direction and the axis 1
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Fig. 3.1 Global and material reference systems.

orthogonal to the ply. Accordingly, the stress and strain vectors can be written in the material
systems as:

σσσ
T
m =

{
σ3 σ2 σ1 σ4 σ5 σ6

}
,

εεε
T
m =

{
ε3 ε2 ε1 ε4 ε5 ε6

}
.

(3.2)

The stress-strain relations are given by the Hooke’s law, which states:

σσσm = Cεεεm, (3.3)

where C is the 6×6 stiffness matrix of the material. The coefficients of C are expressed in
the material system (1,2,3)m and, in general, are a function of the position over the volume of
the body. For anisotropic materials, the Hooke’s law results:

σ3

σ2

σ1

σ4

σ5

σ6


=



C33 C32 C31 C34 C35 C36

C23 C22 C21 C24 C25 C26

C13 C12 C11 C14 C15 C16

C43 C42 C41 C44 C45 C46

C53 C52 C51 C54 C55 C56

C63 C62 C61 C64 C65 C66





ε3

ε2

ε1

ε4

ε5

ε6


. (3.4)

Due to the symmetry of the material matrix (Ci j = C ji) the independent coefficients are
not 36, but 21. When the material is anisotropic, its elastic properties vary over the three
directions. However, most of the materials employed for engineering purposes exhibit certain
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symmetries, allowing for the use of a reduced set of independent constants. Some of the
most common material definitions are explained in the following.

Isotropic materials A material is consider isotropic if its elastic properties are directionally
independent. Classical examples of materials that fall under this category are the metals, for
instance steel and aluminum. In this case, the stress-strain relations can be written as:

σ3

σ2

σ1

σ4

σ5

σ6


=



C33 C32 C31 0 0 0
C23 C22 C21 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε3

ε2

ε1

ε4

ε5

ε6


(3.5)

where the coefficients of C depend only on two elastic constants, usually: the Young’s
modulus, E, and the Poisson ratio, ν , as follows:

C11 =C22 =C33 =
(1−ν)E

(1+ν)(1−2ν) ,

C12 =C13 =C23 =C21 =C31 =C32 =
νE

(1+ν)(1−2ν) ,

C44 =C55 =C66 =
E

2(1+ν) .

(3.6)

Orthotropic materials An orthotropic material exhibits two planes of symmetry where the
properties do not vary, resulting in 9 independent constants. These are commonly provided
in the form of the engineering moduli: Young’s moduli E1, E2, E3; shear moduli G12, G13,
G23; and Poisson ratios ν12, ν13, ν23. These constant are defined as:

Ei =
σi
εi
, Gi j =

σi j
εi j
, νi j =− ε j

εi
. (3.7)
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The Hooke’s law for orthotropic materials has the same form of that of isotropic materials,
Eq. (3.5), but the coefficients of C are now expressed as:

C11 =
E1(1−ν23ν32)

β
, C12 =

E1(ν21+ν23ν31)
β

, C13 =
E1(ν31+ν21ν32)

β
,

C21 =
E2(ν12+ν13ν32)

β
, C22 =

E2(1−ν13ν31)
β

, C23 =
E2(ν32+ν12ν31)

β
,

C31 =
E3(ν13+ν12ν23)

β
, C32 =

E3(ν23+ν13ν21)
β

, C33 =
E3(1−ν12ν21)

β
,

C44 = G21, C55 = G31, C66 = G23,

(3.8)

where
β = 1−ν12ν21 −ν12ν21 −ν12ν21 −ν12ν21ν31 −ν12ν21ν31. (3.9)

Note that due to the symmetry of the stiffness matrix of the material, the following
relations are satisfied:

νi j

Ei
=

ν ji

E j
, (3.10)

thus C12 =C21, C13 =C31 and C23 =C32.

y
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Fig. 3.2 Material rotation angles.

The Hooke’s law reported in Eq. (3.5) is written in the material coordinate system. The
orientation of the orthotropic material has to be included in the constitutive relations of the
physical system. For that, the stress and strain vectors are written in the global coordinate
system via a coordinate transformation, as follows:

σσσ = Tσσσm,

εεε = Tεεεm,
(3.11)

where T is the transformation matrix. If we consider the material rotations depicted in Fig.
3.2, the components of the T matrix depend on θ and ψ , which are the angles around the z
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and y axis, respectively. Subsequently, the Hooke’s law can be written in the global frame as

σσσ = T Cm TT
εεε = C̃εεε, (3.12)

or explicitly, 

σyy

σxx

σzz

σxz

σyz

σxy


=



C̃33 C̃23 C̃13 0 0 C̃36

C̃23 C̃22 C̃12 0 0 C̃26

C̃13 C̃12 C̃11 0 0 C̃16

0 0 0 C̃44 C̃45 0
0 0 0 C̃45 C̃55 0

C̃36 C̃26 C̃16 0 0 C̃66





εyy

εxx

εzz

εxz

εyz

εxy


. (3.13)

The components C̃i j are a function of the 9 orthotropic constants included in Eq. (3.7), and
the rotation angles of (1,2,3)m in (x,y,z). For the sake of brevity, the explicit expressions of
Ci j are not enlisted here, but they can be found in [33].

When the elastic properties of the material are the same over one plane and vary only in
the orthogonal direction, the material is said to be transverse isotropic. In this particular case,
5 material constants are enough to define the material matrix C. A classical example of this
type of material are the fiber-reinforced composites, in which the properties of the material
do not change over the plane normal to the fiber axis.

3.2 Finite element formulation

In the past years, several methods were employed to solve the structural problem in the CUF
framework. Several analytical approaches for beam problems can be found in the literature,
such as close-form Navier solutions [79], radial basis functions [176], dynamic stiffness
method [143]. These models present the advantage of a minimum computational expense
and, in most cases, do not suffer from convergence issues, making them appropriate for
benchmarking. However, analytical models are suitable only for certain problems and can
only deal with limited boundary conditions and geometry, which make them less attractive
for generic purposes.

In order to overcome this limitations, a finite element formulation is adopted in this thesis.
To apply the FEM, the system of partial differential equations that describe the problem is
transformed into the weak form, that is expressing the equilibrium equations in integral form.
The domain of integration is divided into a number of small portions, the finite elements, in
which the fundamental variables are interpolated through shape functions. For more interest,
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some of the classical books of the FEM are those of Zienkiewicz and Taylor [224] and
Bathe [13], among others. The implementation of the FEM to solve beams, plates and shell
problems in the framework of CUF can be found in the book of Carrera et al. [29].

In FEM problems, the accuracy of the numerical model is controlled by the refinement of
the discretization of the domain of analysis. Ideally, convergent studies should be carried out
systematically to ensure the quality of the solutions. On the other hand, the high versatility
of the FEM in dealing with arbitrary geometries and loadings makes it the most well-known
method in structural analysis. Here, the FEM is employed to discretize the beam axis with
1D elements, interpolating in this manner the generalized unknowns of the cross-section over
the longitudinal axis.

3.2.1 Interpolation of the generalized displacements

In beam problems, the cross-section unknowns are interpolated over the beam axis via 1D
shape functions. In other words, the value of the generalized displacements at any point
along the beam is a weighted combination of their values in certain axial locations, denoted
to as beam nodes. In such manner, one can write:

uuuτ(y) = Ni(y)uuuτi, i = 1,2, ...,nn, (3.14)

where
uuuτi =

{
uxτi uyτi uzτi

}T
(3.15)

is the displacement nodal vector and Ni is the corresponding shape function. nn is the number
of nodes per element. Two classes of elements are implemented using different polynomial
sets: Lagrange and Legendre.

Lagrange beam elements Lagrange interpolation polynomials are the most extended
choice in the h-version of FEM. In this approach the accuracy of the numerical solutions is
incremented via refinement of the number of elements. The Lagrange polynomial basis is
obtained from the following formula:

Ni(ξ ) =
pb

∏
i=1,i ̸= j

ξ −ξi

ξ j −ξi
, j = 1, ...,nn, (3.16)

where pb is the polynomial order of the shape functions. Note that Ni are defined in the
interval −1 ≤ ξ ≤ 1 and the roots of the polynomials are chosen equidistant. For the sake
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of completeness, the Lagrange shape functions of two-noded (B2), three-noded (B3) and
four-noded (B4) elements are included in the following:

• Linear element

N1 =
1
2(1−ξ ), N2 =

1
2(1+ξ ),

{
ξ1 =−1
ξ2 =+1

(3.17)

• Quadratic element

N1 =
1
2ξ (ξ −1), N2 =

1
2ξ (ξ +1), N3 =−(1+ξ )(1−ξ ),


ξ1 =−1
ξ2 =+1
ξ3 = 0

(3.18)

• Cubic element

N1 =− 9
16(ξ + 1

3)(ξ − 1
3)(ξ −1), N2 =

9
16(ξ + 1

3)(ξ − 1
3)(ξ +1),

N3 =+27
16(ξ +1)(ξ − 1

3)(ξ −1), N4 =−27
16(ξ +1)(r+ 1

3)(ξ −1),


ξ1 =−1
ξ2 =+1
ξ3 =−1

3
ξ4 =+1

3
(3.19)

Figure 3.3 (a) shows the distribution of these functions over the natural domain of the beam
element.

Legendre beam elements The interpolation of the displacements is performed using a
hierarchical set of 1D Legendre-based polynomials. This set is typical of the p-version of
FEM, in which the numerical error is reduced via increment of the polynomial order of the
element. A hierarchical set can be implemented using the following shape functions:

N1(ξ ) =
1
2
(1−ξ ) (3.20)

N2(ξ ) =
1
2
(1+ξ ) (3.21)

Ni(ξ ) = φi−1(ξ ), i = 3,4, ...,nn, (3.22)

with

φi(ξ ) =

√
2i−1

i

∫
ξ

−1
Li−1(ς)dς , i = 2,3,4, ... (3.23)

In this manner, the displacement approximation is enriched by adding shape functions of
higher-order to the finite element. Figure 3.3 (b) shows the first three polynomial sets. One
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(a) Lagrange (b) Legendre

Fig. 3.3 Lagrange and Legendre interpolation polynomials.
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can observe that, similarly to HLE theories, the higher-order functions do not reach the
unitary value throughout the interval [-1, 1], therefore they are denoted as modes instead of
nodal shape functions.

3.2.2 Principle of virtual displacements

According to the calculus of variations, a variational statement is formulated to find the
stationary solutions of an integral problem. In solid mechanics, the variational formulation is
that of minimizing the total potential energy of the structure, which sums the contributions
of the internal and external energies. Taking virtual variations of the displacements, the
Principle of Virtual Displacements (PVD) states that for all kinematically admissible virtual
displacements, a body is in equilibrium if the virtual work done by the internal stresses equals
the work done by the external loads:

δLint = δLext. (3.24)

The internal work Lint corresponds to the elastic strain energy, which is defined as

δLint =
∫

V
δεεε

T
σσσ dV, (3.25)

where V is volume of the body. On the other hand, according to d’Alembert principle the
external work includes the contribution of the surface external loads Ls, point loads LP and
the volume inertial loads Line,

δLext = δLS +δLP −δLine =
∫

S
δuuuT PS dS+δuuuT P−

∫
V

δuuuT
ρ üuu dV, (3.26)

where Ps is a surface load acting on the boundary S, ρ is the density of the material and üuu is
the acceleration vector. As a result, the PVD of the problem can be written as∫

V
δuuuT

ρ üuu dV +
∫

V
δεεε

T
σσσ dV =

∫
S

δuuuT PS dS+δuuuT P. (3.27)

In the following discussion, for the sake of simplicity only the static case is considered,
therefore the first term of Eq. (3.27) is dropped. The obtention of the equations of motion for
dynamic problems is presented in Chapter 10.
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3.2.3 Fundamental nucleus

By including the CUF kinematics of Eq. (2.15) into the expression of the FEM interpolation
along the beam axis, Eq. (3.14), the displacement field can be written as:

uuu(x,y,z) = Ni(y)Fτ(x,z)uuuτi, τ = 1,2, ...,M, i = 1,2, ...,nn, (3.28)

Subsequently, the strain fields are defined as

εεε = (DFτNi)uuuτi, (3.29)

where εεε is the strain vector defined in Eq. (2.3) and D is the differential operator of Eq.
(2.4). For the sake of clarity, the 6×3 operator resulting from the product of the differential
operator and the kinematic functions is provided in the following:

DFτNi =



0 Fτ Ni,y 0
Fτ,x Ni 0 0

0 0 Fτ,z Ni

Fτ,z Ni 0 Fτ,xNi

0 Fτ,z Ni Fτ Ni,y

Fτ Ni,y Fτ,x Ni 0


(3.30)

Then, according to the Hooke’s law, the stress field results:

σσσ = C(DFτNi)uuuτi, (3.31)

Introducing the expressions of Eqs. (3.28), (3.29) and (3.31) into the PVD (Eq. ()3.27)),
and considering the virtual displacements as δuuu = FsN juuus j, the governing equations of the
static problem read:∫

L

∫
Ω

δuuuT
s j (D Fs N j)

T CDFτ Ni δuuuτi dy dΩ =
∫

S
δuuuT

s j Fs N j PS dS+δuuuT
s j Fs N j P. (3.32)

This expression can be written in a compact form as

δuuuT
s j Kτsi j

δuuuτi = δuuuT
s j Ps j, (3.33)
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where

Ki jτs =
∫

L

∫
Ω

(D Fs N j)
T CDFτ Ni dy dΩ, (3.34)

Ps j =
∫

S
Fs N j PS dS+Fs N j P. (3.35)

Ki jτs is a 3×3 matrix denoted to as fundamental nucleus, whose formal expression remains
invariable with respect of the structural theory or FE scheme chosen. This definition is indeed
one of the major strengths of CUF as a generator of structural models. From the coding
standpoint, by simply looping on the indexes τ , s, i and j, any structural model can be created.
Note that for beam problems, the domain of integration is decoupled into the cross-section
surface, Ω, and the longitudinal dimension, L. The explicit form of the fundamental nucleus
for orthotropic materials is included in the following:

K τs i j
xx = C̃22 Ii j Eτ,x s,x + C̃44 Ii j Eτ,zs,z + C̃26 Ii j,y Eτ,x s + C̃26 Ii,y j Eτ s,x + C̃66 Ii,y j,y Eτ s

K τs i j
xy = C̃23 Ii j,y Eτ,x s + C̃45 Ii j Eτ,zs,z + C̃26 Ii j Eτ,x s,x + C̃36 Ii,y j,y Eτ s + C̃66 Ii,y j Eτ s,x

K τs i j
xz = C̃12 Ii j Eτ,x s,z + C̃44 Ii j Eτ,zs,x + C̃45 Ii j,y Eτ,zs + C̃16 Ii,y j Eτ s,z

K τs i j
yx = C̃23 Ii,y j Eτ s,x + C̃45 Ii j Eτ,zs,z + C̃26 Ii j Eτ,x s,x + C̃36 Ii,y j,y Eτ s + C̃66 Ii j,y Eτ,x s

K τs i j
yy = C̃33 Ii,y j,y Eτ s + C̃55 Ii j Eτ,zs,z + C̃36 Ii j,y Eτ,x s + C̃36 Ii,y j Eτ s,x + C̃66 Ii j Eτ,x s,x

K τs i j
yz = C̃13 Ii,y j Eτ s,z + C̃55 Ii j,y Eτ,zs + C̃45 Ii j Eτ,zs,x + C̃16 Ii j Eτ,x s,z

K τs i j
zx = C̃12 Ii j Eτ,zs,x + C̃44 Ii j Eτ,x s,z + C̃45 Ii,y j Eτ s,z + C̃16 Ii j,y Eτ,zs

K τs i j
zy = C̃13 Ii j,y Eτ,zs + C̃55 Ii,y j Eτ s,z + C̃45 Ii j Eτ,x s,z + C̃16 Ii j Eτ,zs,x

K τs i j
zz = C̃11 Ii j Eτ,zs,z + C̃44 Ii j Eτ,x s,x + C̃55 Ii,y j,y Eτ s + C̃45 Ii j,y Eτ,x s + C̃45 Ii,y j Eτ s,x

(3.36)
where the terms Eτ(,x)(,z)s(,x)(,z) and Ii(,y) j(,y) correspond to the section and longitudinal integrals.
The integrals of the cross-section expansions are defined as:

Eτ,xs,x =
∫

Ω

Fτ,xFs,x dΩ, Eτ,zs,z =
∫

Ω

Fτ,zFs,z dΩ, Eτs =
∫

Ω

FτFs dΩ,

Eτ,xs,z =
∫

Ω

Fτ,xFs,z dΩ, Eτ,zs,x =
∫

Ω

Fτ,zFs,x dΩ, Eτ,xs =
∫

Ω

Fτ,xFs dΩ,

Eτs,x =
∫

Ω

FτFs,x dΩ, Eτ,zs =
∫

Ω

Fτ,zFs dΩ, Eτs,z =
∫

Ω

FτFs,z dΩ,

(3.37)
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whereas the integrals of the shape functions along the beam axis are:

Ii j =
∫

L
Ni N j dy Ii j,y =

∫
L

Ni N j,y dy

Ii,y j =
∫

L
Ni,y N j dy Ii,y j,y =

∫
L

Ni,y N j,y dy
(3.38)

Note that since the shape functions, Ni, are defined in the natural interval [-1, 1], a Jacobian
transformation is performed in the computation of these integrals, as

Ii(,y) j(,y) =
∫ 1

−1
Ni(,ξ )N j(,ξ )|JJJy|dξ (3.39)

where JJJy is the Jacobian matrix of the beam element.
Similarly, when non-local beam theories are implemented, such as LE or HLE, a Jacobian

transformation is also required to compute the Eτ(,x)(,z)s(,x)(,z) terms, as follows:

Eτ(,x)(,z)s(,x)(,z) =
∫ 1

−1

∫ 1

−1
Fτ(,r)(,s)Fs(,r)(,s)|JJJΩ|dr ds (3.40)

JJJΩ being the Jacobian matrix of the transformation between the (r, s) and (x, z) planes. All
the integrals here displayed are computed by means of standard Gauss-Legendre quadrature.
In the case of curved domains in the cross-section, as introduced in Sec. 2.5, the JJJΩ is defined
from the mapping functions Q of Eq. (2.51).

Loads and constraints

Regarding the computation of the loading vector, some considerations can be made when
dealing with surface loads. Two cases can be identified:

1. The load is distributed over a surface boundary parallel to the beam axis, for instance
the top surface of Fig. 2.1, located at z = b/2 with dimension a×L. In this case, the
components of the loading vector are calculated as:

Ps j =
∫

L

∫
a

Fτ(x,b/2)Ni(y)Ps dx dy (3.41)

2. The surface load is applied over the cross-section, Ω. The computation of the load
components is performed as:

Ps j = Ni(y)
∫

Ω

Fτ(x,z)Ps dx dz (3.42)
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Obviously, in a FEM framework these loads are applied element-wise, making is possible to
define arbitrary loaded zones over the boundaries of the body.

The imposition of displacement constraints on the beam structure is carried out via
standard FEM techniques, for instance the penalty method. Consider that in non-local
theories, such as HLE and LE, the displacement unknowns are distributed over the cross-
section, thus the application of local constraints is straightforward.

3.2.4 Assembly of the stiffness matrix

The expressions of the components of the fundamental nucleus of Eq. (3.36) are independent
of the choice of transverse expansions, Fτ , and shape functions, Ni. Indeed, in the CUF
framework, the structural theory becomes an input of the analysis, which can be appropriately
selected for each problem. For instance, for compact slender bodies a low-order TE may be
sufficient, whereas for short or thin-walled beams a HLE model may be more suitable to
get accurate solutions. All this capabilities can be implemented in the same code by only
expanding the fundamental nucleus over τ , s, i, and j.

Figure 3.4 shows a diagram of the construction of the global stiffness matrix of the
structural problem via expansion of the 3× 3 fundamental nucleus. The assembly of the
nodal stiffness matrix for hierarchical theories, e.g. TE or HLE, is done by adding more
components in correspondence to the higher-order DOF (p=2,3,...). The assembly of all the
elements to conform the global stiffness matrix is done via standard FEM techniques. Note
that an extra loop over, el, has to be added when more than one element is used along the
beam axis. Another loop is also included in the case of multi-domain discretizations of the
cross-section. It is worth noting that this arrangement of the DOF leads to a concentration of
the non-zero components of the stiffness matrix around the diagonal, which is advantageous
from the computational point of view.

3.3 Example

A well-known benchmark test, the Scordelis-Lo roof, is chosen to assess the capabilities
of the advanced HLE models with different FE interpolations along the beam axis. This
numerical case, also known as the barrel vault, was presented by Belytschko et al. [17]
and it is considered one of the shell obstacle course problems. This test can be found in
many works in the literature and it is usually employed quantify the capabilities of novel
shell formulations in dealing with membrane-like stress states, see Bathe and Dvorkin [14],



42 Finite element method
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Kyx Kyy Kyz
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nodal matrix element matrix

fundamental
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Fig. 3.4 Construction of the stiffness matrix of CUF-based beam elements. The model shown
includes 1 HLE domain of third-order and 8 four-noded beam elements.
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Zienkiewi and Taylor [225] and McNeal and Harder [124], among others. Here the scope is
to assess the convergence properties of the proposed higher-order beam elements.
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Fig. 3.5 Scordelis–Lo problem features.

The characteristics of the problem are shown in Fig. 3.5. The roof is 50 m long, 0.25
m thick and the radius of curvature is R = 25 m. The curved edges lean on diaphragms,
i.e. the displacements in x and z are constrained, and the longitudinal edges are free. The
loading conditions correspond to the roof’s own weight, here modeled as a surface load of 90
N/m2 applied towards the negative z direction. The vertical displacement at midspan of the
free-edge (point A) is used as benchmark value to assess the numerical model. The analytical
solution provided by Scordelis and Lo [180] was ure f =−0.3086 m, although the majority
of the elements available in the literature converge to a lower value.

(a) Model (b) Cross-section discretization.
Not in scale.

Fig. 3.6 HLE beam model for the Scordelis-Lo roof.

The proposed model is featured in Fig. 3.6. As previously mentioned, one advantage
for the efficient analysis of structures is that the discretization of the cross-section (b) is
independent of the finite element mesh along the beam axis (a), thus no aspect ratio constraints
apply between these two domains. Also, the curved geometry of the roof section can be
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represented exactly using a minimum number of HLE domains with BFM mapping. In
particular, only 2 cross-section domains are employed here. Third-order polynomials are
employed as parametric functions of the curved edges. Regarding the FEM discretization
along the y axis, both Lagrange and Legendre 1D elements are tested. The following
refinements of the model are studied:

• p-refinement of the cross-section assumptions via HLE: the cross-section discretization
remains unaltered and the order of the kinematics is increased from second (HL2) to
eighth (HL8).

• hp-refinement of the 1D mesh via Lagrange beam elements: both the number of
elements (2,4,6 and 10) and the polynomial order of the shape functions (two-noded
B2, three-noded B3 and four-noded B4) are varied.

• p-refinement of the 1D mesh via Legendre beam elements: only 1 element is placed on
the beam axis and the order is increased hierarchically from second (P2) to sixth (P6).

Figure 3.7 shows the deformation of the structure predicted by a convergent model made
of 10 B4 elements and HL5 section domains. One may observe how the cross-section of
the thin-walled structure curves inwards due to the weight. Classical beam models cannot
capture this type of response and, consequently, shell or solid elements are usually employed
for this problem. Indeed, given the coarse discretizations which are tested, the first-order
models based on Legendre functions are discarded in this study.

(a) 3D (b) Front view

Fig. 3.7 Deformation of the Scordelis-Lo roof.

The results of vertical displacements at point A (see Fig. 3.5) are shown in tabular
form in Tables 3.1 and 3.2 for Lagrange and Legendre 1D interpolations, respectively. It is
possible to state that the numerical solutions tend in all cases to a value of uzA ∼−0.3079.
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For a given FEM discretization, the behavior of the solutions is fairly monotonic as the HLE
order increases. Figures 3.8 and 3.9 include the convergence curves based on the error in
energy norm, which is computed with respect to a numerical overkill solution. There are
two contributions to the total numerical error: the approximation of the beam theory and the
FEM discretization. One can observe from the graph of Fig. 3.8 how for each 1D mesh the
error diminishes fast with respect to the polynomial order of the HLE until a certain ’locked’
solution. This means that the longitudinal approximation cannot capture the actual variation
of the displacements along the y axis. Vice-versa, for a fixed polynomial order of HLE, both
h and p refinements of the 1D mesh reduce systematically the error. The graphs included in
Fig. 3.9 show the convergence of the different FE schemes tested here. Two conclusions can
be highlighted:

• For a given order of the HLE, the numerical error is reduced monotonically for all
mesh refinements.

• The convergence rates are faster for a p-refinement in comparison to a h-refinement,
both for Lagrange and Legendre elements. Indeed, for a certain number of DOF (N
DOFs) in 3.9 (a), the B4 solutions are more accurate than those of lower order (B3 and
B2). Also, the slope of the curve in Fig. 3.9 (b) is steeper.

Table 3.1 Vertical displacement solutions obtained at point A using Lagrange beam elements
for all HLE orders.

# of B2 elements # of B3 elements # of B4 elements

1D model 2 4 6 10 2 4 6 10 2 4 6 10
Scordelis-Lo [180] uz = -0.3086 m

HL2 -0.0218 -0.0274 -0.0285 -0.0292 -0.0293 -0.0296 -0.0295 -0.0295 -0.0295 -0.0219 -0.0295 -0.0295
HL3 -0.2263 -0.2495 -0.2502 -0.2505 -0.2545 -0.2509 -0.2507 -0.2506 -0.2504 -0.2506 -0.2506 -0.2506
HL4 -0.2695 -0.3039 -0.3057 -0.3069 -0.3115 -0.3077 -0.3075 -0.3075 -0.3070 -0.3075 -0.3075 -0.3075
HL5 -0.2711 -0.3045 -0.3060 -0.3072 -0.3118 -0.3080 -0.3078 -0.3078 -0.3072 -0.3078 -0.3078 -0.3078
HL6 -0.2710 -0.3044 -0.3059 -0.3072 -0.3117 -0.3080 -0.3078 -0.3078 -0.3072 -0.3077 -0.3077 -0.3077
HL7 -0.2711 -0.3045 -0.3060 -0.3073 -0.3118 -0.3080 -0.3078 -0.3078 -0.3072 -0.3078 -0.3078 -0.3078
HL8 -0.2711 -0.3046 -0.3061 -0.3073 -0.3119 -0.3081 -0.3079 -0.3079 -0.3073 -0.3079 -0.3079 -0.3079

Finally, for the sake of completeness, the results obtained in this study are compared with
those of the literature. These references include shell and solid elements implemented in the
code Nastran by MacNeal and Harder [124], Koiter and Naghdi models from the work of
Chinosi et al. [45] and refined locking-free shell elements from Cinefra et al. [50].



46 Finite element method

Table 3.2 Vertical displacement solutions obtained at point A using one Legendre element of
increasing order for all HLE orders.

order: P2 P3 P4 P5 P6
Scordelis-Lo [180] uz = -0.3086 m

HL2 -0.0256 -0.0292 -0.0295 -0.0294 -0.0295
HL3 -0.2342 -0.2470 -0.2517 -0.2510 -0.2506
HL4 -0.2849 -0.3030 -0.3086 -0.3078 -0.3073
HL5 -0.2859 -0.3038 -0.3090 -0.3082 -0.3076
HL6 -0.2858 -0.3038 -0.3089 -0.3081 -0.3075
HL7 -0.2859 -0.3038 -0.3090 -0.3082 -0.3076
HL8 -0.2860 -0.3039 -0.3091 -0.3082 -0.3077
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Fig. 3.8 Convergence of various Lagrange 1D meshes for increasing polynomial orders of
the HLE.
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Fig. 3.9 Convergence analysis with respect to the number of DOF for a HL5 theory and all
the discussed 1D meshes.

Table 3.3 Comparison of the normalized displacements, uz/ure f , against various results from
the literature.

2D and 3D elements 1D HL5 model

Mesh 4x4 6x6 8x8 10x10 13x13 Mesh 1 2 4 10
QUAD2 [124] 0.652 0.765 0.837 0.879 - B2 - 0.879 0.987 0.996
QUAD4 [124] 1.029 0.998 0.988 0.984 - B3 - 1.010 0.998 0.997
QUAD8 [124] 0.964 0.982 0.977 0.976 - B4 - 0.995 0.997 0.997
HEXA8 [124] 1.007 0.992 0.985 - - P3 0.984 - - -
HEX20 [124] 0.253 0.577 0.796 - - P4 1.001 - - -
HEX20(R) [124] 0.948 0.983 0.979 - - P5 0.999 - - -
Koiter [45] 0.957 - - 0.977 0.980
Naghdi [45] 0.957 - - 0.978 0.982
MITC LD4 [50] 0.957 - - 0.978 0.982





Chapter 4

Mixed interpolation of tensorial
components for beam elements

In the last decades, the finite element method has acquired a major importance in the compu-
tational mechanics field due to its high versatility and large adoption in commercial sofwares.
In simple words, the FEM has made possible for engineers to foresee the mechanical response
of complex systems from the design phase, resulting in massive reductions in the product
development cost. However, one of the main limitations of the FEM stress analysis is related
to the elevated computational expenses which are required for the study complex geometries.
A vast amount of researches were dedicated to the introduction of new formulations based
on less demanding 2D and 1D finite elements, which can provide satisfactory solutions
minimizing the computational effort. In this context, there are still some challenges to be met
in order to obtain effective and robust models. One of them is the shear locking that appears
in finite elements when thin or slender structures are considered. This chapter is devoted
to the introduction of a robust formulation, known as the mixed interpolation of tensorial
components (MITC), to mitigate the shear locking in refined beam elements.

The main contents of this chapter were published in a journal paper [30].

4.1 Shear locking review

Displacement-based finite element formulations represent probably the most extended tool
for the computational analysis of engineering structures. The versatility of FEM makes
it possible for engineers and researchers to predict the mechanical response of structural
components with few limitations in geometry or boundary conditions. Nevertheless, the users
of FEM must be aware of the fact that, as for any numerical method, the solutions might be
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highly inaccurate under certain circumstances. In particular, in cases when thin structures are
subjected to bending loadings, the numerical model may exhibit a sudden and uncontrollable
increase of the shear stiffness, preventing the structure to deform. This issue, known as the
shear locking, is considered one of the major deficiencies of the FEM. Indeed, in the last
decades many have been the works proposing new formulations to mitigate this detrimental
effect, see for instance [156, 164, 169, 17, 94, 53, 194, 184, 152, 222].

The shear locking appears in thin structures when, due to the finite element approxima-
tions, the shear strain energy results much higher than the real value, making the model to
compute very small displacements, or in other words, to ’lock’. Since the numerical issue is a
consequence of the overestimation of the shear stiffness of the finite element, it is of common
use to employ certain numerical ’tricks’ to diminish the computed value of the shear energies
via reduced integration. Using this approach, first introduced by Zienkiewicz et al. [226],
the order of the numerical quadrature of the stiffness matrix terms is decreased, leading to a
softening of the numerical model. Other works discussing the implementation of reduced
integrated schemes are [227, 160, 223]. A well-known variant of this method is known as the
selective integration [66, 95, 126], which is based on the application of a reduced quadrature
only in the shear terms of the stiffness matrix. The remaining terms are then computed via
full integration. Although reduced elements show better convergence properties than full
integrated elements, the reduction of the number of integration points in the quadrature of
the stiffness terms may lead to undesired errors in the computation of the strain and stress
fields and the appearance of spurious modes [124].

In order to overcome these issues, Dvorkin and Bathe [69] and MacNeal [123] proposed
the use of a mixed interpolation of the strain fields in which the shear terms are approximated
by means of reduced order functions. This method, commonly denoted to as Mixed Interpo-
lation of Tensorial Components, or MITC, has been since successfully used to implement
locking-free finite elements, showing remarkable levels of robustness for structural applica-
tions. Although the MITC method might be seen as selective integration of the finite element,
it actually works as a full integration of the assumed strain fields. It is worth adding that a
similar technique was presented before by Turner et al. [199] for the analysis of complex
shell-type aeronautic structures. The use of assumed strain fields to mitigate the locking has
received particular attention for the development of plate and shell elements, which due to
their geometrical features are especially affected by locking issues. Some of the most renown
contributions are those of Bucalem and Bathe [22], Huang and Hinton [93], Park and Stanley
[153] and Jang and Pinsky [96], among others.

Although the MITC method mitigates the locking phenomena in an elegant and effective
manner, its implementation in a 1D framework has not been yet fully addressed. The
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Fig. 4.1 Strain tensor in the current coordinate framework.

formulation of mixed interpolated 1D elements was initially proposed in the book of Bathe
[13] for Timoshenko beams. In that text, the author demonstrates the necessity of adding
assumed functions to interpolate the strains over a reduced set of points along the beam
element: one point for two-noded elements, two points for three-noded elements and three
points for four-noded elements. Lee et al. [113] introduced a geometry-dependent method to
alleviate locking also in two-noded elements with tapered sections. More recently, Carrera
and Pagani [38] assumed constant values of the shear strains in beam elements featuring
variable kinematics. In the present development, the MITC method is extended to generic
Lagrangian beam elements.

4.2 Geometrical and constitutive relations

For the purposes of the development of mixed interpolated elements, it is convenient to
reformulate the geometrical and constitutive equations presented in the previous chapters.
Let us consider the coordinate framework shown in Fig. 4.1. The strain vector can be
decomposed into two separate sets of components, as follows:

εεεB = {εyy εxx εzz εxz}T εεεS = {εyz εxy}T , (4.1)

where εεεS contains the transverse shear components and εεεB the remaining four, including
all the normal strains and the shear over the cross-section plane. Subsequently, the strain-
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displacement relations are written as:

εεεB = DB uuu = DBy uuu+DBΩ
uuu, (4.2)

εεεS = DS uuu = DSy uuu+DSΩ
uuu, (4.3)

where differential operators DBy , DBΩ
, DSy and DSΩ

are defined as

DBy =


0 ∂

∂y 0

0 0 0
0 0 0
0 0 0

 DBΩ
=


0 0 0
∂

∂x 0 0
0 0 ∂

∂ z
∂

∂ z 0 ∂

∂x


DSy =

[
0 0 ∂

∂y
∂

∂y 0 0

]
DSΩ

=

[
0 ∂

∂ z 0
0 ∂

∂x 0

] (4.4)

The stress vector is also reorganized by separating the transverse shear components from
the rest, as follows:

σσσB = {σyy σxx σzz σxz}T σσσS = {σyz σxy}T . (4.5)

Therefore, the stress-strain relations can be rewritten accordingly{
σσσB

σσσS

}
=

[
C̃BB C̃BS

C̃SB C̃SS

]{
εεεB

εεεS

}
(4.6)

where the transformed material matrix C̃, see Section 3.1, is expressed in the global reference
system. Note that this matrix is also decomposed into several matrices accounting for the
different terms. In the case of orthotropic materials, one can write:

C̃BB =


C̃33 C̃23 C̃13 0
C̃23 C̃22 C̃12 0
C̃13 C̃12 C̃11 0
0 0 0 C̃44

 C̃BS = C̃T
SB =


0 C̃36

0 C̃26

0 C̃16

C̃45 0

 C̃SS =

[
C̃55 0
0 C̃66

]

(4.7)

4.3 MITC beam elements

As shown in the previous chapter, the generalized unknowns of the cross-section are inter-
polated along the beam axis by means of 1D shape functions. Recalling Eq. (3.14), the
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complete displacement field can be written as

uuu(x,y,x) = Fτ(x,z)Ni(y)uuuτi (4.8)

with τ = 1,2, ...,M and i = 1,2, ...,nn. Lagrange two-node, three-node and four-node line
elements are formulated here. The interpolation polynomials are depicted in Eqs. (3.17-3.19),
respectively. Through the geometrical relations defined in Eq. (4.3), the strain components
are computed from the derivatives of the expansion assumptions and the beam functions, as

εεεB = Fτ(DByNiI3)uuuτi + (DBΩ
FτI3)Niuuuτi (4.9)

εεεS = Fτ(DSyNiI3)uuuτi + (DSΩ
FτI3)Niuuuτi (4.10)

where I3 is the 3×3 identity matrix. Note that by virtue of this expression, it is possible to
split the interpolation of the transverse shear strain components from the rest. To this point,
all the element strains are obtained directly from the same displacement approximations, Ni.
As it is known, this standard approach is not physically consistent for bending problems, in
which the distribution of shear strains should be of one order less than that of normal strains.
As a consequence, the finite element can be too stiff in cases of beams with high slenderness
ratios, in which the contribution of the transverse shear deformation should be negligible.
The MITC method overcomes this issue of standard finite elements through an independent,
lower-order interpolation of the transverse shear strains. Therefore, the shear strains of a
MITC beam element are formulated as:

ε̄εεS = N̄m εεεSm m = 1, ...,nn −1 (4.11)

where N̄m are the assumed interpolations and εεεSm are the shear strain values computed from
the displacement derivatives in a reduced set of nn −1 points along the beam element. These
points are known as tying points, Tm, and they are used to tie the displacement approximations
with the strain assumptions. There is one tying point in a linear element, two in a quadratic
element and three in a cubic element. For these MITC beam elements, the assumed strains
are constant, linear and quadratic, respectively. Figure 4.2 illustrates the nodes and tying
points for each element and the assumed strain distributions along the element.

The assumed functions for the strains, N̄m, are derived using a Lagrange polynomial basis,
in such a way that

N̄m(Tn) = 1 i f m = n (4.12)

N̄m(Tn) = 0 otherwise (4.13)
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Fig. 4.2 MITC element interpolations of shear strains.

For the sake of completeness, the assumed interpolation functions are included in the
following:

• two-node element:
N̄1 = 1, ξT = 0 (4.14)

• three-node element:

N̄1 =−1
2

√
3(ξ − 1√

3
), N̄2 =

1
2

√
3(ξ + 1√

3
),

{
ξT1 =− 1√

3
ξT2 =

1√
3

(4.15)

• four-node element:

N̄1 =
5
6ξ (ξ −

√
3
5), N̄2 =−5

3(ξ −
√

3
5)(ξ +

√
3
5), N̄3 =

5
6ξ (ξ +

√
3
5),


ξT1 =−

√
3
5

ξT2 = 0

ξT3 =
√

3
5

(4.16)

ξTm are the locations of the tying points in the interval [-1, 1] of the beam element. One can
notice that these coordinates correspond to the locations of the Gauss points. Indeed, these
set of points are also denoted to as Barlow points [11], which are known for providing the
highest accuracy in the computation of the strains within the finite element.

Subsequently, introducing Eq. (4.10) into Eq. (4.11), the element shear strains are written
as:

ε̄εεS = N̄mFτ(DSyNiI)muuuτi + N̄m(DSΩ
FτI)Nimuuuτi (4.17)

Note that Nim is the value of the shape function Ni at the tying point, or Ni(Tm). For the sake
of clarity, the explicit expressions of the differential operators are included in matrix form:

(DSyNiI)m =

[
0 0 Ni,y(Tm)

Ni,y(Tm) 0 0

]
, DSΩ

FτI =

[
0 Fτ,z 0
0 Fτ,x 0

]
(4.18)
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The first matrix is composed of the values of the derivatives of the shape functions evaluated
at the tying points, whereas the second array accounts for the derivatives of the expansions
over the cross-section.

By substituting the assumed strains in the Hooke’s law, Eq. (4.6), the stress-strain
relations now read: {

σ̄σσB

σ̄σσS

}
=

[
C̃BB C̃BS

C̃SB C̃SS

]{
εεεB

ε̄εεS

}
(4.19)

Accordingly, the stress fields in the MITC element are computed as

σ̄σσB = C̃BB
[
Fτ(DByNiI)uuuτi + (DBΩ

FτI)Niuuuτi
]

+ C̃BS [N̄mFτ(DSyNiI)muuuτi + N̄m(DSΩ
FτI)Nimuuuτi]

σ̄σσS = C̃SB
[
Fτ(DByNiI)uuuτi + (DBΩ

FτI)Niuuuτi
]

+ C̃SS [N̄mFτ(DSyNiI)muuuτi + N̄m(DSΩ
FτI)Nimuuuτi]

(4.20)

Note that the unknowns of the MITC element remain those related to the displacements of the
standard CUF element, uuuτi. No extra degrees of freedom are added, which is advantageous
from the computational expense standpoint.

4.3.1 Fundamental nucleus

For the purposes of the implementation of MITC elements and recalling the PVD, the virtual
variation of the internal work, introduced in Eq. (3.25), can be written as

δLint =
∫

L

∫
Ω

δεεε
T

σσσ dΩdy =
∫

L

∫
Ω

(δεεε
T
B σ̄σσB +δε̄εε

T
S σ̄σσS)dΩdy (4.21)

Ω and L being the cross-section domain and the length of the beam element, respectively.
According to the definitions of the element stresses (Eq. (4.20)) and strains (Eqs. (4.10) and
(4.17)), the elastic strain energy results:

δLint =∫
L

∫
Ω

(
[δuuus jFs(DByN jI)+δuuus j (DBΩ

FsI)N j] C̃BB
[
Fτ(DByNiI)uuuτi +(DBΩ

FτI)Niuuuτi
]
+

[δuuus jFs(DByN jI)+δuuus j (DBΩ
FsI)N j] C̃BS [N̄mFτ(DSyNiI)muuuτi + N̄m(DSΩ

FτI)Nimuuuτi]+

[δuuus jN̄nFs(DSyN jI)n +δuuus j N̄n(DSΩ
FsI)N jn ] C̃SB

[
Fτ(DByNiI)uuuτi +(DBΩ

FτI)Niuuuτi
]
+

[δuuus jN̄nFs(DSyN jI)n +δuuus j N̄n(DSΩ
FsI)N jn ]C̃SS [N̄mFτ(DSyNiI)muuuτi + N̄m(DSΩ

FτI)Nimuuuτi])
dΩdy

(4.22)
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As in the previous chapter, this expression can be compacted into:

δLint = δuuuT
s jK

τsi juuuτi (4.23)

where Kτsi j is the fundamental nucleus of the MITC beam element. Same as for standard
beam elements, the fundamental nucleus is a 3×3 matrix that acts as the smallest building
block of the model. The formal expressions of its nine components are included here:

K τ s i j
xx = C̃22

∫
L

NiN j dyEτ,x s,x + C̃44

∫
L

NiN j dyEτ,z s,z + C̃26

∫
L

Ni(NnN( j,y)n)dyEτ,x s

+C̃26

∫
L
(NmN(i,y)m)N j dyEτ s,x + C̃66

∫
L
(NmN(i,y)m)(NnN( j,y)n)dyEτ s

(4.24)

K τ s i j
xy = C̃23

∫
L

NiN j,y dyEτ,x s + C̃45

∫
L

Ni(NnN jn)dyEτ,z s,z + C̃26

∫
L

Ni(NnN jn)dyEτ,x s,x

+C̃36

∫
L
(NmN(i,y)m)N j dyEτ s + C̃66

∫
L
(NmN(i,y)m)(NnN jn)Eτ s,x

(4.25)

K τ s i j
xz = C̃12

∫
L

NiN j dyEτ,x s,z + C̃44

∫
L

NiN j dyEτ,z s,x + C̃45

∫
L

Ni(NnN( j,y)n)Eτ,z s

+C̃16

∫
L
(NmN(i,y)m)N j Eτ s,z

(4.26)

K τ s i j
yx = C̃23

∫
L

Ni,yN j dyEτ s,x + C̃45

∫
L
(NmNim)N j dyEτ,z s,z + C̃26

∫
L
(NmNim)N j dyEτ,x s,x

+C̃36

∫
L

Ni,y(NnN( j,y)n)dyEτ s + C̃66

∫
L
(NmNim)(NnN( j,y)n)dyEτ,x s

(4.27)

K τ s i j
yy = C̃33

∫
L

Ni,yN j,y dyEτ s + C̃36

∫
L
(NmNim)N j,y dyEτ,x s + C̃36

∫
L

Ni,y(NnN jn)Eτ s,x

+C̃55

∫
L
(NmNim)(NnN jn)dyEτ,z s,z + C̃66

∫
L
(NmNim)(NnN jn)dyEτ,x s,x

(4.28)

K τ s i j
yz = C̃13

∫
L

Ni,yN j dyEτ s,z + C̃55

∫
L
(NmNim)(NnN( j,y)n)dyEτ,z s

+C̃45

∫
L
(NmNim)N j dyEτ,z s,x + C̃16

∫
L
(NmNim)N j dyEτ,x s,z

(4.29)

K τ s i j
zx = C̃12

∫
L

NiN j dyEτ,z s,x + C̃44

∫
L

NiN j dyEτ,x s,z + C̃45

∫
L
(NmN(i,y)m)N j dyEτ s,z

+C̃16

∫
L

Ni(NnN( j,y)n)dyEτ,z s
(4.30)

K τ s i j
zy = C̃13

∫
L

NiN j dyEτ,z s + C̃55

∫
L
(NmN(i,y)m)(NnN jn)dyEτ s,z

+C̃45

∫
L

Ni(NnN( j,y)n)dyEτ,x s,z + C̃16

∫
L

Ni(NnN( j,y)n)dyEτ,z s,x
(4.31)
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K τ s i j
zz = C̃11

∫
L

NiN j dyEτ,z s,z + C̃44

∫
L

NiN j dyEτ,x s,x + C̃45

∫
L

Ni(NnN( j,y)n)dyEτ,x s

+C̃55

∫
L
(NmN(i,y)m)(NnN( j,y)n)dyEτ s + C̃45

∫
L
(NmN(i,y)m)N j dyEτ s,x

(4.32)

The subscripts i and j are the loops on the FE nodes, whereas τ and s are those of the
expansion terms over the cross-section (see Chapter 2). The subscripts m and n refer to the
loops over the typing points. Note that while Nm is the m-th interpolation function for the
assumed strains, N(i,y)m is the derivative y of the displacement shape function, Ni, evaluated
at the tying point m, or Ni,y(Tm). The Eτ(,x)(,z)s(,x)(,z) terms correspond to the integrals of the
expansion functions, Fτ , over the cross-section surface, Ω, see Eq. (3.37).

As a result of this formulation, the integrals of the shear terms of the stiffness matrix
are computed using a set of assumed interpolations Nm and Nn, which are always one order
less than the interpolation of the displacement unknowns. A full Gaussian quadrature is
used for all the integrals, which prevents the appearance of unexpected spurious effects.
The MITC method in the CUF framework provides a class of advanced beam elements
which are robust and do not lock when slender structures are considered. These elements are
computationally similar to the standard ones in that the unknowns of the problem remain
the same and the assembly of the stiffness matrix is done by means of the same statements,
see Fig. 3.4. Moreover, MITC elements compute more accurate strain and stress fields than
reduced integrated elements, as it is shown in the next section.

4.4 Example

A numerical example is included here to show the capabilities of the proposed locking-free
beam elements in comparison with standard full and reduced integrated elements. The
problem case is illustrated in Fig. 4.3 and considers a cantilever beam of square section
loaded at the free end with a point load. The length of the beam is L = 1 m whereas the
cross-section dimension is b = 0.1 m. The magnitude of the vertical load is F = 100. The
material corresponds to an Aluminum alloy of E = 75 GPa and ν = 0.33.

F

L

b

Fig. 4.3 Cantilever beam under shear-bending loading. The beam is modeled using a single
1D element.
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An analytical solution of the problem can be obtained making use of the Timoshenko’s
theory, according to which the vertical displacement at the tip is equal to:

u = uzb +uzs =
FzL3

3EI
+

FzL
AG

=−5.369×10−5 m, (4.33)

where uzb and uzs are the contributions from the bending and shear effects, respectively.
Assuming constant shear over the cross-section, a first approximation of the shear stresses
over the beam is given by:

σyz =−Fz

Ω
=−1.0×104 Pa. (4.34)

where Ω = b2. Furthermore, a second approximation of the shear stresses can be obtained
by taking into consideration the first momentum of area, Sx(z) =

∫
Ω

zdΩ, and the intertia
of the section, Ix. In this case, the distribution of shear stresses over the thickness of the
cross-section is given by:

σyz(z) =−FzSx(z)
Ib

, (4.35)

Accordingly, the maximum shear stress at the center of the cross-section is equal to:

σyz(z = 0) =−3Fz

2A
=−1.500×104 Pa. (4.36)

Table 4.1 Displacements and shear stresses computed by the different beam elements.

L4 model L9 model
uz ×105 m σyz ×10−4 Pa uz ×105 m σyz ×10−4 Pa

y = L Node 1 Node 2 Node 3 Node 4 y = L Node 1 Node 2 Node 3 Node 4
B2 Full -0.138 -3.902 1.902 - - -0.139 -3.915 1.910 - -

Reduced -3.382 -95.367 93.367 - - -4.035 -113.770 111.684 - -
Selective -3.193 -90.037 88.037 - - -3.606 -101.664 99.605 - -
MITC -3.193 -1.000 -1.000 - - -3.606 -1.029 -1.029 - -

B3 Full -3.424 -4.935 0.967 -4.935 - -3.942 -4.667 0.810 -4.603 -
Reduced -4.492 -32.355 14.678 -32.355 - -5.363 -38.485 17.687 -38.056 -
Selective -4.175 -27.889 12.445 -27.889 - -4.663 -28.628 12.771 -28.431 -
MITC -4.175 -1.000 -1.000 -1.000 - -4.663 -1.094 -0.996 -0.898 -

B4 Full -4.311 -0.289 -1.290 -0.710 -1.711 -4.950 0.386 -1.582 -0.357 -2.581
Reduced -4.488 -0.841 -1.065 -0.935 -1.159 -5.359 -0.849 -1.135 -0.694 -2.005
Selective -4.319 1.497 -2.017 0.017 -3.497 -4.988 4.334 -3.248 1.327 6.659
MITC -4.319 -1.000 -1.000 -1.000 -1.000 -4.988 -1.228 -0.982 -0.939 -1.097

The present study focuses on the effects shear locking in linear, quadratic and cubic beam
elements. Different integration schemes and the MITC method are considered. Only one
beam element is employed. Two beam models are tested: a bilinear L4 and a biquadratic L9,
see Section 2.3.2. Table 4.1 displays the solutions of tip displacements and shear stresses for
all the possible combinations of elements, integrations and section expansions. Note that B2,
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B3 and B4 refer to two-noded, three-noded and four-noded beam elements, respectively. All
the solutions are evaluated at the center of the cross-section. The distribution of shear stresses
along the center of the beam, 0 ≤ y ≤ 1, is displayed in Fig. 4.4 for elements featuring
L4 kinematics. Finally, Fig. 4.5 shows the convergence of the displacement solutions for
a increasing number of linear elements (B2) and the different integration schemes. Some
remarks can be made out of the results:

• Standard full integrated elements exhibit shear locking. The displacements solutions
are in all cases lower than the other elements. Indeed, the two-noded elements gives
almost zero value for the displacements.

• Higher-order beam elements are less affected by locking issues. The reason being
that the numerical overestimation of the shear energies is less dramatic than in linear
elements.

• From Fig. 4.5, it can be observed that the convergence behavior in terms of dis-
placements of MITC elements is equivalent to that of the selective integration for the
problem case considered here.

• Although reduced and selective integrations perform well for the computation of the
displacement solutions, the stress fields of the element are not accurate and exhibit
large oscillations around the exact solution. This numerical deficiency prevent the use
of reduced integrations if a good approximation of the shear stresses is required from
the analysis. On the other hand, the shear stresses of the MITC elements show very
low (or none) oscillations along the beam axis.

Equation (4.35) suggests that the shear stresses are quadratic across the thickness of
the beam. In order to capture this distribution the kinematics of the cross-section must
be enriched. Using HLE, the polynomial order of the Fτ set of cross-section functions is
increased hierarchically allowing the model to capture highly complex distributions of the
stress fields. Figure 4.6 includes the graph of the transverse shear stresses along the z axis
for a four-node MITC element at the second node (y = L/3) and various HLE orders. The
analytical solution is also included for comparison. As expected, at least a third-order model
(HL3) is required to represent the parabolic distribution of these solutions.
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Fig. 4.4 Distribution of shear stresses, σyz, over the beam’s length for L4 expansion. The
Timoshenko’s analytical solution is σyz =−1.0×104 Pa.
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Fig. 4.5 Convergence of the vertical displacement, uz, at the tip for linear elements with
different integration schemes.
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Fig. 4.6 Distribution of shear stresses, σyz, across the thickness of the beam for a single B4
MITC element at y = L/3.





Chapter 5

Locking-free curved beam elements

This chapter is an extension of the previous formulation of locking-free elements for curved
beam structures. A new kind of locking appears in the finite elements when a curved geometry
is considered: the membrane locking. This numerical effect arises due to the axial-membrane
coupling and must be appropriately mitigated for the generation of robust FEM models. An
overview of curved finite elements is provided and the MITC method is implemented to
overcome all kinds of locking.

The theoretical developments and numerical results were published in [61].

5.1 Curved finite elements and membrane locking

The analysis of curved structures adds some complexities to the FEM modeling. First, the
geometrical approximation of curved paths and boundaries is definitely more complicated
than that of straight bodies, often leading to the introduction of numerical errors due to
the inability of the model to represent the exact geometry. In addition, the mechanical
response is dominated by the coupling between axial and bending deformations, which must
be captured by the model. This effect is illustrated in a simple example in Fig. 5.1, which
shows the bending deformation of an arch when loaded axially. Despite these difficulties
and given the fact that many of the structures that surround us exhibit curved geometries,
the implementation of reliable computational models for curved bodies is of paramount
importance and, therefore, has been addressed since the early years of FEM.

Some of the initial studies on curved elastic theories were carried out by Love [121]
and Lamb [109]. Since then, many advances on the modeling of curved structures have
been discussed in the literature, for instance in Ericksen and Truesdell [72], Washizu [205],
Reissner [172], Ashwell and Gallagher [7], Banan [10] and Tufekci and Arpaci [198]. It
is well-known in the FEM community that the coupling between membrane and bending
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Fig. 5.1 Illustration of the membrane-bending coupling in curved structures.

effects in curved finite elements leads to numerical inconsistencies in the computation of
the stiffness integrals that make the elements too stiff. This detrimental issue is known as
membrane locking, and, together with the shear locking (see Section 4.1), poses a major
threat for the robustness of the FEM model. As a consequence, huge efforts have been made
to mitigate this stiffening behavior. Several remarkable contributions are depicted in the
following.

The implementation of reduced and selective reduced integration schemes for the evalua-
tion of the stiffness terms is one of the most adopted techniques against locking in FEM. Its
application in curved shells and beams was done by Noor and Peters [141] and Stolarski and
Belytschko [185]. A set of higher-order polynomials for curved arch elements was proposed
by Dawe [57], concluding that a quintic models provided the best solutions for thin and thick
structures. Babu and Prathap [9] and Alturi et al. [8] introduced a family of locking-free
elements making use of field-consistent membrane and shear interpolations accounting for
their constrained physical limits. Earlier, Fried [78] suggested the use of specific shape
functions obtained from the integration of the polynomial expressions, avoiding in this
manner the inconsistencies in the interpolation of the strains. Tessler and Spiridigliozzi [195]
presented an anisoparametric beam element using a local penalty-relaxation method. More
recently, Kim and Kim [104] proposed a hybrid-mixed formulation in which higher-order
interpolations are used to generate finite elements featuring nodeless degrees of freedom to
mitigate locking.

As a continuation of the previous chapter, the aim here is to devise locking-free curved
beam elements by means of the mixed interpolation of tensorial components (MITC) method
[69, 123]. Accordingly, a mixed interpolation of the element deformation is performed by
reducing the order of both membrane and shear assumed strains. Similar approaches based
on MITC can be found in Bucalem and Bathe [22], Huang and Hinton [93], Jang and Pinsky
[96], Park and Stanley [153] and Cinefra et al. [50]. The main advantage of this method is
that the inconsistencies in the strain interpolations are eliminated while performing a full
integration of the energy terms of the stiffness matrix of the element. Moreover, no extra
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Fig. 5.2 Frenet-Serret coordinate system of a reference beam.

degrees of freedom are added to the problem and the prediction of membrane and shear
strains and stresses is superior to that of reduced integrated elements.

5.2 Curved beams: the general framework

Let us consider a general curve expressed by the vector r(s), with s being the curvilinear
abscissa of the beam. The components of r(s) correspond to the Cartesian coordinates of the
line of centers of the beam section, i.e. the beam axis, see Fig. 5.2. This curvilinear system
is represented by the Frenet-Serret frame, which is defined by an orthonormal vector basis
{t,b,n}, being:

t(s) =
dr(s)

ds∥∥∥dr(s)
ds

∥∥∥ , n(s) =
d2r(s)

ds2∥∥∥d2r(s)
ds2

∥∥∥ , b(s) = t×n. (5.1)

t is the tangent versor of the curve at a given coordinate s, n is the normal versor oriented
towards the center of the curve, and b is the binormal versor. This reference system is used
to express all the variables of the beam problem hereinafter.

Subsequently, a generic curve in the 3D space can be defined by two parameters, known
as the curvature κ and torsion T, respectively:

κ(s) =
∥∥∥∥d2r(s)

ds2

∥∥∥∥ , T(s) =
dn(s)

ds
·b. (5.2)

Accordingly, the Frenet-Serret formulas provide the expressions for the derivatives of the
versors {t,n,b} as:

d
ds


t
n
b

=

 0 κ 0
−κ 0 T
0 −T 0




t
n
b

 . (5.3)
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It is pointed out that in the present formulation the torsion of the curve is not considered,
thus T is set as zero. As a consequence, the undeformed curved beam lies on a plane.

Let {s,ξ ,η} be the curvilinear coordinate system associated to the Frenet-Serret reference
frame, therefore the position of a generic point P over the 3D beam can be expressed as:

rrrP = rrr(sP)+ξPnnn+ηPbbb. (5.4)

Finally, the determinant of the metric tensor in this system is defined as [205]

g = (1−κ ξ )2. (5.5)

Therefore, the infinitesimal volume in the curved beam must be calculated as

dV =
√

gdsdξ dη , (5.6)

which accounts for the deformation of the infinitesimal parallelepiped due to the curvature of
the longitudinal direction, s.

5.3 Geometrical and constitutive relations

According to the aforementioned formulation, the displacements of the deformed beam are
now expressed in the local coordinate system:

uuu = ust+uξ n+uηb, (5.7)

or uuu= {us uξ uη}T in vectorial form. Subsequently, the linear relation between displacements
and strains is written as:

εss =
1
H

(
∂us

∂ s
−κuξ

)
, (5.8)

εξ ξ =
∂uξ

∂ξ
, (5.9)

εηη =
∂uη

∂η
, (5.10)

εξ η =
∂uξ

∂η
+

∂uη

∂ξ
, (5.11)

εsη =
1
H

(
∂uη

∂ s

)
+

∂us

∂η
, (5.12)
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εsξ =
1
H

(
∂uξ

∂ s
+κus

)
+

∂us

∂ξ
, (5.13)

where H =
√

g and εεε = {εss εξ ξ εηη εξ η εsη εsξ}T is the vector of the deformations.
For the purposes of the implementation of a mixed interpolated element, it is appropriate

to split the strain vector in membrane and shear components (εss, εsξ and εsη ) on one side,
and transverse components (εξ ξ , εηη and εξ η ) on the other, as follows:

εεεC = {εss εsη εsξ}T , (5.14)

εεεΩ = {εξ ξ εηη εξ η}T . (5.15)

Note that the assumptions over the cross-section remain the same as those of straight
beams (see Chapter 2) although now they are expressed in the ξ η-plane. Therefore, the
transverse deformations, εεεΩ, will be distinct from zero for generic problems. Subsequently,
the geometrical relations can be written in matrix form as:

εεεC = (DM +DS)uuu, (5.16)

εεεΩ = DΩ uuu, (5.17)

where :

DM =

 1
H

∂

∂ s − 1
H κ 0

0 0 0
1
H κ 0 0

 , DS =

 0 0 0
∂

∂η
0 1

H
∂

∂ s
∂

∂ξ

1
H

∂

∂ s 0

 ,

DΩ =

 0 ∂

∂ξ
0

0 0 ∂

∂η

0 ∂

∂η

∂

∂ξ

 .

(5.18)

DM is the differential operator that includes the membrane terms, DS includes the shear terms
and DΩ is the cross-sectional operator. The shear operator can be rewritten as:

DS = DS∥ +DS⊥, (5.19)

where

DS∥ =

 0 0 0
0 0 1

H
∂

∂ s

0 1
H

∂

∂ s 0

 , DS⊥ =

 0 0 0
∂

∂η
0 0

∂

∂ξ
0 0

 . (5.20)

Note that in this manner the derivatives on s are separated from those over the cross-section.
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Accordingly, the stress-strain relations are written as:{
σσσC

σσσΩ

}
=

[
CCC CCΩ

CΩC CΩΩ

]{
εεεC

εεεΩ

}
, (5.21)

where σσσC = {σss σsξ σsη}T includes the membrane and shear components, and σσσΩ =

{σξ ξ σηη σξ η}T the transverse ones. In the case orthotropic materials, the material subma-
trices, CCC, CCΩ, CΩC and CΩΩ, are written as:

CCC =

 C11 0 0
0 C55 0
0 0 C66

 , CΩΩ =

 C22 C23 0
C23 C33 0
0 0 C44

 ,

CCΩ = CT
ΩC =

 C12 C13 0
0 0 0
0 0 0

 .

(5.22)

Note that the material coefficients Ci j are expressed in the material coordinates, for which the
subindex 1 lies on the versor t, 2 on n and 3 on b. This is a clear advantage for the modeling
of curved laminates and fibers, as it will be shown further on in this thesis. In the case of
different angle plies, the material transformations depicted in Section 3.1 must be applied.

5.4 Locking-free beam elements

As introduced in the previous chapters, in the CUF framework the deformation of the cross-
section of the beam is assumed via arbitrary functions. Therefore, the displacement field of
the curved beam can be expressed as:

uuu(s,ξ ,η) = Fτ(ξ ,η)uuuτ(s), τ = 1, ...,M, (5.23)

where uuuτ = {usτ
uξτ

uητ
}T is the vector of the generalized displacements and M is the total

number of expansion terms in the kinematic field. Then, in order to formulate the beam finite
element, the unknowns are interpolated using shape functions, Ni, as shown in Section 3.2.1.
Accordingly:

uuuτ(s) = Ni(s)uuuτi i = 1, ...,nn, (5.24)

nn being the number of nodes. Lagrangian interpolation functions are used in the present
formulation.
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Introducing Eqs. (5.23) and (5.24) into Eqs. (5.16) and (5.17), the element strains are
computed as

εεεC = Fτ(DMNiI3)uuuτi + Fτ(DS∥NiI3)uuuτi + (DS⊥FτI3)Niuuuτi, (5.25)

εεεΩ = (DΩFτI3)Niuuuτi , (5.26)

where I3 is the 3×3 identity matrix.
The mitigation of the shear locking in thin beams is presented in the previous chapter. In

the case of curved beams, the axial strains generated by the curvature terms may provoke an
uncontrollable increment of the bending stiffness [185], known as membrane locking. This
effect is caused by the physical inconsistencies that arise when the same shape functions are
used to interpolate all the strain terms along the beam axis, as in Eqs. 5.25 and 5.26. To solve
this numerical issue, a vector containing the membrane and shear strains is defined as:

ε̄εεC = N̄m εεεCm m = 1, ...,n−1, (5.27)

where ε̄εεC are the assumed membrane and shear deformations. In such manner, a lower-order
set of functions, N̄m, is employed to interpolate the membrane and shear strains computed
from the displacements, εCm . The set of assumed functions are the Lagrangian polynomials
with roots at the tying points, Tm, which were introduced in Section 4.3. For the sake of
clarity, the locations of the tying points in the local interval [-1, 1] are included here:

B2 : rT1 = 0,
B3 : rT1 =− 1√

3
, rT2 =

1√
3
,

B4 : rT1 =−
√

3
5 , rT2 = 0, rT3 =

√
3
5 ,

(5.28)

r being the natural coordinate of the beam element.
Now evaluating the strains of Eq. (5.25) at the tying points, Eq. (5.27) can be rewritten in

the following form:

ε̄εεC = N̄mFτ(DMNiI3)muuuτi + N̄mFτ(DS∥NiI3)muuuτi + N̄m(DS⊥FτI3)Nimuuuτi . (5.29)

Subsequently, making use of Eq. (5.21), the stresses over the curved beam element are
expressed as:

σ̄σσC = CCC
[
N̄mFτ(DMNiI3)muuuτi + N̄mFτ(DS∥NiI3)muuuτi

+ N̄m(DS⊥FτI3)Nimuuuτi
]
+ CCΩ

[
(DΩFτI3)Niuuuτi

] (5.30)
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σ̄σσΩ = CΩC
[
N̄mFτ(DMNiI3)muuuτi + N̄mFτ(DS∥NiI3)muuuτi

+ N̄m(DS⊥FτI3)Nimuuuτi
]
+ CΩΩ

[
(DΩFτI3)Niuuuτi

]
.

(5.31)

Note that in the current formulation the assumed functions appear in the definitions of both
stress vectors.

5.4.1 Fundamental nucleus

The system of governing equations are obtained via the PVD, see Section 3.2.2. The virtual
variation of the internal work, δLint , can be split into the contributions of the membrane and
shear strains, δLintC , one the one hand, and the transverse deformations, δLintΩ , on the other.
Thus using Eq. (3.25) and the definition of the infinitesimal volume in curved beams, Eq.
(5.6), one can write:

δLintC =
∫

L

∫
Ω

δε̄εε
T
C σ̄σσC HdΩds =

∫
L

∫
Ω

(δε̄εε
T
C C̄CCCC ε̄εεC + δε̄εε

T
C C̄CCCΩ εεεΩ)HdΩds, (5.32)

δLintΩ =
∫

L

∫
Ω

δεεε
T
Ω σ̄σσΩ HdΩds =

∫
L

∫
Ω

(δεεε
T
ΩC̄CCΩC ε̄εεC + δεεε

T
ΩC̄CCΩΩ εεεΩ)H dΩds, (5.33)

where L is the length of the curve defined by s and Ω is the surface of the cross-section.
Making use of the geometrical relations, Eq. (5.26) and (5.29), and the constituent equations,
Eq. (5.31), the total internal work can be expressed as:

δLint = δLintC +δLintΩ = δuuuT
τi(Kτς i j

CC +Kτς i j
CΩ

+Kτς i j
ΩC +Kτς i j

ΩΩ
)uuuς j , (5.34)

where Kτς i j are the 3×3 fundamental nuclei of the stiffness matrix of the curved beam. In
this development, τ and ς are the indexes of the transverse expansions, whereas i and j are
those of the FEM interpolations. Note that although the inclusion of the curvature terms
in the geometrical relations provokes the appearance of new terms in the stiffness matrix,
the formal derivation of the fundamental nuclei remains the same. Any desired class of FE
approximation and tranverse expansion can be implemented without modifying these core
expressions. For the sake of completeness, the explicit form of each fundamental nucleus is
included here:
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Kτς i j
CC (1,1) = Ii,s j,s

E11
τς

1
H
+ Ii j

(
E55

τ,η ς,η H +E66
τ,ξ ς,ξ H

)
+κIi j

(
E66

τς,ξ
+E66

τ,ξ ς

)
+κ2Ii jE

66
τς

1
H
,

Kτς i j
CC (1,2) = Ii,s jE

66
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+κ

(
Ii,s jE

66
τς

1
H
− Ii j,s

E11
τς

1
H

)
Kτς i j

CC (1,3) = Ii,s jE
55
τς,η

,
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CC (2,1) = +Ii j,s

E66
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In these equations, the integrals of the shape functions are included in the I terms, which are
defined as:

Ii(,s) j(,s) =
∫

L
Ni(,s)N j(,s) ds,

Ii(,s) j(,s)
=

∫
L

NmNi(,s)mN j(,s) ds,

Ii(,s) j(,s)
=

∫
L

Ni(,s)NnN j(,s)n ds,

Ii(,s) j(,s)
=

∫
L

NmNi(,s)mNnN j(,s)n ds.

(5.39)

where the subscripts i and j correspond to the 1D shape functions, and m and n to the assumed
strains. Note that Nm

i(,s)
refers to the i-th function (or its derivative on s) evaluated at the m-th

tying point Tm, or:
Ni(,s)m = Ni(,s) (Tm) . (5.40)

On the other hand, the E terms are the integrals of the expansion functions over the beam’s
section. The subscripts H and 1

H mean application of the metric tensor in the computation of
the integral. The nomenclature works as follows:
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τς

1
H
=

∫
Ω

C11 FτFς

1
H

dξ dη .

(5.41)

The numerical integrals are computed in all cases via full Gaussian quadrature. It is worthy
noting that for the computation of the term H solely in the cross-sectional integrals it is
assumed that the curvature, κ , is constant along the beam element, see Eq. (5.5). In the case
of non-constant curvatures along s, i.e. κ(s), 3D integrals must be defined over the volume
of the beam.

The beam element proposed here adds some interesting features to the structural analysis
of curved structures. It overcomes membrane and shear locking with no need of extra
DOF. It also provides a better approximation of the 3D stress and strain fields over the
volume of the beam. Due to the well-known robustness of the MITC method, it avoids the
arise of unexpected spurious modes, which are typical of reduced integrations [124]. The
implementation of HLE in this framework allows it to study any complex structure in a 3D
sense, while maintaining the advantages on the aspect ratio of the beam elements. Moreover,
the non-local capabilities and the BFM, see Section 2.5, make it possible to generate very
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Fig. 5.3 Characteristics of the arch under study.

accurate models of composite materials with a reduced impact in the computational costs, as
it will be shown in the next chapters.

5.5 Examples

This section includes the assessment of the proposed curved beam elements with HLE sec-
tions. The first example shows the effects of locking in curved structures and the convergence
rates of the displacements solutions. A second example shows the verification of the quality
of the stress solutions via analytical and numerical solutions from the literature.

5.5.1 Circular arch

A simply-supported arch is considered first, the focus being on the study of the effects of the
order of the shape functions for different slenderness ratios of the structure. The geometrical
features are included in Figure 5.3. The section exhibits a rectangular shape, with h = 0.6
m and b = 0.4 m. The opening angle is in all cases Φ = 2/3π . The arch is made of two
materials with a surface ratio 1:1 over the section. The material properties are enlisted in
Table 5.1. Two slenderness ratios are considered in this study: L/h = 5 and L/h = 500. The
loading corresponds to a concentrated force P = 1000 N applied upwards at midspan in
ξ = 0.0 and η = 0.0.

Table 5.1 Elastic properties of the materials. E2 = 1 GPa.

E1
E2

E3
E2

G12,G13,G23
E2

ν12, ν13, ν23

material 1 30 1 0.5 0.25
material 2 5 1 0.5 0.25
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Fig. 5.4 Radial displacement, ūξ , against the number of two-noded curved elements. Slender-
ness ratios L/h = 5 and L/h = 500.

Analytical solutions can be obtained for the given geometry and boundary conditions.
The derivation of strong-form solutions of in the current framework was done in [62] and it
is used here to produce exact references to assess the beam elements proposed. A first-order
HL1 expansion is used in all cases. The Navier solutions of this problem are:

uNav
ξ

= 4.735×10−5 m f or L/h = 5 (5.42)

uNav
ξ

= 23.169 m f or L/h = 500 (5.43)

Figures 5.4, 5.5 and 5.6 show the convergence of the normalized radial displacements,
ūξ = uξ/uNav

ξ
, for a growing number of beam elements, N. The solutions of obtained via

full integration (B*) and the MITC method (MITC*) are compared. From the convergence
analysis, it is possible to state that:

• Due to its exactness, Navier-type solutions represent a highly reliable reference to
assess the finite element solution. The results shown here were obtained using 200 half
waves. For more details of this formulation, the reader is referred to [71].

• As expected, the locking phenomena is more evident in low order elements and leads
to disastrous effects when thin beams are analyzed.

• Higher-order elements alleviate the stiffening response at the expense of extra nodes.

• Curved elements based on MITC are able to mitigate the locking issues independently
of the thickness of the structure, even for two-noded elements as shown in Fig. 5.4. As
a consequence, the efficiency of the analysis is highly improved.
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Fig. 5.5 Radial displacement, ūξ , against the number of three-noded curved elements. Slen-
derness ratios L/h = 5 and L/h = 500.
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Fig. 5.6 Radial displacement, ūξ , against the number of four-noded curved elements. Slen-
derness ratios L/h = 5 and L/h = 500.



76 Locking-free curved beam elements

R

h

P

material 1

material 2

h=8

R=10

P=1000

(a) Case
4 cubic MITC beam elements 

8 HLE 

expansions

(b) Refined beam model

Fig. 5.7 Features of the hollow laminated disk and proposed beam model.

5.5.2 Laminated circular disk

A circular laminate is employed to assess the solutions of stresses in the thickness direction
of the curved beam. The accurate structural analysis of laminated materials demands the
inclusion of certain physical effects in the model, such as the shear deformations and layer-
wise kinematics, which increase considerably the number of variables of the problem. As a
consequence, classical elasticity solutions such as those of Lekhniskii [114], Pagano [146]
or Varadan and Bhaskar [200] are still used by engineers and researchers in the design of
composite structures.

The benchmark case is a cylindrical disk with internal pressure, for which analytical
(Lekhnitskii [114]) and numerical solutions (Surana and Nguyen [187]) are available. The
features of the problem are presented in Fig. 5.7 (a). To be consistent with the latter reference,
plane stress conditions are applied and no conversion is performed in the model, leading
to dimensionless solutions. The laminated structure is made of a symmetric stack of eight
layers of two materials. The elastic properties of these materials are those Table 5.1, although
now E2 = 1× 106. An internal pressure of magnitude P = 1000 is applied over the inner
wall of the disk. Due to the double symmetry of the problem, only quarter of structure is
studied, as shown in Fig. 5.7 (b). The beam model is generated using 4 curved MITC beam
elements and a HLE domain per layer.

Figures 5.8 and 5.9 include the solutions of radial displacements, radial stresses and
circumferential stresses, respectively, over the thickness of the laminate. The reference results
[187] were obtained using a 2D beam based on Lagrangian assumptions over the thickness
and 45 quadratic beam elements along the center line of the laminate. In the graphs, p = 1,
p = 2 and p = 4 correspond to the polynomial order of the thickness functions. On the other
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hand, the proposed HLE solutions are obtained for polynomial orders from 1 (HL1) to 8
(HL8). It is possible to observe that the HL1 model fails in capturing the exact distribution
of the displacements of Lekhniskii, although the convergence is reached already for the
HL2 model. Regarding the stress fields, the HLE beam models of higher-order are able to
capture the layer wise distribution of the stress field showing an excellent agreement with the
analytical stresses. Finally, the contour plots of the stress fields over the disk are included in
Fig. 5.10 for the HL3 model.
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Fig. 5.8 Radial displacement, uξ , through the thickness of the laminated disk. References
from [187].
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Fig. 5.9 Radial, σξ ξ , and circumferential, σss, stress fields through the thickness of the
laminated disk. References from [187].
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Fig. 5.10 Stress fields over the eight-layer curved beam for the third order HL3 model.
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Chapter 6

HLE for composite simulation

The analysis of composite structures demands the introduction of more computationally-
efficient numerical tools which must overcome the limitations of metallic-oriented FEM
codes that are nowadays available. Until today, the separation of scales that characterizes
the composite materials has made the stress analysis of these structures often an unreliable
support tool for the structural design, leading to the need of higher safety margins in the
industrial product. The present chapter focuses on the application of the numerical devel-
opments hereinbefore presented for the modeling of composite materials at different scales.
The focus is on maintaining the highest levels of resolution in the stress fields while cutting
down the computational costs by orders of magnitude if possible. For that, some standard
methods used in the literature are recalled and redefined in a hierarchical framework based
on HLE beam theories.

Some of the numerical results included in this chapter for assessment purposes were
published in [144] and [61].

6.1 Introduction

The introduction of composite materials for structural applications has become a common
solution in many engineering fields such as aerospace, automotive, energy and naval. The
advantages of composite structures in comparison with their metallic counterparts are many,
including better specific stiffness and strength mechanical properties, see [170, 97], and the
emerging of new design variables which lead to a better optimization of the final product, such
as the number of plies and the orientation in laminated structures. Due to these interesting
features, aerospace companies nowadays make use of these materials not only in secondary
parts, but in primary structures such as the wing and fuselage, see for instance the B 787 and
the A 350 widebody aircraft. Nevertheless, in order to fully exploit the advanced capabilities
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of composite structures while ensuring the maximum levels of safety, the physical phenomena
involved in the damage of composites must be investigated deeper. Computational models
are useful for this purpose and must be used as a support to experimental test to acquire all
the knowledge necessary to produce better and safer structures.

It is well-known in the research community that a good approximation of the 3D stress
and strain fields is necessary to predict accurately the different failure modes of composite
structures. For this reason, most of researchers base their damage models of laminated
structures in 3D finite elements, which are able to capture the full stress state. However, due
to the limitations in the aspect ratio constraints, the dimension of the solid element is defined
by the thickness of the composite layer, making the computational model too expensive and
limiting these approach to structures not bigger than coupons. As a solution to this issue, in
the last decades a large research effort has been dedicated to the development of efficient
models for the accurate analysis of multi-layered structures. Dimensionally reduced beam
and plate formulations allow it to overcome the aspect ratio constraints thus reducing the
computational size of the problem, see the review series of Kapania and Raciti [100, 101].
Among the most well-known models for laminate analysis one finds: higher-order models
[99, 151, 197, 166, 128, 34], trigonometric theories [75], zig-zag models [115, 6, 202], mixed
variational theories [174, 163] and layer-wise methods [168, 182, 147, 188, 190, 117, 42].
In this works, different kinematic and/or variational methods are used to represent the
distribution of stresses in the thickness direction. Regarding the kinematic approach, multi-
layered theories are usually classified into equivalent single layer (ESL), in which the
number of unknowns is independent of the number of layers, and layer wise (LW), in which
independent assumptions are taken for each layer of the laminate. A detailed description of
these two approaches is provided in this chapter and the following.

In many cases, the initiation and propagation of damage in composites can be only
understood if the physics at the micro-scale are accounted. For instance, the appearance of
delaminated areas in fiber-reinforced composites is usually a consequence of the coalescence
of microcracks and fiber debondings, which propagate towards the interply region. If one
aims to include these physical effects into the composite model, multiscale approaches
must be implemented. According to this approach, the composite problem is divided into
different spatial scales, usually macro-scale for the structural component, meso-scale for the
laminate coupon, and micro-scale for the material constituents. Two flows of information
through the scales are usually defined: bottom-up and top-down. The former is based on
the computation of the homogenized properties of the smaller scales, which are applied as
constitutive information in the upper scales; whereas the latter addresses the computation of
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the local solutions within the structure and is carried out via application of the correspondent
boundary conditions from the results of the global model.

This chapter introduces the HLE beam models in the analysis of composite structures
at different scales. Hierarchical LW models are generated by discretizing the stack of plies
as mathematical layers based on Legendre polynomials. For the analysis of micro-models
accounting for different constituents (fiber, matrix, plies,...), the component wise (CW)
approach is recalled. CW models can be seen as an extension of LW models that allows
it to predict the deformation of each component of the structure via dedicated kinematics.
A similar methodology was previously employed for the analysis of reinforced aerospace
structures [35] and civil structures [36]. This approach can be straightforwardly implemented
in the framework of CUF using non-local theories such as HLE and LE, which allow for a
discretization of the cross-section surface into smaller expansions domains.

6.2 Composite modeling

In this section, a detailed description of the application of HLE models for meso-scale and
micro-scale analyses. A selected number of examples is included showing the capabilities and
computational advantages of the theoretical developments included in Chapters 2, 3, 4 and 5
for the analysis of composites. It is shown that the possibility of decoupling the numerical
approximation over the 3D volume into longitudinal and section domains represent a clear
advantage for the modeling of composite structures in terms of accuracy and effectiveness.
Further applications to more interesting composite problems, including micromechanics,
free-edge analysis and mixed variational models, are presented in the next chapters.

6.2.1 Meso-scale

Consider the coordinate frame shown in Fig 5.2. The longitudinal direction of the composite
beam lies on the y axis, whereas the cross-section Ω is defined on x and z. For simple
laminates, the stacking direction coincides with the vertical axis z. Note that the cross-section
total domain is obtained as the sum of the layer surfaces as

Ω =
nl

∑
k=1

Ωk (6.1)

where k is the layer counter and nl is the total number of layers. In the CUF framework,
the definition of the stiffness matrix for beam problems is formally independent of the
multi-layered theory selected. In other words, the user may appropriately choose the most
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convenient model on the basis of the accuracy requirements for the solutions. This means that
for problems governed by global effects, such as the modal response, models accounting for
ESL kinematics may be sufficiently accurate. On the other hand, for accurate stress analyses,
LW approaches provide a better approximation of the interlaminar stresses throughout the
stack of plies.

z

x

y

k

1

a

Lb

Fig. 6.1 Reference system of the current frame for meso-scale analysis.

In this section, the application of TE, LE and HLE kinematics to generate ESL and LW
models for laminates is discussed, showing the suitability and advantages of each method.
The focus remains the introduction of HLE for the implementation of hierarchical models
for composite structures, in which the accuracy/cost is controlled by the user through the
polynomial order parameter.

Equivalent Single Layer

In ESL models, the contribution of each expansion term to the nodal stiffness matrix is
obtained by summation of the integrals of the Fτ functions over each layer, represented
by the domain Ωk. In this manner, the moments of the expansion terms at each layer are
included in the equivalent homogenized layer. For this purpose, the expressions of the
fundamental nucleus of Eq. (3.36) must be modified to include the material coefficients
inside the transverse integrals, Eτ(,x)(,z)s(,x)(,z) , defined in Eq. (3.37). Accordingly, we obtain

Eτ(,x)(,z)s(,x)(,z) =
nl

∑
k=1

C̃k
αβ

∫
a

∫ zk
t

zk
b

Fτ(,x)(,z)Fs(,x)(,z) dz dx (6.2)

where C̃k are the rotated material coefficients described in Section 3.1, a is the width of the
laminated beam, and zk

b and zk
t are the bottom and top z-coordinates of layer k, respectively.

The subindexes between brackets refer to eventual partial derivatives.
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Fig. 6.2 Assembly procedure of the stiffness matrix through ESL and LW approaches

In principle, this approach can be adopted using any of the expansions here discussed
(TE, LE and HLE). However, usually in the literature ESL models are generated through
local theories which are based on a centered expansion. Particular attention was dedicated
to the introduction of zig-zag terms into the kinematic field which allow it to represent the
sudden changes in the solutions at the interfaces between layers. The discussion of these
theories is out of the scope of this thesis, but the reader can refer to the review of Carrera [27]
if interested. An interesting ESL approach based on HLE theories for plates is implemented
in Chapter 11 for the study of dynamic problems.

Layer wise

LW models account for the deformation of each layer independently, thus they are able
to provide a 3D distribution of the solutions over the laminate body. The drawback with
respect to ESL is that the computational costs increase proportionally to the number of layers,
therefore in most cases this kind of analysis are allocated for the study of simple laminates
and composite coupons. Indeed, although LW theories were introduced several decades ago
[168] and despite the computational advantages, still nowadays most researchers rely on 3D
finite elements for their stress-based damage analyses and the introduction of LW models in
commercial softwares is limited. Some of the reasons for this are the complexities related to
the management of the model inputs and the imposition of arbitrary boundary conditions,
which are addressed here.
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Figure 6.2 illustrate how the nodal stiffness matrix is generated in ESL and LW beams.
The implementation of LW models can be done straightforward by employing non local
theories such as LE or HLE which enable it to represent the different layers via discretization
of the cross-section surface. As opposed to ESL, in which a single expansion domain
accounts for the whole section of the laminate, now each layer is discretized using one, or
more, expansion domains. The continuity of the displacements at the interfaces between the
plies is imposed through the assembly of the coincident degrees of freedom, as illustrated in
Fig. 6.2. It should be mentioned that LW models can also be implemented using local theories
such as TE, but the fulfillment of the C0 conditions is more tricky [40, 37]. Considering
again the expressions of the transverse integrals (Eq. (3.37)), one can write:

Ek
τ(,x)(,z)s(,x)(,z) = C̃k

αβ

∫ 1

−1

∫ 1

−1
Fτ(,r)(,s)Fs(,r)(,s) |JJJΩk |dr ds. (6.3)

where JJJΩk is the Jacobian matrix of the transformation between the natural coordinates of
the expansion (r, s) to the section plane defined in (x, z). Note that in case of functionally
graded materials the material coefficients must be moved inside the integrals.

In previous works based on LE [42] the convergence of the displacement and stress
solutions was sough via h-refinement, i.e. augmenting the number of mathematical domains
per layer. On the contrary, by virtue of the hierarchical properties of HLE, the accuracy of the
stress solutions is improved by only changing the input parameter of the polynomial order. In
this manner, the section can be discretized a priori using a coarse mesh, and the convergence
of the solutions can be checked faster with no need of remeshing. This capability is especially
interesting in composite analysis, where in many problems the stress distributions adopt
complex shapes which require very high resolutions of the model. Moreover, using the
blending function method, any curvature of the laminate can be exactly represented without
adding degrees of freedom, as it will be shown in the numerical examples.

To this point one may ask: LW shell models can do the same, isn’t it?. Yes, but again
the aspect ratio constraints of the finite elements give HLE beam models an advantage when
slender laminates are analyzed, such as stringers or composite tubes. Using the proposed
method, no matter how many layers and details are present over the cross-section surface,
the convergence of the 1D discretization along the longitudinal axis remains independent, as
it is shown in Section 3.3, and can be usually obtained using long beam elements leading to
huge savings in DOF.



6.2 Composite modeling 87

z

x

y
Ω

Fig. 6.3 Reference system of the current frame for micro-scale analysis.

6.2.2 Micro-scale

Given the geometrical and multi-phase characteristics of composite materials, the numerical
analysis of composites at the micro-scale is usually carried out using in most cases 3D
elements. Only if plain strain is assumed 2D elements can be employed to capture all the
heterogeneities of the microstructure. Therefore in general, a detailed stress analysis at this
scale is associated to large discretizations which can be prohibitive in a multi-scale framework.
In order to tackle this issue, by exploiting the aforementioned features of non-local beam
theories, it is possible to extend the LW approach to generate models that account for the
deformations of each component of the microstructure independently. For this purpose, the
total surface of the section is defined as

Ω =
nc

∑
k=1

Ωk (6.4)

where now nc refers to the total number of constituents in the microstructure. This approach
is denoted to as component wise (CW) and its implementation using HLE models is to be
discussed here.

Component wise

Consider the coordinate frame illustrated in Fig. 6.3. According to this reference system,
the heterogeneities of the composite material are allocated over the cross-section plane, xz,
whereas the direction of the fibers is parallel to the y axis. In CW models, the section of
the microstructure is discretized to represent all the constituents of the composite and the
material properties of each one are applied conveniently for each expansion domain as in Eq.
(6.3). This technique was first applied in the framework of the CUF for the stress analysis
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of composite laminates made of thick fibers [35] and more recently for the evaluation of
accurate failure parameters [125].

HLE theories can be used to model the different phases of fiber-reinforced composites
using large expansion domains and hierarchical kinematics. Using the blending function
method, the curvature of the fibers can be exactly represented through a non-isoparametric
Jacobian transformation, as it is described in Section 2.5.3. In this manner, for sufficiently
high polynomial orders, only one HLE domain is enough to represent the section of the fiber.
Composite structures exhibiting variations or discontinuities along the longitudinal can be
modeled by generating an appropriate finite element model, e.g. using curved beams or
defining different properties along the 1D mesh.

Equivalent Single Layer

Layer-Wise

Traditional approaches Component-Wise

Direct simulation

Global-local approach

HLE beam modeling for 

composite structures

Fig. 6.4 Different approaches available via HLE modeling.

The CW approach together with the hierarchical theories here proposed allows it study
the same structural problem from a different perspective. Indeed, note that in the current
framework, ESL and LW approaches can be considered as particular cases of the CW
approach. By means of the same fundamental statements, it is possible generate models that
aim at different resolutions in terms of stress and strain solutions. Briefly, ESL models can
be adopted for global analyses, LW models for accurate failure evaluation of multi-layered
structures, and CW models for the analysis of microstructures for homogenization and
recovery purposes. Figure 6.4 illustrates the different approaches that can be adopted using
HLE theories.
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Fig. 6.5 HLE model of the curved sandwich.

6.3 Examples

In the following, some numerical examples showing the main features of the proposed
modeling technique are included. The focus is on the stress evaluation at the meso and
micro-scales.

6.3.1 Curved sandwich beam

The first case deals with the meso-scale analysis of a cantilever L-angle beam of sandwich
material. The sandwich is made of two Aluminum skins, 1 mm thick each, and a foam core
of 5 mm. The materials are considered isotropic: EAl = 75 GPa, νAl = 0.33; E f oam = 0.1063
GPa, ν f oam = 0.32. The total length of the beam is equal to 1 m, whereas the width and
height are equal to 40 mm, resulting in a slenderness ratio of 25. Figure 6.5 shows (a) the
geometrical features of the model and (b) the discretization of the cross-section. One can see
that the entire surface of the section is modeled using only 9 HLE domains, 3 of which are
mapped using the BFM to capture the curvature of the corner. As for the 1D mesh, 10 MITC
beam element of third order are employed, ensuring locking-free solutions.

The beam is clampled in one end, y = 0, and a pressure of 10 kN/m2 is applied on the
upper flat section of the structure. The deformed of the sandwich beam under the pressure
is shown in Fig. 6.6, where it is possible to notice the bending-torsion coupling due to the
geometry of the cross-section. Table 6.1 shows the numerical results for the displacements
and stresses for polynomial orders from 2 to 8. The 2D and 3D FEM solutions obtained from
the commercial software Nastran are also included for comparison purposes. The position of
the evaluation points A and B is indicated in Fig. 6.5 (b). Note that the vertical displacements,
uz, are computed at the tip of the beam, whereas the longitudinal and shear stresses, σyy and
σyz respectively, are evaluated at the middle section and represented in the global coordinate
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Fig. 6.6 Deformed of the sandwich beam.

Table 6.1 Displacements and stress values of the curved sandwich at the evaluating points.

model uz ×102 m σyy ×10−7 Pa σyz ×10−6 Pa DOF
Point A, tip Point B, midspan

Nastran
Solid -3.715 3.353 4.324 166617
Shell -3.900 3.496 2.721 71000

HLE beam
HL2 -3.032 3.421 -6.551 3720
HL3 -3.711 3.307 4.484 5952
HL4 -3.712 3.293 4.466 9021
HL5 -3.712 3.288 4.276 12927
HL6 -3.712 3.290 4.256 17670
HL7 -3.712 3.298 4.308 23250
HL8 -3.712 3.297 4.321 29667
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frame. Figure 6.7 shows the stress distributions across the thickness point B for the reference
FEM models and the HLE beams of odd order. Finally, Fig. 6.8 includes a contour plot of
the stress solutions over the cross-section at midspan. It can be concluded that:

1. In the case of thick sandwich structures, the use of plate elements based on the FSDT
can lead to poor results, especially for the out-of-plane shear stresses. Indeed, the
results differ substantially with respect to those obtained from the solid model of the
same code, which is taken as benchmark herein.

2. The LW solutions computed via HLE models converge fast to similar values of the 3D
model. Indeed, a 3rd order expansion (HL3) is accurate enough.

3. Obviously, as the polynomial order of the HLE domains augments, the number of DOF
increases. However, due to the advantages in the aspect ratio of the beam elements, the
computational cost is reduced at least by one order of magnitude.

4. By virtue of the enriched kinematics of HLE beam elements, the 3D stress fields over
the whole cross-section are obtained from the structural analysis, as shown in Fig. 6.8.
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Fig. 6.7 Stress distributions across the thickness at point B and y = L/2.

6.3.2 Fiber-reinforced structures

The second assessment considers a representative example of a fiber-reinforced composite
structure at the micro-scale. The geometry of the structure is depicted in Fig. 6.9. It
accounts for three different material phases: fibers, matrix and homogenized inner layer.
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Fig. 6.8 Longitudinal and shear stress fields at midspan.

The mechanical properties of the composite resemble those of a carbon/epoxy system, see
Table 6.2. The properties of the homogenized layer are computed using the classical rule of
mixtures. The length of the structure is L = 40 mm, the height is h = 0.6 mm and the width
is b = 0.8 mm. The diameter of the fibers is d = 0.016 mm. A clamped-free configuration is
applied and a point load of magnitude Fz =−1 N is applied at the coordinates [b/2, L ,0].

L

b

h
d

x

z

y

Fig. 6.9 Geometry of the cross-ply beam.

The CW approach is employed here to tune the accuracy of the stress analysis from the
homogenized layers to micro-models accounting for the fibers and matrix. Three different
approaches are presented:

1. Full LW: the composite beam is modeled as a [0◦,90◦,0◦] laminate using the homoge-
nized properties of the fiber/matrix system. Only three HLE domains are enough to
represent the cross-section, as shown in Fig. 6.10 (a).
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Table 6.2 Material properties of the carbon/epoxy composite.

Component E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23
Fiber 202.038 12.134 12.134 8.358 8.358 47.756 0.2128 0.2128 0.2704
Layer 103.173 5.145 5.145 2.107 2.107 2.353 0.2835 0.2835 0.3124
Matrix 3.252 3.252 3.252 1.200 1.200 1.200 0.355 0.355 0.355

2. Full CW: all the fibers are included in the cross-section discretization. The middle ply
is modeled using the homogenized properties and orientation of 90◦, see Fig. 6.10 (b).

3. Mixed LW-CW: a global/local model is created by accounting for only a single fiber-
matrix cell. Homogenized properties are employed elsewhere in correspondence to the
0◦ and 90◦ plies. The cross-section discretization for this case is shown in Fig. 6.10
(c).

Note that the fiber-matrix cells are modeled using 5 HLE curved domains, including only one
domain for the fiber. Third-order polynomials are used to parametrize the curved geometry
intro the mapping functions.

Figure 6.10 illustrates the computed stress fields obtained from the three proposed
approaches. It is possible to observe that the CW model (h) shows that the most critical zone
of the shear stresses are the interfaces between the fibers and the matrix in the top and bottom
layer, not the middle layer (g). The numerical assessment is shown in Table 6.3, including
the convergence analysis in terms of displacements and stresses for all models considered.
The number of DOF of each model depicted in the last column. A Nastran solid model is
included as reference. The displacements are evaluated at the loading point, whereas the
stress values are taken at the center point of the fiber included in the mixed LW-CW model,
Fig. 6.10 (c)), at the midspan section. Finally, Fig. 6.11 shows the stress distributions across
the thickness the HL6 models and the Nastran reference model. The results show that:

• The convergence of the HLE solutions is already reached for the third-order model
(HL3). The HL2 model provides good displacement and longitudinal stresses, however
also a third-order expansion is needed to compute accurate shear stresses.

• The displacement results converge to slightly different values depending on the ap-
proach selected (LW, CW or mixed). This response can be explained by the error
induced from the homogenization of the fiber/matrix cell. Indeed, the full CW model
is the closest to the refined solid model.

• The inefficacy of 3D models for the study of composite materials is highlighted. In
this example, the maximum difference between the numerical solutions of the full
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Fig. 6.10 Discretizations and stress fields computed using different approaches: LW (a), (d)
and (g); CW (b), (e) and (h); and mixed LW-CW (c), (f) and (i).



6.3 Examples 95

CW and the Nastran model is in all cases lower than 3.5 % (HL2 excluded), while the
computational costs in terms of DOF are at least 50 times smaller.

• An interesting feature of the CW approach is that it enables one to perform global/local
stress analysis in which only certain regions of the section are modeled with high
resolution accounting for fibers and matrix. This procedure reduces considerably the
amount of DOF used in the analysis with no repercussion in the quality of the stress
fields in the local zone. This is demonstrated in Fig. 6.11, where it is possible to
observe the transition between the real stresses in the CW cell and the homogenized
LW zone.

Table 6.3 Displacements and stresses of the cross-ply beam for the different models.

uz ×102 m σyy ×10−8 Pa σyz ×10−6 Pa DOFs
[b/2, L, 0] [5b/8, L/2, -0.2] [5b/8, L/2, -0.2]

Nastran
HEXA8 -1.569 -5.928 -2.147 1579653

HLE LW
HL2 -1.491 -2.880 -1.577 1674
HL3 -1.491 -2.880 -1.710 2604
HL4 -1.491 -2.879 -1.712 3813
HL5 -1.491 -2.879 -1.655 5031
HL6 -1.491 -2.880 -1.654 7068

HLE CW
HL2 -0.348 -0.838 -43.008 13671
HL3 -1.547 -5.849 -2.142 22506
HL4 -1.548 -5.848 -2.169 35433
HL5 -1.548 -5.848 -2.211 52452
HL6 -1.548 -5.848 -2.212 73563

HLE CW-LW
HL2 -1.046 -3.717 -124.390 5859
HL3 -1.498 -5.661 -2.384 9486
HL4 -1.498 -5.659 -2.381 14601
HL5 -1.498 -5.659 -2.412 21204
HL6 -1.498 -5.659 -2.408 29295

6.3.3 Curved microstructure

A final example is included to show the capabilities of HLE beams for the analysis of curved
fibers. The features of the problem are illustrated in Fig. 6.12. The material system is a
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Fig. 6.11 Stresses distributions through the thickness at [5b/8,L/2,:] computed by the HL6
model. The figure attached to the bottom of the graphs represent a vertical strip of the
composite structure and the vertical black lines are added to indicate the domains of the fiber,
matrix and layer in the model. Note: HEXA8 = solid, model 1 = LW, model 2 = CW, model
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IM7/8551-7 carbon/epoxy and the elastic properties of the constituents are included in 6.4.
A fiber volume fraction of 0.5027 is considered. This kind of micro-models are typically
generated to investigate the onset of kinking due to misalignments of the fibers. The model
accounts for two fibers and a curvature equal to a quarter of a circle. The Frenet-Serret
reference system is used to express the variables of the structural problem, see Chapter
5.2. The beam is simply supported at both ends, i.e. uξ = uη = 0 at s = 0 and s = L, and
symmetry conditions are applied at the center of the microstructure, i.e. us = 0 at s = L/2.
The loading case proposed is a pull-out of the fibers of a magnitude of 1 N at each edge,
modeled as a distributed pressure over the section of the fibers, see Eq. (3.42).

Table 6.4 Material properties of the carbon/epoxy composite, taken from [98].

E1 [GPa] E2,E3 [GPa] G12, G13 [GPa] G23 [GPa] ν12, ν13 ν23
IM7 fiber 276 19 27 7 0.2 0.2
8551-7 matrix 4.08 4.08 1.478 1.478 0.38 0.38

A convergence study is carried out for both HLE beam elements and 3D finite elements.
The proposed HLE model includes a mesh of MITC curved beam elements along the
longitudinal path and a total of 16 HL4 curved domains for the cross-section. The solid
model is generated in the FEM software Abaqus [183] using C3D8 linear elements. Table
6.5 shows maximum displacements in absolute value for increasing mesh refinements of
both types of elements. In particular, three solid models of increasing mesh density are
created. Due to the aspect ratio limitations, the computational cost of this approach grows
rapidly. It is worth noting that the Abaqus model converges from above, which can be
explained by the imprecision of the straight elements to correctly represent the actual volume
of curved structures. On the other hand, the cross-section discretization of the HLE beam
model is fixed and the convergence of the 1D mesh is achieved already for 4 cubic (MITC4)
curved elements. Figure 6.13 includes the contour plots of the total displacements, showing
a remarkable agreement.

Table 6.5 Maximum deflection, umax, of the curved microstructure. DOF between brackets.

MITC beam - HL4
mesh 2 B2 (1,413) 2 B3 (2,355) 2 B4 (3,297) 4 B4 (6,123) 14 B4 (20,253)
umax ×105 2.775 4.918 4.940 4.942 4.942
ABAQUS - C3D8
mesh (54,417) (245,979) (575,667)
umax ×105 5.150 5.115 4.965
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Fig. 6.13 Contour plots of the displacements (m).

Finally, Fig. 6.14, 6.15 and 6.16 exhibit the longitudinal, radial and shear stress fields
over the naked fibers. It can be stated that both models compute very similar solutions in all
cases. The dimension of the numerical models which is required in this kind of problems
is a limiting factor for the modeling of microstructures with high-resolution. These results
demonstrate the high effectiveness of locking-free beam elements and HLE theories for the
stress analysis of composite materials.
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Fig. 6.14 Longitudinal stresses (Pa) over the naked fibers.
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Fig. 6.15 Radial stresses (Pa) over the naked fibers.
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Fig. 6.16 Shear stresses, σsξ , (Pa) over the naked fibersl.





Chapter 7

Micromechanics: mechanics of structure
genome

The proposed modeling approach is applied to model the microstructure of fiber-reinforced
composites in a micromechanics framework. The objective is twofold: the homogenization
of the composite material to obtain the equivalent elastic properties; and the computation
of the local stress fields over the microstructure from the global response of the structure.
The micromechanics theory selected is the mechanics of structure genome (MSG), which
presents some interesting features for the efficient resolution of the unit cell problem. This
theory makes it possible to decouple the multiscale problem into global and local analyses
with no need of ad hoc assumptions or multiple loading steps, providing the 3D constitutive
information and the local fields in a single run.

The present development was carried out in collaboration with Porf. W. Yu of Purdue
University and the results were published in a journal paper [60].

7.1 Micromechanics

The micromechanics analysis of composites is essential to understand how the microscopic
details, such as fiber arrangement or volume fraction, affect the global response of the struc-
tural component. This research field is receiving much attention in the last years and several
analytical and numerical methods are available in the literature. Comprehensive reviews
of these methods can be found in [137, 88, 4]. Most of the micromechanics approaches
make use of the assumption that the arrangement of the fibers and particles follows a regular
and periodic pattern, which makes it possible to identify a so-called unit cell (UC). The
UC is defined as the minimum geometrical entity that can be periodically repeated over the
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media to conform the global structure. Some of the most well-known analytical methods
for the UC problem are the various rules of mixtures [90], the Mori-Tanaka method [130],
the Hashin-Shtrikman bounds [87], the generalized self-consistent method [49] and the
elasticity-based cell method [214, 213]. Semi-analytical and numerical formulations have
also been introduced to deal with more generic microstructures, among these the method of
cells [3], the generalized method of cells [150], the mathematical homogenization theory
[18, 134] and the high-fidelity method of cells [5]. A wide-spread method among researchers
is known as the representative volume element (RVE), which is based on the averaging of
the local solutions under periodic boundary conditions to compute the equivalent elastic
properties [186]. In the end, all the aforementioned methods pursue the same goals:

• To obtain the effective properties of heterogeneous materials from the UC, which can
be then used as constitutive information of an equivalent homogeneous material for
the macro-scale model.

• To recover the local displacement, strain and stress fields over the UC volume for a
given set of outputs of the global analysis.

In this chapter, the multiscale problem is solved by means of the mechanics of structure
genome (MSG), introduced by Yu [217], and hierarchical CW beam models. In the MSG
framework, the concept of the structure genome (SG) is presented as the smallest mathe-
matical building block of the structure. Accordingly, the SG may be a line representing
the stack of plies in a laminate, a surface that accounts for the different constituents in
fiber-reinforced composites, or, in the most generic case, a 3D cell whose phases vary over
the three spatial coordinates. In order to solve all these cases in a unified manner, the MSG
applies the variational asymptotic method (VAM) for problems involving smaller parameters
and separation of scales [19]. This method was successfully employed as a micromechanics
tool for composite simulation in many works [219, 218, 221], showing excellent levels of
accuracy and efficiency.

7.1.1 The unit cell problem

Consider a composite media wherein the microstructure is periodically repeated over the
volume. The UC is then defined as the smallest building block of that structure which contains
all the necessary information to identify the material properties at the macro-scale. Figure 7.1
shows an illustration of periodic array of heterogeneous material and the correspondent UC.
The following reference systems are used for the material: the macroscopic properties are
defined in a global coordinate system, xxx = {x1,x2,x3}, whereas the local reference system of
the UC corresponds to yyy = {y1,y2,y3}.
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Fig. 7.1 Coordinate reference systems of a periodic heterogeneous material and its UC.

In order to derive a multiscale framework, the starting point is the assumption of scale
separation, i.e. the UC must be smaller than the macrostructure. This is mathematically
achieved imposing that

yi = xi/δ (7.1)

where δ is defined as a scaling parameter which characterizes the dimension of the UC. As a
consequence, the constitutive information extracted from the UC remains always independent
of the macrostructural problem, which is characterized by the geometry, boundary conditions
and loadings.

Also, an average value of the local solutions over the UC volume must exist and is equal
to the global solution of the structural problem. For example, for the displacement solutions
it is possible to state that

1
V

∫
V

ui(xxx,yyy)dV = ūi(xxx) i = 1,2,3, (7.2)

where V is the volume of the cell, ui are the local displacements and ūi are the averaged
displacements. Note that the local variables depend on both the global and the local systems,
xxx and yyy, whereas the averaged values are only function of the global coordinates.

The compatibility of the displacements with neighboring UCs is typically imposed via
periodic boundary conditions (PBC). The PBC can be written mathematically as:

ui(x1,x2,x3;
d1

2
,y2,y3) = ui(x1 +d1,x2,x3;−d1

2
,y2,y3),

ui(x1,x2,x3;y1,
d2

2
,y3) = ui(x1,x2 +d2,x3;y1,−

d2

2
,y3),

ui(x1,x2,x3;y1,y2,
d3

2
) = ui(x1,x2,x3 +d3;y1,y2,−

d3

2
),

(7.3)
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where d1, d2 and d3 are the dimensions of the UC, as shown in Fig. 7.1. In the practice, these
equations establish that the displacements at a certain point located at the boundary of the
UC are equal to those of the corresponding point in the opposed boundary.

7.2 Variational Asymptotic Method for UCs

The VAM was introduced by Berdichevskly [19] to provide efficient solutions for structural
problems. This method can be applied to stationary value problems in which some terms are
smaller than others. Given a certain variational statement, the VAM provides the stationary
points of the functional via asymptotic expansions of the small parameters. This method can
be exploited in mechanical problems that feature high differences in the spatial dimensions.
For instance, in beams the cross-section is smaller than the length, or in plate structures
the thickness is usually negligible in comparison to the in-plane dimensions. Moreover, the
VAM can be considered a natural approach for the implementation of multiscale models for
composite problems, given the several geometrical scales that are involved.

In many multiscale problems, such as the one represented in Fig. 7.1, the SG is equivalent
to the UC. In MSG, the functional Π of the stationary value problem that is to be minimized
corresponds to the difference between the strain energies of the SG and the equivalent
homogeneous material. It is written as:

Π =
〈1

2
Ci jkl εi j εkl

〉
− 1

2
C∗

i jkl ε̄i j ε̄kl, (7.4)

where ⟨•⟩= 1
V
∫

V •dV denotes volume average. The first term of the Π is the averaged strain
energy of the heterogeneous microstructure, whereas the second is the strain energy of the
equivalent homogeneous material. Ci jkl and C∗

i jkl are fourth-order elastic tensors, and εi j and
εkl are second-order strain tensors. ε̄i j and ε̄kl are the global strains.

The local displacements over the UC can be defined as the sum of the global displacements
and the local fluctuations, as follows

ui(xxx;yyy) = ūi(xxx)+δ χi(xxx;yyy), (7.5)

where χi are the fluctuation functions, which are multiplied by the scaling parameter δ .
Subsequently, it is necessary to define the derivative of a field of the type f (xxx;yyy) in the
multiscale framework:

∂ f
∂x j

+
1
δ

∂ f
∂y j

. (7.6)
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Applying Eq. (7.6) to Eq. (7.5), and after discarding the smallest terms, see [19], the local
strains can be written as

εi j(xxx;yyy) = ε̄i j(xxx)+χ(i, j)(xxx;yyy), (7.7)

where the global strains, ε̄i j, are defined as

ε̄i j(xxx) =
1
2

(
∂ ūi(xxx)

∂x j
+

∂ ū j(xxx)
∂xi

)
, (7.8)

and the fluctuation derivatives, χ(i, j), are

χ(i, j)(xxx;yyy) =
1
2

(
∂ χi(xxx;yyy)

∂y j
+

∂ χ j(xxx;yyy)
∂yi

)
. (7.9)

Now recalling Eq. (7.2), one can write

ūi = ⟨ui⟩, ε̄i j = ⟨ε⟩, (7.10)

which imply the following constraints to the fluctuation unknowns:

⟨χi⟩= 0, ⟨χ(i, j)⟩= 0. (7.11)

Meaning that the local solutions do not have an effect on the macrostructure.
Finally, using Eqs. (7.5) and (7.7), and considering that the global strain energy (second

term of Eq. (7.4)) is invariable, the micromechanics problem via MSG is finding the
fluctuation unknowns, χi, which minimize the functional

Π1 =
1
2

〈
Ci jkl (ε̄i j +χ(i, j))(ε̄kl +χ(k,l))

〉
(7.12)

with the constrains written in Eq. (7.11).

7.3 Refined beam models for unit cells

Although closed-form solutions are very useful in micromechanics, they are only available
in a few simple problems. The UC problem is usually solved by means of the FEM. This
approach is indeed used in the multiscale code SwiftCompT M [220]. In the present research,
the governing equations of 3D SGs are solved via HLE-CW models.

The local coordinate system chosen for the UC is shown in Fig. 7.2. For illustrative
purposes, the microstructure is that of a fiber-reinforced composite material, although more
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y1
y2

y3

L

Fig. 7.2 Reference system for the beam modeling of the UC.

generic cases can be accounted for. The beam axis, y1, is defined along the fiber direction,
whereas the cross-section of the beam, Ω, accounts for the heterogeneous phases and lies on
y2y3. In this framework, the fluctuation unknowns can be expanded over the cross-section
via arbitrary functions of the y2 and y3 coordinates, as follows

χχχ(xxx;y1,y2,y3) = Fτ(y2,y3)χχχτ(xxx;y1) τ = 1,2, ...,M, (7.13)

where χχχ is the vector of the fluctuations, Fτ are the expansion functions and χχχτ is the
vector of the generalized unknowns along the fibre-direction. Using the CW approach, each
constituent represented over the cross-section, e.g. fiber and matrix in Fig. 7.2, is modeled
via independent kinematics. Also, since the y2y3 plane is discretized via HLE domains, the
application of the PBC can be straightforwardly done selecting the appropriate DOF over the
cross-section boundaries.

As in the previous chapter, the fiber direction is meshed using Lagrangian beam ele-
ments. Accordingly, the generalized fluctuation unknowns, χχχτ , are interpolated along the y1

coordinate as follows:

χχχτ(xxx;y1) = Ni(y1)χχχτi(xxx) i = 1,2, ...,n (7.14)

where χχχτi(xxx) is the nodal unknown vector and n is the total number of beam nodes.
The geometrical relations of the beam element read:

εεε = ε̄εε +Dχχχ. (7.15)
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Following the usual notation of micromechanics formulations, the vector of the global strains,
ε̄εε , is written as

ε̄εε
T =

{
ε̄11 ε̄22 ε̄33 2 ε̄23 2 ε̄13 2 ε̄12

}
(7.16)

and the differential operator, D, is defined as:

D =



∂

∂y1
0 0

0 ∂

∂y2
0

0 0 ∂

∂y3

0 ∂

∂y3

∂

∂y2
∂

∂y3
0 ∂

∂y1
∂

∂y2

∂

∂y1
0


(7.17)

Subsequently, the functional Π1 of Eq. (7.12) can be rewritten as

Π
∗
1 =

1
2

∫
V
(ε̄εε +Dχχχ)T C̃(ε̄εε +Dχχχ) dV, (7.18)

and the PBC are also applied in the fiber direction:

χχχτ1 = χχχτn τ = 1,2, ...,M, (7.19)

where 1 and n are the first and last nodes. The master-slave method is employed to impose
Eq. (7.19) in the numerical model. It is worth noting that in the case of fiber-reinforced
composites, the solutions do not vary along the beam axis thus a single B2 element can be
placed with no loss of accuracy. After the application of Eq. (7.19), the remaining DOF are
those of a single section. As noted in [221], the volume constrains of Eq. (7.11) do not affect
the variation of Π∗

1, although they reduce the admissible solutions of the fluctuations to a
unique vector χχχτi.

Finally, using Eqs. (7.14), (7.13) and (7.18), the functional Π∗
1 reads

Π
∗
1 =

1
2
(χχχT

s j EEE
τsi j

χχχτi +2χχχ
T
s j DDD

s j
hε

ε̄εε + ε̄εε
T DDDεε ε̄εε) (7.20)
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where
EEEτsi j =

∫
L

∫
Ω

(D(FτNiIII3))
T C̃D(FsN jIII3)dΩdy1

DDDτi
hε

=
∫

L

∫
Ω

(D(FτNiIII3))
T C̃dΩdy1

DDDεε =
∫

L

∫
Ω

C̃dΩdy1

(7.21)

III3 being the 3× 3 identity matrix. EEEτsi j and DDDτi
hε

are the fundamental nucleus of the UC
problem. On the other hand, DDDεε is the effective stiffness matrix of the material by volume
average. Note that EEEτsi j is a 3×3 matrix, DDDτi

hε
a 3×6 matrix and DDDεε a 6×6 matrix. The

meaning of the indexes τ , s, i and j is equivalent to previous chapters (see Chapter 3).
The explicit expressions of the components of EEEτsi j are equivalent to those of the standard
fundamental nucleus Kτsi j for structural problems, which was introduced in Eq. (3.36). The
expressions of the DDDτi

hε
matrix are indicated here:

Dτi
hε 11 = C̃11

∫
l
Ni,y1 dy1

∫
Ω

Fτ dΩ Dτi
hε 12 = C̃12

∫
l
Ni,y1 dy1

∫
Ω

Fτ dΩ

Dτi
hε 13 = C̃13

∫
l
Ni,y1 dy1

∫
Ω

Fτ dΩ Dτi
hε 14 = 0

Dτi
hε 15 = C̃55

∫
l
Nidy1

∫
Ω

Fτ,z dΩ Dτi
hε 16 = C̃66

∫
l
Nidy1

∫
Ω

Fτ,x dΩ

Dτi
hε 21 = C̃12

∫
l
Nidy1

∫
Ω

Fτ,x dΩ Dτi
hε 22 = C̃22

∫
l
Nidy1

∫
Ω

Fτ,x dΩ

Dτi
hε 23 = C̃23

∫
l
Nidy1

∫
Ω

Fτ,x dΩ Dτi
hε 24 = C̃44

∫
l
Nidy1

∫
Ω

Fτ,z dΩ

Dτi
hε 25 = 0 Dτi

hε 26 = C̃66

∫
l
Ni,y1 dy1

∫
Ω

Fτ dΩ

Dτi
hε 31 = C̃13

∫
l
Nidy1

∫
Ω

Fτ,z dΩ Dτi
hε 32 = C̃23

∫
l
Nidy1

∫
Ω

Fτ,z dΩ

Dτi
hε 33 = C̃33

∫
l
Nidy1

∫
Ω

Fτ,z dΩ Dτi
hε 34 = C̃44

∫
l
Nidy1

∫
Ω

Fτ,x dΩ

Dτi
hε 25 = C̃55

∫
l
Ni,y1 dy1

∫
Ω

Fτ dΩ Dτi
hε 26 = 0

(7.22)

Note that in this case the material subindexes are written with respect to the material system
depicted in Fig. 7.2.

Performing the variation of Π∗
1, it is found that the minimum of the functional is provided

by the following linear expression

EEEτsi j
χχχτi =−DDDs j

hε
ε̄εε. (7.23)
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Since χχχτi is a linear function of ε̄εε , it can be state that

χχχτi(xxx) = χχχτi0 ε̄εε(xxx) (7.24)

Subsequently, the linear system of equations results in:

EEEτsi j
χχχτi0 =−DDDs j

hε
(7.25)

where χχχτi0 is a 3×6 matrix including the fluctuation solutions.

7.3.1 Effective properties and local fields

The equivalent homogeneous properties of the heterogeneous material are straightforwardly
obtained from the solution of the linear system of Eq. (7.25). For this, we consider that the
energy stored in the equivalent homogeneous material is equal to that of the heterogeneous
material. Substituting Eq. (7.24) into Eq. (7.23), and then into the strain energy of Eq. (7.20);
and making the energetic equivalence, the effective stiffness matrix is obtained as:

C̃∗
=

1
V
(χχχT

s j0DDDs j
hε
+DDDεε) (7.26)

where C̃∗
contains the material properties of the equivalent homogenized body.

The computation of the local fields is performed by simply introducing the fluctuation
solutions obtained from Eq. (7.25) back into the geometrical and constitutive equations. In
this manner, the local strains are defined as

εεε = ε̄εε +D(FτNi χχχτi0 ε̄εε) (7.27)

and the local stresses are obtained from the Hooke’s law:

σσσ = C̃εεε. (7.28)

In MSG, the local fluctuations are obtained from the solution of the stationary value of
the energy functional and, therefore, no external loads are required to compute the effective
properties of the homogenized material. Furthermore, due to the decoupling between the
fluctuation unknowns, χχχτi0, and the global strains, ε̄εε , the local solutions can be computed for
arbitrary inputs with only a single run of the code.
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7.4 Example

Benchmarking is essential in micromechanics to assess new formulations in a common
framework. In this line, several worldwide projects were organized to present the capabilities
of many different multiscale formulations, among these the World Wide Failure Exercise
(WWFE) [91] and the Micromechanics Simulation Challenge (MSC) [181]. The numerical
example included here was defined by Sertse et al. [181] in the framework of the latter
project. It considers an hexagonal pack of carbon/epoxy material and both the effective
properties and the local stress fields are requested. The model is assessed against the solutions
provided by the participants in MSC, among them FVDAM [43, 44], GMC and HFGMC
[16], DIGIMAT [1], Altair MDS [76], ESI-VPS [84], SwiftComp [220] and RVE analysis
based on 3D FEM.

y1

y3

y2

Fig. 7.3 HLE beam model of the hexagonal pack UC.

The fiber is modeled as transverse isotropic with the following elastic properties: E1 = 276
GPa, E2 = 19.5 GPa, G12 = 70 GPa, G23 = 5.74 GPa, ν12 = 0.28 and ν23 = 0.7; whereas
the matrix is isotropic, with E = 4.76 GPa and ν = 0.37. The fiber volume fraction is equal
to 0.6. The CW model of the hexagonal pack is shown in Fig. 7.3. A discretization of 15
HLE domains is created for the cross-section surface, including one domain per fibre. The
effective properties are shown in Table 7.1. The obtained solutions are in good agreement
with those of the references. It can be observed that the most challenging results are those of
the transverse properties, although the solutions converge to the values of SwiftComp and
3D FEM as the HLE order increases.

The computation of the local solutions can be very demanding due to the high gradients
of the strain/stress fields over the heterogeneous body. Given the coarse domain distributions
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Table 7.1 Effective properties of the hexagonal pack (Ei and Gi j in GPa). References from
[181].

Model E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
References

FEA RVE 167.33 10.67 10.67 6.38 6.39 3.33 0.312 0.312 0.600
FVDAM 167.30 10.67 10.67 6.38 6.39 3.33 0.310 0.310 0.600
GMC 167.40 10.46 10.08 5.33 4.45 3.00 0.312 0.312 0.612
HFGMC 167.40 10.71 10.69 6.58 6.54 3.36 0.312 0.312 0.603
DIGIMAT-MF/MT 167.52 10.53 10.53 6.36 6.36 3.27 0.312 0.312 0.605
Altair MDS 167.40 10.71 10.71 6.45 6.44 3.35 0.312 0.312 0.600
ESI 166.71 10.67 10.67 6.35 6.38 3.33 0.312 0.312 0.599
SwiftComp 167.33 10.67 10.67 6.38 6.39 3.33 0.312 0.312 0.600

CW-HLE
HL2 167.65 10.84 10.84 6.56 6.69 3.40 0.312 0.312 0.599
HL4 167.65 10.71 10.71 6.42 6.44 3.36 0.312 0.312 0.599
HL7 167.65 10.68 10.68 6.40 6.41 3.34 0.312 0.312 0.600

typically used in HLE models, high polynomial orders are needed. Figure 7.4 shows the
longitudinal stress σ11 generated by a unitary longitudinal strain ε11, Fig. 7.5 shows the shear
stress σ13 under shear strain ε13, Fig. 7.6 shows the shear stress σ23 under shear strain ε23

and Fig. 7.7 shows the shear stress σ12 under combined strains ε11 and ε13. The left-hand
side of the aforementioned figures includes the 3D plot of the correspondent stress solutions,
whereas the right-hand side plots the distribution of stresses along the diagonal of the section
of the hexagonal pack (dashed line in Fig. 7.3) for all the models considered. There is a
remarkable agreement between the HLE solutions, and the 3D FEA and SwiftComp results.

It is obvious that HLE and SwiftComp should ideally converge to the same solutions for
further refinements, since both are based on the same governing equations. The focus here is
to assess the use of higher-order beam theories in a multiscale framework. The computational
times of each micromechanical model can be found in Table 7.2. All the reference times
are extracted from [181]. The proposed solutions were obtained in a Windows 7 64-bit OS,
Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz 16.0GB RAM.

Table 7.2 Computational time (s) of the homogenization and dehomogenization. Reference
values from [181].

Model FVDAM GMC HFGMC DIGIMAT MDS ESI SwiftComp HL7 FEA
Homog. 4 - - 0.03 4.58 - 0.26 0.19 -
Dehomog. 0.88 - - - 5.97 - 0.93 0.73 -
Total 4.88 0.292 1.151 - 10.55 29.00 1.19 0.92 42.00
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Fig. 7.4 Longitudinal stress σ11 generated by a unitary longitudinal strain ε11. Reference
values from [181].
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Fig. 7.5 Shear stress σ13 generated by a unitary shear strain ε13. Reference values from [181].
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Fig. 7.6 Shear stress σ23 generated by a unitary shear strain ε23. Reference values from [181].
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Fig. 7.7 Shear stress σ12 generated by combined strains ε11 and ε13. Reference values from
[181].





Chapter 8

Refined beam elements based on mixed
assumptions

This chapter proposes the application of the Reissner’s mixed variational theorem (RMVT)
[173] for the correct computation of the transverse stresses in generic laminates. Using this
mixed variational statement, both displacements and stresses are included in the solution
vector, and, therefore, the compatibility and equilibrium conditions can be prescribed and
satisfied exactly at the interfaces and boundaries of the laminate. A layer-wise (LW) ap-
proach is adopted for both fields and a p-refinement of the stress solutions is performed via
hierarchical Legendre expansion (HLE) models.

The present development and results can be found in [58].

8.1 Laminate considerations

Differently from metallic plates, the transverse anisotropy exhibited by multilayered materials
leads to complex distributions of displacements, strains and stresses over the stacking
direction. Due to the heterogeneity of the laminate, the transverse deformations play a role
in the mechanical response of the structure and, therefore, should not be neglected in the
simulation. The compatibility and equilibrium conditions of the elastic problem requires
continuous displacements (ux,uy,uz) and transverse stresses (σzz, σxz, σyz), respectively,
across the thickness of the laminate. This condition is known as interlaminar continuity
(IC) and represents a major challenge in the modeling of composite laminates, as shown in
book of Reddy [170], among others. The problem can be summarized as follows: in order
to satisfy the equilibrium conditions, the transverse deformation must be distinct layer by
layer and, therefore, the slope of displacement fields must exhibit sudden changes at the ply
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z z

ui σiz

Fig. 8.1 Typical displacement and transverse stress fields across the thickness of multilayered
structures.

interfaces. This well-known behavior is commonly known as the zig-zag effect (ZZ) and
it is illustrated in Fig. 8.1, which shows the IC in multi-layered structures. Carrera [23]
noted that the ZZ and IC conditions are strongly connected and must be modeled properly to
obtain an accurate description of the laminate response. Mathematically speaking, the model
should compute C0 displacements and C0 transverse stresses along the thickness direction.
These conditions, which are denominated as the C0

z -Requirements [24], are not fulfilled in
the majority of multilayered theories available today in composite design.

8.2 Reissner’s mixed variational theorem (RMVT)

The principle of virtual displacements (PVD) is probably the most commonly used variational
statement for the development of displacement-based FEM formulations. It makes use of
compatible displacement fields as variables and sets the equilibrium of the internal and
external works. In static analyses, the PVD can be written as:∫

V
(δεεε

T
p σσσ p +δεεε

T
n σσσn)dV = δLe. (8.1)

Note that the elastic energy has been decoupled into in-plane components (subscript p)
and transverse components (subscript n), being σσσ p = {σyy,σxx,σxy}, εεε p = {εyy,εxx,εxy},
σσσn = {σzz,σxz,σyz} and εεεn = {εzz,εxz,εyz}. The geometrical and constitutive equations, Eqs.
(2.2) and (3.12) respectively, are introduced in the PVD to derive the governing equations
in terms of the displacement unknowns. As a consequence, the stress fields are computed
a posteriori using the displacement derivatives back in the Hooke’s law. Subsequently, the
C0

z -Requirements are never guaranteed a priori and can only be approximated via refinement
of the model. A possible solution to this issue is the use of stress recovery methods, which
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allow it to satisfy the C0
z -Requirements via integration of the 3D equilibrium equations, see

Whitney [210], although this process is done also a posteriori.
The C0

z -Requirements can be completely fulfilled a priori if both the displacements
and stresses are taken as variables in the variational principle. This can be done via the
Hu-Washizu principle [206], which imposes the compatibility conditions in the PVD through
Lagrange multipliers, or the Hellinger-Reissner principle [171], which imposes the equilib-
rium of the stresses as a constraint to the principle of virtual forces. In these mixed variation
principles, the Lagrange multipliers become a second set of variables, i.e. stresses in the
Hu-Washizu principle and displacements in the Hellinger-Reissner principle.

In laminated plates, Reissner realized that it is enough to impose the equilibrium only
in the transverse direction. Indeed, the RMVT establishes the C0

z -Requirements a priori
and completely through the use of independent fields for the displacements and transverse
stresses. The IC is imposed in the PVD by adding and extra term to the internal energy:∫

V
(δεεε

T
pG σσσ pH +δεεε

T
nG σσσnM +δσσσ

T
nM(εεεnG −εεεnH))dV = δLe, (8.2)

where the subscript H denotes computation through the Hooke’s law, subscript G denotes
computation through the geometrical relations and subscript M denotes the use of assumed
fields for the transverse stresses, σσσnM. Note that the IC conditions are satisfied via the
compatibility of transverse strains obtained independently from the geometrical relations and
the constitutive laws, or

εεεnG = εεεnH . (8.3)

By virtue of the RMVT principle, the transverse stresses, σzz,σxz,σyz, become unknowns of
the mechanical problem an can be prescribed to be continuous through the laminate thickness.
The in-plane stresses, σxx,σyy,σxy, which are discontinuous in the thickness direction, are
computed a posteriori through the Hooke’s law.

8.3 Constitutive and geometrical relations

For a generic kth-lamina, the Hooke’s law reads

σσσ
k = C̃k

εεε
k (8.4)
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Following the same notation of Eq. (8.1), the constitutive laws can be rewritten as

σσσ
k
pH = C̃k

ppεεε
k
nG + C̃k

pnεεε
k
nG

σσσ
k
nH = C̃k

npεεε
k
pG + C̃k

nnεεε
k
nG

(8.5)

where the stiffness matrices for an orthotropic lamina read:

C̃pp =

 C̃11 C̃12 C̃16

C̃12 C̃22 C̃26

C̃16 C̃26 C̃66

 C̃nn =

 C̃33 0 0
0 C̃44 C̃45

0 C̃45 C̃55


C̃pn = C̃T

np =

 C̃13 0 0
C̃23 0 0
C̃36 0 0

 .

(8.6)

In order to obtain the transverse strains from the Hooke’s law, εnH , it is possible to rewrite
the constitutive relations as follows (see [26]):

σσσ
k
pH = Ck

ppεεε
k
nG +Ck

pnσσσ
k
nM

εεε
k
nH = Ck

npεεε
k
pG +Ck

nnσσσ
k
nM

(8.7)

In these equations, the components of the constitutive matrices Ck
pp, Ck

pn, Ck
np and Ck

nn

include both stiffness and compliance coefficients. They are obtained from the following
relations:

Ck
pp =C̃k

pp − C̃k
pn C̃k

nn
−1

C̃k
np

Ck
pn =C̃k

pn C̃k
nn

−1

Ck
np =− C̃k

nn
−1

C̃k
np

Ck
nn =C̃k

nn
−1

(8.8)

where C̃k
nn

−1
is the compliance matrix related to the transverse terms.
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8.3.1 Geometrical relations

In linear elasticity, the displacements and strains are related to each other through the
following geometrical relations:

εεε pG = Dp uuu

εεεnG = Dn uuu
(8.9)

where the differential operators Dp and Dn are written as

Dp =

 0 ∂

∂y 0
∂

∂x 0 0
∂

∂y
∂

∂x 0

 Dn =

 0 0 ∂

∂ z
∂

∂ z 0 ∂

∂x
0 ∂

∂ z
∂

∂y

 . (8.10)

8.4 RMVT-based beam theories

Most RMVT-based models available in the literature are derived via plate/shell formulations,
i.e. displacements and stresses are assumed only in the thickness direction. A few works
focus on mixed beam formulations, such as Murakami et al. [133], Murakami and Yamakawa
[135], and more recently Tessler [192], although they mostly deal with 2D beams. In the
current framework, the kinematics of the 3D beam are written as:

uuuk(x,y,z) = Fτ(x,z)uuuk
τ(y) τ = 1,2, ...,M (8.11)

as shown in Chapter 2. In order to formulate a mixed beam element, the stress variables must
be also assumed over the cross-section, as follows:

σσσ
k
nM(x,y,z) = Gτ(x,z)σσσ

k
nτ(y) τ = 1,2, ...,M (8.12)

A LW description of the transverse stresses is chosen for the sake of capturing the sudden
changes of the derivatives of the solutions at the interfaces. Figure 8.2 shows an illustration
of the LW mixed beam element. Using HLE theories, the C0

z -Requirements are imposed
simply as

uuuk
t = uuuk+1

b

σσσ
k
nt =σσσ

k+1
nb ,

(8.13)

for k = 1, ...,nl −1. The subscripts t and b denote top and bottom of the layer, respectively.
These conditions are introduced in the numerical model via assembly of the cross-section
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Ni

(a) Refined beam element

vertex modes

side modes

internal modes

(b) Cross-section

Fig. 8.2 Representation of the proposed refined beam element (a) and the distribution of the
unknowns over the cross-section (b) in a two-layer laminate.

sub-matrices in the global stiffness matrix, see Fig. 3.4. Furthermore, the availability of
cross-sectional unknowns over the boundaries of the section allows it to prescribe arbitrary
transverse stresses at the faces of the structure, for instance at top and bottom:

σσσ
Nl
nt =σσσ

∗
nt

σσσ
1
nb =σσσ

∗
nb

(8.14)

where the superscript ∗ denotes prescribed values. Accordingly, stress-free boundary condi-
tions can be directly imposed in the analysis a priori.

8.5 Fundamental nucleus

As for previous developments, the displacement and transverse stress variables of the cross-
section are interpolated over the beam axis via standard 1D shape functions:

uuuk
τ(y) = Ni(y)uuuk

τi i = 1, ...,nn (8.15)

σσσ
k
τ(y) = Ni(y)σσσ

k
τi i = 1, ...,nn (8.16)

where uuuk
τi = {uk

τix ,u
k
τiy ,u

k
τiz} and σσσ k

τi = {σ k
τix ,σ

k
τiy ,σ

k
τiz} are the displacement and transverse

stress nodal unknowns, respectively.
Introducing the interpolations of Eq. (8.15) and Eq. (8.16), and transverse assumptions of

Eq. (8.11) and Eq. (8.12), into the geometrical relations (Eq. (8.9)) and the mixed constitutive
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laws Eq. (8.7), the RMVT functional of Eq. (8.2) becomes∫
L

∫
Ω

(δuuukT
τi [D

T
p (FτNiIII3)Ck

ppDp(FsN jIII3)]uuuk
s j+

δuuukT
τi [D

T
p (FτNiIII3)Ck

pn(GsN jIII3)+(FτNiIII3)DT
n (GsN jIII3)]σσσ

k
s j+

δσσσ
kT
τi [(GτNiIII3)Dn(FsN jIII3)− (GτNiIII3)Ck

npDp(FsN jIII3)]uuuk
s j−

δσσσ
kT
τi [(GτNiIII3)Ck

nn(GsN jIII3)]σσσ
k
s j)dΩdy = δuuukT

τi Pk
τi

(8.17)

where III3 is the 3× 3 identity matrix. The right-hand side of this equation is the virtual
external work done by a generic load Pk

τi = (Pxτi Pyτi Pzτi)
k. In compact form, Eq. (8.17) can

be expressed as

δuuukT
τi [K

kτsi j
uu uuuk

s j +Kkτsi j
uσ σσσ

k
s j]+δσσσ

kT
τi [K

kτsi j
σu uuuk

s j +Kkτsi j
σσ σσσ

k
s j] = δuuukT

τi Pk
τi (8.18)

where Kkτsi j
uu , Kkτsi j

uσ , Kkτsi j
σu and Kkτsi j

σσ are the 3× 3 fundamental nuclei of the stiffness
matrix of the mixed beam element. The explicit expressions of the components of this arrays
are included in the following:

K τs i j
uu (1,1) = C22 Ii j

∫
Ω

Fτ,x Fs,x dΩ + C26 Ii,y j

∫
Ω

Fτ Fs,x dΩ + C26 Ii j,y

∫
Ω

Fτ,x Fs dΩ+

C66 Ii,y j,y

∫
Ω

Fτ Fs dΩ

K τs i j
uu (1,2) = C26 Ii j

∫
Ω

Fτ,x Fs,x dΩ + C66 Ii,y j

∫
Ω

Fτ Fs,x dΩ + C12 Ii j,y

∫
Ω

Fτ,x Fs dΩ+

C16 Ii,y j,y

∫
Ω

Fτ Fs dΩ

K τs i j
uu (1,3) = 0

K τs i j
uu (2,1) = C26 Ii j

∫
Ω

Fτ,x Fs,x dΩ + C12 Ii,y j

∫
Ω

Fτ Fs,x dΩ + C66 Ii j,y

∫
Ω

Fτ,x Fs dΩ+

C16 Ii,y j,y

∫
Ω

Fτ Fs dΩ

K τs i j
uu (2,2) = C66 Ii j

∫
Ω

Fτ,x Fs,x dΩ + C16 Ii,y j

∫
Ω

Fτ Fs,x dΩ + C16 Ii j,y

∫
Ω

Fτ,x Fs dΩ+

C11 Ii,y j,y

∫
Ω

FτFs dΩ

K τs i j
uu (2,3) = 0

K τs i j
uu (3,1) = 0 K τs i j

uu (3,2) = 0 K τs i j
uu (3,3) = 0

(8.19)
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K τs i j
uσ (1,1) =C23 Ii j

∫
Ω

Fτ,x Gs dΩ + C36 Ii,y j

∫
Ω

Fτ Gs dΩ

K τs i j
uσ (1,2) =Ii j

∫
Ω

Fτ Gs,z dΩ K τs i j
uσ (1,3) = 0

K τs i j
uσ (2,1) =C36 Ii j

∫
Ω

Fτ,x Gs dΩ + C13 Ii,y j

∫
Ω

Fτ Gs dΩ

K τs i j
uσ (2,2) =0 K τs i j

uσ (2,3) =Ii j

∫
Ω

Fτ,z Gs dΩ

K τs i j
uσ (3,1) =Ii j

∫
Ω

Fτ,z Gs dΩ

K τs i j
uσ (3,2) =Ii j

∫
Ω

Fτ,x Gs dΩ

K τs i j
uσ (3,3) =Ii,y j

∫
Ω

Fτ Gs dΩ

(8.20)

K τs i j
σu (1,1) = −C23 Ii j

∫
Ω

Gτ Fs,x dΩ + −C36 Ii j,y

∫
Ω

Gτ Fs dΩ

K τs i j
σu (1,2) = −C36 Ii j

∫
Ω

Gτ Fs,x dΩ + −C13 Ii j,y

∫
Ω

Gτ Fs dΩ

K τs i j
σu (1,3) = Ii j

∫
Ω

Gτ Fs,z dΩ

K τs i j
σu (2,1) = Ii j

∫
Ω

Gτ Fs,z dΩ

K τs i j
σu (2,2) = 0

K τs i j
σu (2,3) = Ii j

∫
Ω

Gτ Fs,x dΩ

K τs i j
σu (3,1) = 0

K τs i j
σu (3,2) = Ii j

∫
Ω

Gτ Fs,z dΩ

K τs i j
σu (3,3) = Ii j,y

∫
Ω

Gτ Fs dΩ

(8.21)
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K τs i j
σσ (1,1) = −C33 Ii j

∫
Ω

Gτ Gs dΩ

K τs i j
σσ (1,2) = 0

K τs i j
σσ (1,3) = 0

K τs i j
σσ (2,1) = 0

K τs i j
σσ (2,2) = −C44 Ii j

∫
Ω

Gτ Gs dΩ

K τs i j
σσ (2,3) = −C45 Ii j

∫
Ω

Gτ Gs dΩ

K τs i j
σσ (3,1) = 0

K τs i j
σσ (3,2) = −C45 Ii j

∫
Ω

Gτ Gs dΩ

K τs i j
σσ (3,3) = −C55 Ii j

∫
Ω

Gτ Gs dΩ

(8.22)

where the Ii(,y) j(,y) terms are the integrals of the interpolation functions defined in Eq. (3.38).
Finally, the linear system of the static problem is written as

δuuukT
τi : Kkτsi j

uu uuuk
s j +Kkτsi j

uσ σσσ
k
s j = Pk

τi

δσσσ
kT
τi : Kkτsi j

σu uuuk
s j +Kkτsi j

σσ σσσ
k
s j = 0.

(8.23)

8.6 Examples

The capabilities of the proposed beam elements are demonstrated through two numerical
examples. The first correspond to the well-known benchmark of Pagano [147], who provided
the exact solutions for thick laminates under cylindrical bending. The second considers a
composite sandwich beam from the work of Groh and Weaver [83].

8.6.1 Thick laminates

Two thick laminates are chosen first to assess the stress solution. The results are compared
against 3D exact solutions of Pagano [147, 148] and several LW and ESL models from the
literature. Figure 8.3 shows the features of the numerical case for a thick laminate. The
slenderness, L/h, is equal to 4 in all cases. A sinusoidal distributed load of magnitude
q0 is applied along the beam over the top face. The laminate is simply supported and
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Fig. 8.3 Loading case of the laminates.

cylindrical bending is imposed. Three-layer [0◦/90◦/0◦] and four-layer [0◦/90◦/0◦/90◦]
stacking sequences are considered. The normalized properties of the ply are:

E1/E2 = 25, G12/E2 = 0.5, G23/E2 = 0.2, ν12 = ν23 = 0.25 (8.24)

with E2 = 1 MPa. A number of cubic beam elements are placed along the beam axis and a
LW distribution of HLE domains is generated across the thickness.

Table 8.1 Convergence analysis of the beam element discretization based on the maximum
transverse displacement ūz = uz

100E2h3

q0L4 . Number of DOF between parentheses.

Laminate [0◦/90◦/0◦] [0◦/90◦/0◦/90◦]
No. elements 1 2 4 1 2 4
HL1 2.636 (96) 2.784 (168) 2.783 (312) 3.829 (120) 4.060 (210) 4.059 (390)
HL2 2.711 (216) 2.864 (378) 2.864 (702) 3.929 (276) 4.167 (483) 4.165 (897)
HL3 2.735 (336) 2.887 (588) 2.887 (1,092) 3.946 (432) 4.182 (756) 4.180 (1,404)
HLM1 2.645 (192) 2.776 (336) 2.790 (624) 4.460 (240) 4.686 (420) 4.709 (780)
HLM2 2.724 (432) 2.861 (756) 2.875 (1,404) 3.995 (552) 4.160 (966) 4.181(1,794)
HLM3 2.735 (672) 2.872 (1,176) 2.886 (2,184) 3.946 (864) 4.159 (1,502) 4.180(2,808)

Table 8.1 shows the convergence of the transverse displacements for an increasing number
of beam elements and polynomial orders of the expansion. Solutions based on the PVD are
also included. The verification with references from the literature is shown in Table 8.2. It
is possible to conclude that the convergence in terms of the LW transverse approximation
is rather fast, showing that the HLM2 and HLM3 models compute similar values. Figures
8.4, 8.5 and 8.6 show the solutions of longitudinal, transverse normal and transverse shear
stresses, respectively, of the symmetric laminate. The reference solutions of these graphs are
extracted from Carrera and Demasi [32] and are based on 2D finite elements. The results are
presented in normalized form according to the following criteria:

ūy = uy ×E2/(q0h) σ̄yy = σyy/q0 σ̄zz = σzz/q0 σ̄yz = σyz/q0 (8.25)
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Table 8.2 Maximum transverse displacement, ūz = uz
100E2h3

q0L4 , at z = 0 of the thick laminates
considered.

Model Description [0/90/0] [0/90/0/90]
Elasticity Solutions from Pagano’s theory [148] 2.887 4.181
HOT Higher-order theory by Lo etal. [120] 2.687 3.587
EMZC1 First-order ESL mixed model with ZZ effects by Carrera [26] 2.904 3.300
EMZC2 Second-order ESL mixed model with ZZ effects by Carrera [26] 2.831 3.478
EMZC3 Third-order ESL mixed model with ZZ effects by Carrera [26] 2.881 4.102
LWM4 Fourth-order LW mixed model by Carrera [26] 2.887 4.181
ESLM1 Third-order ESL model by Cho and Parmerter [47] - 4.083
M-p Parabolic LW mixed model by Carrera [25] 2.891 4.181
D-p Parabolic LW displacement-based model by Carrera [25] 2.870 4.164

Proposed LW models (four cubic beam elements)
HLM1 First-order HLE mixed model 2.790 4.709
HLM2 Second-order HLE mixed model 2.875 4.181
HLM3 Third-order HLE mixed model 2.886 4.180

The solutions of the anti-symmetric laminate are shown in Fig. 8.7, 8.8 and 8.9, account-
ing for normalized longitudinal displacements, transverse normal stresses and transverse
shear stresses, respectively. The reference solutions are extracted from Carrera [25], where
(M) refers to stresses computed a priori, (3D) corresponds to stresses obtained a posteriori
through integration of the 3D elasticity equilibrium equations, and (H) refers to stresses
obtained through the Hooke’s law. The solutions of the first-order (HL1) and second-order
(HL2) beam models based on the PVD, are also included in Fig. 8.9 (b) for comparison
purposes.

The following observations can be made from these results:

• Both the ZZ and IC effects are fulfilled in all cases of mixed models, even when
low-order expansions are employed. Indeed, one can notice that RMVT-based models
provide always continuous solutions of the transverse stresses at the interface between
layers independently of the accuracy of the stress fields.

• The PVD-based models cannot satisfy the C0
z -Requirements and show highly discon-

tinuous values of the interlaminar stresses, see Fig. 8.9 (b).

• The ESL models from the references (EMZC3 in Fig. 8.6 and ESLM1 in Fig. 8.9 (a))
provide a good global approximation of the transverse stresses but fail in capturing
the actual distribution at the interfaces, which mostly depend on the sudden changes
in the material properties. In particular, the EMZC3 model, which makes use of
the Murakami’s ZZ function [132], overestimates σzz towards the central ply of the
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Fig. 8.4 Longitudinal stress of the symmetric 3 layer laminate at y=L/2. References from
[32].
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Fig. 8.5 Transverse normal stress of the symmetric 3 layer laminate at y=L/2. References
from [32].
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Fig. 8.6 Transverse shear stress of the symmetric 3 layer laminate at y=0. References from
[32].

[0◦/90◦/0◦] laminate, and ESLM1 does not capture the high gradients of the stresses in
the 0◦ ply of the [0◦/90◦/0◦/90◦] beam.

• LW models are recommended when high levels of precision in the mechanical solutions
are required at the meso-scale. One can observe that by increasing the polynomial order
of the stress fields in the mixed models, the transverse stress solutions converge to the
3D elasticity solutions. The second-order mixed model (HLM2) provides acceptable
results in terms of transverse stresses, although the stress boundary conditions at top
and bottom faces are not fully satisfied, see Fig.8.6 for instance.

Finally, in order to fully exploit the features of the proposed model, the zero values of the
transverse stresses at top and bottom faces are imposed via stress boundary conditions (SBC).
The results are included in Fig. 8.10. Remarkably, a huge improvement can be observed
for both the first and second-order models. The linear model (HLM1 SBC) provides fairly
accurate transverse shear stresses, which are exactly zero at the free faces and piece-wise
continuous through the stacking sequence. Moreover, the quadratic model (HLM2 SBC)
shows now a very good agreement with respect to the elasticity solution.

8.6.2 Composite sandwich

The second example considers a symmetric sandwich beam with cross-ply skins. The features
of the cases and the material properties are taken from the work of Groh and Weaver [83].
The skins are made of carbon-fiber (cf) and the core is made of a symmetric sequence of
polyvinyl chloride foam (pvc) and honeycomb (hc). The stacking sequence of the sandwich
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Fig. 8.7 Longitudinal displacements of the anti-symmetric laminate at y=0. References from
[25].
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Fig. 8.8 Transverse normal stress of the anti-symmetric layer laminate at y=L/2. References
from [25].
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Fig. 8.9 Transverse shear stress of the anti-symmetric layer laminate at y=0. References from
[25].
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Fig. 8.10 Transverse shear stresses of the [0/90/0] and [0/90/0/90] laminates with imposed
stress-free boundary conditions. References from [25].
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Fig. 8.11 Loading case of the composite sandwich.

is [cf90/cf0/pvc/hc/pvc/cf0/cf90], where the subindexes 0 and 90 refer to the fiber angle with
respect to the y-axis. The geometry and loading case are illustrated in Fig. 8.11. Table 8.3
shows the material properties of the constituents normalized with respect to the shear moduli
of the honeycomb, G(hc)

12 . The relative thickness of each layer is [0.1/0.1/0.2/0.2/0.2/0.1/0.1]
and the slenderness ratio L/h is equal to 8. According to the authors of the original work
[83], this particular numerical case represents a challenging test for structural models due to
the high transverse anisotropy of the materials that compose the sandwich structure, which
maximizes the ZZ effects, and the fact that externally weak layers (cf90) are placed at top and
bottom faces. Distributed sinusoidal loads of a single wave and magnitude q0/2 are applied
downwards in correspondence with the top and bottom faces and plane stress assumptions
are imposed.

Table 8.3 Mechanical properties of the materials for the composite sandwich example. The
values of Young’s moduli and shear moduli are normalized with respect to G12 of the
honeycomb (hc).

Material E1 E2 E3 G12 G13 G23 ν12 ν13 ν23
cf 25×106 1×106 1×106 5×105 5×105 2×105 0.25 0.25 0.25
pvc 25×104 25×104 25×104 9.62×106 9.62×106 9.62×106 0.3 0.3 0.3
hc 250 250 2500 1 875 1750 0.9 3×10−5 3×10−5

Figures 8.12, 8.13 and 8.14 show the distribution of stress fields across the thickness of
the multilayered beam. The solutions from the reference paper correspond to a refined zig-zag
theory inspired on the work of Tessler et al. [193] and are based upon the Hellinger-Reissner
variational principle (HR-RZT), a modified third-order theory accounting for zig-zag effects
(MRZZ) and RMVT-based zig-zag model (RMVT-RZT). The 3D elasticity solutions of
Pagano [147] are also included. All the reference data has been extracted directly from the
published graphs. As for the previous numerical examples, four cubic beam elements are
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used along the longitudinal direction and each layer of the sandwich is represented by a
single HLE domain.

Table 8.4 Normalized solutions of the maximum axial and transverse shear stresses. All the
references are obtained from [83].

Model Description σ̄yy × h2

L2 σ̄yz DOF
Elasticity Solutions from Pagano’s theory 6.342 5.697 -
MRZZ Modified Reddy’s third-order theory with ZZ function 6.369 2.170 -
HR-RZT Hellinger-Reissner principle with refined ZZ function 6.343 5.702 -
RMVT-RZT RMVT principle with refined ZZ function 6.346 5.530 -
HLM1 First-order mixed HLE model 6.270 5.611 1,248
HLM2 Second-order mixed HLE model 6.352 5.639 2,964
HLM3 Third-order mixed HLE model 6.350 5.642 4,680

The results show that the proposed LW mixed beam model is able to provide acceptable
solutions already for the second-order model (HLM2) and the converge to the 3D elasticity
for the third-order model (HLM3). Although the HLM1 model computes accurate axial stress
distributions, one can observe that the solutions for the transverse stresses oscillate around
those of the elasticity theory, being this effect more evident towards the external layers. In
view of the results, it is possible to state that the use of independent LW assumptions for
displacements and stresses has proven to be a suitable choice for the accurate computation
of the stress solutions in generic laminated structures, at the expense of extra degrees of
freedom for the transverse stress fields.
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Fig. 8.12 Longitudinal stress of the composite sandwich at y = L/2. References from [83].
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Fig. 8.13 Transverse shear stress of the composite sandwich at y = 0. References from [83].
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Fig. 8.14 Transverse normal stress of the composite sandwich at y = 0. References from
[83].



Chapter 9

Free-edge analysis

The increasing adoption of composite laminates in the construction of new lightweight struc-
tures demands a comprehensive knowledge of their mechanical response at different scales.
Unlike traditional thin-walled metallic structures, laminates are inherently heterogeneous and
feature abrupt changes of the material properties through the thickness, see the book of Jones
[97]. Although this allows for the optimization of the material to a desired performance, it
also provokes some unwanted effects such as stress concentrations in holes, joints and free
edges, that must be fully understood for the safe deployment of composite parts. The study of
this phenomena demands a very high resolution from the numerical model, which usually is
obtained in two manners: reducing the dimension of the problem by imposing strong physical
constraints, such as plain strain assumptions, or increasing the computational expenses by
refining the mesh in the critical areas. This chapter proposes the use of higher-order beam
elements to reduce drastically the computational expenses of the free-edge analysis in generic
laminated problems.

9.1 The free-edge problem in the literature

The so-called free-edge effects refer to singular stress states that arise at the interfaces
between dissimilar layers in the vicinity of geometrical or mechanical discontinuities in the
structure. An illustration of the free-edge effects in typical composite beams is shown in Fig.
9.1. The classical laminate theories cannot provide any useful information of the free-edge
effects, therefore specific models continue to be developed for the understanding of the
mechanics of this complex problem. The first studies addressing the topic were carried out by
Hayashi [89] and Puppo and Evensen [161]. Then, in 1970 Pipes and Pagano [157] provided
the first approximation of the 3D stress fields at the free edges. The latter work was followed
by numerous studies, which have made the literature rich in analytic and numerical solutions
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Fig. 9.1 Free-edge stresses in generic composite beams.

dedicated to the free-edge problem, see the review of Mittelstedt and Becker [129]. However,
given the high complexity and singular nature of the interlaminar stress fields, no exact
elasticity solution is available and there is an active interest on the development of robust
tools that predict accurately these stress concentrations. In most studies, the benchmark
example is that defined in [157], which addresses a symmetric cross-ply laminate of infinite
length loaded under uniaxial extension. In that case, the solutions become independent of the
longitudinal direction and the problem is reduced to the section domain.

Physically, the appearance of stress peaks in the free edge can be explained as follows:
due to the Poisson effect and the diverse elastic moduli of the orthotropic material, the plies
tend to behave differently in the in-plane direction. Subsequently, in order to satisfy the
compatibility of the displacements at the interfaces, transverse shear stresses appear in a small
zone near the free edge and, consequently, the fulfillment of the equilibrium conditions lead
to the development of a full 3D state of stress, as illustrated in Fig 9.1. A correct evaluation
of these stresses, which can lead to the onset of delamination, becomes then necessary for
the design of composite structures. An overview of some of the most relevant solutions of
the free-edge problem which are available in the literature is included in the following.

Since the initial investigations of the free edge problem, many close-form approaches
have followed focusing on the accurate approximation of the stress fields. As an extension
of their early research, Pipes and Pagano [158] proposed an approximate elasticity solution
using a Fourier series for the displacements. Then, Pagano [149] employed a modified
version of the higher-order theory of Whitney and Sun [209] to provide an analytic solution
of the interlaminar normal stresses in symmetric composite laminates. Kassapoglou and
Lagace [102] used the force balanced method and the principle of minimim complementary
energy to solve the interlaminar stresses in angle-ply and cross-ply laminates. Becker [15]
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introduced a single-layer higher-order theory with a warping mode in the free-edge area.
The stress functions of Lekhnitskii [114] were employed by Yin [216] to develop a stress-
based layerwise model for the evaluation of the interlaminar stresses in a laminate strip
under combinations of extension, bending and twisting. Tahani and Nosier [191] presented
a displacement-based analytical solution of uniformly loaded composite laminates based
on the layerwise theory of Reddy [167]. An approximate stress function was introduced
by Flanagan [77] using an expansion of harmonic terms in the thickness direction and the
principle of minimum complimentary energy. An iterative method to solve the free-edge
stresses based on the extended Kantorovich method was employed by Cho and Yoon [48] for
uniaxial extension. In a further development, Cho and Kim [46] extended the method to study
also bending, twisting and thermal loads. More recently, Dhanesh et al. [65] introduced the
mixed-field multiterm Kantorovich method using the Reissner’s mixed variational theorem
[173] to satisfy all boundary conditions at the free-edges and the interlaminar continuity.

Numerical approaches have also been introduced to provide the 3D stress solutions at
the free edges. Among these, an special mention must be devoted to the pioneering work
of Pipes and Pagano [157], who used the finite difference method (FDM) to compute the
3D displacements and stresses in symmetric laminates. In the following years, the FEM
was employed in most of the works on free-edge due to its availability and versatility,
commonly to generate 2D plane strain models. Wang and Crossman [204] made an study
of the interlaminar singularities in symmetric laminates using three-node elements with a
mesh refinement in the free-edge zone. Whitcomb et al. [208] performed an extensive study
on the reliability of the FEM for the study of stress singularities using eight-node elements,
reporting that the stress solutions obtained are accurate except for the two elements in the
vicinity of the singularity. Although computationally more expensive, 3D solid elements have
also been employed to solve the free-edge problem by Raju and Crews [162] and Lessard et
al. [116], among others. Recenly, Martin et al. [127] compared the accuracy of 2D and 3D
finite elements for the onset of delamination due to shear in angle-ply laminates.

Non-traditional FE models based on plate/beam theories of structures have also been used
to obtain 3D stress fields at the free-edge. Robbins and Reddy [175] implemented a higher-
order LW plate element to study 3D-like localized effects in composite laminates, showing
interesting advantages in comparison to 3D solid models, such as faster element stiffness
integration and simplified input requirements. D’Ottavio et al. [67] proposed a number of
displacement-based and mixed plate elements with higher-order kinematics for the study
of the interlaminar stresses at the free-edges. Vidal et al. [201] used the proper generalized
method to split the problem in the 2D in-plane domain, modeled via eight-node elements, and
a 1D analysis on the thickness direction, represented by a layerwise fourth-order expansion.
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In a recent publication, Peng et al. [154] employed the mechanics of structure genome (MSG)
to study the free-edge effects in composite beams featuring generic laminations via a refined
cross-sectional analysis.

9.2 High-fidelity beam models for free-edge analysis

Many displacement-based theories of structure are available for the study of the mechanical
response of laminated structures. As introduced in Chapter 6, the multi-layered theories are
divided in equivalent-single layer (ESL), in which the displacement assumptions are taken for
the whole thickness of the laminate, and layer wise (LW), in which independent assumptions
are made for each layer. ESL theories are very attractive due to their lower computational
costs and they are extensively employed by engineers to acquire information about the global
response of the composite structure. However, these theories, which in most cases make use
of C1 kinematics across the stack of plies, are not suitable to provide accurate 3D stress fields
at the ply level, specially in thick laminates, or in particularly complex zones, such as open
holes or free-edges.

Despite the higher computational demands, LW models provide more information of
the meso-scale effects by accounting for the deformation of each ply independently. In this
class of theories, the C0 continuity of the displacements is imposed at the interfaces between
layers. By taking displacement assumptions at the ply-level, LW models are able to capture
the zig-zag effect of the displacements in the thickness direction, which is strongly related to
the complex distribution of transverse stresses in composite laminates, as noted by Carrera
[23].

y

z

x

coarse 1D mesh

refined cross-section

domain

generic boundary 

conditions

Fig. 9.2 Representation of the FEM modeling of composite laminates using CUF elements.

Free-edge effects in laminates are confined in a small zone whose size is directly pro-
portional to the thickness of the laminate, as reported in the experimental work of Pipes
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[159]. Subsequently, for the accurate damage analysis of laminated structures, a refinement
of the model is required towards the free edge, see for instance the works of Wang and
Crossman [204], Martin et al. [127] and Saeedi et al.[177]. Using CUF beam models, these
refinements can be allocated to the cross-section domain without affecting the discretization
along the longitudinal axis, which is generated to satisfy the global boundary conditions. In
such manner, one has in hand a model which is based on the FEM and therefore can deal
with generic boundary conditions, but is not affected by the aspect ratio constraints of the
3D elements. Figure 9.2 illustrates the modeling technique for the free-edge analysis of
laminated coupons. Note that the cross-section is discretized with LE or HLE refinements
towards the lateral edges, whereas the longitudinal mesh remains coarse.

9.3 Failure criteria

The possibility of obtaining the 3D stress fields over the whole laminate with reduced
computational costs enables it to perform advanced failure evaluations of the structure very
efficiently. In this manner, one can produce preliminary information about which are the most
critical laminations regarding the free-edge stresses. In other words, for a given laminate,
which are the stacking sequences that are most prone to delaminate. This kind of solutions
might be extremely useful as a support for the testing campaigns in the design of composite
structures, for instance allowing engineers to discard certain sequences for the experimental
tests, thus saving time and cost in the research process.

The Hashin 3D criteria [86] is chosen here to compute the failure indexes in laminated
coupons. This method was introduced as a 3D failure criteria for unidirectional fiber-
reinforced laminates and is based on the use of quadratic stress functions and the allowables
of transverse isotropic materials. Accordingly, four different failure modes are obtained:
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where σi j are the stress components expressed in the material coordinate system. Note
that for clarity reasons, the classical notation is used here for the definition of the material
directions, i.e. 1 for the fiber direction, 2 for the in-plane normal, and 3 for the out-of-plane
direction. X and Y are the material allowances in the fiber and transverse directions, T under
tension and C under compression. Si j are the shear strengths.

On the other hand, the onset of delamination is computed using the mixed mode quadratic
criterion [21], which reads:(
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≥ 1 (9.5)

where < σ33 > is equal to max(0,σ33) and ZT is the interlaminar normal strength.

9.4 Examples

The numerical assessment is conducted via two examples. The first is the well-known
benchmark case of Pipes and Pagano [157], which is included here to to verify the RMVT-
based elements and to perform the convergence analyses. The second shows the application
of displacement-based beam elements for the advanced failure indexing of generic laminates.

9.4.1 Pipes-Pagano problem

The numerical test considers an infinitely long symmetric laminate made loaded under
tension. The stacking sequence is [45,-45]S with all the layers of equal thickness and
material properties E1 = 137.9 GPa, E2 = E3 = 14.5 GPa, G12 = G13 = G23 = 5.9 GPa and
ν12 = ν13 = ν23 = 0.21. The section is rectangular with the width-to-thickness ratio, b/h = 4,
equal to 4. A global strain of magnitude εyy = ε0 = 0.01 is applied. The model characteristics
are illustrated in Fig. 9.3. Ten cubic mixed elements based on the RMVT (see Chapter 8) are
employed for the finite element discretization along the beam axis and a slenderness ratio of
L/b = 20 is considered in order to satisfy the length requirements.

The discretization of the cross-section is shown in the right side of Fig. 9.3. As mentioned
throughout this thesis, one of the advantages of HLE models in composite simulation is that
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Fig. 9.3 Geometry and mesh of the laminated beam under axial extension.

an arbitrary distribution of the expansion domains can be selected to represent the cross-
section surface, allowing the user to refine the kinematics of the beam model in the critical
zones such as free-edges. The mesh of the model is fixed and the accuracy is improved via
the polynomial order. The number of DOF of each model is enlisted in Table 9.1.

Table 9.1 Pipes and Pagano’s problem: DOF of each HLE mixed model.

Model DOF
HLM1 6,720
HLM2 17,976
HLM3 29,232
HLM4 45,192
HLM5 65,856

Figure 9.4 shows the interlaminar shear stresses at y = L/2. One can notice that the
approximated elasticity solutions of Pipes and Pagano [158] are properly represented if a
sufficiently high polynomial order is employed for the stress assumptions over the section
(HLM4 and above). The free-edge stresses are also in good agreement with the FEM solution
obtained by Wang and Crossman [204]. Figure 9.5 includes the shear stress distribution
across the thickness of the laminate at the free edge for different mixed and displacement-
based HLE models. The FEM solution of [204] and a close-form solution by Dhanesh et al.
[65], based on the extended mixed-field Kantorovic method, are included for comparison.
Finally, the dependency between the width of the free-edge zone with the thickness of the
laminate is highlighted in Fig. 9.6. The fourth-order model (HLM4) is used for three different
thicknesses, h, h/2 and h/3, showing how the width of the free-edge zone diminishes for
thinner laminates. Indeed, it can be observed that the 3D stress fields appear in a zone of the
same magnitude of the total thickness, as reported in [158].
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Fig. 9.4 Transverse shear stresses along x at y = L/2 and z = h/4 computed via HLE mixed
models.
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models.
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Fig. 9.6 Transverse shear stresses along x computed by the HLM4 model for different
thicknesses computed via HLE mixed models.
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The same analysis is done employing displacement-based elements and LE quadratic
theories. Therefore, the improvement of the stress fields is sough via h-refinement of the
cross-section discretization. Figure 9.7 includes the solutions of the transverse shear stresses
along z for an increasing number of mathematical layers per physical ply, from 1 to 8. It is
possible to observe that the equilibrium conditions are not satisfy a priori, although the error
diminishes as the model is refined.

9.4.2 Failure evaluation of tensile specimen

The failure index evaluation of a tensile specimen is carried out to show the capabilities
of the formulation in more realistic applications. The studied laminate is a balanced and
symmetric cross-ply based on the ASTM 3039 [2] recommendations. The material system
is the IM7/8552, see Table 9.2, and the stacking sequence is [45◦, -45◦, 90◦, 0◦]s. The
dimensions of the model are: L = 200 mm, b = 25 mm and h = 2.54 mm, with the thickness
of each lamina being equal to h0 = 0.3175 mm. A schematic representation of the specimen
and the boundary conditions are given in Fig. 9.8. On one end (y = 0), the displacements
in the y and z directions were constrained, while in the other (y = L) simply-supported
conditions were applied on the z direction.

Table 9.2 Mechanical properties of the IM7/8552 lamina.

Material E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23
IM7/8552 165.0 9.0 9.0 5.6 5.6 2.8 0.34 0.34 0.5

Table 9.3 Material strength values of the IM7/8552 lamina.

Failure criteria Zt [MPa] S13 [MPa] S23 [MPa] Xt [MPa] Yt [MPa] S12 [MPa]
Mixed mode delamination 60.0 90.0 90.0
Hashin 3D 73.0 90.0 57.0 2,560.0 73.0 90.0

F

Fig. 9.8 Dimensions and loading conditions of the tensile specimen
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The main aim of the present study is to demonstrate the efficiency LW beam models in
comparison with solid models generated in ABAQUS. The stress solutions of the proposed
model were evaluated at relevant points through the thickness within the structure, along
with a mesh convergence study; center of the beam (x = 0.0, y = L/2), and free-edge at
the mid-span (x = 12.5, y = L/2). In the analysis, attention was paid to the out-of-plane
stress components, which directly influence the onset of failure in composite materials. The
model data and computational times for both LW and solid models are tabulated in Table
9.4. Figure 9.9 shows the (a) normal and (b) shear stress distributions over the thickness at
the free-edge for an axial force of magnitude F = 6,350 N. It is noticeable how the stress
solutions computed via 3D elements evolve towards those of the LE models as the number of
elements in the thickness increases.

Table 9.4 Model discretizations for the tensile specimen.

Model Discretization∗ DOF CPU Time [s]

CUF-LW 320 L9 over the cross-section, 6 B4 along y. 77,805 82
ABQ3D-Coarse 30 x 8 x 200 linear elements, 1/layer. 168,237 27
ABQ3D-Medium 30 x 24 x 200 linear elements, 3/layer. 467,325 261
ABQ3D-Refined 70 x 40 x 400 linear elements, 5/layer. 3,501,933 3526
∗All discretizations are graded towards the free-edges
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Fig. 9.9 Out-of-plane stress components at the free-edge.

The three predominant failure modes which typically appear in tensile tests are investi-
gated: delamination onset, matrix failure, and fiber failure. Tables 9.5 and 9.6 summarize the
results of the present example. The former shows the failure indexes computed by the solid
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models for the onset load of the CUF-LW model, which is shown in the head. In other words,
the failure indexes computed for those loads. The latter includes the tensile loads of the
initial failure for each mode. Figures 9.10-9.13 show the contour plots of the failure indexes
for the CUF-LW and the finest solid model. It is possible to note that in the fiber tension
mode, Fig. 9.12, the model shows fiber failure at the interfaces towards in the free-edge. This
non-physical result is due to the high interlaminar shear stresses shown in Fig. 9.9, which are
included in the failure criteria, Eq. 9.1. In order to avoid this effect, the criterion is modified
to neglect the transverse shear stresses, σ13. The new results are shown in Fig. 9.13. It is
also worth noting that all these solutions are computed in a linear framework, therefore all
the failure onsets are independent of each other.

Table 9.5 Comparison of the failure indices computed by the different models considered
under the same loading value

Mode Delamination Matrix Tension Fibre Tension Fiber Tension∗

Load [N] 14,287.5 11,938.0 27,178.0 34,417.0
Model DOF Failure index value
ABQ3D coarse 168,237 0.28 0.4 0.7 1.07
ABQ3D medium 467,325 0.31 0.45 0.71 0.94
ABQ3D refined 3,501,933 0.6 0.73 0.82 1.05
CUF-LW 77,805 1 1 1 1
∗Modified Hashin 3D criteria with only in-plane components

Table 9.6 Values of the tensile load corresponding to the onset of failure of each mode
considered

Mode DOF Delamination Matrix Tension Fibre Tension Fiber Tension∗

ABQ3D coarse 168,237 27,178.0 18,796.0 32,385.0 33,401.0
ABQ3D medium 467,325 25,717.5 17,843.5 32,258.0 35,433.0
ABQ3D refined 3,501,933 18,478.5 14,033.5 30,226.0 33,655.0
CUF-LW 77,805 14,287.5 11,938.0 27,178.0 34,417.0
∗Modified Hashin 3D criteria with only in-plane components

9.5 Further developments

The capabilities of refined beam elements for the evaluation of stress concentrations in generic
laminates are demonstrated. The approach offers a good compromise between accuracy
and computational cost, and it is reliable in that it is based on the FEM. In fact, the current
framework enables it to perform free-edge analysis in generic beam geometries and boundary
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Fig. 9.10 Failure index for matrix tension
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Fig. 9.13 Failure index for fiber tension using the modified criteria
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Fig. 9.14 Illustration of the capabilities of refined beam elements for free-edge analysis.

conditions. As an example, Fig. 9.14 shows the computation of free-edge stresses at different
points in a C-section laminated beam loaded under vertical pressure. In this case, the stress
fields at the free edges are not constant anymore along the beam axis and no analytical
solution is available. Results like this one illustrate the potential of the proposed formulation
to extend the meso-scale 3D stress analysis to the study of the whole structural components.



Part III

Simulation of Lamb waves for structural
health monitoring





Chapter 10

Simulation of Lamb waves via
higher-order beams

The deployment of structural health monitoring (SHM) systems for the on-line damage
detection in aerospace structures is gaining much attention in the recent years. One of
the most investigated methods is the use of guided ultrasonic waves, a.k.a. Lamb waves,
generated by a system of actuator-sensors attached to the structure. The goal is to localize
and quantify the damage trough the scattering of the waves. The design and deployment
of such systems requires a profound knowledge of the mechanical behavior of ultrasonic
waves in thin-walled structures, therefore numerical models are paramount. However, the
simulation of this dynamic problem is extremely demanding due to the high computational
refinements which are needed to study this phenomena. Analytical models are in most cases
restricted to the computation of dispersion curves and traditional FEM models soon reach
their limits in terms of computational cost. Addressing the need for computationally efficient
numerical solutions, this chapter introduces the application of refined beam elements for the
analysis of Lamb wave propagation in the time domain. An extensive study on the quality of
different structural theories is carried out and the propagation in thin-walled beams, such as
stringers in aerospace structures, is shown.

The formulation and some of the results included in the present chapter have been
submitted for journal publication [59].

10.1 Introduction to Lamb waves

The term Lamb wave, given after his discoverer [110], refers to a class of guided ultrasonic
waves (GUW) which propagate in plates with free boundaries. These waves appear as a



150 Simulation of Lamb waves via higher-order beams

consequence of the reflections of the longitudinal and transversal waves with the stress-free
boundaries, which gives birth to an infinite range of new modes. Indeed, the displacements
field of the Lamb waves is a summation of longitudinal and the transverse components, as
shown in Fig. 10.1. These waves are highly dispersive and feature very short wavelengths,
which means that they can travel long distances within the structural body while being
sensitive to small defects. This characteristics make Lamb waves an optimal candidate for
the implementation of SHM systems.

z

y

(a) S0

z

y

(b) A0

Fig. 10.1 Symmetric and antisymmetric first Lamb wave modes.

In the case of elastic isotropic materials, the Lamb waves can be analytically described
making use of the Rayleigh-Lamb equations:

tan(β d
2 )

tan(α d
2 )

=−
[ 4αβk2

(k2 −β 2)2

]a
. (10.1)

with
α

2 = ω
2/c2

1 − k2, β
2 = ω

2/c2
2 − k2 (10.2)

where k is the wavenumber and ω the angular frequency. In Eq. 10.1, a = 1 describes
the symmetric modes and a =−1 the antisymmetric modes. The solution of this equation
provides the relation between wavenumber and the excited frequency. Subsequently, the
phase velocity, cp, is obtained as:

cp = ω/k. (10.3)

This relation provides the dispersion curves of the different wave modes. As an example, the
dispersion graph of an aluminum plate is shown in Fig. 10.2.

The group velocity, cg, can be then derived from the phase velocity using the following
relation [80]:

cg = c2
p

(
cp −ω

∂cp

∂ω

)−1
. (10.4)
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Fig. 10.2 Dispersion curves of a 5 mm thick aluminum plate. Data from GUIGUW software
[20].

The computation of the phase and group velocities is necessary when dealing with
Lamb wave problems, for instance to determine the traveling velocity of the wave packets
in different materials. However, the Rayleigh-Lamb relations cannot be directly obtained
for more complex materials, such as laminates. In order to study such cases, researchers
usually make use of numerical models to obtain the dispersion curves. Some of the most
well-known methods are: the transfer matrix method [122], the global matrix method [142],
the mass-spring lattice method (MSLM) [215] and the local interaction simulation approach
(LISA) [64, 112]. A semi-analytical finite element (SAFE) [55, 12] was also introduced
to deal with generic waveguides. This method exploits the versatility of the finite element
method (FEM) to describe complex material systems and cross-sections.

Although these methods provide useful information of the propagation of Lamb waves
very efficiently, FEM-based methods are still necessary when it comes to study reflections,
scattering and mode conversions [103, 139]. The simulation of GUW using the FEM results
to be a major challenge for several reasons, among them:

• The domain of the analysis is usually large due to the low levels of attenuation of the
Lamb waves. Also, engineers may need to simulate large parts to accurately capture
the scattering caused by arbitrary defects.
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• A very fine discretization is needed due to the short wavelengths involved. As a rule of
thumb, the element must be small in comparison to the minimum wavelength. Ratios
as low as 1

20 have been suggested for linear elements [131].

• The time domain has to be also discretize accordingly to maximum frequency (smallest
period).

As a consequence of these requirements, the simulation of SHM systems is computa-
tionally highly expensive. In order to increase the numerical efficiency, it is known that
higher-order methods based on hp-refinement techniques present some advantages for the
wave propagation analysis. Several FEM-based approaches are available in the literature,
such as the spectral element method (SEM) [105, 108], the enriched finite element method
[85], the isogeometric analysis (IGA) [63, 211], the spectral cell method [68] and the p-
version of FEM [212]. An interesting study of some of these methods is included in the latter
reference, which demonstrates the superior convergence rates of higher-order elements when
compared to standard lower order elements.

This chapter introduces the use of refined structural theories for the accurate simulation
of ultrasonic guided waves in thin-walled structures. The idea is to capture the displacement
fields of the Lamb wave modes using higher-order expansions such as TE and HLE. In this
manner, 3D spatial discretizations are avoided, reducing the complexity of the model and the
computational expense.

10.2 Beam theories for Lamb waves

Exploiting the geometrical features of thin-walled solids, researchers usually make use of
dimensionally reduced models, i.e. beams and shells, to simulate Lamb waves [107, 92].
These models enable it to reduce massively the computational needs by taking certain
assumptions in the smallest dimension. Since the spatial discretization is only done in a 1D
domain for beams or a 2D domain for shells, much bigger parts can be modeled. For the sake
of clarity, the displacement field of the Timoshenko beam [196] is written:

ux(x,y,z, t) = ux0(y, t),

uy(x,y,z, t) = uy0(y, t)− z φx(y, t)+ x φz(y, t),

uz(x,y,z, t) = uz0(y, t),

(10.5)

where φx and φz are the shear unknowns. The mathematical assumptions of this model allow
only displacements in the propagation direction, neglecting any deformation in the cross-
section. This limitations of the classical theories are highly detrimental when studying Lamb
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waves. The most obvious consequence is that the symmetric modes are totally neglected,
therefore only the A0 waves are usually addressed. Also, taking a look into Fig. 10.1 (b), it is
possible to see that the linear approximations in the thickness direction are not representative
of the displacement distributions in the antisymmetric modes. Therefore, the quality of the
analysis is compromised. In addition, the prediction of higher-order modes (A1, A2, ...) may
be compromised.

The basic idea of the proposed methodology is to use hierarchical higher-order theories
such that the dimensionally reduced FEM model can represent the complex displacement
fields of the symmetric and antisymmetric modes. For instance, if TE are employed, the
mathematical assumptions of the beam element are of the type

uuu(x,y,z, t) = Fτ(x,z) uuuτ(y, t), (10.6)

with Fτ = xa zb, a and b being integers between 0 and the polynomial order p according to
the Pascal triangle, see Table 2.1. Fig. 10.3 illustrates the possible deformations of classical
and TE models. By adding the linear terms (b), the beam model is able to simulate stretching,
therefore the symmetric mode S0 can be approximated. By increasing the polynomial order p,
the mathematical assumptions become rich enough to accurately represent the mode shapes
of Lamb waves.

z

y

(a) Timoshenko

z

y

(b) TE p=1

z

y

(c) TE p=N

Fig. 10.3 Possible deformations of the beam’s section for various theories. The dashed line
corresponds to the Euler-Bernouilli model.

10.2.1 Thin-walled theories

When analyzing the wave propagation in structural parts featuring generic thin-walled
cross-sections, such as C-, T- or L-section stiffeners, local beam models are not convenient.
Theories like TE lose accuracy when non-compact sections are studied. In this case, HLE
model allow the user to discretize the thin-walled cross-section with hierarchical expansion
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domains, which are able to capture very short waves traveling over the flanges of the beam
and throughout the structure, as illustrated in Fig. 10.4.
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Fig. 10.4 HLE modeling of beams

10.3 1D elements for wave propagation

For the purposes of the present research, it is sought to solve the dynamic problem in the time
domain. The FEM is selected to solve the 1D problem due to its versatility for the modeling
of generic geometries and defects. Future works may be dedicated to the investigation of
analytical solutions for the wave problem, such as close-form Navier solutions [79], radial
basis functions [176] or dynamic stiffness method [143]. Using the FEM for dynamic
problems, the generalized displacements, uuuτ , become a function of the longitudinal direction,
y, and the time, t. Interpolating we obtain:

uuuτ(y, t) = Ni(y) uuuτi(t), i = 1, ...,n, n = pb +1, (10.7)

where uuuτi are the unknowns of the dynamic problem and pb is the polynomial order of
the beam element. In order to efficiently solve the problem, higher-order Lagrange shape
functions are implemented to interpolate the unknowns along the beam axis. The one-
dimensional polynomial basis is defined in the interval [-1,1] as:

Ni(ς) =
pb

∏
i=1,i ̸= j

ς − ςi

ς j − ςi
, j = 1, ...,n, (10.8)

with the roots ςi being equidistant. Other methods such as SEM make use of a Gauss-Lobatto-
Legendre grid which enables it to easily diagonalize the mass matrix [106]. In that manner,
very efficient explicit solvers can be derived for the time domain problem. However, in



10.3 1D elements for wave propagation 155

the present implementation the focus is on the comparison between different higher-order
structural theories, which not always allow for this kind of discretization over the transverse
domain. The implicit time scheme used in this formulation is described at the end of the
section.

10.3.1 Governing equations

The equation of the wave propagation problem can be written as∫
V

δuuuT
ρ üuu dV +

∫
V

δεεε
T

σσσ dV =
∫

S
δuuuT PS dS. (10.9)

The first term corresponds to the virtual inertial work, δLine, the second is the virtual elastic
energy, δLint , and the last refers to the virtual external work, δLext , assuming that only
surface loads are applied. Now, introducing Eqs. (10.6), (10.7), (3.29), (3.31) into (10.9),
and given the virtual displacements δuuu = FsN jδuuus j, the governing equations are written as:

δuuuT
s j Mi jτs üuuτi +δuuuT

s j Ki jτs uuuτi = δuuuT
s j Ps j, (10.10)

where Ki jτs and Mi jτs are the 3×3 fundamental nucleus of the stiffness and mass matrices,
respectively, and Piτ is the 3×1 force vector. They are defined as:

Mi jτs =
∫

l

∫
Ω

Fs N j ρ III3 Fτ Ni dl dΩ, (10.11)

Ki jτs =
∫

l

∫
Ω

(D Fs N j)
T CDFτ Ni dl dΩ, (10.12)

Ps j =
∫

S
Fs N j PS dS. (10.13)

As in the previous chapters, the Gaussian quadrature is employed to compute the integrals.
Finally, via assembly of the fundamental nucleus, the equations of motion of the system are
defined as:

MÜ+KU = P, (10.14)

where M, K and P are the global arrays of the dynamic problem and U and Ü are the
displacement and acceleration vectors, respectively.

10.3.2 Time integration scheme

In time-domain analyses the equation of motion, Eq. 10.14, has to be discretized in time as
well. Due to the high frequencies that are typically involved in GUW, the time steps must
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be quite small. Depending on the element size and the material properties, the Courant-
Friedrich-Levy condition [52] states that

∆t ≤ le
cg
, (10.15)

where ∆t is the time increment and le is the size of the finite element. Values of the order of
10−8 s and smaller might be needed for typical aluminum plates [68]. There are two types of
integration schemes:

• explicit methods, in which the equilibrium state at a certain step depends only from the
solutions of the previous steps. The most well-known method is probably the central
difference method.

• implicit methods, in which the equilibrium state is evaluated taking into account the
previous and current steps. An example of this class of time integration is the Newmark
method.

In GUW and SHM applications, explicit time schemes are often preferred due to the
existence of lumping techniques [56] which allow it to obtain diagonal mass matrices.
Therefore, the inversion of the dynamic stiffness matrix becomes trivial. This is indeed the
major advantage of the SEM, which avoids solving the system of equations and only involves
matrix multiplications to advance in time. However, explicit schemes are conditionally stable
and there is an upper bound for the size ot the time step, above which the solution may
diverge.

In this research, the goal is to compare and assess different structural theories, therefore
it is not always possible to diagonalize the mass matrix. Subsequently, the advantages of the
explicit time schemes are lost. For this reason, an implicit Newmark method [138] is chosen
for all models tested. Accordingly, the displacement and velocities at a certain time t +∆t
are defined as:

U̇t+∆t = U̇t +[(1− γ)Üt + γÜt+∆t ],

Ut+∆t = Ut + U̇t∆t +[(1/2−β )Üt +β Üt+∆t ]∆t2,
(10.16)

where γ and β are parameters that control the integration stability and accuracy. An un-
conditionally stable scheme is obtained for γ = 1/2 and β = 1/4. Generally speaking, the
temporal refinement in GUW problems could make the use of implicit solvers too expensive,
although the computational cost can be massively reduced when only linear effects are
accounted. In linear regimes, the matrices of problem do not change in time, and, therefore,
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the triangularization of the dynamic stiffness matrix can be performed only once at the initial
steps of the analysis [13], as follows:

1. Assembly of the mass matrix M and stiffness K (the damping is neglected)

2. Assign the time step ∆t and compute the dynamic stiffness matrix

K̄ = K+
1

∆t2β
M (10.17)

3. Initialize U0, U̇0 and Ü0 for t = t0.

4. Factorize the dynamic stiffness matrix K̄ = LDLT

5. Start the loop on the time steps

6. Compute the dynamic force vector at t +∆t:

P̄t+∆t = Pt+∆t +M(
1

∆t2β
Ut +

1
∆tβ

U̇t +
(

1− 1
2β

)
Üt) (10.18)

7. Solve at current time step Ut+∆t = K̄−1 P̄t+∆t

8. Compute U̇ and Ü at current step:

U̇t+∆t =
γ

∆tβ
(Ut+∆t −Ut)+

(
1− γ

β

)
U̇t +

(
1− γ

2β

)
∆t Üt (10.19)

Üt+∆t =
1

∆t2β
(Ut+∆t −Ut)−

1
∆tβ

U̇t +
( 1

2β
−1

)
Üt (10.20)

Applied to the Newmark time scheme, we obtain a solver which is unconditionally stable
and that only involves one factorization followed by matrix multiplications at each iteration,
resulting in massive savings in terms of computational time.

10.4 Examples

This section includes the assessment of the formulation for time domain analyses of Lamb
waves. First, a benchmark test is performed to show the convergence properties of the
higher-order structural theories here proposed. Subsequently, a C-section beam is modeled
to show the 3D capabilities of the model in generic structures.
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10.4.1 Benchmark problem

The method to evaluate the accuracy of the proposed approach is based on the benchmark
problem proposed by Wilberg et al. [212]. The GUW problem is shown in Fig. 10.5. It
consists of an aluminum strip of thickness, d, equal to 2 mm and length, L, equal to 500 mm.
Plane strain assumptions are applied. The excitation is a wave packet of central frequency
f = 477.5 kHz and n = 32 cycles is generated by two parallel forces located at y = 0 and
z =±d/2 with magnitude F1,2 = F0sin(ωt)sin(ωt

2n ). If the forces have the same direction, the
antisymmetric mode A0 is excited; otherwise, the symmetric mode S0 is excited. Symmetric
conditions are applied at y = 0. The material data can be found in Table 10.1.

Table 10.1 Material properties of the Aluminum strip.

Young’s modulus, E 70 ×109 Pa
Poisson ratio, ν 0.33
Density, ρ 2700 kg/m3

Longitudinal speed, c1 6197 m/s
Transversal speed, c2 3121 m/s

Fig. 10.5 Geometrical features of the metallic strip used in the numerical assessment. Dis-
tances in mm.

The proposed example is interesting in that an analytical solution is available, see for
instance Graff [82] or Giurgiutiu [80]. In order to get it, one has to solve the Rayleigh-Lamb
equations, Eq. (10.1), which provide the relation between the wave number, k, and the angular
frequency, ω . Then, the time-dependent displacement fields and the dispersion curves of
the phase and group velocity are obtained straightforwardly. For the current problem, the
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following values are obtained:

cpS0 ≃ 5316 m/s, cpA0 ≃ 2298 m/s, (10.21)

cgS0 ≃ 5130 m/s, cgA0 ≃ 3126 m/s. (10.22)
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Fig. 10.6 Time signal of the normalized vertical displacement of the anti-symmetric Lamb
wave at points A and B.

Figure 10.6 shows the vertical displacements (u(A) and u(B)) and the envelopes (e(A)
and e(B)) of the anti-symmetric wave at points A and B obtained from a fine model of
fourth-order HLE beam elements and the analytical equations. The quality of the numerical
model is quantified by evaluating the time-of-flight (TOF) of the wave packet from one
station to the other. For this purpose, the following procedure is performed. First, the Hilbert
transform is applied to the time signal. At point A:

HA(u(t)) =
1
π

∫
∞

−∞

uA(τ)
1

t − τ
dτ. (10.23)

Then, the envelope of the time signal can be computed as:

eA(t) =
√

H2
A +u2

a. (10.24)

Subsequently, the centroid of the envelop corresponds to:

tA =

∫ tmax
0 eA(t) t dt∫ tmax
0 eA(t) dt

. (10.25)
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Finally, the TOF is computed as tB − tA. The error is computed comparing to the analytical
solution.

Quality of the longitudinal mesh

In order to assess the convergence rates of the longitudinal mesh, a fine HLE model of fourth
polynomial order is used for the transverse expansion as it assures a minimum contribution
to the total error. Figure 10.7 includes the convergence rates of the A0 and S0 modes for
different polynomial orders. Linear 2-node (B2) to sixth-order 7-node (B7) elements are
considered in the study. The abscissa of the plots, χ , is the parameter of the discretization,
defined as:

χ =
nλ

L
, (10.26)

where n is the total number nodes and λ = cp/ f . This parameter is proportional to the
number of degrees of freedom per wavelength, therefore it gives an idea of the mesh density.
Note that, since λ is proportional to the phase speed, see Eq. (10.22), χ is different for
the S0 and A0 modes. From the convergence results, one can observe that for equal mesh
densities, the convergence of higher-order elements is clearly increased. In fact, linear
and quadratic elements are not recommended as highly refined meshes are needed to get
convergent solutions.
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Fig. 10.7 Convergence analyses for the A0 and S0 waves propagating along the aluminum
strip.

The effects of shear locking in lower-order elements are studied as well. The results
obtained from elements with full integration of first, second and third order (B2, B3 and B4,
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respectively) are compared to those of locking-free beam elements (MITC2, MITC3 and
MITC4), introduced in Chapter 4. Figure 10.8 shows that the effect of locking is minimum
in GUW problems due to the fact that a high number of elements is inherently necessary to
capture the short wavelengths, therefore the shear energy terms of the stiffness matrix are
always well approximated.
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Fig. 10.8 Comparison between full integrated elements and MITC elements (A0).

Evaluation of structural theories

In this section, the assessment and performance of different classical to higher-order structural
theories for the simulation of Lamb waves is addressed. According to the convergence
analysis of the 1D discretization, 200 B7 elements (χA0 = 11.56, χS0 = 26.74) are employed
along the y-axis, ensuring a negligible numerical error. The same procedure to evaluate the
quality of the model is carried out on the following theories:

• Classical theories: Euler-Bernoulli (E-B) and Timoshenko (T).

• TE: from first (TE1) to seventh order (TE7).

• HLE: from first (HL1) to seventh order (HL7).

The results are included in Fig. 10.9. The left-hand plot shows the error of the classical
and TE models for increasing orders, whereas the right-hand plot shows the HLE solutions.
Both A0 (white squares) and S0 (black dots) modes are analyzed. Similar rates are obtained



162 Simulation of Lamb waves via higher-order beams

-1 0 1 2 3 4 5 6 7

10-2

10-1

100

101

102

 

 

 A0
 S0

E
rr

or
 (%

)

TE
E-B T
Classical
 theories

1 2 3 4 5 6 7

10-2

10-1

100

101

102

 

 

 A0
 S0

HLE

Fig. 10.9 Convergence of the p-order on the transverse direction for A0 and S0 modes.

from TE and HLE models, showing that the computation of the A0 wave is always more
critical: to achieve 1 % of error, a quadratic model is enough for the S0 wave, although a
third-order expansion is needed for the A0 mode.

In SHM systems, both modes are simultaneously excited by the piezoelectric transducers.
A second example is now considered to study how accurate can be each structural theory
in this case. The same problem of Fig. 10.5 is considered again, but in this case with the
force only applied at the top face. A Hanning window of f = 200 kHz and n = 10 cycles
is generated and the time signal is evaluated at midspan of the metallic strip, at y = 0.25 m.
The most relevant results of this study are shown in Fig. 10.10. The following remarks can
be made:

• Only models that include kinematic terms in the thickness direction can capture the S0

waves. Classical models such as Timoshenko and Mindlin do not foreseen this mode
for the given load application.

• Models that include a linear variation in the transverse direction (TE1 and HL1) are
able to capture the appearance of the S0 mode and show equivalent results for the
A0 mode. However, the error in the resultant group velocity of the S0 mode is still
high. Indeed, it is possible to observe how the reflected wave (S0r) is almost unnoticed
during the time of the analysis.
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Fig. 10.10 A0 and S0 modes in a metallic strip for a single force excitation of 200 kHz.
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• Second-order kinematics (TE2 and HL2) clearly improve the accuracy of the model.
As shown in Fig. 10.9, the error in the S0 mode rapidly decreases. Both the incident
(S0i) and reflected (S0r) symmetric waves are captured at the evaluated point.

Higher-order modes
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Fig. 10.11 A0 and A1 waves at three different stations (yA = 100 mm in blue, yB = 200 mm
in red and yC = 300 mm in grey) for a signal burst of 1.2 MHz.

When the excited frequency is greater than the cut-off value, a higher-order mode (A1, S1,
...) must be considered. This modes exhibit even more complex displacement fields, which
are difficult to capture using standard FEM discretizations. An interesting application of the
proposed models is to be able to accurately represent this modes without the need of altering
the longitudinal mesh. To show this capability, an anti-symmetric packet of f = 1.2 MHz
and n = 5 is generated at y = 0, leading to the appearance of A0 and A1 waves. The model
employs 200 B7 and a fifth-order expansion HL5. The time step is set as 2 ×10−8 s. Figure
10.11 shows the detected displacements at three different points along the aluminum strip,
whose locations are: yA = 100 mm (blue signal), yB = 200 mm (red signal) and yC = 300
mm (grey signal). The A1 mode is clearly visible and it is almost entirely decoupled from
the A0 mode already at point B. An snapshot of the propagating waves at t = 6×10−5 s is
included in Fig. 10.12, where one can observe the differences between the displacement
fields of each mode.

10.4.2 Lamb waves in thin-walled beams

When it comes to simulate the wave propagation in thin-walled structures, such as stiffeners
or box beams, HLE theories represent an efficient alternative to solid and plate formulations.
Plate elements are typically used for this kind of analysis, although as it is demonstrated in
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Fig. 10.12 A0 and A1 modes at t = 6×10−5 for a signal burst of 1.2 MHz.

the previous section, they lack in capturing all the physics of the problem. Solid models are
able to represent correctly the corners of the structure, although the aspect ratio constraints
make their use prohibitively expensive in real applications. Using HLE beams, the user can
model the cross-section with 2D hierarchical domains and the longitudinal axis via a 1D
mesh of higher-order elements. This methodology simplifies greatly the modeling phase and
allows to control the accuracy/cost trough the order of the theory.

0.5 m

0.05 m

0.1 m
thickness=0.002 m

A

(a) Geometry (b) Section

Fig. 10.13 Geometry and cross-section mesh of the C-section beam.

To illustrate this capability, a C-section beam made of aluminum is modeled and the
propagation of the Lamb waves over the time is computed. The geometrical features of the
structure are shown in Fig. 10.13 (a), whereas the discretization of HLE over the C-section
is included in (b). A second order expansion is used for the section domains and 50 B5
elements are placed along the beam axis, being the total number of DOFs equal to 92,259. A
single excitation of 100 Hz and 5 cycles is applied at the center of the web. An screenshot of
the propagating waves is shown in Fig. 10.14. It is possible to observe that the wavefront
over the web is clearly affected by the reflections at the top and bottom flanges. Also, the
model is able to capture the propagation over the flanges and the reflections at the free-edges.
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Figure 10.15 shows a cut plot of the structure at the same time, where one can observe the
complex mechanisms which arise at the corners of the section.

Fig. 10.14 Screeshoot of the propagating waves at 5.6 ×10−5 s.

Fig. 10.15 Cut of the C-beam.



Chapter 11

Structural theories for Lamb wave
simulation in laminated structures

This chapter demonstrates the potential of multilayered theories for the simulation of guided
ultrasonic waves in composite laminates. Differently from the previous developments of
the thesis, plate models are employed here due to their geometrical advantages for the
modeling of laminated structures. The numerical challenge represented by the Lamb wave
simulation in thin-walled structures is even more difficult when dealing with composite
materials. The anisotropy of the material and the heterogeneity across the stack of plies
lead to the appearance of more complex wave modes and scatterings. For this reason, the
simulation of damage detection systems must account for high-fidelity kinematics which
can capture the 3D motion of Lamb waves. Plate models based on the first-order shear
deformation theory (FSDT) are common choice among researchers to analyze efficiently
the propagation of Lamb waves in large parts. However, the poor kinematic assumptions of
these models neglect some physical effects of the wave propagation, such as the symmetric
modes and the related mode conversions. On the other hand, 3D elements can be used to
model the stack of plies ensuring a layer wise resolution, although the computational size
of the numerical problem rises extremely quickly as the number of layers increases or the
domain of interest becomes larger. As a middle ground between the latter two approaches,
different types of structural theories for plate elements are tested and presented here as a
tool to provide high-fidelity time-domain solutions for laminated structures with acceptable
numerical expenses.
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11.1 Lamb waves in composites

The introduction of composite materials in lightweight aeronautic structures has come
together with new challenges to ensure their safe service at all times. Although these
advanced structures have been investigated for many decades, their application in primary
load bearing components is considerably recent and the experience in the damage mechanisms
of these structures at a long time scale is still reduced. Moreover, typically used composite
laminates show different classes of defects in comparison to their traditionally metallic
counterparts, such as delaminations or intralaminar cracks, which sometimes can be difficult
to detect in regular inspections. Under these circumstances, it is clear that on-line SHM
systems should be seen not only as a mean to optimize the inspection campaigns and reduce
the maintenance costs, but also as a support for the safe deployment of these new structures
in the market.

Although the term Lamb wave was given originally to guided waves propagating in
isotropic plates with free boundaries [110], it is common to generalize its use to ultrasonic
elastic waves in thin-walled media, including composite laminates. Unlike in metallic plates,
due to the directionality of the mechanical properties in anisotropic media the wave front
is not circular anymore and the phase and group speeds must be calculated as a function of
the azimuth angle. In addition, shear horizontal modes usually coexist with the symmetric
and anti-symmetric modes. An illustration of the fundamental modes which may appear in
anisotropic plates under a generic excitation is shown in Figure 11.1.

S0 A0 SH-S0 SH-A0

wave direction

Fig. 11.1 Illustration of the fundamental modes of Lamb waves in an anisotropic plate,
including out-of-plane symmetric (S0), out-of-plane antisymmetric (A0), shear horizontal
symmetric (SH-S0) and shear horizontal antisymmetric (SH-A0).

In composite laminates, the heterogeneities of the carbon fiber reinforced polymers
(CFRP) and the change of mechanical properties between the different plies have substantial
effects on the resulting wave modes. First, the chosen stacking sequence determines the
predominant propagation directions of each of the fundamental modes, which may result
in complex shapes of the wavefront. Also, continuous mode conversions [111] of the long-
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wavelength symmetric mode (S0) into the shorter and slower antisymmetric mode (A0) are
observed in experimental tests. These conversions, which also appear under the presence of
geometrical discontinuities such as reinforcements or defects, make it more complicated for
SHM systems to elaborate useful information out of the detected signals.

11.1.1 Numerical considerations

Numerical simulations are used to support the experimental measurements and to provide a
better understanding of the scattering of the signals detected by the piezoelectric sensors under
the presence of defects. In this topic, one the most reliable and adopted approaches to capture
the complex Lamb modes is the use of 3D FEM models. Both h-methods (standard FEM
[103]) and p-methods (SEM [68], p-FEM [212], IGA [211]) can be used to discretize the
stack of plies with a mesh of solid elements which are able to provide a good approximation
of the displacement fields over the thickness of the plate. However, in this kind of layer
wise approaches, the number of elements increases dramatically with the number of layers
[136]. For this reason, these models are not feasible to study typical thin-walled composite
structures used for aerospace applications and are only employed to perform local analysis
[140].

A second widely adopted approach is the use of dimensionally reduced models based on
Mindlin kinematics, usually known as FSDT plates. This approach exploits the geometry
of thin-walled structures to reduce drastically the computational costs by accounting only
for the displacements and the out-of-plane rotations of the particles located in the mid-plane.
In this manner, the size of the numerical problems becomes independent of the number of
layers, thus larger domains and generic laminates can be studied [107, 178]. The issue of
FSDT plates here is that the Mindlin kinematics cannot capture the 3D phenomena involved
in Lamb wave propagation, which results in that some physics cannot be properly captured.
First, all the out-of-plane symmetric modes are neglected due to the omission of stretching
effects, limiting these solutions to approximated in-plane modes.

Also, the dispersive nature of Lamb waves imply that the modes change depending on
the excited frequency. Schulte et al. [179] showed through the computation of the dispersion
curves that, although FSDT-based models can provide a good accuracy for the low frequency
range, the computed phase and group speed steadily differ from those of the 3D elasticity
as the frequency increases. In addition, the representation of complex geometries such as
reinforcements or joints, is usually done through numerical artifacts which reduce the fidelity
of the model, among these rigid elements and offsets.

To overcome some of the aforementioned issues of FSDT elements, this chapter proposes
the use of refined multi-layered theories for plates. The basic idea is that by enriching the
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Fig. 11.2 Coordinate reference systems for plate elements.

kinematic field of the plate element, more physical effects can be included in the model,
and therefore the complex shapes of the Lamb modes in the thickness direction can be
systematically approximated. The user can then optimize the resolution according to the
desired accuracy, making it possible to perform very efficient simulations. Both ESL and LW
approaches are adopted in the present development. The main advantage of ESL plates is
that the kinematic assumptions are independent of the number of layers, thus the size of the
computational problem remains fairly low. On the other hand, LW models make independent
assumptions for each layer, therefore the number of degrees of freedom is proportional to the
number of layers. In addition, an interesting modeling technique based on HLE is introduced
for the study of joints, reinforcements or delaminations using a mixed ESL-LW approach.

11.2 Higher-order plate elements for wave propagation

Consider the reference system illustrated in Fig. 11.2 for composite plates. The x and y
coordinates define the plane of propagation of the waves, and the z coordinate is parallel to
the stacking direction. In the small displacement range, the geometrical relations of the plate
element are written as: 
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Considering an orthotropic layer, the the Hooke’s law provides the stress-strain relations as:

σxx

σyy

σzz

σxz

σyz

σxy


=



C̃11 C̃12 C̃13 0 0 C̃16

C̃12 C̃22 C̃23 0 0 C̃26

C̃13 C̃23 C̃33 0 0 C̃36

0 0 0 C̃44 C̃45 0
0 0 0 C̃45 C̃55 0

C̃16 C̃26 C̃36 0 0 C̃66
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(11.2)

where the stiffness matrix of the material, C̃, is written here in the global reference system
shown in Fig. 11.2. Therefore, its components, C̃αβ , depend on the mechanical properties of
the ply and the orientation angle θ , see Chapter 3.

11.2.1 Thickness expansions

Among all the models based on the ESL approach, the FSDT is probably the most adopted in
the literature and can be found in the majority of the commercial FEM codes. The FSDT
displacements are based on Mindlin’s kinematics:

ux(x,y,z, t) = ux0(x,y, t)+ z φy(x,y, t), (11.3)

uy(x,y,z, t) = uy0(x,y, t)− z φx(x,y, t), (11.4)

uz(x,y,z, t) = uz0(x,y, t). (11.5)

Note that the FSDT unknowns are 5 in total accounting for 3 displacements and 2 out-of-
plane rotations. According to the CUF, the kinematics of the plate model can be extended
systematically to account for all possible deformations of the plate section. In a compact
form, the displacement field of a CUF plate can be written as:

uuu(x,y,z, t) = Fτ(z) uuuτ(x,y, t) τ = 1, ... ,M, (11.6)

where Fτ are arbitrary 1D functions of the thickness coordinate, z, uuuτ are the expansion
unknowns, which vary over the xy-plane, and τ is the index of the expansion terms. The
choice and definition of the Fτ functions depends on the desired multi-layered approach, i.e
ESL or LW. Two polynomial expansions are used in this work: TE and HLE.
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TE

Higher-order ESL models can be generated by adopting a thickness expansion of the type
Fτ = zp, p being the polynomial order. In such a manner, a third-order TE model is defined
by the following kinematics:

ux(x,y,z, t) = ux0(x,y, t)+ z ux1(x,y, t)+ z2 ux2(x,y, t)+ z3 ux3(x,y, t), (11.7)

uy(x,y,z, t) = uy0(x,y, t)+ z uy1(x,y, t)+ z2 uy2(x,y, t)+ z3 uy3(x,y, t), (11.8)

uz(x,y,z, t) = uz0(x,y, t)+ z uz1(x,y, t)+ z2 uz2(x,y, t)+ z3 uz3(x,y, t), (11.9)

which account for a total of 12 DOF, including displacements, rotations and higher-order
warpings.

HLE

A convenient method to derive LW models is to generate non-local hierarchical expansions
with nodal unknowns at the extremes. This kind of functions can be obtained from 1D
Legendre polynomials:

L0 = 1, (11.10)

L1 = s, (11.11)

Lp =
2p−1

p
sLp−1(s)−

p−1
p

Lp−2(s), p = 2,3,4, ... (11.12)

Subsequently, a set of thickness expansions can be defined as:

F1(r) =
1
2
(1− r), (11.13)

F2(r) =
1
2
(1+ r), (11.14)

Fp(r) =

√
2p−1

p

∫ r

−1
Lp−1(r)dr, p = 2,3,4, ... (11.15)

Note that these functions are defined in the natural domain [-1, 1], thus a Jacobian transfor-
mation is employed to map them into the thickness of each ply. The first two equations are
equal to 1 at bottom and top of the layer thickness, respectively. The higher-order expansions
are equal to zero at the limits of the domain and are introduced hierarchically into the set
as the polynomial order increases. When used to create LW modes, a mesh of these HLE
1D domains is used in the thickness direction to represent the stack of plies and the C0
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condition for the displacement solutions is imposed by assembling the nodal unknowns at
the interfaces.

11.2.2 Finite element matrices

2D FEM models are created by splitting the domain over the xy-plane into plate elements.
Accordingly, the expansion unknowns, uuuτ , are interpolated over the 2D space via shape
functions, as follows:

uuuτ(x,y, t) = Ni(x,y) uuuτi(t), i = 1, ...,N, (11.16)

where uuuτi are the generalized unknowns of the dynamic problem, and i is the nodal index.
Due to their higher convergence rates in wave propagation analyses (see 10.4.1), higher-
order Lagrangian polynomials are chosen as interpolating functions. The 1D Lagrangian
polynomials can be defined in the natural space as:

φm(ξ ) =
pFE

∏
m=1,m ̸=n

ξ −ξm

ξn −ξm
, m,n = 1, ..., pFE +1. (11.17)

If equidistant nodes are placed over the element space, the following rule applies:

ξm =−1+2(m−1)/pFE , (11.18)

with pFE being the order of the plate element. The 2D polynomial basis can be then obtain as

Ni(ξ ,η) = φm(ξ ) φn(η), ξ ,η ∈ [−1,1]. (11.19)

Similarly to the previous chapter, using the thickness expansions and the plate interpo-
lations, Eq. (11.6) and (11.16), respectively, the geometrical (Eq. (11.1)) and constitutive
relations (Eq. (11.2)), the fundamental nuclei of the equation of motion, Eq. (10.10), are now
written as:

Mi jτs =
∫

h

∫
S

Fs N j ρ III3 Fτ Ni dS dz, (11.20)

Ki jτs =
∫

h

∫
S
(D Fs N j)

T C̃DFτ Ni dS dz, (11.21)

Ps j =
∫

S
Fs N j PS dS, (11.22)
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where dS = dx×dy and III3 is the 3 × 3 identity matrix. These integrals are decoupled into
thickness and in-plane domains. Therefore, considering an orthotropic layer, the explicit
form of the fundamental nuclei can be written as:

• Mass matrix (non-zero terms):

Mi jτs
xx = ρ Ii j Eτs

Mi jτs
yy = ρ Ii j Eτs

Mi jτs
zz = ρ Ii j Eτs

(11.23)

• Stiffness matrix:

Ki jτs
xx = C̃44 Ii j Eτ,zs,z + C̃11 Ii,x j,x Eτs + C̃16 Ii,y j,x Eτs + C̃16 Ii,x j,y Eτs+

C̃66 Ii,y j,y Eτs

Ki jτs
xy = C̃45 Ii j Eτ,zs,z + C̃16 Ii,x j,x Eτs + C̃12 Ii,y j,x Eτs + C̃66 Ii,x j,y Eτs+

C̃26 Ii,y j,y Eτs

Ki jτs
xz = C̃44 Ii,x j Eτs,z + C̃45 Ii,y j Eτs,z + C̃16 Ii j,x Eτ,zs + C̃36 Ii j,y Eτ,zs

Ki jτs
yx = C̃45 Ii j Eτ,zs,z + C̃16 Ii,x j,x Eτs + C̃66 Ii,y j,x Eτs + C̃12 Ii,x j,y Eτs+

C̃26 Ii,y j,y Eτs

Ki jτs
yy = C̃55 Ii j Eτ,zs,z + C̃66 Ii,x j,x Eτs + C̃26 Ii,y j,x Eτs + C̃26 Ii,x j,y Eτs+

C̃22 Ii,y j,y Eτs

Ki jτs
yz = C̃45 Ii,x j Eτs,z + C̃55 Ii,y j Eτs,z + C̃36 Ii j,x Eτ,zs + C̃23 Ii j,y Eτ,zs

Ki jτs
zx = C̃13 Ii,x j Eτs,z + C̃36 Ii,y j Eτs,z + C̃44 Ii j,x Eτ,zs + C̃45 Ii j,y Eτ,zs

Ki jτs
zy = C̃36 Ii,x j Eτs,z + C̃23 Ii,y j Eτs,z + C̃45 Ii j,x Eτ,zs + C̃55 Ii j,y Eτ,zs

Ki jτs
zz = C̃33 Ii j Eτ,zs,z + C̃44 Ii,x j,x Eτs + C̃45 Ii,y j,x Eτs + C̃45 Ii,x j,y Eτs+

C̃55 Ii,y j,y Eτs

(11.24)

• Loading vector:
Piτ

x = PS Fτ Ii

Piτ
y = PS Fτ Ii

Piτ
z = PS Fτ Ii

(11.25)

The terms Ii(,x)(,y) j(,x)(,y) and Eτ(,z)s(,z) , are the FE and thickness integrals, respectively. The FE
integrals are defined as:

Ii(,x)(,y) j(,x)(,y) =
∫

S
Ni(,ξ )(,η)

N j(,ξ )(,η)
|JJJS|dξ dη (11.26)

Ii =
∫

S
Ni |JJJS|dξ dη (11.27)
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where JJJS is the Jacobian matrix of the finite element. The computation of the integrals is
performed numerically via Gaussian quadrature. Since higher-order polynomials are used as
shape functions, the locking effects are minimum and full integration is adopted in all cases.

Subsequently, the integral terms of the thickness coordinate are

Eτ(,z)s(,z) =
∫

h
Fτ(,z)Fs(,z)dz. (11.28)

When laminated structures are considered, the computation of these terms depends on the
selected multi-layered theory, as shown in the following.

ESL

TE kinematics are used in this work to generate higher-order ESL models. In this case, the
integration in the thickness direction is performed as

Eτ(,z)s(,z) =
nl

∑
k=1

C̃k
αβ

∫ zk
t

zk
b

Fτ(,z)Fs(,z) dz (11.29)

where zk
b and zk

t are the bottom and top coordinates, respectively, of layer k and nl is the
total number of layers. Note that the material coefficients, C̃k

αβ , are now included inside the
Eτ(,z)s(,z) terms. If the laminate is made of different materials, the same procedure applies for
the densities in the fundamental nuclei of the mass matrix (Eq. (11.23).

LW

On the other hand, LW modes make use of independent expansions for each layer, thus the
thickness integrals are computed for each layer, readily:

Ek
τ(,z)s(,z) = C̃k

αβ

∫
hk

Fτ(,z)Fs(,z) dz = C̃k
αβ

∫ +1

−1
Fτ(,r)Fs(,r) |JJJz|dr. (11.30)

where JJJz is the Jacobian of the transformation between r and z.

Mixed LW-ESL

Thanks to the characteristics of HLE, a different class of ESL model can be implemented by
representing the stacking of plies in the natural domain, r ∈ [−1,1], using a LW Jacobian
transformation. Then, the Legendre functions are integrated via Gaussian quadrature, as
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follows:

Eq
τ(,z)s(,z) =

nq
l

∑
k=1

C̃k
αβ

∫ zk
t

zk
b

Fτ(,z)Fs(,z) dz =
nq

l

∑
k=1

C̃k
αβ

∫ rk
t

rk
b

Fτ(,r)Fs(,r) |JJJ
k
r |dr (11.31)

The main advantage of this approach is that it allows to group a set of plies, nq
l , into

mathematical layers, represented by q. Each of these mathematical layers are described with
an ESL approach, while LW kinematics are defined over the thickness of the whole laminate.
For the sake of clarity, the different multi-layered approaches are illustrated in Fig. 11.3.
Note that |JJJk

r | makes it possible to perform the Gaussian quadrature in the interval [rk
b,r

k
t ].

This modeling technique can be used to generate optimal models for the wave propagation in
lap joints and multicomponent structures, or to study efficiently the scattering of the Lamb
waves in delaminated areas.

displacement unknown

ESL LW LW-ESL

q=1 q=1,2,3

FSDT

Fig. 11.3 Illustration of the different multi-layered approaches implemented in the present
chapter. The curved lines represent possible displacement solutions over the thickness and
the dots show the location of the pure displacement unknowns. For the sake of clarity, the
stretching effects are not included.

11.3 Examples

Two numerical cases are included in this section. The first shows the assessment of the
proposed approach through the computation of the time of flight in different laminates. The
second demonstrates the potential of the method to capture the scattering of the waves in
complex structures.
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Fig. 11.4 Top view of the composite plate studied. Units in m.

11.3.1 Laminates

The first numerical example shows the assessment of the proposed plate elements for the
Lamb wave analysis of composite laminates. The ply properties are those of a T300/F593
CFRP: E1 = 128.1 GPa, E2 = E3 = 8.2 GPa, G12 = G13 = 4.7 GPa, G23 = 3.44 GPa,
ν12 = ν13 = 0.27 GPa, ν23 = 0.2 and ρ = 1570 kg/m3. The ply thickness is equal to 215 µm.
The in-plane dimensions of the composite plate are 0.5 × 0.5 m, and in all cases a stack of 8
layers is considered, resulting in an overall thickness of 1.72 mm. The fundamental Lamb
modes are excited in the model by means of two point forces placed at top and bottom of
the plate in its center, in correspondence to point O of Fig. 11.4. A wave packet of central
frequency equal to 100 kHz and 5 cycles is simulated. The antisymmetric mode A0 is excited
when the two forces are applied in-phase, whereas the symmetric modes S0 and SH0 appear
when the forces have opposite directions. A convergent mesh of 80 × 80 cubic elements is
employed to discretize the plate.

The accuracy of the higher-order models here proposed is measured via the computation
of the time of flight of the propagating waves along the x direction between points O and
Q (see Fig. 11.4). Following the method exposed in [212], the time of flight is calculated
from the maximum value of the signal envelope, eQ(t), computed at point Q from the Hilbert
transform of the displacement values, HQ(u), as follows:

HQ(u(t)) =
1
π

∫
∞

−∞

uQ(τ)
1

t − τ
dτ, (11.32)

eQ(t) =
√

H2
Q +u2

Q. (11.33)
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Then, the corresponding group speed of the fundamental Lamb waves in that direction can
be directly obtained as the ratio between the distance OQ and the time of flight of the signal
peak.

Figures 11.5 and 11.6 show screenshots of the waves propagating over the unidirectional
laminate, i.e. all 8 layers oriented towards x. These plots, obtained with a third-order HLE
model (HL3), are in good agreement with those of the same numerical case from Li et al.
[118]. It can be observed that the wavefronts of both A0 and the S0 modes exhibit an elliptical
shape, with the longer axis aligned with the fiber direction. Also, the shear horizontal mode,
SH0, can be seen from the contour plots of the in-plane displacements in the y direction, see
Fig. 11.6 (b).

Fig. 11.5 Contour plot of the vertical displacements (uz) at t = 7.5×10−5 s showing the A0
mode over the unidirectional composite plate.

Table 11.1 shows the computed group velocities in x of the antisymmetric, cgA0x , and
symmetric, cgS0x , modes for the unidirectional composite plate. FSDT and HLE solutions are
included. The error is calculated by comparing these solutions to those of the SAFE method,
which have been obtained from the code GUIGUW [20]. From these results it can be stated
that, as expected, the error in the calculation of the A0 mode is greater than that of the S0

mode, which has a longer wavelength. Also, for the current transverse excitation, the FSDT
cannot capture the symmetric mode S0. For the antisymmetric mode, the improvement of the
resolution is not noticeable until the third-order expansion (HL3). It is worth noting that the
equal values of the group velocities in Table 11.1 reflect the fact that the differences in the
computed time of flight are smaller than the time step chosen for the Newmark solver, that
in this case is ∆t = 2×10−7. Indeed, no visible improvement can be seen for higher-order
expansions in the computation of the symmetric mode.



11.3 Examples 179

(a) ux (b) uy

Fig. 11.6 Contour plots of the in-plane displacements along x (a) and along y (b) at t =
5×10−5 s showing the S0 mode and the SH0 mode, respectively.

Table 11.1 Computed group velocities of the fundamental Lamb waves propagating in the
unidirectional laminate.

Model cgA0x [m/s] Error [%] cgS0x [m/s] Error [%]
SAFE[20] 1730 - 9052 -
FSDT 1884 8.90 - -
HL1 1884 8.90 9036 0.18
HL2 1884 8.90 9036 0.18
HL3 1773 2.49 9036 0.18
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Subsequently, similar analyses are performed on two multi-layered plates with the follow-
ing stacking sequences: [0◦2/90◦2]S and [45◦/-45◦/0◦/90◦]S. The challenge here is to prove if
the proposed ESL approaches are able to provide similar levels of accuracy as LW models
for the wave propagation in composites. It is reasonable to assume that LW models are able
to provide 3D accuracy [155], although the computational costs may be also extremely high
when dealing with typical laminates used in aerospace structures. Table 11.2 includes the
group speeds of the A0 mode along x for the two composite laminates considered and their
correspondent error with respect to the SAFE solutions. The following remarks can be made:

1. The numerical error of all models is less in the [45◦/-45◦/0◦/90◦]S, showing that for
quasi-isotropic laminates the kinematic assumptions can be relaxed.

2. FSDT plate elements overestimate the values of the velocities in both laminates.

3. LW solutions are in good agreement with the SAFE references.

4. ESL models based on TE and HLE kinematics provide very similar accuracy. This
result proves the validity of the ESL approach based on HLE kinematics as compared
to more standard TE theories.

5. The differences between higher-order ESL and LW models for the dynamic problem
are acceptable in both cases.

Table 11.2 Computed group velocities of the A0-wave propagating in the unidirectional
laminate.

Model [0/90]S cgA0x Error [%] [0/90/45/-45]S cgA0x Error [%]
SAFE[20] 1591 - 1631 -
FSDT 1781 11.97 1769 8.45
ESL-TE3 1641 3.15 1607 1.48
ESL-HL3 1641 3.15 1606 1.53
LW-HL2 1559 1.99 1599 1.95

Figures 11.7 and 11.8 show screenshots of the propagating waves at different instants in
the two composite laminates for the FSDT, ESL-TE and LW plate models here proposed. All
the wavefronts exhibit very similar shapes, although in the FSDT case a larger surface has
been swept by the waves in comparison to the other models at the same time. Also, in Fig.
11.8 it is possible to notice some differences in the amplitude of the vertical displacements,
uz, between the LW and ESL, although the time signals are in good agreement.
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(a) FSDT (b) ESL-TE (c) LW

(d) FSDT (e) ESL-TE (f) LW

Fig. 11.7 Plots of the vertical displacements, uz, at t = 7.5×10−5 s (a-c) and t = 1.5×10−4

s (d-f) showing the A0 waves over the [0◦2/90◦2]S laminate.

(a) FSDT (b) ESL (c) LW

Fig. 11.8 Plots of the vertical displacements, uz, at t = 1.125×10−4 s showing the A0 waves
over the [45◦/-45◦/0◦/90◦]S laminate.
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11.3.2 Single-lap debond

The previous example demonstrates the suitability of HLE-based ESL models for the com-
putation of the propagating speeds of the Lamb waves in generic composite laminates. The
intention now is to show the capabilities of the mixed ESL-LW approach to model complex
geometries and analyze efficiently the scattering of the waves under the presence of defects.
With this purpose in mind, a composite single-lap joint (SLJ) is considered consisting of
two different laminates of T300/F593 material, the same as the previous examples, attached
with an EA9313 epoxy adhesive. The adhesive is isotropic with the following mechanical
properties: E = 2.274 GPa, ν = 0.36 and ρ = 1100 kg/m3. The stacking sequences of the
two laminates are:

• laminate 1: 8 layers [90◦/0◦]2S, overall thickness h1 = 1.72 mm.

• laminate 2: 10 layers [90◦/(45◦/-45◦)2]S, overall thickness h2 = 2.15 mm.

The thickness of the adhesive layer is equal to 0.2 mm. The overall dimensions of the SLJ
are 0.3 m × 0.3 m, with the bonding area placed in the center along x. Figure 11.9 shows
the features of the numerical case. The whole plate is discretized with 40 × 40 cubic plate
elements and symmetry conditions are applied over the side lying on the x-axis. Three zones
can be differentiate in the model on the basis of the definition of the multi-layered expansion.
In zones 1 and 3, the HLE-based ESL approach is adopted, whereas in the joined area the
mixed ESL-LW is adopted by grouping the plies into ESL expansions within a global LW
model, as shown in Fig. 11.9. Second-order polynomials (HL2) are employed in all cases. A
wave packet of 2 cycles and central frequency of 100 kHz is excited in point P by means of a
local pressure applied in the top surface of 2 plate elements. Due to the characteristics of
HLE, displacement unknowns are placed at top and bottom of the plates, thus 3D-like loads
can be imposed. Accounting for the symmetry, the model simulates a squared piezoelectric
transducer of 15 mm × 15 mm. The maximum number of DOF is equal to 176,600 and a
total of 2000 time steps where used to discretize a total analysis time of 3×10−4 s.

In addition, a small area of detachment is included, see the red section in Fig. 11.9.
The modeling of the debond area in the current framework is done simply by removing
the thickness domains representing the adhesive layer. In this manner, an empty space is
created in the adhesive layer where the continuity of the displacement solutions along the
thickness is interrupted. Figures 11.10 and 11.11 include some instants of the different modes
propagating over the pristine (left-hand side) and damaged (right-hand side) structures. The
plots show the total displacement values. Due to the smaller amplitude of the symmetric
modes, these waves can only be observed in the contour plots by appropriately reducing the
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Fig. 11.9 Characteristics and model kinematics of the composite single-lap joint. Units in
mm.

scale of the displacement magnitude. This is why the A0 waves appear as strong red in Fig.
11.10. It is possible to observe how the principal propagation directions of the waves change
from zone 1 (0◦ and 90◦) to zone 3 (45◦ and -45◦). The scattering of the Lamb waves in the
debond is evident for both fundamental modes. It is worth noting that the model is capable
of capturing the mode conversion of the long S0 waves into shorter A0 waves when they
encounter the sudden change in the thickness at the joint area. Finally, Fig. 11.12 shows the
scattering in the time signals recovered at point A for both the pristine and damaged structure.
This kind of solutions are of special interest for the SHM for the further understanding of the
propagation of Lamb waves in reinforced composite structures and for the optimization of
the sensor placement in these systems.
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S0 waves

A0 waves

(a) Pristine, t = 3×10−5s

debond

(b) Damaged, t = 3×10−5s

A0 front

S0 waves

converted

A0 waves

(c) Pristine, t = 4.5×10−5s

scattering

(d) Damaged, t = 4.5×10−5s

Fig. 11.10 Scaled plots showing the S0 waves propagating over the pristine, (a) and (c), and
the damaged, (b) and (d), lap joints.
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A0 front
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scattering of the A0 waves

(b) Damaged

Fig. 11.11 Contour plot showing the A0 waves over the lap joint at t = 1.2×10−4 s.
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Fig. 11.12 In-plane displacements,uy, over time obtained at point A.





Conclusions

The present thesis proposes the use of hierarchical structural theories for the mechanical
analysis of composite structures at different scales. Exploiting the properties of the Carrera
unified formulation (CUF) as a generator of refined beam models, a non-local structural
theory was devised using Legendre polynomials of higher-order. The model, denoted to as
hierarchical Legendre expansion (HLE), exhibits certain interesting characteristics for the
mechanical analysis of composite structures. It enforces the adoption of a component wise
(CW) approach for the simulation of composite structures, by which the constituents of the
material, e.g. ply, fiber or matrix, are modeled as kinematically independent of each other. It
decouples the numerical discretization in the different spatial dimensions thus overcoming
the aspect ratio constraints of standard finite elements. It also allows it to link the resolution
of the analysis to the polynomial order of the structural theory, which is increased easily via
a user input parameter.

During the course of this research, several features have been added to the aforementioned
modeling framework. A non-isoparametric mapping based on the blending function method
(BFM) was implemented to compute the exact volume in curved structural bodies. The
shear and membrane locking of the beam elements were mitigated by means of the mixed
interpolation of tensorial components (MITC) method, which provides a better approximation
of the transverse shear and membrane deformations. The Reissner’s mixed variational
theorem (RMVT) was adopted to derive mixed beam elements which fulfill the interlaminar
equilibrium conditions in composite laminates a priori. The model was also applied in
a micromechanics framework using the mechanics of structure genome (MSG) theory,
the focus being on accurate computation of the effective properties and local fields of
periodically heterogeneous composites. Finally, several refined approaches based on the HLE
were investigated for the analysis of the propagation of Lamb waves for structural health
monitoring (SHM) applications.

Probably the most powerful characteristic of the present formulation is that all the
aforementioned developments can be coded by means of the same logic statements, that is
expanding the building block of the model, called the fundamental nucleus, over the transverse
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terms and nodal indexes to build the element stiffness matrix. Eventual modifications of
the variational statement, geometrical relations, constituent equations and/or kinematic
assumptions are only reflected in the mathematical expressions of the fundamental nucleus.
This capability made it possible to generate and test a variety of composite and metallic
models for different problems using always the same modeling framework.

Main results

The main results obtained during the course of the doctoral research are summarized in the
following.

• Exploiting the CW approach, the local solution fields over the heterogeneous mate-
rial were computed showing high levels of accuracy and without compromising the
computational cost of the analysis. 3D stress solutions were obtained at all the scales,
overcoming the limitations of standard finite elements for composites.

• The CW approach based on HLE was proven to be suitable for the modeling of mi-
crostructures. The homogenized properties and local solutions obtained are comparable
to those of the best micromechanics tools available.

• Mixed stress-displacement beam elements were successfully introduced as a tool
to compute the correct interlaminar stresses in composite laminates. Otherwise,
displacement-based models were only able to approximate the equilibrium condi-
tions axiomatically via refinement of the kinematic assumptions.

• The computation of the transverse stresses at the free edges of generic laminated
structures was investigated. The results were in very good agreement with the analytical
references and reduced the cost of the numerical simulation by orders of magnitude
for generic geometries and loadings.

• In the topic of structural health monitoring (SHM), HLE models demonstrated excellent
convergence properties in Lamb wave simulations. The time-domain FEM analyses
were optimized by decoupling the numerical discretizations in the waveguide and
transverse directions.

• The adoption of different multilayered approaches in Lamb wave simulations showed
many advantages with respect to classical plate elements. By virtue of the 3D kinemat-
ics, HLE-based plate elements were able to capture all the wave modes propagating
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over the plane. It was also proven that the model can simulate the scattering of Lamb
waves in composite laminates under discontinuities or defects very efficiently.

Future work

The modeling framework proposed in this thesis shall be considered as an starting point for
subsequent extensions and applications. Firstly, it is expected to include geometrical and
physical non-linearities in further developments. In particular, by adding these capabilities
into the formulation, complex composite problems such as the prediction of fiber kinking or
the micromechanics analysis of textiles could be studied with remarkable efficiency. Another
line of research is focused in the implementation of the proposed modeling tools for laminated
structures in a global-local framework, which can be used to recover the 3D stress fields
on particular zones of interest. Finally, in the topic of SHM, a multi-dimensional approach
will be considered in which refined beam, plate and solid elements will be assembled via
superposition of the displacement unknowns located in the geometrical boundaries of the
represented domains.
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Appendix A

2D Legendre polynomials

This section shows all the expansion functions of HLE models from the first to the eighth
polynomial order. Note that the set of functions of a HLp model includes all the polynomials
from 1st to pth order.

1st order

F1 =
1
4
(1− r)(1− s)

F2 =
1
4
(1+ r)(1− s)

F3 =
1
4
(1+ r)(1+ s)

F4 =
1
4
(1− r)(1+ s)

2nd order

F5 =
1
2
(1− s)

√
6(r2 −1)/4

F6 =
1
2
(1+ r)

√
6(s2 −1)/4

F7 =
1
2
(1+ s)

√
6(r2 −1)/4

F8 =
1
2
(1− r)

√
6(s2 −1)/4
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3rd order

F9 =
1
2
(1− s)

√
10r(r2 −1)/4

F10 =
1
2
(1+ r)

√
10s(s2 −1)/4

F11 =
1
2
(1+ s)

√
10r(r2 −1)/4

F12 =
1
2
(1− r)

√
10s(s2 −1)/4

4th order

F13 =
1
2
(1− s)

√
14(5r2 −1)(r−1)(r+1)/16

F14 =
1
2
(1+ r)

√
14(5s2 −1)(s−1)(s+1)/16

F15 =
1
2
(1+ s)

√
14(5r2 −1)(r−1)(r+1)/16

F16 =
1
2
(1− r)

√
14(5s2 −1)(s−1)(s+1)/16

F17 =
1
16

√
6(r2 −1)

√
6(s2 −1)

5th order

F18 =
1
2
(1− s)3

√
2r(7r2 −3)(r−1)(r+1)/16

F19 =
1
2
(1+ r)3

√
2s(7s2 −3)(s−1)(s+1)/16

F20 =
1
2
(1+ s)3

√
2r(7r2 −3)(r−1)(r+1)/16

F21 =
1
2
(1− r)3

√
2s(7s2 −3)(s−1)(s+1)/16

F22 =
1

16

√
10r(r2 −1)

√
6(s2 −1)

F23 =
1

16

√
6(r2 −1)

√
10s(s2 −1)
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6th order

F24 =
1
2
(1− s)

√
22(r−1)(r+1)(21r4 −14r2 +1)/32

F25 =
1
2
(1+ r)

√
22(s−1)(s+1)(21s4 −14s2 +1)/32

F26 =
1
2
(1+ s)
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22(r−1)(r+1)(21r4 −14r2 +1)/32

F27 =
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2
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F28 =
1
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√
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F29 =
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16
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10r(r2 −1)

√
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64
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14(5s2 −1)(s−1)(s+1)

7th order

F31 =
1
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(1− s)
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26r(r−1)(r+1)(33r4 −30r2 +5)/32

F32 =
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(1+ r)
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F33 =
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F34 =
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(1− r)

√
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F35 =
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64

3
√
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√
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F36 =
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F37 =
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14(5s2 −1)(s−1)(s+1)

F38 =
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8th order

F39 =
1
2
(1− s)

√
30(r−1)(r+1)(429r6 −495r4 +135r2 −5)/256

F40 =
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(1+ r)
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(1− r)

√
30(s−1)(s+1)(429s6 −495s4 +135s2 −5)/256

F43 =
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