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Summary

Under certain conditions, natural as well as man-made structures can exhibit more than
one stable mechanical configuration. Starting from their initial stable state, multi-stable
structures can morph into a new stable configuration via a snap-through elastic insta-
bility, triggered by an appropriate external energy input. Over the last decades, many
researchers have investigated this special class of compliant structures, due to the pos-
sibility to harness the snap-through buckling as a source of energy and motion in a
wide variety of engineering applications.
A major challenge for the exploitation of multi-stable structures in practical applica-
tions is represented by their complex mechanical response resulting in time-consuming
design and optimization procedures. Multi-stability phenomena are in fact character-
ized by large shape changes that call for strongly non-linear structural analyses. Fur-
thermore, the use of composite materials in multi-stable applications yields peculiar
kinematic behaviors that call for high-fidelity predictivemodels, such as two- and three-
dimensional finite elements, which result in computationally expensive structural anal-
yses.
To address this issue, the present thesis discusses the studies undertaken to develop a
novel reliable yet efficient computational framework for the analysis of bistable com-
posite beams. An advanced structural modeling approach based on a Unified Formula-
tion is adopted. At first, the potential of the formulation in the linear regime is evaluated
with regards to mechanical and thermo-mechanical analysis of composite beam struc-
tures. At a later stage, since large displacements capabilities are essential for the pre-
diction of bistability phenomena, Green-Lagrange geometric non-linearities are taken
into account, in the framework of a total Lagrangian approach.
By means of Unified Formulation, the beam kinematics can be straightforwardly en-
riched by accounting for additional higher-order terms in the cross-sectional variation
of the displacement field. Refined predictions of the stable geometries, snap-through
loads and stress fields in bistability analyses can be obtained via the proposed advanced
one-dimensional formulation with no loss of accuracy and reduced computational costs
when compared to two- and three-dimensional finite elements solutions. Therefore,
scope for improvement of the state-of-the-art modeling capabilities is identified and
the potential of a versatile modeling framework based on Unified Formulation for a
refined analysis of multi-stable composite structures is highlighted.
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Sommario

In determinate condizioni, componenti strutturali presenti in natura così come strut-
ture create dall’uomo possono mostrare più di una configurazione meccanica stabile.
A partire dalla loro configurazione iniziale, le strutture multi-stabili possono assume-
re una nuova configurazione stabile a seguito di un fenomeno di instabilità elastica di
tipo snap-through innescato da un adeguato apporto esterno di energia. Negli ultimi de-
cenni, molti ricercatori hanno studiato questa classe speciale di strutture deformabili, a
causa della possibilità di sfruttare il fenomeno di snap-through come fonte di energia e
movimento in un’ampia gamma di applicazioni.
Un importante ostacolo all’utilizzo di strutture multi-stabili è rappresentato dalla lo-
ro complessa risposta meccanica che porta a progettazioni e ottimizzazioni onerose in
termini di tempi di calcolo. I fenomeni di multi-stabilità sono caratterizzati da grandi
cambiamenti di forma che richiedono analisi strutturali fortemente non-lineari. Inol-
tre, l’utilizzo di materiali compositi porta a comportamenti cinematici tali da richiedere
modelli accurati, come elementi finiti bi-dimensionali e tri-dimensionali, che tuttavia
comportano analisi strutturali computazionalmente dispendiose.
Per far fronte a questo problema, la presente tesi discute lo sviluppo di un nuovo mo-
dello computazionale affidabile ed efficiente per l’analisi di travi composite bistabili. Un
approccio di modellazione strutturale avanzato basato su una formulazione unificata è
adottato. In primo luogo, il potenziale di tale formulazione è valutato nel regime linea-
re, per quanto riguarda l’analisi meccanica e termo-meccanica di strutture composite di
tipo trave. Successivamente, poiché la capacità di analizzare strutture in grandi sposta-
menti è essenziale per la previsione di fenomeni bistabili, non-linearità geometriche di
Green-Lagrange sono tenute in conto, nel quadro di un approccio lagrangiano totale.
Grazie alla formulazione unificata, il modello cinematico della trave può essere arric-
chito in maniera semplice, includendo termini aggiuntivi di ordine superiore al primo
nell’espressione del campo di spostamenti. Previsioni accurate delle geometrie stabili,
dei carichi di snap-through e dei campi di stress in analisi di bistabilità possono esse-
re ottenute attraverso la formulazione mono-dimensionale proposta, senza perdita di
accuratezza e con costi computazionali ridotti rispetto a soluzioni agli elementi finiti
bi- e tri-dimensionali. Per questi motivi, margini di miglioramento delle attuali capaci-
tà di modellazione sono identificati e il potenziale del modello proposto per un’analisi
accurata di strutture composite multi-stabili è evidenziato.
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Chapter 1

Introduction

Conventional engineering structures are designed to be stiff and, therefore, they usu-
ally possess a unique shape that does not change when subjected to the external loads.
Nevertheless, the same does not always apply to structural elements in nature. For in-
stance, trunk and branches of small trees undergo large deflections when subjected to
strong wind, allowing a reduction of the drag force exerted on the tree itself [151] and
resulting in a light deformable structural solution able to change its shape to adapt to
changing environmental conditions. Compliant structures show a clear potential for re-
configuration and, among them, a specific class of structures exhibiting a multi-stable
compliant behavior has received special attention in recent years. Multi-stability is an
unusual property of structures to inherently possess a certain number of different possi-
ble stable shapes. Morphing from one shape to another occurs as a nearly instantaneous
configuration change. This is achieved via an elastic instability phenomenon, known as
snap-through buckling, triggered by an appropriate external disturbance. A number
of materials and structures from nano- to macro-scale exhibiting multi-stability exist,
opening up novel opportunities for applications exploiting the high-rate energy and
motion released by the snap-through buckling to add shape-adaptivity or functionality.
A classical example of bistable structure, i.e. possessing two distinct stable shapes, is
obtained by a pre-buckled beam. Starting from a pre-compressed buckled configura-
tion, by means of an external stimulus, the structure can be snapped to a second stable
state, as shown in Figure 1.1, and vice-versa. By harnessing the polymorphic behavior
of this simple class of compliant structures, a number of fascinating applications can
be imagined across multiple length scales, e.g. shape-adaptive structures [2], energy
harvesting micro-devices [168] and meta-materials [143]. Nevertheless, the potential
of multi-stable compliant structures is yet to be fully exploited in engineering appli-
cations. A deeper understanding of their kinematic behavior through the development
of high-fidelity predictive models may play a fundamental role in order to enhance
their impact on industrial products. As a matter of fact, the prediction of the mechan-
ical response of compliant structures is inherently more complex than in the case of
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Figure 1.1: Snap-through of a bistable pre-buckled beam structure.

conventional stiff structures, since the simplifying assumption of non-deformable ge-
ometry clearly does not hold for structures in which large shape changes are allowed.
Therefore, whilst modeling of conventional stiff structures results in a geometrically
linear problem, which usually requires a single solution step, compliant structures shall
be analyzed via geometrically non-linear formulations requiring multiple solution steps
and yielding time-consuming analysis, design and optimization procedures. Computa-
tional costs are even a bigger issue for the prediction of multi-stability phenomena due
to the strong non-linearities involved, for which advanced non-linear solution schemes
with path-following capabilities are required to follow the unstable paths. A possible
way to address these computational limitations is by reducing, whenever possible, the
dimensionality of the problem from three-dimensional to two- or one-dimensional, al-
lowing a great reduction of the mathematical problem in terms of the total number
of unknown variables. This is typically done by introducing assumptions on the kine-
matic behavior, that are mainly based on geometric and material properties. Classical
kinematic assumptions can well capture the global mechanical response of very slender
and isotropic structures. Nevertheless, lower slenderness ratios or the use of compos-
ite materials yield an increased complexity in the kinematic behavior, due to peculiar
behaviors such as cross-sectional warping and a greater influence of shear and normal
stresses on the structural mechanics, which calls for refined structural models. In or-
der to fill the existing gap in the literature, a novel computational framework for the
mechanical analysis of bistable composite beam structures is proposed in this disserta-
tion. An advanced modeling approach based on a Unified Formulation (UF) is adopted,
allowing the relaxation of classical kinematic assumptions. Due to its one-dimensional
nature and a generalized cross-sectional kinematics, this versatile mathematical frame-
work ultimately allows refined predictions of force-displacement curves, snap-through
loads and stress field evolution in bistability phenomena to be obtained at low computa-
tional costs. For these reasons, the proposedmodeling approach represents a promising,
more efficient alternative to state-of-the-art solutions as implemented in commercial
software finite elements, to be further investigated and exploited for a correct and safe
design of multi-stable composite structures.
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1.1 Outline of the thesis
Before diving into the investigation of multi-stability phenomena via UF, some interme-
diate steps have been taken in order to assess the capability of the proposed approach.
Therefore, the following preparatory research topics are also addressed in the linear
regime:

• UF capabilities in challenging mechanical and thermo-elastic analysis of compos-
ites.

• UF capabilities in the mechanical analysis of curved beam-like structures.

The organization of the dissertation is herein discussed. The central core is divided into
three main parts: a literature review part, including Chapters 2 and 3, a part describing
themodelingmethodology (Chapters 4, 5 and 6) and a numerical results part (Chapters 7
and 8). The main content of each chapter is provided below.

• In Chapter 2, a review of some important contributions concerning bistable struc-
tures is reported. Modeling approaches, design methodologies as well as applica-
tion concepts, such as energy harvesters, actuators and morphing structures, are
addressed.

• In Chapter 3, some of the existing literature on the mechanical modeling of com-
posite multi-layered beam structures is briefly summarized with particular at-
tention being paid to classical beam models (Euler-Bernoulli’s and Timoshenko’s
theory), higher-order shear deformation theories and layer-wise models. The ba-
sic concepts of Unified Formulation are also introduced in this chapter, including
the principle of virtual displacements, the unified form of the displacement field
(based on Taylor, Lagrange or Legendre polynomials) and the variables descrip-
tion level, i.e. the equivalent single layer or layer-wise approach. Finally, some
relevant works exploiting the enhanced capabilities of one-dimensional UF-based
models are discussed.

• In Chapter 4, the mathematical formulation of UF-based one-dimensional finite
elements for the mechanical and thermo-elastic analysis of composite structures
in the geometrically linear regime is developed.The thermal problem is addressed
by analytically solving Fourier’s heat conduction equation, whereas the govern-
ing algebraic equations of the mechanical problem are derived via the principle of
virtual displacements. Finally, the fundamental nuclei typical of the UF-approach
are reported for the stiffness matrix, the mechanical load vector and the thermo-
mechanical coupling vector.

• In Chapter 5, UF-methodology is extended to the study of curved beam struc-
tures. Also in this chapter, linear regime is considered. The governing differential
equations are derived by writing the principle of virtual displacements in local
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coordinates and both strong form Navier-type solution and weak form finite el-
ements solution are developed. A strategy based on the Mixed Interpolation of
Tensorial Components (MITC) for correcting detrimental shear and membrane
locking phenomena typical of curved finite elements is implemented.

• In Chapter 6, the formulation of non-linear UF-based straight finite elements
is provided, where the geometrical non-linearities in the Green-Lagrange sense
are accounted for, in the framework of a total Lagrangian formulation. Linear,
initial-displacement and initial-stress contributions to the fundamental nucleus
of the tangent stiffness matrix are derived and the MITC-based locking correc-
tion technique is extended to the non-linear finite elements formulation. Finally,
an overview of the non-linear solution procedures used in this work is given, in-
cluding classical methods as well as an advanced path-following solver based on
the Asymptotic Numerical Method (ANM).

• In Chapter 7, the potential of UF in the linear regime is assessed. Localized phe-
nomena in very thick sandwich beams, thermal stresses in laminated and func-
tionally graded structures and the mechanics of curved beams are addressed.

• In Chapter 8, the numerical results concerning large displacements analysis, post-
buckling and bistability behavior provided by the geometrically non-linear UF-
based finite elements are provided.

• Finally, in Chapter 9, the major outcomes and the original contributions of the
present research work are discussed along with future perspectives.

4



Part I

Literature Review

5





Chapter 2

Multi-stability: Modeling, Design and
Applications

2.1 Introduction
In the last few years, multi-stable structures have attracted considerable attention as a
new class of multi-functional structures able to exploit a snap-through instability phe-
nomenon to increase the efficiency and/or the capability of an engineering system.
After a preliminary theoretical framework described in Section 2.2, an overview of cur-
rent research efforts in the field of multi-stability is provided. Section 2.3 presents a
brief survey of contributions concerningmodeling approaches for the purpose of under-
standing and predicting the mechanical behavior of multi-stable structures. Section 2.4
focuses on the methodologies for the design and optimization of functional multi-stable
mechanisms and, finally, in Section 2.5, a review of promising fields of application is
provided.

2.2 Brief theoretical background

2.2.1 Definition of multi-stable structure
From an energetic point of view, a structure is said multi-stable if it possesses two or
more distinctminima of the total potential energy, i.e. two ormore equilibrium states for
which the second variation of the total potential is positive definite for any admissible
displacement u:

𝛿2𝐸𝑇 > 0 ∀ u ≠ 0 (2.1)

The majority of the case studies and application concepts regarding multi-stability are
bistable structures, i.e. structures possessing two distinct stable configurations without
any external force applied. A classical load-displacement curve of a bistable structure
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is provided in Figure 2.1. The bistability phenomenon relies on the snap-through buck-
ling, which consists in the transition from a stable force-displacement region (curve
A-B) to a second stable region (curve C-D) passing through an instability region (curve
B-C). From a numerical point of view, stable regions are characterized by a positive
definite tangent stiffness matrix, whereas for unstable conditions, at least one negative
eigenvalue exists. Under force control, starting from the initial stable state (point A),

Figure 2.1: Typical equilibrium path of a bistable structure.

the force can be increased until the limit point B is reached. Then, the structure will
suddenly snap to point E by means of a displacement jump and finally, when the exter-
nal load is removed, it will rest in its second stable state (point F). A classical example
of bistable structure, as already discussed in the Introduction, is a pre-buckled beam
and this is the class of structures that will be throughly investigated in this dissertation.
A proper choice of pre-compression parameter and external load is needed in order to
achieve bistability in a pre-buckled beam. In fact, if the initial pre-compression is not
sufficient, i.e. the pre-buckled configuration is too shallow, the structure will snap to a
second configuration, but it will return to the first configuration after the external load
is removed. Such behavior is said monostable and its typical unloading path is shown in
Figure 2.2. On the other hand, if the external disturbance is too small, i.e. the limit point
B in Figure 2.1 is not reached, the pre-buckled structure will simply remain in its first
stable configuration without any snap-through phenomenon. Finally, if sufficient pre-
compression and external disturbance are provided, the structure will show the typical
unloading path provided in Figure 2.1, where two distinct stable configurations are ob-
tained, corresponding to those equilibrium states with positive slope of the equilibrium
path and external force equal to zero.
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Figure 2.2: Unloading path for a pre-buckled beam with monostable behavior.

2.2.2 The role of composites in multi-stability
As it can be deduced from previous considerations, multi-stability is not a property as-
sociated to a specific material, but rather to a structural configuration, which includes
material as well as geometry, boundary conditions and eventually pre-stress conditions.
Nevertheless, a good amount of multi-stable structural applications studied in the lit-
erature are made of composite materials, as will be seen more in detail in Section 2.5.
Composites are obtained by combining at least two distinct materials on a macroscopic
scale to obtain a novel material exhibiting improved properties compared to its con-
stituents [96]. Due to their enhanced performance, the use of composites has grown
steadily over the last decades in many industries [11, 96] and the following potential
benefits from exploitation of composites in multi-stable structural applications can be
identified:

• Weight saving through optimal strength-to-weight and stiffness-to-weight ratios,
particularly relevant for lightweight aerospace applications [5, 62].

• Increased durability, fatigue life and resistance to damage and environmental
degradation [11].

• Versatile design of the structural performance parameters such as snap-through
load and stable states through a proper material tailoring in terms of ply proper-
ties, fibers orientation and stacking sequence [158].

• Enabling of novel classes of multi-stable structures, such as thermally-induced
multi-stable laminates [94] and smart multi-stable piezo-electric structures [135].

2.3 Modeling approaches
For exploitation of multi-stable structures in industrial applications, the capability to
model multi-stability phenomena through accurate yet time-efficient approaches plays
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a key role. Common approaches used for modeling the mechanics of bistable struc-
tures are mostly based on the classical beam and plate theories and the first-order shear
deformation theory. In earlier studies, the adoption of Euler-Bernoulli’s kinematic as-
sumptions led to gain novel insights into the mechanics of bistable beam structures.
Vangbo [160] investigated the influence of bending and compression energy on the
snap-through of a doubly clamped beam as well as the effect of an additional central
constraint along the beam axis to prevent twisting during the snap. Based on [160], a
key parameter given by the ratio of initial deflection and beam thickness was identified
by Qiu et al. [137] for the prediction of the force-displacement response in a stress-free
bistable compliant mechanism. Timoshenko’s beam model, accounting for a non-zero
constant transverse shear deformation, was used by Santer and Pellegrino [144] for
the design of a novel monolithic compliant multi-stable mechanism featuring bistable
elements connected in series. On the other hand, when dealing with composite multi-
layered structures, classical lamination theory represents the most commonly adopted
mechanical model. By means of this approach, in the framework of a semi-analytical
solution based on Rayleigh-Ritz method, Hufenbach and Gude [91] analyzed the mul-
tistability of unsymmetric GFRP and CFRP laminates generated by the out-of-plane
deformation due to residual stresses induced by temperature, moisture and chemical
shrinkage during manufacturing. Classical laminate theory was also used by Paknejad
et al. [127] for the analysis of a energy harvesting device based on a multi-layered com-
posite piezo-electric beam structure. A first-order shear deformation theory extended
to composites is sometimes also considered, as shown in Cottone et al. [54]. Originally
developed for metallic structures, these kinematic models can accurately describe the
mechanical response of slender structures governed by global bending behavior, al-
though a lack of generality could arise in the prediction of kinematic behaviors peculiar
of composite materials, as further discussed in Chapter 3. Alternatively, albeit computa-
tionally more expensive, two-dimensional and three-dimensional finite element models
represent high-fidelity models allowing refined and reliable mechanical predictions, as
in [137, 23, 2].
Besides the structure kinematic model, a second important building block of a compu-
tational framework for the analysis of multi-stable structures is the solution method
of the governing differential equations. In this respect, standard approaches are the
mode superposition method, especially in the framework of bistable beams as in Xu
et al. [168] and Cleary et al. [52], and the Rayleigh-Ritz method, as already mentioned
for Hufenbach and Gude [91]. Much effort has been devoted to propose enhanced al-
ternative solution procedures able to improve the snap-through behavior prediction.
To this aim, Pirrera et al. [133] presented a higher-order Ritz approach for the investi-
gation of thermally-induced bistability in laminated plate structures and Lamacchia et
al. [106] adopted a differential quadrature method for the study of bistable laminated
shells showing the enhanced capabilities of Legendre polynomials to model the trans-
verse displacement variation in the shell reference plane compared to other polynomial
approximations. Due to their reliability and versatility, finite elements also represents a

10



2.4 – Design methodologies

widely used solution approach, as in the works by Mattioni et al. [116] and Pontecorvo
et al. [134]. To conclude, a more recent research area in the field of multi-stability mod-
eling concerns the development of advanced non-linear solvers such as the generalized
path-following technique, which has been recently exploited for the detection of com-
plex multi-snap events in morphing composite laminates, as shown in Groh et al. [83].

2.4 Design methodologies
In addition to the formulation of efficient predictive models, an extremely relevant re-
search area for the ultimate aim of delivering functional multi-stable applications, is
the development of systematic design methods. Some relevant contributions in this
respect are discussed in the present section. A simple but effective method to tailor
the snap-through properties of post-buckled beam structures has been proposed and
investigated by Gao et al. [70], both numerically and experimentally. By embedding
local reinforcements within the beam structure, the design space can be extended to
account for pre-compression as well as position of the local reinforcements, yielding a
broader spectrum of achievable snap-through behaviors. Nevertheless, especially when
dealing with large-sized finite elements analysis, the exploration of the design space
through repeated structural simulations could represent a computationally expensive
task to perform. To the aim of avoiding time-consuming parametric studies arising from
the use of classical incremental-iterative non-linear solvers, a multi-parametric struc-
tural analysis has been addressed by Groh et al. [83] and Cox et al. [56] based on a
generalized path-following technique and non-linear finite element models, allowing a
computationally efficient design space exploration. A promising design methodology
increasingly used in many industries and which could be also adopted for multi-stable
applications is Topology Optimization (TO). Thanks to the increasing maturity of ad-
ditive manufacturing techniques, which provide a large amount of design freedom in
terms of manufacturable shapes, designers can fully exploit the potential of mathemat-
ical methods such as TO to obtain well-performing multi-stable structures featuring
optimal material layout. TO techniques specific to multi-stability studies have been de-
veloped by Bruns et al. [24] via an enhanced arc-length method in combination with the
Method of Moving Asymptotes and by Jensen et al. [95], who exploited a generalized
reduced gradient method and a simulated annealing algorithm for the investigation of
the design space of bistable micro-mechanismswithminimum footprint. A further chal-
lenge to be faced in multi-stability research concerns the robustness design. As in any
buckling-related phenomenon, small imperfections in the geometry, load or material
properties may significantly affect the mechanical behavior of multi-stable structures,
making it difficult to design robust imperfection-insensitive multi-stable applications.
To address this issue, bistable compliant mechanisms showing less sensitivity to im-
perfections have been investigated by Oh and Kota [123], who ultimately proposed a
robust bistable mechanism exploiting the reverse-lateral deformation of a cantilever
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beam. Finally, it is worth mentioning the work of Bessa and Pellegrino dealing with the
design of deployable booms, which could be equally applied to any buckling-related
as well as multi-stable application. In [20, 21], the authors presented the buckling and
post-buckling analysis of shell structures for the optimal design of ultra-thin carbon
fiber deployable booms via a data-driven computational framework. Numerical results
provided by commercial software finite elements analyses for different properly cho-
sen inputs were used to generate a large database of structural responses needed for
the computation of the optimal design via a Bayesian method, showing the potential of
machine learning processes as a design tool for buckling-induced engineering applica-
tions.

2.5 Application concepts
The sharp rise in interest in multi-stability is evidenced by the large number of appli-
cations across length-scales that has been recently proposed in the literature. The most
thoroughly investigated concepts are in the field of energy harvesting devices and mor-
phing aerospace technologies and a brief survey of research in these areas is reported
in this section. A more extensive review can be also found in Harne and Wang [86],
Emam and Inman [63] and Thill et al. [152].

2.5.1 Energy harvesters
Thanks to their large displacements capabilities and by embedding smart materials that
convert deformations into power output, bistable beams have shown potential in en-
ergy harvesting applications. Unlike linear energy harvesters, that work efficiently only
around the natural frequency, bistable beams can broaden the useful bandwidth for
power output, which is especially useful in realistic random vibration environment.
To this aim, Xu et al. [168] studied bistable buckled simply supported piezoelectric
beams both analytically and experimentally for broadband energy harvesting in self-
power MEMS, whereas Masana and Daqaq [114] had previously investigated the influ-
ence of the potential function shape in both mono-stable and bistable doubly-clamped
piezoelectric beams subjected to harmonic vibrations. A very interesting study on the
potential of harnessing the large strains occurring in composites to further enhance the
harvesting efficiency of a bistable cantilever piezoelectric beam has been carried out
by Arrieta et al. [4], whereas, still with regard to bistable composite energy harvest-
ing, a novel efficient concept exploiting a lever effect in order to minimize the required
snap-through energy has been presented by Scarselli et al. [146]. To conclude, electro-
magnetic energy harvesters have been also proposed, as in Chiacchiari et al. [50], who
showed the advantages provided by the bistable behavior in terms of efficiency and
total harvested energy.
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2.5.2 Morphing structures
Conventional engineering adaptive systems are heavy multi-body mechanisms. They
rely on components providing strength and stiffness, i.e. the rigid links, components
that provide motion, i.e. the kinematic joints, and springs storing the elastic energy.
They are usually optimized for a limited set of operating conditions, since shape adap-
tivity adds part count as well as design complexity. On the other hand, many structures
in nature, such as bird wings as well as trees and plants are single-piece bodies that
use compliance, i.e. elastic deformation, in order to adapt to changing environmental
conditions [151, 108]. Therefore, inspired by nature, shape morphing can be obtained
by integrating all the components in lightweight single-piece compliant elements. Fur-
thermore, by exploiting multi-stability, stiffness and compliance can be properly bal-
anced by design in order tomeet the contradictory requirements of flexibility (to change
shape) and load-carrying capabilities.
Due to the variety of different environments and loadings that structures experience
during their lifetime as well as the complex functionalities, aerospace engineering is
the primary fieldwhere adaptive structures could enable improved performance and en-
vironmental sustainability. Applications of thermally-induced bistability of laminated
composites have been thoroughly investigated by Diaconu et al. [62] for morphing
trailing-edge, camber and chord length of an aerofoil section and byMattioni et al. [117]
for shape-adaptable aircraft structures such as a variable sweep wing, a bistable winglet
and a variable camber trailing edge. By further developing the concept of a monolithic
mechanism featuring bistable elements as actuators of a compliant plate structure pro-
posed by Santer and Pellegrino [144], Arrieta et al. [5] proposed the use of bistable
laminates embedded within a compliant aerofoil for passive load alleviation, showing
that decreased aerodynamic loads can be achieved by passively morphing the aerofoil
camber via snap-through of the bistable laminate. A novel concepts about morphing
aerofoils has been very recently proposed by Nicassio et al. [121], who conceived a
lightweight and energy-efficient shape-adaptive surface based on the ’lever effect’ of
a bistable composite plate for passive morphing of an aircraft wing flaperon, see Fig-
ure 2.3. Another very promising application concept is the use of bistable elements as

Figure 2.3: Concept of a passively morphing wing flaperon by means of an embedded
bistable composite plate proposed by Nicassio et al. [121].

13



2 – Multi-stability: Modeling, Design and Applications

unit cells of cellular structures, as proposed by Pontecorvo et al. [134], who studied
bistable arch elements embedded in honeycomb structures for the morphing of a ro-
tor blade. To conclude, by investigating the snap-through of a post-buckled beam-like
member, the design and testing of a passively actuated shape-adaptive air duct for flow
control and regulation has been carried out by Arena et al. [2, 3].

2.5.3 Other proposed applications
Besides energy harvesting and morphing technologies, multi-stable structures have
been proposed for application in many other fields and a few examples are herein re-
ported, for the sake of completeness.
Actuators. A theoretical as well as experimental analysis on the bistability of buckled
micro-beam actuators for potential application in MEMS, such as mechanical memo-
ries, relays, valves and optical switches has been carried out by Park and Hah [128].
Deployable structures. By exploiting the enhanced capabilities of multi-material 3D
printing, Chen et al. [49] designed and manufactured deployable hierarchical struc-
tures using a bistable von Mises truss as building block. A modified Dynamic Relax-
ation method was used to verify the design of two-dimensional and three-dimensional
multi-state structures.
Metamaterials. A periodic cellular material with bistable unit cells based on a pre-
shaped sinusoidal beam element has been presented by Restrepo et al. [143]. The con-
stitutive behavior of such material was obtained both analytically and experimentally
showing potential as fully recoverable energy absorbing material. A similar concept
with a unit cell featuring tilted straight beams was studied by Shan et al. [147].
Nanotechnologies. Yamaletdinov et al. [169] studied buckled bistable graphene mem-
branes for use in a memcapacitor, see Fig. 2.4. A molecular-dynamics simulation, an
elasticity-based analytical model and the Density Functional Theory were compared in
terms of threshold snap-through loads and corresponding voltages for different mem-
brane dimensions.

Figure 2.4: Bistable graphene membrane for application in memcapacitors proposed by
Yamaletdinov et al. [169].
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2.5.4 Bistability in nature: the Venus fly trap
The behavior of the Venus fly trap (see Figure 2.5) is a clear example of how nature is
able to harness multi-stability in order to perform vital functions. Since Darwin [59],

Figure 2.5: Closure mechanism of the Venus fly trap investigated by Forterre et al. [69].

the Venus fly trap has been subject of research due to its fast trap closure movement.
Such sudden change of configuration of the leaf halves could not rely on cellular wa-
ter pumps, since, for the typical values of flow rate involved in plants, water-driven
actuation would only allow a much slower motion, such as in sunflowers for instance.
As shown in Forterre et al. [69], the fast trap closure is made possible by harnessing
the snap-through elastic instability of the doubly-curved leaves, whereas the trigger
actuation only is driven by the differential turgor pressure in the hydraulic layers.
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Chapter 3

Mechanics of Composite
Multi-Layered Beam Structures:
Classical Models and Recent
Advances

3.1 Introduction
Over the last decades, the development of mathematical models able to accurately de-
scribe the behavior of multi-layered composites has become of extreme importance for
full exploitation of their potential in industrial applications. Classical approaches con-
sist in a mere extension of mechanical models previously conceived for metallic struc-
tures to account for variation of the material properties through space. Nevertheless,
these models are based on kinematic assumptions that do not account for some pecu-
liar features of multi-layered composite materials, such as transverse deformability and
a greater influence of shear and normal stresses on the mechanical behavior. For this
reason, ad-hoc theories able to account for these effects have been formulated over the
years by many authors, yielding a better understanding of the mechanics of composites
and improved predictions of their behavior.
A brief review of the most relevant one-dimensional mechanical models available in
the literature is given in Section 3.2, with a special focus on equivalent single layer ap-
proaches, such as Euler-Bernoulli’s, Timoshenko’s and higher-order shear deformation
theories, as well as layer-wise models. In Section 3.3, an advanced modeling approach
based on a Unified Formulation of the displacement field is presented, in which the
approximation order of the cross-sectional beam kinematics is generalized thanks to
an elegant compact unified notation, allowing several refined one-dimensional models
to be incorporated in a single mathematical framework. The nuts and bolts of UF are
discussed, including the variational statements upon which it is built, the choice of the
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base functions of the displacement field expansion and the variable description level,
i.e. the use of either an equivalent single layer or a layer-wise approach. Finally, a brief
survey about exploitation of UF methodology in a broad spectrum of mechanics-related
fields of study is provided.

3.2 One-dimensional modeling literature review
A three-dimensional beam-like structure is a solid generated by the translation of a
plane cross-section Ω along a line, i.e. the beam axis, the length of which is predominant
with respect to the cross-section dimensions. The adopted Cartesian reference system
is provided in Figure 3.1, being 𝑥 the axis direction and (𝑦, 𝑧) two orthogonal directions
in the cross-section plane. The three-dimensional displacement field is:

Figure 3.1: Coordinate reference system in a beam-like structure.

u𝑇 (𝑥, 𝑦, 𝑧) = { 𝑢𝑥 (𝑥, 𝑦, 𝑧) 𝑢𝑦 (𝑥, 𝑦, 𝑧) 𝑢𝑧 (𝑥, 𝑦, 𝑧) } (3.1)

where 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the displacement components along the respective axis.
Let 𝜀 and 𝜎 be, respectively, the three-dimensional strain and stress vectors:

𝜀𝑇 = { 𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑦𝑧 𝜀𝑥𝑧 𝜀𝑥𝑦 } (3.2)

𝜎𝑇 = { 𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑦𝑧 𝜎𝑥𝑧 𝜎𝑥𝑦 } (3.3)
The main features of the classical approaches adopted for the study of composite multi-
layered one-dimensional structures are briefly reported in this section.

3.2.1 Classical theories
Euler-Bernoulli’s Theory (EBT)

Euler-Bernoulli’s theory [65, 19] is based on the hypothesis that the cross-section re-
mains plane and perpendicular to the axis after deformation. The assumed kinematic
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field is:

𝑢𝑥 = 𝑢𝑥1 −
𝜕𝑢𝑦1

𝜕𝑥
𝑦 −

𝜕𝑢𝑧1
𝜕𝑥

𝑧
𝑢𝑦 = 𝑢𝑦1
𝑢𝑧 = 𝑢𝑧1

(3.4)

where 𝑢𝑥1, 𝑢𝑦1 and 𝑢𝑧1 are three unknown functions. Based on this kinematic behavior,
in the framework of EBT, shear and transverse normal strains are neglected:

𝜀𝑥𝑦 = 𝜀𝑥𝑧 = 𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀𝑦𝑧 = 0 (3.5)

Timoshenko’s BeamTheory (TBT)

According to Timoshenko’s kinematics [154, 155], two additional unknown functions
with respect to EBT, i.e. the section rotations 𝜙𝑦 and 𝜙𝑧, are considered:

𝑢𝑥 = 𝑢𝑥1 + 𝜙𝑧𝑦 + 𝜙𝑦𝑧
𝑢𝑦 = 𝑢𝑦1
𝑢𝑧 = 𝑢𝑧1

(3.6)

Besides axial strain, constant transverse shear strains over the cross-sectional coordi-
nates 𝑦 and 𝑧 are accounted for, whereas all other deformation components are ne-
glected:

𝜀𝑥𝑦 and 𝜀𝑥𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 𝜀𝑦𝑧 = 0 (3.7)

Nevertheless, as it is well-known (see Reddy [140]), in order to accommodate stress-
free conditions at the unloaded surfaces of the beam, a quadratic through-the-thickness
variation of the transverse shear stresses, at least, should be imposed. For this reason, in
order to improve the predictions provided by TBT, transverse shear stiffness is reduced
via problem-dependent shear correction coefficients [154, 155, 55, 156].

3.2.2 Higher-Order Shear DeformationTheories (HSDT)
Higher-order expansions of the axial displacement component have been proposed in
order to enhance the prediction of the transverse shear stress and avoid the use of shear
correction factors. For a two-dimensional problem in the xz-plane, the kinematics of a
second-order shear deformation theory [141] reads:

𝑢𝑥 = 𝑢𝑥1 + 𝜙𝑧 + 𝜓𝑧2

𝑢𝑧 = 𝑢𝑧1
(3.8)

In a similar manner, the displacement field for a third-order theory [110, 22, 139, 87,
141] is given by:

𝑢𝑥 = 𝑢𝑥1 + 𝜙𝑧 − 4𝑧3

3ℎ2 (𝜙 +
𝜕𝑢𝑧1
𝜕𝑥 )

𝑢𝑧 = 𝑢𝑧1

(3.9)
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where ℎ is the beam thickness. The quadratic profile of transverse shear strain/stress as
well as stress-free conditions at the unloaded edges of the beam can be accommodated
through these kinematic assumptions. No additional unknowns are introduced with
respect to the two-dimensional TBT. Since the transverse displacement does not vary
along the thickness, normal inextensibility of the beam cross-section is assumed (𝜀𝑧𝑧 =
0).

3.2.3 Layer-Wise (LW) models
Themodels described in the previous sections rely on an Equivalent Single Layer (ESL)
approach, in which the number of unknowns is independent of the layer number and a
unique continuous kinematic field is assumed over the whole cross-section. Therefore,
within an ESL framework, a cross-section eventually composed by subdomains made
of different materials is seen as an equivalent single domain cross-section with material
properties that are the average of the different domains. An alternative method, known
as layer-wise approach, consists in the assumption of a different kinematic field for each
subdomain, where the structural integrity is assured by imposing the congruence of the
displacements at the interfaces between subdomains. By means of a LW approach and
mixed displacement-stress formulations, the C0

𝑧 requirement [25, 26] can be exactly
satisfied, i.e. the continuity of the displacements as well as out-of-plane stresses at the
interfaces between laminae can be imposed. Although a more refined local mechanical
response at lamina level can be predicted via a LW approach, its use for practical ap-
plications with a large number of subdomains can be computationally heavy, since the
number of unknowns of the model increases. A combination of the two approaches, in
which some specific layers are modeled via LW and other stacks of lamina are modeled
via ESL, is a commonly adopted modeling solution in order to achieve a good compro-
mise between an accurate mechanical response and time-effective numerical simula-
tions. In this framework, the use of a piece-wise continuous displacement field allows
improved predictions of the typical zig-zag through-the-thickness distribution of the
displacements, as shown for instance in Filippi and Carrera [66]. Zig-zag theories have
been widely adopted in either the ESL or LW framework, within displacement-based or
mixed formulations and an exhaustive review can be found in Carrera [27].
Some relevant works regarding the development of beam models using a LW approach
will be reported hereafter. A layer-wise approximation of the displacement field under
the hypothesis of non-deformable cross-section was adopted in Savoia et al. [145] and
Krajcinovic [105] who investigated the static mechanical response of a sandwich beam-
like structure by adopting Euler-Bernoulli’s kinematics independently for each layer.
Since classical ESL approaches are not adequate in the case of localized deformations
caused by a pronounced transverse anisotropy, the use of refined layer-wise models
for the mechanics of sandwich beams was investigated in several studies. Banerjee and
Sobey [12] adopted Rayleigh’s hypothesis for the skins and Timoshenko’s beam the-
ory for the core mechanics. Damanpack and Khalili [58] assumed cubic and quadratic
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through-the-thickness variation of axial and transverse displacements, respectively, in
the core, whereas Euler-Bernoulli’s theory was adopted for the skins. A similar me-
chanical model was already used by Léotoing at al. [109] and by Hu et al. [89, 90] for
the study of global and local instabilities.
An extension of higher-order sandwich beam theory by including transverse shear as
well as core compressibility (non-zero axial strains) was provided by Phan et al. [130]
and Wang and Wang [166]. Cho and Averill [51] proposed a novel one-dimensional fi-
nite elements formulation based on a layer-wise first-order zig-zag model for the study
of thick and slender laminated beams. Averill and Yip [6] studied thick laminated and
sandwich beams through a layer-wise higher-order zig-zag theory accounting for trans-
verse deformation, in which the additional degrees of freedom coming from the layer-
wise approximation with respect to an equivalent single layer approach are removed
by imposing inter-laminar continuity of the transverse stresses. In Aitharaju and Aver-
ill [1] laminated composite beams were investigated by means of a quadratic layer-wise
zig-zag theory under the assumption of a constant transverse normal stress in order to
tackle Poisson’s locking phenomenon. A novel beam theory based on a zig-zag third-
order approximation of the in-plane displacement components and layer-wise quadratic
approximation of the normal component was developed by Kapuria et al. [99] account-
ing for thermal stresses in laminated simply supported beams. Based on the samemodel,
static, buckling and vibrations analyses were carried out in [100]

3.2.4 Other modeling approaches
In this section, other important contributions in the field of composite beam modeling
are mentioned. A generalized form of different higher-order shear deformation theo-
ries was adopted by Aydogdu [7, 8] as well as Mahi et al. [112] for the vibration anal-
ysis of laminated and functionally graded beams, based on the work of Touratier [157]
and Timarci and Soldatos [153] on the mechanics of multi-layered shells. Groh and
Weaver [84] discussed the kinematic boundary inconsistencies of higher-order dis-
placement based models enforcing a-priori vanishing of the shear strain at the top and
bottom of clamped beams, plates and shells, leading to an over stiff representation of
the structure. Soldatos and Elishakoff [150] provided a higher-order theory by taking
into account both transverse shear and normal deformability. A refined shear defor-
mation beam theory based on trigonometric functions ensuring inter-laminar continu-
ity of the transverse shear within an equivalent single layer approach was developed
by Vidal and Polit [163] for the thermo-mechanical investigation of laminated beams.
Transverse normal stress was then included within the refined model by the same au-
thors in [164] for the study of vibrations in multi-layered beams. In the context of
asymptotic approaches, Hodges et al. [88] discussed a Variational Asymptotical Method
(VAM) to predict the stiffness coefficients of composite beams in the geometrically non-
linear regime via the derivation of an asymptotically exact strain energy. By means of
VAM, Volovoi et al. [165] developed a generalization of Vlasov’s theory for the study
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of anisotropic thin-walled beam structures with open cross-sections. An advanced one-
dimensional finite elements formulation adopting a Proper Generalized Decomposition
has been proposed by Vidal et al. [162], in which a two-dimensional refined theory
based on variable separation method within an ESL approach was developed for the
study of multi-layered composite structures. Silvestre and Camotim [148, 149] investi-
gated thin-walled orthotropic beam structures through the Generalized Beam Theory
which relies on a piece-wise modeling of the beam cross-section. Such mathematical
framework was, then, extended to the geometrically non-linear regime by Basaglia et
al. [13] for post-buckling analyses.

3.3 One-dimensional hierarchical models based on
Unified Formulation (UF)

Unified Formulation has been developed by Carrera [28] for plates and shells and it
has been extended more recently to the modeling of beam-like structures by Carrera et
al. [35] and Carrera and Giunta [34]. By means of this approach, classical and refined
models, either in a ESL or LW approach, can be obtained within the same mathematical
framework. The theoretical basis of UF is described in the following sections, including
the variational statements, the polynomial expansion of the kinematic field written in
a unified notation and the variables description level.

3.3.1 Variational statements
In order to obtain the governing equations, according to the choice of the main un-
knowns, the Principle of Virtual Displacements (PVD) and the Reissner’s Mixed Vari-
ational Theorem (RMVT) can be applied for a displacement-based formulation and a
mixed displacement-stress formulation, respectively.

Principle of Virtual Displacements

In a general dynamic case, PVD in matrix notation reads:

∫𝑉
(𝛿𝜖𝑇𝜎) 𝑑𝑉 = 𝛿ℒ𝑒 + ∫𝑉

𝜚 𝛿u𝑇 ..
u 𝑑𝑉 (3.10)

where the superscript 𝑇 is the transposition operator, 𝛿 represents a virtual variation
and 𝜚 is the material density. The left-hand side of the latter equation is the virtual
variation of the internal work, ℒ𝑒 is the work done by the external loads and the second
term on the right-hand side is the inertial work. The main unknown variable, in the
case of PVD, is the displacement vector, whereas strains and stresses are derived via
geometrical relations and Hooke’s law, respectively.
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Reissner’s Mixed Variational Theorem (RMVT)

Within the framework of Reissner’s Mixed Variational Theorem [142], a mixed un-
known vector with displacement components and the components of the stress that
are orthogonal to the lamination plane is considered:

∫𝑉
[𝛿𝜖𝑇

𝑝𝐺𝜎𝑝𝐻 + 𝛿𝜖𝑇
𝑛𝐺𝜎𝑛𝑀 + 𝛿𝜎𝑇

𝑛𝑀 (𝜖𝑛𝐺 − 𝜖𝑛𝐻)] 𝑑𝑉 = 𝛿ℒ𝑒 + ∫𝑉
𝜚𝛿u𝑇

𝑀
..
u𝑀 𝑑𝑉 (3.11)

Subscript 𝑝 refer to in-plane components and 𝑛 to out-of-plane components; subscripts
𝐺 and 𝐻 stand for geometrical relations and Hooke’s law, respectively, referring to the
equations used in order to derive the respective quantity; subscript 𝑀 stands for main
variable unknown. Bymeans of this approach, in the context of a layer-wise description,
the continuity of the transverse stress components between laminae can be ensured [25,
26], therefore fulfilling the C0

𝑧 requirement described in Section 3.2.3.

3.3.2 Unified Formulation of the displacement field
In this thesis, displacement-based models developed via PVD are considered. In this
context and by adopting Unified Formulation, the three-dimensional kinematic field
is approximated via a generic polynomial expansion over the beam cross-section as
follows:

u (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑦, 𝑧)u𝜏 (𝑥) with 𝜏 = 1, 2, … , 𝑁𝑢 (3.12)

Relying on Einstein’s notation, the repeated index 𝜏 represents a summation from 1 to
𝑁𝑢, which is the number of terms taken into account in the approximation. 𝐹𝜏 (𝑦, 𝑧) is a
generic expansion function over the cross-section coordinates. No assumption is made
on the choice of𝐹𝜏 (𝑦, 𝑧) and𝑁𝑢, therefore several displacement-based one-dimensional
models with different levels of kinematic refinement can be straightforwardly derived
within the same formulation. Through an appropriate choice of the expansion order,
shear and torsional deformation as well as in-plane and out-of-plane cross-sectional
warping can be implicitly accounted for. In the existing literature, three classes of ex-
pansion functions 𝐹𝜏 (𝑦, 𝑧) have been studied more thoroughly: Taylor Expansion (TE),
Lagrange Expansion (LE) and Hierarchical Legendre Expansions (HLE).

Taylor Expansion

The kinematic field approximated via 𝑁-order Taylor polynomials in explicit form
reads:

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑦 + 𝑢𝑥3𝑧 + ⋯ + 𝑢
𝑥 (𝑁2+𝑁+2)

2

𝑦𝑁 + ⋯ + 𝑢𝑥 (𝑁+1)(𝑁+2)
2

𝑧𝑁

𝑢𝑦 = 𝑢𝑦1 + 𝑢𝑦2𝑦 + 𝑢𝑦3𝑧 + ⋯ + 𝑢
𝑦 (𝑁2+𝑁+2)

2

𝑦𝑁 + ⋯ + 𝑢𝑦 (𝑁+1)(𝑁+2)
2

𝑧𝑁

𝑢𝑧 = 𝑢𝑧1 + 𝑢𝑧2𝑦 + 𝑢𝑧3𝑧 + ⋯ + 𝑢
𝑧 (𝑁2+𝑁+2)

2

𝑦𝑁 + ⋯ + 𝑢𝑧 (𝑁+1)(𝑁+2)
2

𝑧𝑁

(3.13)
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In the context of UF notation given in Eq. (3.12), 𝑁𝑢 and 𝐹𝜏 as functions of the poly-
nomial order 𝑁 are given in the Pascal’s triangle in Table 3.1. It should be noticed that

𝑁 𝑁𝑢 𝐹𝜏
0 1 𝐹1 = 1
1 3 𝐹2 = 𝑦 𝐹3 = 𝑧
2 6 𝐹4 = 𝑦2 𝐹5 = 𝑦𝑧 𝐹6 = 𝑧2

3 10 𝐹7 = 𝑦3 𝐹8 = 𝑦2𝑧 𝐹9 = 𝑦𝑧2 𝐹10 = 𝑧3

… … …
𝑁 (𝑁+1)(𝑁+2)

2 𝐹
(𝑁2+𝑁+2)

2

= 𝑦𝑁 𝐹
(𝑁2+𝑁+4)

2

= 𝑦𝑁−1𝑧 … 𝐹 𝑁(𝑁+3)
2

= 𝑦𝑧𝑁−1 𝐹 (𝑁+1)(𝑁+2)
2

= 𝑧𝑁

Table 3.1: Terms of the Taylor’s polynomial expansion via Pascal’s triangle.

classical theories such as EBT and TBT can be derived as particular cases of Eq. (6.21)
for 𝑁 = 1 (complete linear displacement field), as discussed in Carrera et al. [35].

Lagrange Expansion

In the framework of higher-order Taylor-like expansions, the unknown vector features
components with no physical meaning. If pure displacements components are preferred
as unknown variables, Lagrange polynomial expansion can be adopted. The most com-
monly used Lagrange-like expansions in the literature are based on four and nine points
of the beam cross-section and they are referred to as L4 and L9, respectively. The 𝐹𝜏
polynomials expressed in natural coordinates (𝜁1, 𝜁2) for a L4 expansion are given by:

𝐹𝜏 = 1
4 (1 + 𝜁1𝜏𝜁1) (1 + 𝜁2𝜏𝜁2) with 𝜏 = 1, 2, 3, 4 (3.14)

being (𝜁1𝜏, 𝜁2𝜏) the coordinates of each point reported in Table 3.2.

Point 𝜁1𝜏 𝜁2𝜏
1 −1 −1
2 1 −1
3 1 1
4 −1 1

Table 3.2: Points of a L4 expansion in natural coordinates.

Polynomials 𝐹𝜏 for a L9 expansion are:

𝐹𝜏 = 1
4 (𝜁2

1 + 𝜁1𝜏𝜁1) (𝜁2
2 + 𝜁2𝜏𝜁2) with 𝜏 = 1, 3, 5, 7

𝐹𝜏 = 1
2

𝜁2
2𝜏 (𝜁2

2 + 𝜁2𝜏𝜁2) (1 − 𝜁2
1 ) + 1

2
𝜁2

1𝜏 (𝜁2
1 + 𝜁1𝜏𝜁1) (1 − 𝜁2

2 ) with 𝜏 = 2, 4, 6, 8

𝐹𝜏 = (1 − 𝜁2
1 ) (1 − 𝜁2

2 ) with 𝜏 = 9
(3.15)
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being the coordinates of the nine points reported in Table 3.3.

Point 𝜁1𝜏 𝜁2𝜏
1 −1 −1
2 0 −1
3 1 −1
4 1 0
5 1 1
6 0 1
7 −1 1
8 −1 0
9 0 0

Table 3.3: Points of a L9 expansion in natural coordinates.

Hierarchical Legendre Expansion

TheHLE-based expansion of the displacement field is obtained by defining vertex, edge
and internal polynomials in the natural cross-section coordinates. The vertex polyno-
mials 𝐹𝜏 with 𝜏 = 1,2,3,4 coincide with the L4 bi-linear polynomials introduced in
Eq. (3.14) and Table 3.2. For a polynomial order 𝑝 ≥ 2, the following edge polynomials
are introduced:

𝐹𝜏 (𝜁1, 𝜁2) = 1
2 (1 − 𝜁2) 𝜙𝑝 (𝜁1) with 𝜏 = 5, 9, 13, 18, ...

𝐹𝜏 (𝜁1, 𝜁2) = 1
2 (1 + 𝜁1) 𝜙𝑝 (𝜁2) with 𝜏 = 6, 10, 14, 19, ...

𝐹𝜏 (𝜁1, 𝜁2) = 1
2 (1 + 𝜁2) 𝜙𝑝 (𝜁1) with 𝜏 = 7, 11, 15, 20, ...

𝐹𝜏 (𝜁1, 𝜁2) = 1
2 (1 − 𝜁1) 𝜙𝑝 (𝜁2) with 𝜏 = 8, 12, 16, 21, ...

(3.16)

with:

𝜙𝑝 (𝜁1/2) =
√

2𝑝 − 1
𝑝 ∫

𝜁1/2

−1
𝐿𝑝−1 (𝜒) 𝑑𝜒 (3.17)

being 𝐿𝑝−1 a one-dimensional Legendre polynomial of order 𝑝 − 1. Finally, for order
𝑝 ≥ 4, internal polynomials are added to the cross-sectional expansion. For instance, in
the case of a sixth-order model (𝑝 = 6), referred to as HL6, the internal polynomials are
the following:

𝐹28 (𝜁1, 𝜁2) = 𝜙4 (𝜁1) 𝜙2 (𝜁2)
𝐹29 (𝜁1, 𝜁2) = 𝜙3 (𝜁1) 𝜙3 (𝜁2)
𝐹30 (𝜁1, 𝜁2) = 𝜙2 (𝜁1) 𝜙4 (𝜁2)

(3.18)
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More details about HLE-based beam models are discussed in Carrera et al. [41] and
Pagani et al. [126].

3.3.3 Variables description level
Equivalent Single Layer (ESL) approach

Within the Equivalent Single Layer (ESL) approach, the variation of the model un-
knowns is assumed as in Eq. (3.12) over the whole laminate cross-section Ω. There-
fore, ESL yields the definition of an equivalent lamina with material properties that
are the average of the different layers. Within the literature related to UF, the most
common way in to implement advanced one-dimensional models is by means of the
Taylor-type expansions discussed in Section 3.3.2, since the enrichment of the cross-
sectional kinematics can be straightforwardly obtained by adding higher-order terms
to the polynomial basis.

Layer-Wise (LW) approach

In UF-based LW models, equation (3.12) holds independently for each layer k:

u𝑘 (𝑥, 𝑦𝑘, 𝑧𝑘) = 𝐹𝜏 (𝑦𝑘, 𝑧𝑘)u𝑘
𝜏 (𝑥) with 𝜏 = 1, 2, … , 𝑁𝑢 (3.19)

where (𝑦𝑘, 𝑧𝑘) are the natural coordinates at layer level such that −1 ≤ 𝑦𝑘, 𝑧𝑘 ≤ 1
and 𝑘 = 1 … 𝑁𝑙 with 𝑁𝑙 the total layer number. Structural integrity is ensured by im-
posing the displacement congruency condition at each interface, which can be easily
done if the interface values are used as unknown variables. In the exisiting literature
related to UF, LW displacement-based models are developed by means of the Lagrange
and Legendre expansions discussed in Section 3.3.2, since interface displacements can
be chosen as main model unknowns and, therefore, compatibility conditions can be
straightforwardly imposed. On the other hand, in order to derive LW models based on
Taylor-type expansions (Section 3.3.2), additional constraint equations enforcing con-
gruency conditions would be required. Within the category of Taylor-based theories,
classical models (EBT, TBT) as well as HSDT are also included.

3.3.4 Recent applications of UF-based one-dimensional models
A short literature review based on Carrera et al. [46] and updated with the most recent
contributions on UF-based one-dimensional modellng is given hereafter.
Vibration analysis. Higher vibration modes of laminated, sandwich and fiber-metal
laminated simply supported beam-like structures have been studied by Giunta et al. [78,
79] and Hanten et al. [85] via refined Taylor-based models in the framework of an ex-
act Navier-type analytical solution. Such approach was extended to the investigation of
sandwich beams with generic boundary conditions by Hui et al. [92] in the framework
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of a finite element solution.
Rotordynamics.The dynamics of rotors made of multi-layered composite material via
Taylor-based higher-order models has been studied by Carrera et al. [30, 31] and Car-
rera and Filippi [29]. Mode aberration of rotating plates and shell-like structures via
one-dimensional UF-based models has been explored by Filippi et al. [68] in the geo-
metrically non-linear regime.
Thermal Analysis. Giunta et al. [76, 77, 73] investigated the thermo-elastic response of
functionally graded andmulti-layered beams via a Navier-type solution as well as radial
basis collocation meshless solution. Static, transient and dynamic coupled thermoelas-
tic analysis of nonhomogeneous anisotropic beams via Lagrange-type expansions has
been performed by Entezari et al. [64] and Filippi et al. [67].
Smart Strucures. Giunta et al. [74] and Koutsawa et al. [103, 102, 104] used both ESL-
based refined finite elements and layer-wise approaches based on Lagrange expansion
for the study of shear-actuated beam structures with piezo-electric layers or patches.
Zappino and Carrera [171] adopted UF-based one-dimensional models to carry out a
thermo-piezo-mechanical analysis of amplified piezoceramic actuators with complex
geometry. The influence of the thermal field on the actuator performance was assessed.
UF-based refined models with node-dependent kinematics was developed by Carrera et
al. [44] and Zappino et al. [172] for a numerically efficient static and dynamic analysis
of smart structures with piezo-patches.
Optimization. Montemurro et al. [120] exploited the enhanced capabilities of UF-based
refined one-dimensional models to verify the design of composite reinforced panels pre-
viously optimized via a multi-scale two-level (mesoscopic and macroscopic) strategy.
Nano-structures. Taylor-based advanced atomistic theories were developed for the
static, vibration and stability analysis of orthotropic nano-beams by Giunta et al. [81]
by accounting for the surface free energy effect within the linear elastic constitutive
law.
Component-Wise (CW) Approach. The investigation of multi-component structures
via one-dimensional UF-based finite elements was proposed by Carrera et al. [45]. Based
on this approach, aerospace structures [42], civil engineering structures [43] as well as
micro-mechanics of composites [38, 39, 170] has been studied. Taylor, Lagrange and
Legendre expansions have been considered within the CW approach.
Biomechanics. Varello and Carrera [161] used higher-order Taylor-based models to
study the mechanical response of a nonhomogeneous atherosclerotic plaque. Based on
this study, Carrera et al. [36] investigated the static and vibration response of atheroscle-
rotic plaque and a dental prosthesis by exploiting the CW capabilities of Lagrange ex-
pansions.
Elastoplasticity. Higher-order Taylor- and Lagrange-based models with 3D-like accu-
racy were assessed by Carrera et al. [37] and Petrolo et al. [129] for the elastoplastic
analysis of thin-walled structures through a global-local technique.
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Post-buckling.The buckling and post-buckling of thin-walled metallic beams and lam-
inated beams by means of Lagrange-based layer-wise approach was carried out by Pa-
gani and Carrera [125, 124].
Failure and Damage Analysis. In de Miguel et al. [118], UF-based finite elements
with Lagrange expansion of the kinematics have been adopted for a 3D-like prediction
of failure indices in multi-layered composite structures for the first-ply failure predic-
tion. UF models based on the Lagrange polynomial expansion within a CW approach
have been used by Kaleel et al. [97, 98] for the progressive damage propagation anal-
ysis in fiber reinforced composites at the micro-scale. Viglietti et al. [118] and Cavallo
et al. [47] investigated the free-vibration response of locally damaged aerospace struc-
tures, such as stringer reinforced panel and wing box structure, and civil engineering
structures by means of Lagrange-based models in the framework of a CW approach.
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Chapter 4

Hierarchical 1D Finite Elements for
Mechanical andThermal Stress
Analysis

4.1 Introduction
In this chapter, a family of refined one-dimensional finite elements based on the Uni-
fied Formulation has been derived for mechanical and thermo-mechanical problems,
in the framework of an Equivalent Single Layer approach. The UF-based finite element
approximation of the three-dimensional displacement field is described in Section 4.2.
As discussed in Sections 4.3 and 4.4, linear geometrical and constitutive relations are
considered and the temperature field, obtained by analytically solving Fourier’s heat
conduction equation, is accounted as an external load within the Hooke’s law, accord-
ing to a one-way staggered solution procedure. Finally, in Section 4.5, the governing
algebraic equations are derived via the Principle of Virtual Displacements and, thanks
to the UF compact notation, the element stiffness matrix, the mechanical load vector
and the thermo-mechanical coupling vector are written in the form of fundamental nu-
clei, whose explicit expressions are also provided. This formulation should be regarded
as an extension of the work done by Giunta et al. [77, 80, 72], where UF-based ESL mod-
els have been developed based on a strong form Navier-type solution accommodating
simply supported boundary conditions. The novelty of the present work consists in the
generalization of the applicable boundary conditions thanks to a weak form finite ele-
ment solution of the governing differential equations. The formulation described in this
chapter brings together contributions previously published in [61, 60, 75].
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4.2 UF-based displacement field
A Cartesian reference system is used, where the 𝑥-axis is in the direction of the beam
axis and 𝑦-axis and 𝑧-axis lay on the cross-section plane Ω, as shown in Fig. 3.1.

Cross-sectional kinematics

As discussed in Section 3.3.2, within the framework of Unified Formulation, the three-
dimensional kinematic field is a priori assumed as follows:

u (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑦, 𝑧)u𝜏 (𝑥) with 𝜏 = 1, 2, … , 𝑁𝑢 (4.1)

where 𝐹𝜏 (𝑦, 𝑧) is a generic function of the cross-section coordinates. The repeated in-
dex 𝜏 implicitly stands for a summation over its variation range [1,𝑁𝑢], where 𝑁𝑢 is
the number of terms accounted for in the expansion.
Since the choice of the functions 𝐹𝜏 (𝑦, 𝑧) and 𝑁𝑢 is arbitrary, the cross-sectional kine-
matics can be freely enriched, yielding accurate predictions of shear mechanics, tor-
sional effects, Poisson’s effect, in- and out-of plane warping in a straightforward man-
ner.

Axial approximation

Regarding the variation of the displacements along the beam axis, a one-dimensional
finite elements approach is considered, therefore Eq. (4.1) reads:

u (𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑦, 𝑧) 𝑁𝑖 (𝑥)q𝜏𝑖 with 𝜏 = 1, 2, … , 𝑁𝑢 and 𝑖 = 1, 2, … , 𝑁𝑒
𝑛 (4.2)

being 𝑁𝑖 (𝑥) standard one-dimensional Lagrangian shape functions and qi the element
unknown vector. The number of nodes per element 𝑁𝑒

𝑛 is also a free input parameter.
Two-node (linear), three-node (quadratic) and four-node (cubic) elements are used and
they are referred to as “B2”, “B3” and “B4”, respectively.

4.3 Geometrical and constitutive equations
The total strain vector 𝜀𝑡 and the stress vector 𝜎 are both split into two vectors: 𝜀𝑡𝑛 and
𝜎𝑛 with strain and stress components in the axial direction and 𝜀𝑡𝑝 and 𝜎𝑝 with strain
and stress components laying on the cross-section:

𝜀𝑇
𝑡𝑛 = { 𝜀𝑥𝑥 𝜀𝑥𝑦 𝜀𝑥𝑧 } , 𝜀𝑇

𝑡𝑝 = { 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑦𝑧 } . (4.3)

𝜎𝑇
𝑛 = { 𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧 } , 𝜎𝑇

𝑝 = { 𝜎𝑦𝑦 𝜎𝑧𝑧 𝜎𝑦𝑧 } . (4.4)
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Strain-displacement relation

A linear strain-displacement relation is considered:

𝜀𝑇
𝑡𝑛 = { 𝑢𝑥,𝑥 𝑢𝑥,𝑦 + 𝑢𝑦,𝑥 𝑢𝑥,𝑧 + 𝑢𝑧,𝑥 } ,

𝜀𝑇
𝑡𝑝 = { 𝑢𝑦,𝑦 𝑢𝑧,𝑧 𝑢𝑦,𝑧 + 𝑢𝑧,𝑦 } .

(4.5)

where subscripts “, 𝑥”, “, 𝑦” and “, 𝑧” stand for derivation versus the respective direction.
The matrix form of Eqs. (4.5) reads:

𝜀𝑡𝑛 = D𝑛𝑝u + D𝑛𝑥u,
𝜀𝑡𝑝 = D𝑝u. (4.6)

being I the identity matrix and D𝑛𝑝, D𝑛𝑥, and D𝑝 the following differential operators:

D𝑛𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0
𝜕

𝜕𝑦
0 0

𝜕
𝜕𝑧

0 0

⎤
⎥
⎥
⎥
⎥
⎦

, D𝑛𝑥 = I 𝜕
𝜕𝑥

, D𝑝 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 𝜕
𝜕𝑦

0

0 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑧

𝜕
𝜕𝑦

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.7)

By using the UF-based displacement field in Eq.(4.2), the strain-displacement relation
in Eqs. (4.6) is written in terms of the nodal unknowns vector:

𝜀𝑡𝑛 = D𝑛𝑝𝐹𝜏𝑁𝑖q𝜏𝑖 + D𝑛𝑥𝐹𝜏𝑁𝑖q𝜏𝑖,
𝜀𝑡𝑝 = D𝑝𝐹𝜏𝑁𝑖q𝜏𝑖.

(4.8)

Hooke’s law

Under the assumption of linear elastic material behavior, Hooke’s law is considered,
which for a thermo-elastic analysis reads:

𝜎 = C𝑘𝜀𝑒 = C𝑘 (𝜀𝑡 − 𝛼𝑘𝑇) = C𝑘𝜀𝑡 − 𝜆𝑘𝑇, (4.9)

where “𝑘” stands for the k-th layer of a multi-layered structure, 𝜀𝑒 is the elastic defor-
mation, C𝑘 is the matrix of the material coefficients, 𝛼𝑘 is the vector of the thermal
expansion coefficients, 𝑇 is the over-temperature and 𝜆𝑘 is given by:

𝜆𝑘 = C𝑘𝛼𝑘 (4.10)

By writing Eq. (4.9) in terms of 𝜎𝑛, 𝜀𝑡𝑛, 𝜎𝑝 and 𝜀𝑡𝑝,:

𝜎𝑛 = C𝑘
𝑛𝑝𝜀𝑡𝑝 + C𝑘

𝑛𝑛𝜀𝑡𝑛 − 𝜆𝑘
𝑛𝑇,

𝜎𝑝 = C𝑘
𝑝𝑝𝜀𝑡𝑝 + C𝑘

𝑝𝑛𝜀𝑡𝑛 − 𝜆𝑘
𝑝𝑇 . (4.11)
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In the case of isotropic materials, the matrices C𝑘
𝑛𝑛, C

𝑘
𝑛𝑝, C

𝑘
𝑝𝑛 and C𝑘

𝑝𝑝 are:

C𝑘
𝑛𝑛 =

⎡
⎢
⎢
⎣

𝐶𝑘
11 0 0
0 𝐶𝑘

66 0
0 0 𝐶𝑘

55

⎤
⎥
⎥
⎦

C𝑘
𝑝𝑛 = C𝑘𝑇

𝑛𝑝 =
⎡
⎢
⎢
⎣

𝐶𝑘
12 0 0

𝐶𝑘
13 0 0
0 0 0

⎤
⎥
⎥
⎦

C𝑘
𝑝𝑝 =

⎡
⎢
⎢
⎣

𝐶𝑘
22 𝐶𝑘

23 0
𝐶𝑘

23 𝐶𝑘
33 0

0 0 𝐶𝑘
44

⎤
⎥
⎥
⎦

(4.12)
Coefficients 𝐶𝑘

𝑖𝑗 are given by:

𝐶𝑘
11 = 𝐶𝑘

22 = 𝐶𝑘
33 = 1 − 𝜈𝑘

(1 + 𝜈𝑘) (1 − 2𝜈𝑘)
𝐸𝑘 𝐶𝑘

12 = 𝐶𝑘
13 = 𝐶𝑘

23 = 𝜈𝑘

(1 + 𝜈𝑘) (1 − 2𝜈𝑘)
𝐸𝑘

𝐶𝑘
44 = 𝐶𝑘

55 = 𝐶𝑘
66 = 1

2 (1 + 𝜈𝑘)
𝐸𝑘

(4.13)
In the particular case of isotropic functionally gradedmaterial, elastic and thermal prop-
erties become function of the cross-section coordinates according to an assumed mate-
rial gradation law. For orthotropic materials C𝑘

𝑛𝑛, C
𝑘
𝑛𝑝, C

𝑘
𝑝𝑛 and C𝑘

𝑝𝑝 are given by:

C𝑘
𝑛𝑛 =

⎡
⎢
⎢
⎣

𝐶𝑘
11 𝐶𝑘

16 0
𝐶𝑘

16 𝐶𝑘
66 0

0 0 𝐶𝑘
55

⎤
⎥
⎥
⎦
, C𝑘

𝑝𝑛 = C𝑘𝑇
𝑛𝑝 =

⎡
⎢
⎢
⎣

𝐶𝑘
12 𝐶𝑘

26 0
𝐶𝑘

13 𝐶𝑘
36 0

0 0 𝐶𝑘
45

⎤
⎥
⎥
⎦
,

C𝑘
𝑝𝑝 =

⎡
⎢
⎢
⎣

𝐶𝑘
22 𝐶𝑘

23 0
𝐶𝑘

23 𝐶𝑘
33 0

0 0 𝐶𝑘
44

⎤
⎥
⎥
⎦

.

(4.14)

The explicit expressions of the coefficients 𝐶𝑘
𝑖𝑗 as function of the engineering material

constants and the fibre angle are reported in Reddy [140].
Coefficients 𝜆𝑘

𝑛 , 𝜆𝑘
𝑝 , 𝛼𝑘

𝑛 and 𝛼𝑘
𝑝 are in the following form:

𝜆𝑘𝑇
𝑛 = { 𝜆𝑘

1 𝜆𝑘
6 0 } , 𝜆𝑘𝑇

𝑝 = { 𝜆𝑘
2 𝜆𝑘

3 0 } (4.15)

𝛼𝑘𝑇
𝑛 = { 𝛼𝑘

1 0 0 } , 𝛼𝑘𝑇
𝑝 = { 𝛼𝑘

2 𝛼𝑘
3 0 } , (4.16)

and they are related by means of the following equations:

𝜆𝑛 = C𝑘
𝑛𝑝𝛼𝑘

𝑝 + C𝑘
𝑛𝑛𝛼𝑘

𝑛,

𝜆𝑘
𝑝 = C𝑘

𝑝𝑝𝛼𝑘
𝑝 + C𝑘

𝑝𝑛𝛼𝑘
𝑛. (4.17)

By substituting Eqs. (4.8) within Eqs. (4.11), stresses can be written in terms of the over-
temperature 𝑇 and of the unknown vector qi as follows:

𝜎𝑛 = C𝑘
𝑛𝑝D𝑝𝐹𝜏𝑁𝑖q𝜏𝑖 + C𝑘

𝑛𝑛 (D𝑛𝑥 + D𝑛𝑝) 𝐹𝜏𝑁𝑖q𝜏𝑖 − 𝜆𝑘
𝑛𝑇,

𝜎𝑝 = C𝑘
𝑝𝑝D𝑝𝐹𝜏𝑁𝑖q𝜏𝑖 + C𝑘

𝑝𝑛 (D𝑛𝑥 + D𝑛𝑝) 𝐹𝜏𝑁𝑖q𝜏𝑖 − 𝜆𝑘
𝑝𝑇 . (4.18)
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4.4 – Fourier’s heat conduction equation

Poisson’s locking

Classical models such as Euler-Bernoulli’s Beam Theory and Timoshenko’s Beam The-
ory can be derived, within the Unified Formulation framework, from a first-order model
(𝑁 = 1), in which the following relation is used for the computation of the axial stress,
instead of the relation given by Eqs. (4.11):

𝜎𝑥𝑥 = 𝑄11𝜀𝑥𝑥 + 𝑄16𝜀𝑥𝑦 (4.19)

The reduced material stiffness coefficient 𝑄11 and 𝑄16 can be obtained by imposing 𝜎𝑦𝑦
and 𝜎𝑧𝑧 equal to zero in Hooke’s law. A system of two linear equations in two unknowns
𝜀𝑦𝑦 and 𝜀𝑧𝑧 is obtained, which can, then, be substituted into Hooke’s equation in 𝜎𝑥𝑥
given by Eqs. (4.11). This is done in order to correct the kinematic incongruence known
as Poisson’s locking, due to the fact that classical beam models account for rigid cross-
section (𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 0), which is in disagreement with the Poisson’s effect.

4.4 Fourier’s heat conduction equation
For the sake of completeness, the solution of the heat conduction problem is briefly
reported hereafter. The over-temperature field is assumed to be in the following form:

𝑇 𝑘 (𝑥, 𝑧) = ϴ𝑛 (𝑥) ϴ𝑘
Ω (𝑧) = [ ̄𝑇 𝑘

1 𝑒𝑠𝑘
1𝑧 + ̄𝑇 𝑘

2 𝑒𝑠𝑘
2𝑧

] sin (𝛼𝑥) (4.20)

where ̄𝑇 𝑘
1,2 are unknown amplitudes and 𝑠𝑘

1,2 are constant values depending on the
material properties. For more details, readers are referred to Giunta et al. [75] and De
Pietro et al. [131]. Bymeans of Eq. (4.20), a Navier-type closed form solution of Fourier’s
heat conduction equation can be obtained.

4.5 Governing equations and fundamental nuclei

4.5.1 Principle of virtual displacements
For a thermo-mechanical analysis, the Principle of Virtual Displacements reads:

𝛿ℒint = 𝛿ℒext, (4.21)

where ℒint is the strain energy and ℒext represents the work done by the external
mechanical loads. The virtual variation of the strain energy is written in terms of stress
and strain components:

𝛿ℒint = ∫
𝑙𝑒

∫
Ω

(𝛿𝜖𝑇
𝑡𝑛𝜎𝑛 + 𝛿𝜖𝑇

𝑡𝑝𝜎𝑝) 𝑑Ω𝑑𝑥. (4.22)
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being 𝑙𝑒 the length of a one-dimensional finite element. In the case of a multi-layered
structure, Ω is split into 𝑁Ω𝑘 layers:

Ω =
𝑁Ω𝑘
∪

𝑘=1
Ω𝑘, (4.23)

By substituting the geometrical relations in Eqs. (4.8), the constitutive law in Eqs. (4.18)
and the assumed temperature field in Eq. (4.20) into Eq. (4.22):

𝛿ℒint = 𝛿q𝑇
𝜏𝑖∫

𝑙𝑒

∫
Ω𝑘

{(D𝑛𝑥𝑁𝑖)
𝑇 𝐹𝜏 [C𝑘

𝑛𝑝 (D𝑝𝐹𝑠) 𝑁𝑗 + C𝑘
𝑛𝑛 (D𝑛𝑝𝐹𝑠) 𝑁𝑗 + C𝑘

𝑛𝑛𝐹𝑠 (D𝑛𝑥𝑁𝑗)]

+ (D𝑛𝑝𝐹𝜏)
𝑇 𝑁𝑖 [C𝑘

𝑛𝑝 (D𝑝𝐹𝑠) 𝑁𝑗 + C𝑘
𝑛𝑛 (D𝑛𝑝𝐹𝑠) 𝑁𝑗 + C𝑘

𝑛𝑛𝐹𝑠 (D𝑛𝑥𝑁𝑗)]
+ (D𝑝𝐹𝜏)

𝑇 𝑁𝑖 [C𝑘
𝑝𝑝 (D𝑝𝐹𝑠) 𝑁𝑗 + C𝑘

𝑝𝑛 (D𝑛𝑝𝐹𝑠) 𝑁𝑗 + C𝑘
𝑝𝑛𝐹𝑠 (D𝑛𝑥𝑁𝑗)]} 𝑑Ω 𝑑𝑥 q𝑠𝑗

−𝛿q𝑇
𝜏𝑖∫

𝑙𝑒

∫
Ω𝑘

[D𝑇
𝑝𝐹𝜏𝑁𝑖𝜆kp + (D𝑇

𝑛𝑥 + D𝑇
𝑛𝑝) 𝐹𝜏𝑁𝑖𝜆kn] ϴ𝑘

Ωϴ𝑛 𝑑Ω 𝑑𝑥

The latter equation can be written in a compact form as:

𝛿ℒint = 𝛿q𝑇
𝜏𝑖K

𝜏𝑠𝑖𝑗
𝑢𝑢 q𝑠𝑗 − 𝛿q𝑇

𝜏𝑖K
𝜏𝑖
𝑢𝜃 (4.24)

where K𝜏𝑠𝑖𝑗
𝑢𝑢 ∈ ℝ3×3 is the stiffness matrix fundamental nucleus and K𝜏𝑖

𝑢𝜃 ∈ ℝ3 is the
thermo-mechanical coupling vector.

4.5.2 Element stiffness matrix
The components of the stiffness matrix fundamental nucleus are:

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑥 = 𝐼𝑖,𝑥𝑗,𝑥𝐽 11

𝜏𝑠 + 𝐼𝑖,𝑥𝑗𝐽 16
𝜏𝑠,𝑦 + 𝐼𝑖𝑗,𝑥𝐽 16

𝜏,𝑦𝑠 + 𝐼𝑖𝑗 (𝐽 55
𝜏,𝑧𝑠,𝑧 + 𝐽 66

𝜏,𝑦𝑠,𝑦)

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑦 = 𝐼𝑖𝑗,𝑥𝐽 12

𝜏,𝑦𝑠 + 𝐼𝑖,𝑥𝑗,𝑥𝐽 16
𝜏𝑠 + 𝐼𝑖𝑗 (𝐽 26

𝜏,𝑦𝑠,𝑦 + 𝐽 45
𝜏,𝑧𝑠,𝑧) + 𝐼𝑖,𝑥𝑗𝐽 66

𝜏𝑠,𝑦

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑧 = 𝐼𝑖𝑗,𝑥𝐽 13

𝜏,𝑧𝑠 + 𝐼𝑖𝑗 (𝐽 36
𝜏,𝑧𝑠,𝑦 + 𝐽 45

𝜏,𝑦𝑠,𝑧) + 𝐼𝑖,𝑥𝑗𝐽 55
𝜏𝑠,𝑧

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑦𝑥 = 𝐼𝑖,𝑥𝑗𝐽 12

𝜏𝑠,𝑦 + 𝐼𝑖,𝑥𝑗,𝑥𝐽 16
𝜏𝑠 + 𝐼𝑖𝑗 (𝐽 26

𝜏,𝑦𝑠,𝑦 + 𝐽 45
𝜏,𝑧𝑠,𝑧) + 𝐼𝑖𝑗,𝑥𝐽 66

𝜏,𝑦𝑠

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑦𝑦 = 𝐼𝑖𝑗 (𝐽 22

𝜏,𝑦𝑠,𝑦 + 𝐽 44
𝜏,𝑧𝑠,𝑧) + 𝐼𝑖𝑗,𝑥𝐽 26

𝜏,𝑦𝑠 + 𝐼𝑖,𝑥𝑗𝐽 26
𝜏𝑠,𝑦 + 𝐼𝑖,𝑥𝑗,𝑥𝐽 66

𝜏𝑠

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑦𝑧 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝑧𝑠,𝑦 + 𝐽 44
𝜏,𝑦𝑠,𝑧) + 𝐼𝑖𝑗,𝑥𝐽 36

𝜏,𝑧𝑠 + 𝐼𝑖,𝑥𝑗𝐽 45
𝜏𝑠,𝑧

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑧𝑥 = 𝐼𝑖,𝑥𝑗𝐽 13

𝜏𝑠,𝑧 + 𝐼𝑖𝑗 (𝐽 36
𝜏,𝑦𝑠,𝑧 + 𝐽 45

𝜏,𝑧𝑠,𝑦) + 𝐼𝑖𝑗,𝑥𝐽 55
𝜏,𝑧𝑠

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑧𝑦 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝑦𝑠,𝑧 + 𝐽 44
𝜏,𝑧𝑠,𝑦) + 𝐼𝑖,𝑥𝑗𝐽 36

𝜏𝑠,𝑧 + 𝐼𝑖𝑗,𝑥𝐽 45
𝜏,𝑧𝑠

𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑧𝑧 = 𝐼𝑖𝑗 (𝐽 33

𝜏,𝑧𝑠,𝑧 + 𝐽 44
𝜏,𝑦𝑠,𝑦) + 𝐼𝑖𝑗,𝑥𝐽 45

𝜏,𝑦𝑠 + 𝐼𝑖,𝑥𝑗𝐽 45
𝜏𝑠,𝑦 + 𝐼𝑖,𝑥𝑗,𝑥𝐽 55

𝜏𝑠

(4.25)
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4.5 – Governing equations and fundamental nuclei

𝐼𝑖(,𝑥)𝑗(,𝑥)
is an integral along element axis direction of the product of the shape functions

or their derivatives:
𝐼𝑖(,𝑥)𝑗(,𝑥)

= ∫
𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑑𝑥 (4.26)

𝐽 𝑔ℎ
𝜏(,𝜙)𝑠(,𝜉) is a cross-section moment given by:

𝐽 𝑔ℎ
𝜏(,𝜙)𝑠(,𝜉) = ∫

Ω𝑘

𝐶𝑘
𝑔ℎ𝐹𝜏(,𝜙)

𝐹𝑠(,𝜉)
𝑑Ω (4.27)

Gauss’ quadrature method is used to compute these integrals. The term 𝐼𝑖𝑗 in 𝐾𝜏𝑠𝑖𝑗
𝑢𝑢𝑥𝑥,

which is related to shear deformations 𝜀𝑥𝑦 and 𝜀𝑥𝑧, is under-integrated (i.e. one Gauss’
point less is used) in order to tackle the shear locking phenomenon, according to a
classical selective integration technique, see Bathe [14]. Finally, it should be noticed
that, due to the compact notation of the displacement field in Eq. (4.2), the form of
the stiffness matrix fundamental nucleus given in Eqs. (4.25) is unique regardless the
cross-sectional expansion order 𝑁 and the number of nodes per element 𝑁𝑒

𝑛 .

4.5.3 Thermo-mechanical coupling vector
The explicit form of the thermo-mechanical coupling vector K𝜏𝑖

𝑢𝜃 is:

𝐾𝜏𝑖
𝑢𝜃𝑥 = 𝐼𝜃𝑛𝑖,𝑥𝐽 1

𝜃Ω𝜏 + 𝐼𝜃𝑛𝑖𝐽 6
𝜃Ω𝜏,𝑦

𝐾𝜏𝑖
𝑢𝜃𝑦 = 𝐼𝜃𝑛𝑖𝐽 2

𝜃Ω𝜏,𝑦
+ 𝐼𝜃𝑛𝑖,𝑥𝐽 6

𝜃Ω𝜏

𝐾𝜏𝑖
𝑢𝜃𝑧 = 𝐼𝜃𝑛𝑖𝐽 3

𝜃Ω𝜏,𝑧

(4.28)

where 𝐽
𝑔

𝜃Ω𝜏(,𝜙)
is given by:

𝐽
𝑔

𝜃Ω𝜏(,𝜙)
= ∫

Ω𝑘

𝐹𝜏(,𝜙)
𝜆𝑘

𝑔 ( ̄𝑇 𝑘
1 𝑒𝑠1𝑧 + ̄𝑇 𝑘

2 𝑒𝑠2𝑧) 𝑑Ω (4.29)

and 𝐼𝜃𝑛𝑗(,𝑥)
is:

𝐼𝜃𝑛𝑖(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
sin (𝛼𝑥) 𝑑𝑥 (4.30)

The over-temperature field obtained by exactly solving Fourier’s equation is integrated
separately over the cross-section and along the axis in order to derive a thermal load
vector which is variationally consistent with the proposed formulation. After a conver-
gence analysis, the integral in Eq. (4.30) is computed via five Gauss’ quadrature points.
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4.5.4 Mechanical load vector
The virtual variation of the work ℒext done by a line loading 𝑙𝑖𝑗 and a surface loading
𝑝𝑖𝑗 is given by:

𝛿ℒext = 𝛿ℒ
𝑝𝑖𝑗
ext + 𝛿ℒ

𝑙𝑖𝑗
ext (4.31)

The different contributions to a line load 𝛿ℒ
𝑙𝑖𝑗
ext applied along the beam axis at the cross-

section coordinates ( ̂𝑦, ̂𝑧) are:

𝛿ℒ
𝑙𝑖𝑗
ext = 𝛿ℒ 𝑙𝑧𝑧

ext + 𝛿ℒ 𝑙𝑧𝑥
ext + 𝛿ℒ

𝑙𝑧𝑦
ext + 𝛿ℒ

𝑙𝑦𝑦
ext + 𝛿ℒ

𝑙𝑦𝑥
ext + 𝛿ℒ

𝑙𝑦𝑧
ext , (4.32)

being:
𝛿ℒ 𝑙𝑧𝑥

ext = 𝛿𝑞𝑥𝑖𝜏𝐼 𝑙𝑧𝑥
𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧) , 𝛿ℒ

𝑙𝑦𝑥
ext = 𝛿𝑞𝑥𝑖𝜏𝐼

𝑙𝑦𝑥
𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧) ,

𝛿ℒ
𝑙𝑦𝑦
ext = 𝛿𝑞𝑦𝑖𝜏𝐼

𝑙𝑦𝑦
𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧) , 𝛿ℒ

𝑙𝑧𝑦
ext = 𝛿𝑞𝑦𝑖𝜏𝐼

𝑙𝑧𝑦
𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧) ,

𝛿ℒ 𝑙𝑧𝑧
ext = 𝛿𝑞𝑧𝑖𝜏𝐼 𝑙𝑧𝑧

𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧) , 𝛿ℒ
𝑙𝑦𝑧
ext = 𝛿𝑞𝑧𝑖𝜏𝐼

𝑙𝑦𝑧
𝑖 𝐹𝜏 ( ̂𝑦, ̂𝑧)

(4.33)

𝐼
𝑙𝑖𝑗
𝑖 = ∫𝑙𝑒

𝑁𝑖𝑙𝑖𝑗𝑑𝑥. (4.34)

As far as the surface load 𝛿ℒ
𝑝𝑖𝑗
ext is concerned, the following contributions are consid-

ered:
𝛿ℒ

𝑝𝑖𝑗
ext = 𝛿ℒ 𝑝𝑧𝑧

ext + 𝛿ℒ 𝑝𝑧𝑥
ext + 𝛿ℒ

𝑝𝑧𝑦
ext + 𝛿ℒ

𝑝𝑦𝑦
ext + 𝛿ℒ

𝑝𝑦𝑥
ext + 𝛿ℒ

𝑝𝑦𝑧
ext , (4.35)

being:
𝛿ℒ 𝑝𝑧𝑥

ext = 𝛿𝑞𝑥𝑖𝜏𝐼𝑝𝑧𝑥
𝑖 𝐸𝑧

𝜏 , 𝛿ℒ
𝑝𝑦𝑥
ext = 𝛿𝑞𝑥𝑖𝜏𝐼

𝑝𝑦𝑥
𝑖 𝐸𝑦

𝜏 ,

𝛿ℒ
𝑝𝑦𝑦
ext = 𝛿𝑞𝑦𝑖𝜏𝐼

𝑝𝑦𝑦
𝑖 𝐸𝑦

𝜏 , 𝛿ℒ
𝑝𝑧𝑦
ext = 𝛿𝑞𝑦𝑖𝜏𝐼

𝑝𝑧𝑦
𝑖 𝐸𝑧

𝜏 ,

𝛿ℒ 𝑝𝑧𝑧
ext = 𝛿𝑞𝑧𝑖𝜏𝐼𝑝𝑧𝑧

𝑖 𝐸𝑧
𝜏 , 𝛿ℒ

𝑝𝑦𝑧
ext = 𝛿𝑞𝑧𝑖𝜏𝐼

𝑝𝑦𝑧
𝑖 𝐸𝑦

𝜏

(4.36)

and:
𝐼

𝑝𝑖𝑗
𝑖 = ∫𝑙𝑒

𝑁𝑖𝑝𝑖𝑗𝑑𝑥 (4.37)

𝐸𝑧
𝜏 = ∫

𝑦2

𝑦1

𝐹𝜏(𝑦, 𝑧)𝑑𝑦,

𝐸𝑦
𝜏 = ∫

𝑧2

𝑧1

𝐹𝜏(𝑦, 𝑧)𝑑𝑧.
(4.38)

where the over-lined cross-sectional coordinates 𝑦 and 𝑧 are the limits of the load area.
Once the number of nodes per element 𝑁𝑒

𝑛 and the approximation order 𝑁 are fixed,
the global element stiffness matrix, thermal and mechanical load vector can be obtained
straightforwardly by assembling the respective fundamental nuclei given in Eq. (4.25),
Eq. (4.28), (4.33) and (4.36). The assembly procedure is a basic concept of Unified For-
mulation and it can be found in several textbooks discussing the UF-based modeling
approach, such as [35].
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Chapter 5

Extension of UF-based Approach to
Curved Beam Structures

5.1 Introduction
The formulation presented in the previous chapter is limited to the study of initially
straight beams. Bymeans of straight finite elements, structures with a curved longitudi-
nal axis could be also accurately modeled, as long as a very refined discretization able to
minimize the geometrical approximation error is considered. Moreover, this modeling
strategy is commonly adopted in the majority of commercial software finite elements
dealing with curved geometries. Clearly, additional computational costs deriving from
a refined discretization can be easily avoided if curvature is inherently accounted for
within the geometrical relations of the finite element formulation. In order to preserve
the computational advantages provided by the UF approach even when dealing with
curved beam structures, the extension of UF-based one-dimensional models to account
for curvature of the beam reference axis is discussed in this chapter. The adopted local
Frenet-Serret coordinate system is introduced in Section 5.2. Displacement field, strain-
displacement relations and Hooke’s law are reported in Section 5.3. In Section 5.4, by
writing the Principle of Virtual Displacements in the local reference system, the govern-
ing differential equations are derived and a strong form Navier-type analytical solution
based on a harmonic displacement field is obtained. A weak form finite element solu-
tion is also derived by approximating the axial variation of the displacement field via
classical one-dimensional Lagrangian shape functions. The fundamental nuclei of the
stiffness matrix and load vector, featuring additional curvature-dependent terms with
respect to the straight beam formulation, are provided and, finally, a technique based
on MITC for tackling locking phenomena typical of curved elements is discussed. The
research presented in this chapter has been previously published in [132, 119].
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5 – Extension of UF-based Approach to Curved Beam Structures

5.2 Preliminaries
In order to study a generic curved beam-like structure, the Frenet-Serret coordinate
system shown in Figure 5.1 is introduced. It is defined by the orthonormal vector basis
{t,n,b}, being t the tangent,n the principal normal and b the principal bi-normal vectors,
respectively:

t(𝑠) = 𝑑r(𝑠)
𝑑𝑠

n(𝑠) =
𝑑2r(𝑠)

𝑑𝑠2

‖
𝑑2r(𝑠)

𝑑𝑠2 ‖
b(𝑠) = t(𝑠) × n(𝑠) (5.1)

r(s) ∈ ℝ3 is the vector defining a generic unit-speed curve, i.e. ‖t(𝑠)‖ = 1, being s the
independent arc-length variable. The Frenet-Serret formulae provide the derivatives of

Figure 5.1: Three-dimensional curved beam-like structure and Frenet-Serret reference
system.

{t, n, b} with respect to the arc-length coordinate s:

𝑑
𝑑𝑠

⎧⎪
⎨
⎪⎩

t
n
b

⎫⎪
⎬
⎪⎭

=
⎡
⎢
⎢
⎣

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

⎤
⎥
⎥
⎦

⎧⎪
⎨
⎪⎩

t
n
b

⎫⎪
⎬
⎪⎭

(5.2)

where 𝜅 is the beam axis curvature, defined as:

𝜅(𝑠) = ‖
𝑑2r(𝑠)

𝑑𝑠2 ‖ (5.3)

and 𝜏 is the geometric torsion of the curve, given by:

𝜏(𝑠) = 𝑑n(𝑠)
𝑑𝑠

⋅ b(𝑠) (5.4)

In some cases, the reference system {e1, e2, e3} could be needed, being e1 ≡ t and e2, e3
the unit vectors in the direction of the cross-section’s principal axes, which are rotated
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5.3 – Geometrical and constitutive relations in local coordinates

with respect to n and b by an angle 𝜃:

⎧⎪
⎨
⎪⎩

e1
e2
e3

⎫⎪
⎬
⎪⎭

=
⎡
⎢
⎢
⎣

1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

⎤
⎥
⎥
⎦

⎧⎪
⎨
⎪⎩

t
n
b

⎫⎪
⎬
⎪⎭

(5.5)

The Frenet-Serret formulae in Eq. (5.2) applied to the reference system defined in
Eq. (5.5) read:

𝑑
𝑑𝑠

⎧⎪
⎨
⎪⎩

e1
e2
e3

⎫⎪
⎬
⎪⎭

=
⎡
⎢
⎢
⎣

0 𝜅2 −𝜅1
−𝜅2 0 𝜅3
𝜅1 −𝜅3 0

⎤
⎥
⎥
⎦

⎧⎪
⎨
⎪⎩

e1
e2
e3

⎫⎪
⎬
⎪⎭

(5.6)

being 𝜅1 = 𝜅 sin 𝜃, 𝜅2 = 𝜅 cos 𝜃 and 𝜅3 = 𝜏 + 𝑑𝜃
𝑑𝑠

.
Finally, a generic point 𝑃 within the beam volume can be defined by the following
position vector:

𝑟𝑟𝑟𝑃 = 𝑟𝑟𝑟(𝑠) + 𝜉𝑒𝑒𝑒2 + 𝜂𝑒𝑒𝑒3 (5.7)

where {𝑠, 𝜉, 𝜂} are the coordinates associated to the coordinate system {e1, e2, e3}. The
determinant of the metric tensor 𝑔 and the infinitesimal volume 𝑑𝑉 can be derived from
Eq. (5.7), as shown in Washizu [167]:

𝑔 = (1 − 𝜉𝜅2 + 𝜂𝜅1)
2 (5.8)

𝑑𝑉 = 𝐻 𝑑𝑠 𝑑𝜉 𝑑𝜂 (5.9)

where 𝐻 = √𝑔.
The cross-section’s principal axes defined by e2 and e3 are assumed to be aligned with
the principal normal and bi-normal vectors n and b, i.e. 𝜃 = 0∘ and, therefore, 𝜅1 = 0,
𝜅2 = 𝜅 and 𝜅3 = 𝜏. Furthermore, the following assumptions are made: 𝜅 = 1/𝑅 and
𝜏 = 0, i.e. a beam axis with a constant radius of curvature 𝑅 and no twist is considered.

5.3 Geometrical and constitutive relations in local co-
ordinates

The vectors of displacements u, strains 𝜀 and stresses 𝜎 are expressed in the local coor-
dinate system {𝑠, 𝜉, 𝜂} and they are grouped as follows:

u𝑇 (𝑠, 𝜉, 𝜂) = { 𝑢𝑠 (𝑠, 𝜉, 𝜂) 𝑢𝜉 (𝑠, 𝜉, 𝜂) 𝑢𝜂 (𝑠, 𝜉, 𝜂) } (5.10)

𝜀𝑇 = { 𝜀𝑠𝑠 𝜀𝜉𝜉 𝜀𝜂𝜂 𝜀𝜉𝜂 𝜀𝑠𝜂 𝜀𝑠𝜉 } (5.11)

𝜎𝑇 = { 𝜎𝑠𝑠 𝜎𝜉𝜉 𝜎𝜂𝜂 𝜎𝜉𝜂 𝜎𝑠𝜂 𝜎𝑠𝜉 } (5.12)
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5 – Extension of UF-based Approach to Curved Beam Structures

Strain-displacement equations

The linear strain-displacement relations for a curved beam-like structure are given by:

𝜀𝑠𝑠 = 1
𝐻 (

𝜕𝑢𝑠
𝜕𝑠

− 𝜅𝑢𝜉)

𝜀𝜉𝜉 =
𝜕𝑢𝜉

𝜕𝜉

𝜀𝜂𝜂 =
𝜕𝑢𝜂

𝜕𝜂

𝜀𝜉𝜂 =
𝜕𝑢𝜉

𝜕𝜂
+

𝜕𝑢𝜂

𝜕𝜉

𝜀𝑠𝜂 = 1
𝐻 (

𝜕𝑢𝜂

𝜕𝑠 ) +
𝜕𝑢𝑠
𝜕𝜂

𝜀𝑠𝜉 = 1
𝐻 (

𝜕𝑢𝜉

𝜕𝑠
+ 𝜅𝑢𝑠) +

𝜕𝑢𝑠
𝜕𝜉

(5.13)

These latter equations, in a matrix form, read:

𝜀 = (D𝑠 + DΩ + D𝜅)u (5.14)

where D𝑠 and DΩ are differential operators with respect to the longitudinal coordinate
𝑠 and cross-sectional coordinates {𝜉, 𝜂}, respectively, and D𝜅 accounts for the terms
depending on the axis curvature 𝜅:

D𝑠 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝐻

𝜕
𝜕𝑠

0 0

0 0 0
0 0 0
0 0 0
0 0 1

𝐻
𝜕
𝜕𝑠

0 1
𝐻

𝜕
𝜕𝑠

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

DΩ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

0 𝜕
𝜕𝜉

0

0 0 𝜕
𝜕𝜂

0 𝜕
𝜕𝜂

𝜕
𝜕𝜉

𝜕
𝜕𝜂

0 0
𝜕
𝜕𝜉

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

D𝜅 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 − 𝜅
𝐻

0

0 0 0
0 0 0
0 0 0
0 0 0
𝜅
𝐻

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

UF-based displacement field

The a-priori approximation of the three-dimensional displacement field based on Uni-
fied Formulation in local coordinates (𝑠, 𝜉, 𝜂) reads:

u (𝑠, 𝜉, 𝜂) = 𝐹𝜏 (𝜉, 𝜂)u𝜏 (𝑠) with 𝜏 = 1, 2, … , 𝑁𝑢 (5.16)
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being u𝜏 = {𝑢𝑠𝜏 𝑢𝜉𝜏 𝑢𝜂𝜏}𝑇.
By replacing Eq. (5.16) into Eq. (5.13), the following expressions are obtained:

𝜀𝑠𝑠 =
𝐹𝜏
𝐻 (𝑢𝑠𝜏,𝑠 − 𝜅𝑢𝜉𝜏)

𝜀𝜉𝜉 = 𝐹𝜏,𝜉𝑢𝜉𝜏

𝜀𝜂𝜂 = 𝐹𝜏,𝜂𝑢𝜂𝜏

𝜀𝜉𝜂 = 𝐹𝜏,𝜂𝑢𝜉𝜏 + 𝐹𝜏,𝜉𝑢𝜂𝜏

𝜀𝑠𝜂 = 1
𝐻

𝐹𝜏𝑢𝜂𝜏,𝑠 + 𝐹𝜏,𝜂𝑢𝑠𝜏

𝜀𝑠𝜉 =
𝐹𝜏
𝐻 (𝑢𝜉𝜏,𝑠 + 𝜅𝑢𝑠𝜏) + 𝐹𝜏,𝜉𝑢𝑠𝜏

(5.17)

where the subscripts ‘, 𝑠’ ‘, 𝜉’ and ‘, 𝜂’ stand for derivation versus the respective coordi-
nate.

Hooke’s law

The constitutive relation for a generic k-th layer made of an orthotropic linear elastic
material reads:

𝜎 = C𝑘𝜀 (5.18)

where C𝑘 is the material elastic stiffness matrix:

C𝑘 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐶𝑘
11 𝐶𝑘

12 𝐶𝑘
13 0 0 𝐶𝑘

16

𝐶𝑘
12 𝐶𝑘

22 𝐶𝑘
23 0 0 𝐶𝑘

26

𝐶𝑘
13 𝐶𝑘

23 𝐶𝑘
33 0 0 𝐶𝑘

36

0 0 0 𝐶𝑘
44 𝐶𝑘

45 0
0 0 0 𝐶𝑘

45 𝐶𝑘
55 0

𝐶𝑘
16 𝐶𝑘

26 𝐶𝑘
36 0 0 𝐶𝑘

66

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.19)

and the expressions of the material coefficients 𝐶𝑘
𝑖𝑗 has been already discussed in Sec-

tion 4.3.

5.4 Governing equations and fundamental nuclei
The PVD is used in order to derive the governing equations for the case of a static
mechanical analysis:

𝛿ℒint = 𝛿ℒext (5.20)
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5 – Extension of UF-based Approach to Curved Beam Structures

5.4.1 Strong form Navier-type solution
In the presented analytical solution, by means of the PVD, governing differential equa-
tions and boundary conditions are obtained. The virtual variation of the internal work
is defined as:

𝛿ℒint = ∫
𝑙

∫
Ω

𝛿𝜖𝑇𝜎𝐻(𝜉)𝑑𝑠𝑑𝜉𝑑𝜂 (5.21)

By substituting the strains-displacements relations in Eqs. (5.14), the constitutive law
in Eqs. (5.18) and the displacements field in Eq. (5.16), the following compact form of
the virtual variation of the internal work in terms of displacements can be obtained:

𝛿ℒint = ∫
𝑙

𝛿u𝑇
𝑡 K

𝜏𝑡u𝜏𝑑𝑠 + 𝛿u𝑇
𝑡 Π

𝜏𝑡u𝜏|
𝑠=𝑙
𝑠=0 (5.22)

K𝜏𝑡 andΠ𝜏𝑡 are the fundamental nuclei of the differential stiffness matrix and boundary
conditions, respectively.
As far as the virtual variation of the external work is concerned, only the contribution
given by a transverse surface load components 𝑝𝜉 applied at 𝜉 = 𝜉 over an area 𝐴𝜉 :

[0, 𝑙] × [𝜂1, 𝜂2] and 𝑝𝜂 applied at 𝜂 = 𝜂 over the domain 𝐴𝜂 : [0, 𝑙] × [𝜉1, 𝜉2] are reported
below, for the sake of brevity:

𝛿ℒext = ∫
𝑙

(𝑝𝜉𝐸𝜉
𝑡 𝛿𝑢𝜉𝑡 + 𝑝𝜂𝐸𝜂

𝑡 𝛿𝑢𝜂𝑡) 𝑑𝑠 (5.23)

being:

𝐸𝜉
𝑡 = 𝐻 (𝜉) ∫

𝜂2

𝜂1

𝐹𝑡 (𝜉, 𝜂) 𝑑𝜂

𝐸𝜂
𝑡 = ∫

𝜉2

𝜉1

𝐻 (𝜉) 𝐹𝑡 (𝜂, 𝜉) 𝑑𝜉
(5.24)

The variation of the external work done by other surface load components can be de-
rived in a similarmanner. In the framework of a Navier-type closed form analytical solu-
tion, in order to solve the differential governing equations and satisfy simply-supported
boundary conditions, the following harmonic kinematic field is assumed along the lon-
gitudinal direction 𝑠:

𝑢𝑠𝜏 = 𝑈𝑠𝜏 cos(𝛼𝑠)
𝑢𝜉𝜏 = 𝑈𝜉𝜏 sin(𝛼𝑠)
𝑢𝜂𝜏 = 𝑈𝜂𝜏 sin(𝛼𝑠)

(5.25)

being 𝛼 = 𝑚𝜋
𝑙 , 𝑚 the number of half-waves along the curved beam axis and

{𝑈𝑠𝜏, 𝑈𝜉𝜏, 𝑈𝜂𝜏} the unknown vector. A harmonic variation along the axis is also
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5.4 – Governing equations and fundamental nuclei

assumed for the external loads 𝑝𝜉 and 𝑝𝜂:

𝑝𝜉 = 𝑃𝜉 sin(𝛼𝑠)
𝑝𝜂 = 𝑃𝜂 sin(𝛼𝑠)

(5.26)

Under the assumption of a linear load-displacement relation, by means of Fourier’s se-
ries expansion, any loading profile can be obtained from Eq. (5.26), as shown in Carrera
and Giunta [32, 33]). The explicit form of the differential stiffness matrix K𝜏𝑡 defined in
Eq. (5.22) is given by:

𝐾𝜏𝑡
𝑠𝑠 = −𝐽 11

𝜏𝑡 1
𝐻

𝜕2

𝜕𝑠2 + 𝐽 55
𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 66

𝜏,𝜉𝑡,𝜉𝐻 + 𝜅 (𝐽 66
𝜏𝑡,𝜉 + 𝐽 66

𝜏,𝜉𝑡) + 𝜅2𝐽 66
𝜏𝑡 1

𝐻

𝐾𝜏𝑡
𝑠𝜉 = [−𝐽 12

𝜏,𝜉𝑡 + 𝐽 66
𝜏𝑡,𝜉 + 𝜅 (𝐽 66

𝜏𝑡 1
𝐻

+ 𝐽 11
𝜏𝑡 1

𝐻
)]

𝜕
𝜕𝑠

𝐾𝜏𝑡
𝑠𝜂 = (−𝐽 13

𝜏,𝜂𝑡 + 𝐽 55
𝜏𝑡,𝜂)

𝜕
𝜕𝑠

𝐾𝜏𝑡
𝜉𝑠 = [𝐽 12

𝜏𝑡,𝜉 − 𝐽 66
𝜏,𝜉𝑡 − 𝜅 (𝐽 66

𝜏𝑡 1
𝐻

+ 𝐽 11
𝜏𝑡 1

𝐻
)]

𝜕
𝜕𝑠

𝐾𝜏𝑡
𝜉𝜉 = 𝐽 22

𝜏,𝜉𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜂𝐻 − 𝐽 66

𝜏𝑡 1
𝐻

𝜕2

𝜕𝑠2 − 𝜅 (𝐽 12
𝜏𝑡,𝜉 + 𝐽 12

𝜏,𝜉𝑡) + 𝜅2𝐽 11
𝜏𝑡 1

𝐻

𝐾𝜏𝑡
𝜉𝜂 = 𝐽 23

𝜏,𝜂𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜂𝐻 − 𝜅𝐽 13

𝜏,𝜂𝑡

𝐾𝜏𝑡
𝜂𝑠 = (𝐽 13

𝜏𝑡,𝜂 − 𝐽 55
𝜏,𝜂𝑡)

𝜕
𝜕𝑠

𝐾𝜏𝑡
𝜂𝜉 = 𝐽 23

𝜏,𝜉𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜉𝐻 − 𝜅𝐽 13

𝜏𝑡,𝜂

𝐾𝜏𝑡
𝜂𝜂 = 𝐽 33

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜉𝐻 − 𝐽 55

𝜏𝑡 1
𝐻

𝜕2

𝜕𝑠2

(5.27)

where 𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)

, 𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)𝐻

and 𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)

1
𝐻
are the following cross-section integrals:

𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)

= ∫
Ω

𝐶𝑘
𝑔ℎ𝐹𝜏(,𝜙)

𝐹𝑡(,𝜓)
𝑑𝜉 𝑑𝜂

𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)𝐻

= ∫
Ω

𝐶𝑘
𝑔ℎ𝐹𝜏(,𝜙)

𝐹𝑡(,𝜓)
𝐻 𝑑𝜉 𝑑𝜂

𝐽 𝑔ℎ
𝜏(,𝜙)𝑡(,𝜓)

1
𝐻

= ∫
Ω

𝐶𝑘
𝑔ℎ𝐹𝜏(,𝜙)

𝐹𝑡(,𝜓)
1
𝐻

𝑑𝜉 𝑑𝜂

(5.28)
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The components of the differential matrix related to the boundary conditions Π𝜏𝑡 are:

Π𝜏𝑡
𝑠𝑠 = 𝐽 11

𝜏𝑡 1
𝐻

𝜕
𝜕𝑠

Π𝜏𝑡
𝑠𝜉 = 𝐽 12

𝜏,𝜉𝑡 − 𝜅𝐽 11
𝜏𝑡 1

𝐻
Π𝜏𝑡

𝑠𝜂 = 𝐽 13
𝜏,𝜂𝑡

Π𝜏𝑡
𝜉𝑠 = 𝐽 66

𝜏,𝜉𝑡 + 𝜅𝐽 66
𝜏𝑡 1

𝐻
Π𝜏𝑡

𝜉𝜉 = 𝐽 66
𝜏𝑡 1

𝐻

𝜕
𝜕𝑠

Π𝜏𝑡
𝜉𝜂 = 0

Π𝜏𝑡
𝜂𝑠 = 𝐽 55

𝜏,𝜂𝑡 Π𝜏𝑡
𝜂𝜉 = 0 Π𝜏𝑡

𝜂𝜂 = 𝐽 55
𝜏𝑡 1

𝐻

𝜕
𝜕𝑠

(5.29)

Therefore, the explicit expression for the boundary conditions 𝛿u𝑇
𝑡 Π

𝜏𝑡u𝜏|
𝑠=𝑙
𝑠=0 is given

by:

𝛿𝑢𝑠𝑡 [𝐽 11
𝜏𝑡 1

𝐻
𝑢𝑠𝜏,𝑠 + (𝐽 12

𝜏,𝜉𝑡 − 𝜅𝐽 11
𝜏𝑡 1

𝐻
) 𝑢𝜉𝜏 + 𝐽 13

𝜏,𝜂𝑡𝑢𝜂𝜏]|
𝑠=𝑙

𝑠=0
= 0

𝛿𝑢𝜉𝑡 [(𝐽 66
𝜏,𝜉𝑡 + 𝜅𝐽 66

𝜏𝑡 1
𝐻

) 𝑢𝑠𝜏 + 𝐽 66
𝜏𝑡 1

𝐻
𝑢𝜉𝜏,𝑠]|

𝑠=𝑙

𝑠=0
= 0

𝛿𝑢𝜂𝑡 [𝐽 55
𝜏,𝜂𝑡𝑢𝑠𝜏 + 𝐽 55

𝜏𝑡 1
𝐻

𝑢𝜂𝜏,𝑠]|
𝑠=𝑙

𝑠=0
= 0

(5.30)

Eqs. (5.30) are identically satisfied by the assumed displacement profile, Eqs. (5.25), for
simply supported beams, since:

𝑢𝑠𝜏,𝑠 (0) = 𝑢𝑠𝜏,𝑠 (𝑙) = 0
𝑢𝜉𝜏 (0) = 𝑢𝜉𝜏 (𝑙) = 0
𝑢𝜂𝜏 (0) = 𝑢𝜂𝜏 ((𝑙) = 0

(5.31)

𝛿𝑢𝑠𝑡,𝑠 (0) = 𝛿𝑢𝑠𝑡,𝑠 (𝑙) = 0
𝛿𝑢𝜉𝑡 (0) = 𝛿𝑢𝜉𝑡 (𝑙) = 0
𝛿𝑢𝜂𝑡 (0) = 𝛿𝑢𝜂𝑡 ((𝑙) = 0

(5.32)

The fundamental nuclei of the algebraic stiffness matrixK𝜏𝑡 and of the load vector P𝑡 are
obtained by substituting Eq. (5.25) and (5.26) into the governing differential equations.
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The components of the algebraic stiffness matrix fundamental nucleus K𝜏𝑡 are:

𝐾𝜏𝑡
𝑠𝑠 = 𝛼2𝐽 11

𝜏𝑡 1
𝐻

+ 𝐽 55
𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 66

𝜏,𝜉𝑡,𝜉𝐻 + 𝜅 (𝐽 66
𝜏𝑡,𝜉 + 𝐽 66

𝜏,𝜉𝑡) + 𝜅2𝐽 66
𝜏𝑡 1

𝐻

𝐾𝜏𝑡
𝑠𝜉 = 𝛼 [−𝐽 12

𝜏,𝜉𝑡 + 𝐽 66
𝜏𝑡,𝜉 + 𝜅 (𝐽 66

𝜏𝑡 1
𝐻

+ 𝐽 11
𝜏𝑡 1

𝐻
)]

𝐾𝜏𝑡
𝑠𝜂 = 𝛼 (−𝐽 13

𝜏,𝜂𝑡 + 𝐽 55
𝜏𝑡,𝜂)

𝐾𝜏𝑡
𝜉𝑠 = 𝛼 [−𝐽 12

𝜏𝑡,𝜉 + 𝐽 66
𝜏,𝜉𝑡 + 𝜅 (𝐽 66

𝜏𝑡 1
𝐻

+ 𝐽 11
𝜏𝑡 1

𝐻
)]

𝐾𝜏𝑡
𝜉𝜉 = 𝐽 22

𝜏,𝜉𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜂𝐻 + 𝛼2𝐽 66

𝜏𝑡 1
𝐻

− 𝜅 (𝐽 12
𝜏𝑡,𝜉 + 𝐽 12

𝜏,𝜉𝑡) + 𝜅2𝐽 11
𝜏𝑡 1

𝐻

𝐾𝜏𝑡
𝜉𝜂 = 𝐽 23

𝜏,𝜂𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜂𝐻 − 𝜅𝐽 13

𝜏,𝜂𝑡

𝐾𝜏𝑡
𝜂𝑠 = 𝛼 (−𝐽 13

𝜏𝑡,𝜂 + 𝐽 55
𝜏,𝜂𝑡)

𝐾𝜏𝑡
𝜂𝜉 = 𝐽 23

𝜏,𝜉𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜉𝐻 − 𝜅𝐽 13

𝜏𝑡,𝜂

𝐾𝜏𝑡
𝜂𝜂 = 𝐽 33

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜉𝐻 + 𝛼2𝐽 55

𝜏𝑡 1
𝐻

(5.33)

Once the expansion order 𝑁 of the UF-based displacement field has been chosen, by
assembling the fundamental nucleus of Eqs. (5.33) for each term 𝜏 and 𝑡, the global
stiffness matrix can be obtained.
Finally, according to Eq. (5.23), the non-zero components of the load vector fundamental
nucleus P𝑡 are:

𝑃 𝑡
𝜉 = 𝑝𝜉𝐸𝜉

𝑡

𝑃 𝑡
𝜂 = 𝑝𝜂𝐸𝜂

𝑡

(5.34)

5.4.2 Weak form finite elements solution
In the framework of finite element method, the vector u𝜏 (𝑠) defined in Eq. (5.16) is
interpolated along the curved axis by means of standard one-dimensional Lagrangian
shape functions 𝑁𝑖:

u𝜏 (𝑠) = 𝑁𝑖 (𝑠)q𝜏𝑖 with 𝜏 = 1, 2, … , 𝑁𝑢 and 𝑖 = 1, … , 𝑁𝑒
𝑛 (5.35)

The subscript 𝑖 stands for an implicit summation from 1 to the number of nodes per
element 𝑁𝑒

𝑛 and q𝜏𝑖 is the unknown vector. The virtual variation of the internal virtual
work within the element is given by:

𝛿ℒint = ∫
𝑙𝑒

∫
Ω

𝛿𝜖𝑇𝜎𝐻(𝜉)𝑑𝑠𝑑𝜉𝑑𝜂 (5.36)
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Upon substitution of the finite elements discretization given by Eq. (5.35), together with
geometrical relations (5.14), constitutive equation (5.18) and UF-based displacement
field (5.16) within Eq. (5.36), the virtual variation of the internal work can be written as:

𝛿ℒint = 𝛿q𝑇
𝑡𝑗K

𝜏𝑡𝑖𝑗
𝑒 q𝜏𝑖 (5.37)

K𝜏𝑡𝑖𝑗
𝑒 ∈ ℝ3×3 is the fundamental nucleus of the element stiffness matrix, whose compo-

nents are:

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝑠 = 𝐼𝑖,𝑠𝑗,𝑠𝐽

11
𝜏𝑡 1

𝐻
+ 𝐼𝑖𝑗 (𝐽 55

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 66
𝜏,𝜉𝑡,𝜉𝐻) + 𝜅𝐼𝑖𝑗 (𝐽 66

𝜏𝑡,𝜉 + 𝐽 66
𝜏,𝜉𝑡) + 𝜅2𝐼𝑖𝑗𝐽 66

𝜏𝑡 1
𝐻

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝜉 = 𝐼𝑖𝑗,𝑠𝐽

12
𝜏,𝜉𝑡 + 𝐼𝑖,𝑠𝑗𝐽 66

𝜏𝑡,𝜉 + 𝜅 (𝐼𝑖,𝑠𝑗𝐽 66
𝜏𝑡 1

𝐻
− 𝐼𝑖𝑗,𝑠𝐽

11
𝜏𝑡 1

𝐻
)

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝜂 = 𝐼𝑖𝑗,𝑠𝐽

13
𝜏,𝜂𝑡 + 𝐼𝑖,𝑠𝑗𝐽 55

𝜏𝑡,𝜂

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝑠 = 𝐼𝑖,𝑠𝑗𝐽 12

𝜏𝑡,𝜉 + 𝐼𝑖𝑗,𝑠𝐽
66
𝜏,𝜉𝑡 + 𝜅 (𝐼𝑖𝑗,𝑠𝐽

66
𝜏𝑡 1

𝐻
− 𝐼𝑖,𝑠𝑗𝐽 11

𝜏𝑡 1
𝐻

)

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝜉 = 𝐼𝑖𝑗 (𝐽 22

𝜏,𝜉𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜂𝐻) + 𝐼𝑖,𝑠𝑗,𝑠𝐽

66
𝜏𝑡 1

𝐻
− 𝜅𝐼𝑖𝑗 (𝐽 12

𝜏𝑡,𝜉 + 𝐽 12
𝜏,𝜉𝑡) + 𝜅2𝐼𝑖𝑗𝐽 11

𝜏𝑡 1
𝐻

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝜂 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝜂𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜂𝐻) − 𝜅𝐼𝑖𝑗𝐽 13

𝜏,𝜂𝑡

𝐾𝜏𝑡𝑖𝑗
𝑒𝜂𝑠 = 𝐼𝑖,𝑠𝑗𝐽 13

𝜏𝑡,𝜂 + 𝐼𝑖𝑗,𝑠𝐽
55
𝜏,𝜂𝑡

𝐾𝜏𝑡𝑖𝑗
𝑒𝜂𝜉 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝜉𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜉𝐻) − 𝜅𝐼𝑖𝑗𝐽 13

𝜏𝑡,𝜂

𝐾𝜏𝑡𝑖𝑗
𝑒𝜂𝜂 = 𝐼𝑖𝑗 (𝐽 33

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜉𝐻) + 𝐼𝑖,𝑠𝑗,𝑠𝐽

55
𝜏𝑡 1

𝐻

(5.38)
being 𝐼𝑖(,𝑠)𝑗(,𝑠)

the following integral along the beam longitudinal direction 𝑠:

𝐼𝑖(,𝑠)𝑗(,𝑠)
= ∫

𝑙𝑒

𝑁𝑖(,𝑠)
𝑁𝑗(,𝑠)

𝑑𝑠 (5.39)

Similarly to the procedure for the closed-form solution, in order to derive the element
stiffness matrix of a 𝑁th-order curved beam element,K𝜏𝑡𝑖𝑗

𝑒 has to be assembled over the
indexes 𝜏, 𝑡, 𝑖 and 𝑗, according to the procedure explained in Carrera et al. [35].
Finally, the virtual variation of the external work within the element is defined as the
summation of the following contributions:

𝛿ℒext = 𝛿ℒ 𝐹
ext + 𝛿ℒ

𝑙𝜉
ext + 𝛿ℒ

𝑙𝜂
ext + 𝛿ℒ

𝑝𝜉
ext + 𝛿ℒ

𝑝𝜂
ext (5.40)

where:
𝛿ℒ 𝐹

ext = 𝐹𝑡 (𝜉𝐹, 𝜂𝐹) 𝑁𝑗 (𝑠𝐹) 𝛿q𝑇
𝑡𝑗F (5.41)
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is the contribution of a load F concentrated at the location (𝑠𝐹, 𝜉𝐹, 𝜂𝐹),

𝛿ℒ
𝑙𝜉
ext = 𝛿𝑞𝜉𝑡𝑗𝑙𝜉𝐼𝑗𝐹𝑡 (𝜉𝑙, 𝜂𝑙) 𝐻 (𝜉𝑙) , 𝛿ℒ

𝑙𝜂
ext = 𝛿𝑞𝜂𝑡𝑗𝑙𝜂𝐼𝑗𝐹𝑡 (𝜉𝑙, 𝜂𝑙) 𝐻 (𝜉𝑙) (5.42)

are the contributions given by the line loads 𝑙𝜉 and 𝑙𝜂 acting at (𝜉𝑙, 𝜂𝑙) and

𝛿ℒ
𝑝𝜉
ext = 𝛿𝑞𝜉𝑡𝑗𝑝𝜉𝐼𝑗𝐸

𝜉
𝑡 , 𝛿ℒ

𝑝𝜂
ext = 𝛿𝑞𝜂𝑡𝑗𝑝𝜂𝐼𝑗𝐸

𝜂
𝑡 (5.43)

being the contributions given by the transverse pressure loadings 𝑝𝜉 and 𝑝𝜂, where:

𝐼𝑗 = ∫𝑙𝑒
𝑁𝑗 (𝑠) 𝑑𝑠 (5.44)

MITC-based locking correction

When dealing with curved beam elements, locking phenomena are a major issue that
needs to be tackled to avoid detrimental effects on the accuracy and performance of
the results, especially for slender structures. A correction technique based on Mixed
Interpolation of Tensorial Components (MITC), see Bathe and Dvorkin [16, 15], is used.
The interpolation of axial and shear strains along the curved beam axis reads:

𝜀𝑠𝑠 = 𝑁𝑚𝜀𝑚
𝑠𝑠

𝜀𝑠𝜂 = 𝑁𝑚𝜀𝑚
𝑠𝜂

𝜀𝑠𝜉 = 𝑁𝑚𝜀𝑚
𝑠𝜉

(5.45)

Subscript 𝑚 implicitly means summation from 1 to 𝑁𝑒
𝑛 − 1, 𝑁𝑚 are the assumed in-

terpolating functions and 𝜀𝑚
𝑠𝑠, 𝜀𝑚

𝑠𝜂 and 𝜀𝑚
𝑠𝜉 are the axial and shear strains computed at

the 𝑚-th tying point. The explicit expressions for the assumed functions 𝑁𝑚 and tying
points location used in the proposed framework can be found in [119] for two-nodes,
three-nodes and four-nodes elements. After taking into account the strains interpola-
tion given by Eq. (5.45) within the constitutive equation (5.18) and within the defini-
tion of the element strain energy (5.36), the stiffness matrix fundamental nucleus of the
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MITC one-dimensional element reads:

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝑠 = 𝐼𝑖,𝑠𝑗,𝑠𝐽

11
𝜏𝑡 1

𝐻
+ 𝐼𝑖𝑗 (𝐽 55

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 66
𝜏,𝜉𝑡,𝜉𝐻) + 𝜅𝐼𝑖𝑗 (𝐽 66

𝜏𝑡,𝜉 + 𝐽 66
𝜏,𝜉𝑡) + 𝜅2𝐼𝑖𝑗𝐽

66
𝜏𝑡 1

𝐻

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝜉 = 𝐼𝑖𝑗,𝑠𝐽

12
𝜏,𝜉𝑡 + 𝐼𝑖,𝑠𝑗𝐽

66
𝜏𝑡,𝜉 + 𝜅 (𝐼𝑖,𝑠𝑗𝐽

66
𝜏𝑡 1

𝐻
− 𝐼𝑖𝑗,𝑠𝐽

11
𝜏𝑡 1

𝐻
)

𝐾𝜏𝑡𝑖𝑗
𝑒𝑠𝜂 = 𝐼𝑖𝑗,𝑠𝐽

13
𝜏,𝜂𝑡 + 𝐼𝑖,𝑠𝑗𝐽

55
𝜏𝑡,𝜂

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝑠 = 𝐼𝑖,𝑠𝑗𝐽

12
𝜏𝑡,𝜉 + 𝐼𝑖𝑗,𝑠𝐽

66
𝜏,𝜉𝑡 + 𝜅 (𝐼𝑖𝑗,𝑠𝐽

66
𝜏𝑡 1

𝐻
− 𝐼𝑖,𝑠𝑗𝐽

11
𝜏𝑡 1

𝐻
)

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝜉 = 𝐼𝑖𝑗 (𝐽 22

𝜏,𝜉𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜂𝐻) + 𝐼𝑖,𝑠𝑗,𝑠𝐽

66
𝜏𝑡 1

𝐻
− 𝜅𝐼𝑖𝑗𝐽

12
𝜏𝑡,𝜉 − 𝜅𝐼𝑖𝑗𝐽

12
𝜏,𝜉𝑡 + 𝜅2𝐼𝑖𝑗𝐽

11
𝜏𝑡 1

𝐻

𝐾𝜏𝑡𝑖𝑗
𝑒𝜉𝜂 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝜂𝑡,𝜉𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜂𝐻) − 𝜅𝐼𝑖𝑗𝐽

13
𝜏,𝜂𝑡

𝐾𝜏𝑡𝑖𝑗
𝑒𝜂𝑠 = 𝐼𝑖,𝑠𝑗𝐽

13
𝜏𝑡,𝜂 + 𝐼𝑖𝑗,𝑠𝐽

55
𝜏,𝜂𝑡

𝐾𝜏𝑡𝑖𝑗
𝑒𝜂𝜉 = 𝐼𝑖𝑗 (𝐽 23

𝜏,𝜉𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜂𝑡,𝜉𝐻) − 𝜅𝐼𝑖𝑗𝐽

13
𝜏𝑡,𝜂

𝐾𝜏𝑖𝑗
𝑒𝜂𝜂 = 𝐼𝑖𝑗 (𝐽 33

𝜏,𝜂𝑡,𝜂𝐻 + 𝐽 44
𝜏,𝜉𝑡,𝜉𝐻) + 𝐼𝑖,𝑠𝑗,𝑠𝐽

55
𝜏𝑡 1

𝐻
(5.46)

where:
𝐼𝑖(,𝑠)𝑗(,𝑠)

= ∫
𝑙𝑒

𝑁𝑚𝑁𝑚
𝑖(,𝑠)

𝑁𝑗(,𝑠)
𝑑𝑠

𝐼𝑖(,𝑠)𝑗(,𝑠)
= ∫

𝑙𝑒

𝑁𝑖(,𝑠)
𝑁𝑛𝑁𝑛

𝑗(,𝑠)
𝑑𝑠

𝐼𝑖(,𝑠)𝑗(,𝑠)
= ∫

𝑙𝑒

𝑁𝑚𝑁𝑚
𝑖(,𝑠)

𝑁𝑛𝑁𝑛
𝑗(,𝑠)

𝑑𝑠

(5.47)

and 𝑁𝑚
𝑖(,𝑠)

stands for the 𝑖-th shape function (or its derivative) computed at the 𝑚-th
tying point location 𝑠𝑚:

𝑁𝑚
𝑖(,𝑠)

= 𝑁𝑖(,𝑠) (𝑠𝑚) (5.48)
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Chapter 6

Geometrically Non-Linear
Hierarchical Structural Modeling

6.1 Introduction
By accounting for linear geometrical relations as in the previous chapters, coincidence
of the initial undeformed geometry and geometry after loading is assumed. Neverthe-
less, to the aim of investigating multi-stable structures, large shape changes have to be
taken into account and, therefore, the simplifying assumption of geometrical linearity
has to be relaxed. When the geometry of a structure varies to a great extent in response
to external loads, its stiffness will not remain constant during deformation, but it will
change as function of the displacement and stress fields, resulting in a non-linear struc-
tural problem.
This chapter is devoted to the derivation of UF-based one-dimensional finite elements
in the framework of geometrically non-linear analysis to the aim of providing a high-
fidelity one-dimensional modeling framework with enhanced kinematic and stress
prediction capabilities. Preliminaries about geometrical non-linearities in a Green-
Lagrange sense are provided in Section 6.2, whereas the notation for second Piola-
Kirchoff and Cauchy stresses, their relation under the hypothesis of small strains as well
as the constitutive equation based on Hooke’s law are introduced in Section 6.3. Plane
stress hypothesis are assumed. The principle of virtual displacements in the framework
of a total Lagrangian formulation is discussed in Section 6.4. In Section 6.5, due to plane
stress hypothesis, a two-dimensional displacement field is considered and it is approx-
imated via a UF-based through-the-thickness expansion and a one-dimensional finite
elements discretization yielding the derivation of the gradient vector as function of the
nodal unknown vector. Fundamental nuclei of linear, initial-displacement and initial-
stress contributions to the tangent stiffness matrix are reported in Section 6.6. Due to
the coupling of the displacement components deriving from the non-linear geometri-
cal relations, a locking correction strategy needs to be implemented in order to avoid
detrimental numerical phenomena. To this aim, a MITC-based method extended to the
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UF-based non-linear one-dimensional formulation is proposed in Section 6.7. Finally,
the algorithms for the solution of the resulting non-linear algebraic system, includ-
ing classical methods such as Newton-Raphson and arc-length method as well as an
advanced ANM-based path-following technique, are discussed in Section 6.8. The for-
mulation presented in this chapter has been previously published in [93].

6.2 Non-linear strains-displacements relation
A fixed Cartesian coordinate system {𝑥, 𝑧} in the framework of a two-dimensional ap-
proach is adopted, being 𝑥 the beam axis coordinate and 𝑧 the through-the-thickness
coordinate. The generic displacement vector is:

u𝑇 (𝑥, 𝑧) = { 𝑢 (𝑥, 𝑧) 𝑤 (𝑥, 𝑧) } (6.1)

being 𝑢 and 𝑤 the displacement components in the 𝑥- and 𝑧-direction, respectively. The
gradient vector of the displacements 𝜃 is given by:

𝜃 = { 𝑢,𝑥 𝑢,𝑧 𝑤,𝑥 𝑤,𝑧 } (6.2)

The Green-Lagrange strain vector E is considered:

E𝑇 = { 𝐸𝑥𝑥 𝐸𝑧𝑧 𝐸𝑥𝑧 } (6.3)

with:
𝐸𝑥𝑥 = 𝑢,𝑥 + 1

2 (𝑢2
,𝑥 + 𝑤2

,𝑥)

𝐸𝑧𝑧 = 𝑤,𝑧 + 1
2 (𝑢2

,𝑧 + 𝑤2
,𝑧)

𝐸𝑥𝑧 = 𝑢,𝑧 + 𝑤,𝑥 + 𝑢,𝑥𝑢,𝑧 + 𝑤,𝑥𝑤,𝑧

(6.4)

Therefore, large displacements and rotations are accounted for. The matrix form of
Eq. (6.4) is given by:

E = [H + 1
2
A (𝜃)]𝜃 (6.5)

being:

H =
⎡
⎢
⎢
⎣

1 0 0 0
0 0 0 1
0 1 1 0

⎤
⎥
⎥
⎦

(6.6)

and

A (𝜃) =
⎡
⎢
⎢
⎣

𝑢,𝑥 0 𝑤,𝑥 0
0 𝑢,𝑧 0 𝑤,𝑧

𝑢,𝑧 𝑢,𝑥 𝑤,𝑧 𝑤,𝑥

⎤
⎥
⎥
⎦

(6.7)
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6.3 Stress notation and constitutive relation
Second Piola-Kirchhoff’s stress S is considered, since it is energetically-conjugate to the
Green-Lagrange strains introduced in Eq. (6.4):

S𝑇 = { 𝑆𝑥𝑥 𝑆𝑧𝑧 𝑆𝑥𝑧 } (6.8)

Under the assumption of small strains, Hooke’s law is considered:

S = Q𝑘E (6.9)

where the components of the reduced material stiffness matrix Q𝑘 for a generic k-th
layer made of an anisotropic material are given by:

Q𝑘 =
⎡
⎢
⎢
⎣

𝑄𝑘
11 𝑄𝑘

13 𝑄𝑘
15

𝑄𝑘
13 𝑄𝑘

33 𝑄𝑘
35

𝑄𝑘
15 𝑄𝑘

35 𝑄𝑘
55

⎤
⎥
⎥
⎦

(6.10)

Plane stress conditions are assumed and the explicit expression for the coefficients𝑄𝑘
𝑖𝑗 is

reported in Reddy [140]. The Cauchy stress tensor 𝜎𝑔 expressed in the global reference
system is related to the second Piola-Kirchoff stress tensor by means of the following
equation:

𝜎𝑔 = 1
𝐽
F [

𝑆𝑥𝑥 𝑆𝑥𝑧
𝑆𝑥𝑧 𝑆𝑧𝑧 ] F

𝑇 (6.11)

where F is the deformation tensor:

F = [
1 + 𝑢,𝑥 𝑢,𝑧

𝑤,𝑥 1 + 𝑤,𝑧 ] (6.12)

and J is its determinant: J = det(F). Finally, as shown in Crisfield [57], under the small
strains hypothesis, the Cauchy stress in the local reference system 𝜎, which represents
the physical stress, is equivalent to the second Piola-Kirchhoff’s stress S expressed in
the global coordinate.

6.4 Principle of virtual displacements
Weak-form governing equations are derived via the Principle of Virtual Displacements:

𝛿ℒ = 𝛿ℒ𝑖𝑛𝑡 − 𝛿ℒ𝑒𝑥𝑡 = 0 (6.13)

In the framework of a total Lagrangian formulation, the virtual variation of the internal
work 𝛿ℒ𝑖𝑛𝑡 is computed over the undeformed volume 𝑉0:

𝛿ℒ𝑖𝑛𝑡 = ∫𝑉0

𝛿E𝑇S𝑑𝑉 (6.14)
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Let 𝛿ℒ𝑖𝑛𝑡 be an infinitesimal variation of the internal virtual work:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫𝑉0
[𝛿E𝑇𝑑S + 𝑑 (𝛿E𝑇) S] 𝑑𝑉 (6.15)

This latter expression can be rearranged as follows, see Crisfield [57]:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫𝑉0
[𝛿E𝑇Q𝑘𝑑E + 𝛿𝜃𝑇Ŝ𝑑𝜃] 𝑑𝑉 (6.16)

being ̂S ∈ ℝ4×4:

Ŝ =
⎡
⎢
⎢
⎢
⎣

𝑆𝑥𝑥 𝑆𝑥𝑧 0 0
𝑆𝑥𝑧 𝑆𝑧𝑧 0 0
0 0 𝑆𝑥𝑥 𝑆𝑥𝑧
0 0 𝑆𝑥𝑧 𝑆𝑧𝑧

⎤
⎥
⎥
⎥
⎦

(6.17)

Finally, by considering that the virtual variation of the strain vector 𝛿E is:

𝛿E = 𝛿 {[H + 1
2
A (𝜃)]𝜃} = [H + A (𝜃)] 𝛿𝜃 (6.18)

the final form of the variation of the internal virtual work in terms of the actual and
virtual variation of the gradient vector is given by:

𝑑 (𝛿ℒ𝑖𝑛𝑡) = ∫𝑉0

𝛿𝜃𝑇 {[H𝑇 + A𝑇 (𝜃)]Q𝑘 [H + A (𝜃)] + Ŝ} 𝑑𝜃𝑑𝑉 (6.19)

6.5 UF-based one-dimensional finite element formu-
lation

By considering a through-the-thickness displacement field based on UF and a one-
dimensional finite elements approximation along the beam axis, the two-dimensional
displacement field reads:

𝑢𝑥 (𝑥, 𝑧) = 𝐹𝜏 (𝑧) 𝑁𝑖 (𝑥) 𝑞𝑢
𝜏𝑖 with 𝜏 = 1, 2, … , 𝑁𝑢

𝑢𝑧 (𝑥, 𝑧) = 𝐹𝜏 (𝑧) 𝑁𝑖 (𝑥) 𝑞𝑤
𝜏𝑖 and 𝑖 = 1, … , 𝑁𝑒

𝑛
(6.20)

being 𝑞𝑛
𝜏𝑖 ∶ 𝑛 = 𝑢,𝑤 the nodal unknowns. In analogy with the three-dimensional UF-

based displacement field presented in Section 3.3.2, a N-order through-the-thickness
Taylor expansion of the displacement field reads:

𝑢𝑥 = 𝑢𝑥1 + 𝑢𝑥2𝑧 + 𝑢𝑥3𝑧2 + ⋯ + 𝑢𝑥(𝑁+1)𝑧𝑁

𝑢𝑧 = 𝑢𝑧1 + 𝑢𝑧2𝑧 + 𝑢𝑧3𝑧2 + ⋯ + 𝑢𝑧(𝑁+1)𝑧𝑁 (6.21)
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Upon substitution of Eq. (6.20) within Eq. (6.2), the expression for the gradient vector
in terms of the nodal unknowns is obtained:

𝜃 = { 𝐹𝜏𝑁𝑖,𝑥𝑞𝑢
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖𝑞𝑢

𝜏𝑖 𝐹𝜏𝑁𝑖,𝑥𝑞𝑤
𝜏𝑖 𝐹𝜏,𝑧𝑁𝑖𝑞𝑤

𝜏𝑖 } = G𝜏𝑖q𝜏𝑖 (6.22)

being G𝜏𝑖 ∈ ℝ4×2 and q𝜏𝑖 ∈ ℝ2×1:

G𝜏𝑖 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐹𝜏𝑁𝑖,𝑥 0
𝐹𝜏,𝑧𝑁𝑖 0

0 𝐹𝜏𝑁𝑖,𝑥
0 𝐹𝜏,𝑧𝑁𝑖

⎤
⎥
⎥
⎥
⎥
⎦

(6.23)

and:
q𝑇

𝜏𝑖 = { 𝑞𝑢
𝜏𝑖 𝑞𝑤

𝜏𝑖 } (6.24)

6.6 Tangent stiffness matrix fundamental nucleus
By replacing Eq. (6.22) within Eq. (6.19), the variation of the internal virtual work reads:

𝑑 (𝛿ℒ 𝑒
𝑖𝑛𝑡) = 𝛿q𝑇

𝜏𝑖 ∫𝑉 𝑒
0

G𝑇
𝜏𝑖 {[H𝑇 + A𝑇 (𝜃)]Q𝑘 [H + A (𝜃)] + ̂S}G𝜎𝑗𝑑𝑉 𝑑q𝜎𝑗 =

𝛿q𝑇
𝜏𝑖 (K

𝑒𝑙
𝜏𝜎𝑖𝑗 + K𝑒𝑡1

𝜏𝜎𝑖𝑗 + K𝑒𝑡2
𝜏𝜎𝑖𝑗) 𝑑q𝜎𝑗

(6.25)
where 𝑉 𝑒

0 is the element undeformed volume and K𝑒𝑙
𝜏𝜎𝑖𝑗 K𝑒𝑡1

𝜏𝜎𝑖𝑗 K𝑒𝑡2
𝜏𝜎𝑖𝑗 ∈ ℝ2×2 are the

fundamental nuclei of the linear, initial-displacement and initial-stress contributions to
the element tangent stiffness matrix:

K𝑒𝑙
𝜏𝜎𝑖𝑗 = ∫𝑉 𝑒

0

G𝑇
𝜏𝑖H

𝑇Q𝑘HG𝜎𝑗𝑑𝑉

K𝑒𝑡1
𝜏𝜎𝑖𝑗 = ∫𝑉 𝑒

0

G𝑇
𝜏𝑖 [H𝑇Q𝑘A + A𝑇Q𝑘 (H + A)]G𝜎𝑗𝑑𝑉

K𝑒𝑡2
𝜏𝜎𝑖𝑗 = ∫𝑉 𝑒

0

G𝑇
𝜏𝑖ŜG𝜎𝑗𝑑𝑉

(6.26)

In analogy with the stiffness matrix fundamental nucleus for linear analyses derived in
the previous chapters, also the fundamental nuclei of the tangent stiffness matrix are
expressed in a unified form that does not depend on the approximation order of the
displacement field 𝑁, the class of expansion functions 𝐹𝜏 and the number of nodes per
element 𝑁𝑒

𝑛 . Once these terms are fixed, the element tangent stiffness matrix is obtained
by assembling the fundamental nuclei corresponding to each term of the expansion 𝜏,
𝜎, 𝑖 and 𝑗, following the same procedure as in classical linear UF-approach [35].
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6.6.1 Linear contribution
The explicit expression for the components of the linear stiffness matrix K𝑒𝑙

𝜏𝜎𝑖𝑗 is:

𝐾𝑒𝑙𝑥𝑥
𝜏𝜎𝑖𝑗 = 𝐽 11

𝜏𝜎 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 55
𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽 15

𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥 + 𝐽 15
𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗

𝐾𝑒𝑙𝑥𝑧
𝜏𝜎𝑖𝑗 = 𝐽 13

𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗 + 𝐽 15
𝜏𝜎 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽 55
𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥

𝐾𝑒𝑙𝑧𝑥
𝜏𝜎𝑖𝑗 = 𝐽 13

𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥 + 𝐽 15
𝜏𝜎 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽 55
𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗

𝐾𝑒𝑙𝑧𝑧
𝜏𝜎𝑖𝑗 = 𝐽 33

𝜏,𝑧𝜎,𝑧𝐼𝑖𝑗 + 𝐽 55
𝜏𝜎 𝐼𝑖,𝑥𝑗,𝑥 + 𝐽 35

𝜏𝜎,𝑧𝐼𝑖,𝑥𝑗 + 𝐽 35
𝜏,𝑧𝜎𝐼𝑖𝑗,𝑥

(6.27)

where 𝐽 𝑔ℎ
𝜏(,𝑧)𝜎(,𝑧) is the following cross-section moment:

𝐽 𝑔ℎ
𝜏(,𝑧)𝜎(,𝑧) = ∫

Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑘
𝑔ℎ𝐹𝜏(,𝑧)

𝐹𝜎(,𝑧)
𝑑Ω (6.28)

𝐼𝑖(,𝑥)𝑗(,𝑥)
is the integral of the product of the shape functions or their derivatives along

the axis of the one-dimensional element:

𝐼𝑖(,𝑥)𝑗(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑑𝑥 (6.29)

6.6.2 Initial-displacement contribution
The components of the initial displacement (or initial-slope) contribution K𝑒𝑡1

𝜏𝜎𝑖𝑗 are:

𝐾𝑒𝑡1𝑥𝑥
𝜏𝜎𝑖𝑗 = 𝑞𝑢

𝑡𝑙 (2𝐽 11
𝜏𝜎𝑡𝐼𝑖

,𝑥𝑗
,𝑥𝑙

,𝑥
+ 𝐽 13

𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖
,𝑥𝑗𝑙 + 𝐽 13

𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 2𝐽 15
𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙+

2𝐽 15
𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 2𝐽 15

𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 2𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 2𝐽 55

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) +

𝐽 55
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 55

𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙) +

𝑞𝑢
𝑡𝑙𝑞

𝑢
𝑠𝑚 (𝐽 11

𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽 13

𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽 13
𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥

+

𝐽 15
𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽 15

𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽 15

𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥
+ 𝐽 15

𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥
+

𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽 35

𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥

+ 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚+

𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽 55

𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚 + 𝐽 55
𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥

+ 𝐽 55
𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚+

𝐽 55
𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)
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6.6 – Tangent stiffness matrix fundamental nucleus

𝐾𝑒𝑡1𝑥𝑧
𝜏𝜎𝑖𝑗 = 𝑞𝑢

𝑡𝑙 (𝐽 13
𝜏𝜎,𝑧𝑡𝐼𝑖

,𝑥𝑗𝑙
,𝑥

+ 𝐽 15
𝜏𝜎𝑡𝐼𝑖

,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽 55

𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙+

𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽 35

𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥 + 𝐽 55

𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥) +

𝑞𝑤
𝑡𝑙 (𝐽 11

𝜏𝜎𝑡𝐼𝑖
,𝑥𝑗

,𝑥𝑙
,𝑥

+ 𝐽 13
𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖

,𝑥𝑗𝑙 + 𝐽 15
𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽 15

𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥+

𝐽 15
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽 55
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 55

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) +

𝑞𝑢
𝑡𝑙𝑞

𝑤
𝑠𝑚 (𝐽 11

𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽 13

𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽 15
𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚+

𝐽 15
𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥

+ 𝐽 15
𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽 55

𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚+

𝐽 55
𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥

+ 𝐽 13
𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽 35

𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚+

𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥

+ 𝐽 15
𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚 + 𝐽 55

𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚+

𝐽 55
𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)

𝐾𝑒𝑡1𝑧𝑥
𝜏𝜎𝑖𝑗 = 𝑞𝑢

𝑡𝑙 (𝐽 15
𝜏𝜎𝑡𝐼𝑖

,𝑥𝑗,𝑥𝑙
,𝑥

+ 𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖

,𝑥𝑗𝑙 + 𝐽 55
𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽 55

𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥+

𝐽 13
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽 33

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽 35
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) +

𝑞𝑤
𝑡𝑙 (𝐽 11

𝜏𝜎𝑡𝐼𝑖
,𝑥𝑗

,𝑥𝑙
,𝑥

+ 𝐽 15
𝜏𝜎,𝑧𝑡𝐼𝑖

,𝑥𝑗𝑙,𝑥 + 𝐽 15
𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽 55

𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙+

𝐽 13
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽 15
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽 55

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥) +

𝑞𝑤
𝑡𝑙 𝑞𝑢

𝑠𝑚 (𝐽 11
𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 13
𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚 + 𝐽 15

𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚+

𝐽 15
𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥

+ 𝐽 15
𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽 55

𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚+

𝐽 55
𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥

+ 𝐽 13
𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽 35

𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚+

𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥

+ 𝐽 15
𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚 + 𝐽 55

𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚+

𝐽 55
𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥)

(6.30)
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6 – Geometrically Non-Linear Hierarchical Structural Modeling

𝐾𝑒𝑡1𝑧𝑧
𝜏𝜎𝑖𝑗 = 𝑞𝑤

𝑡𝑙 (𝐽 13
𝜏𝜎,𝑧𝑡𝐼𝑖

,𝑥𝑗𝑙
,𝑥

+ 𝐽 13
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 2𝐽 15

𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 2𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙+

2𝐽 35
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 2𝐽 35

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥 + 2𝐽 55
𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽 55

𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥) +

𝐽 55
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 2𝐽 33

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙) +

𝑞𝑤
𝑡𝑙 𝑞𝑤

𝑠𝑚 (𝐽 11
𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚 + 𝐽 55

𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚+

𝐽 55
𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥

+ 𝐽 55
𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽 55

𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽 13

𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚+

𝐽 13
𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 15
𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽 15

𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽 15

𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥
+

𝐽 15
𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽 35

𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥

+

𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚)

6.6.3 Initial-stress contribution
The components of the the initial stress (or geometric) contribution K𝑒𝑡2

𝜏𝜎𝑖𝑗 are:

𝐾𝑒𝑡2𝑥𝑥
𝜏𝜎𝑖𝑗 = 𝐾𝑒𝑡2𝑧𝑧

𝜏𝜎𝑖𝑗 = 𝑞𝑢
𝑡𝑙 (𝐽 11

𝜏𝜎𝑡𝐼𝑖
,𝑥𝑗

,𝑥𝑙
,𝑥

+ 𝐽 15
𝜏𝜎𝑡,𝑧𝐼𝑖

,𝑥𝑗
,𝑥𝑙 + 𝐽 15

𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥 + 𝐽 55
𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙+

𝐽 15
𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽 55

𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 13
𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙)

𝑞𝑤
𝑡𝑙 (𝐽 13

𝜏𝜎𝑡,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙 + 𝐽 15
𝜏𝜎𝑡𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥 + 𝐽 35

𝜏𝜎,𝑧𝑡,𝑧𝐼𝑖,𝑥𝑗𝑙 + 𝐽 55
𝜏𝜎,𝑧𝑡𝐼𝑖,𝑥𝑗𝑙,𝑥+

𝐽 35
𝜏,𝑧𝜎𝑡,𝑧𝐼𝑖𝑗,𝑥𝑙 + 𝐽 55

𝜏,𝑧𝜎𝑡𝐼𝑖𝑗,𝑥𝑙,𝑥 + 𝐽 33
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝐼𝑖𝑗𝑙 + 𝐽 35

𝜏,𝑧𝜎,𝑧𝑡𝐼𝑖𝑗𝑙,𝑥)
1
2 (𝑞𝑢

𝑡𝑙𝑞
𝑢
𝑠𝑚 + 𝑞𝑤

𝑡𝑙 𝑞𝑤
𝑠𝑚) (𝐽 11

𝜏𝜎𝑡𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚,𝑥
+ 𝐽 13

𝜏𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚+

𝐽 15
𝜏𝜎𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗,𝑥𝑙𝑚,𝑥

+ 𝐽 15
𝜏𝜎𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗,𝑥𝑙,𝑥𝑚 + 𝐽 15

𝜏𝜎,𝑧𝑡𝑠𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚,𝑥
+

𝐽 35
𝜏𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙𝑚 + 𝐽 55

𝜏𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖,𝑥𝑗𝑙𝑚,𝑥
+ 𝐽 55

𝜏𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖,𝑥𝑗𝑙,𝑥𝑚+

𝐽 15
𝜏,𝑧𝜎𝑡𝑠𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚,𝑥

+ 𝐽 35
𝜏,𝑧𝜎𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙𝑚 + 𝐽 55

𝜏,𝑧𝜎𝑡,𝑧𝑠𝐼𝑖𝑗,𝑥𝑙𝑚,𝑥
+

𝐽 55
𝜏,𝑧𝜎𝑡𝑠,𝑧𝐼𝑖𝑗,𝑥𝑙,𝑥𝑚 + 𝐽 13

𝜏,𝑧𝜎,𝑧𝑡𝑠𝐼𝑖𝑗𝑙,𝑥𝑚,𝑥
+ 𝐽 33

𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠,𝑧𝐼𝑖𝑗𝑙𝑚+

𝐽 35
𝜏,𝑧𝜎,𝑧𝑡,𝑧𝑠𝐼𝑖𝑗𝑙𝑚,𝑥

+ 𝐽 35
𝜏,𝑧𝜎,𝑧𝑡𝑠,𝑧𝐼𝑖𝑗𝑙,𝑥𝑚)

𝐾𝑒𝑡2𝑥𝑧
𝜏𝜎𝑖𝑗 = 𝐾𝑒𝑡2𝑧𝑥

𝜏𝜎𝑖𝑗 = 0
(6.31)

The integrals 𝐽 𝑔ℎ
𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)

, 𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)
, 𝐽 𝑔ℎ

𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)𝑠(,𝑧)
and 𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥)

are defined as:

𝐽 𝑔ℎ
𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)

= ∫
Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑘
𝑔ℎ𝐹𝜏(,𝑧)

𝐹𝜎(,𝑧)
𝐹𝑡(,𝑧)

𝑑Ω (6.32)
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𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑁𝑙(,𝑥)
𝑑𝑥 (6.33)

𝐽 𝑔ℎ
𝜏(,𝑧)𝜎(,𝑧)𝑡(,𝑧)𝑠(,𝑧)

= ∫
Ω𝑒=ℎ𝑒×𝑏𝑒

𝑄𝑘
𝑔ℎ𝐹𝜏(,𝑧)

𝐹𝜎(,𝑧)
𝐹𝑡(,𝑧)

𝐹𝑠(,𝑧)
𝑑Ω (6.34)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥)
= ∫

𝑙𝑒

𝑁𝑖(,𝑥)
𝑁𝑗(,𝑥)

𝑁𝑙(,𝑥)
𝑁𝑚(,𝑥)

𝑑𝑥 (6.35)

All the 𝐼- and 𝐽-integrals in Eqs. (6.27), (6.30) and (6.31) are numerically evaluated via
Gaussian quadrature.

6.7 Locking-free higher-order elements based on
MITC

In order to tackle the detrimental effects of locking phenomena due to the coupling
of the displacement components in the non-linear geometric relations, see Eq. (6.4), a
correction strategy based on MITC, see Bathe et al. [15, 17, 18], is proposed. Axial strain
𝐸𝑥𝑥, transverse normal strain 𝐸𝑧𝑧 as well as shear strain 𝐸𝑥𝑧 are interpolated along the
axis as follows:

𝐸𝑥𝑥 = 𝑁𝑝𝐸𝑝
𝑥𝑥

𝐸𝑧𝑧 = 𝑁𝑝𝐸𝑝
𝑧𝑧

𝐸𝑥𝑧 = 𝑁𝑝𝐸𝑝
𝑥𝑧

(6.36)

𝑝 implicitly stands for a summation from 1 to 𝑁𝑒
𝑛 − 1, 𝑁𝑝 are the assumed interpolating

functions of the natural beam element coordinate 𝑟 ∈ [−1,1] and 𝐸𝑝
𝑥𝑥, 𝐸𝑝

𝑧𝑧 and 𝐸𝑝
𝑥𝑧

are the strains computed at the 𝑝-th tying point coordinate 𝑟𝑇 𝑝. The explicit expression
for the interpolating functions 𝑁𝑝 can be found in Carrera et al. [40] and it is reported
below, for the sake of completeness:

• For linear elements (𝑁𝑒
𝑛 = 2):

𝑁1 = 1
𝑟𝑇 1 = 0

(6.37)

• For quadratic elements (𝑁𝑒
𝑛 = 3):

𝑁1 = −1
2

√3
(

𝑟 − 1
√3)

𝑁2 = 1
2

√3
(

𝑟 + 1
√3)

𝑟𝑇 1 = − 1
√3

𝑟𝑇 2 = 1
√3

(6.38)
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• And, finally, for cubic elements (𝑁𝑒
𝑛 = 4):

𝑁1 = 5
6

𝑟
(

𝑟 − √
3
5)

𝑁2 = −5
3 (

𝑟 − √
3
5) (

𝑟 + √
3
5)

𝑁3 = 5
6

𝑟
(

𝑟 + √
3
5)

𝑟𝑇 1 = −√
3
5 𝑟𝑇 2 = 0 𝑟𝑇 3 = √

3
5

(6.39)

In order to account for the MITC-based locking correction within the element tangent
stiffness matrix derived in Section 6.6, the only modification is the definition of the 𝐼-
integrals in Eqs. (6.29), (6.33), (6.35) which are replaced, respectively, by the following
expressions:

𝐼𝑖(,𝑥)𝑗(,𝑥)
= ∫

𝑙𝑒

𝑁𝑝𝑁𝑝
𝑖(,𝑥)

𝑁𝑞𝑁𝑞
𝑗(,𝑥)

𝑑𝑥 (6.40)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)
= ∫

𝑙𝑒

𝑁𝑝𝑁𝑝
𝑖(,𝑥)

𝑁𝑞𝑁𝑞
𝑗(,𝑥)

𝑁𝑞
𝑙(,𝑥)

𝑑𝑥 (6.41)

𝐼𝑖(,𝑥)𝑗(,𝑥)𝑙(,𝑥)𝑚(,𝑥)
= ∫

𝑙𝑒

𝑁𝑝𝑁𝑝
𝑖(,𝑥)

𝑁𝑝
𝑗(,𝑥)

𝑁𝑞𝑁𝑞
𝑙(,𝑥)

𝑁𝑞
𝑚(,𝑥) 𝑑𝑥 (6.42)

6.8 Solution of non-linear algebraic systems
The finite element formulation of structural problems results in a system of non-linear
algebraic equations in the following form:

K (q)q = 𝜆F (6.43)

where K is the so-called secant stiffness matrix, q is the unknown vector to be solved
for and 𝜆F is the external load applied. Let R be the residual vector:

R (q, 𝜆) = K (q)q − 𝜆F = 0 (6.44)

Three different solution procedures are considered and their main features are described
in the following.

6.8.1 Newton-Raphson procedure
Newton-Raphson technique is one of the most simple and used non-linear solution
procedures. As also discussed in [138], in order to compute the solution of Eq. (6.43) at
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the n-th load step and k-th iteration q𝑘
𝑛 , the residual vector R (q𝑘

𝑛), for a fixed load, is
approximated via a first-order Taylor’s series in the following manner:

R (q𝑘
𝑛) = R (q𝑘−1

𝑛 ) + 𝜕R
𝜕q |q𝑘−1

𝑛
⋅ 𝛿q𝑘

𝑛 = 0 (6.45)

where 𝛿q𝑘
𝑛 = q𝑘

𝑛 − q𝑘−1
𝑛 and:

K𝑡 (q𝑘−1
𝑛 ) = 𝜕R

𝜕q |q𝑘−1
𝑛

(6.46)

is the tangent stiffness matrix at the iteration 𝑘−1. It is worth clarifying that the symbol
𝛿 in this section stands for increment between two consecutive iterations, in contrast
to its previous use as a virtual variation symbol. From Eqs. (6.44), (6.45) and (6.46):

𝛿q𝑘
𝑛 = − [K𝑡 (q𝑘−1

𝑛 )]
−1 ⋅ R (q𝑘−1

𝑛 ) = [K𝑡 (q𝑘−1
𝑛 )]

−1 ⋅ [𝜆F − K (q𝑘−1
𝑛 ) ⋅ q𝑘−1

𝑛 ] (6.47)

and, finally:
q𝑘

𝑛 = q𝑘−1
𝑛 + 𝛿q𝑘

𝑛 (6.48)

Such iterative procedure is continued until convergence is obtained. A common primary
convergence criterion is based on the norm of the residual vector R. Auxiliary criteria
based on the relative difference between two consecutive iterations can be also adopted,
such as:

√√√√√

⎷

‖(q𝑘
𝑛 − q𝑘−1

𝑛 )
𝑇 ⋅ (q𝑘

𝑛 − q𝑘−1
𝑛 )‖

‖(q𝑘
𝑛)

𝑇 ⋅ q𝑘
𝑛‖

< 𝜖 (6.49)

being 𝜖 the margin of tolerance. For a fixed load, according to Eq. (6.47), the tangent
stiffness matrix should be assembled and inverted at each iteration, which could repre-
sent, in some cases, a computationally expensive task. An alternative scheme, known
as modified Newton-Raphson procedure, is commonly used, consisting in updating the
tangent stiffness matrix at the beginning of each load step only or for a limited number
of iterations. In this way, despite a larger number of iterations for each load step, a less
time-consuming procedure can be obtained for problems involving a high number of
degrees of freedom.

6.8.2 Arc-length method
Newton-Raphson procedures may fail to predict the complete equilibrium path if sin-
gular points exist, such as in snap-through buckling problems, in which convergence
after the limit point can not be obtained under force control. A more robust non-linear
solution scheme for these cases is given by the arc-length methods. In this work, the
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procedure developed by Crisfield [57] is considered. In analogy with Eq. (6.45), but con-
sidering that both q and 𝜆 are unknown, a first-order Taylor series of the residual vector
reads:

R (q𝑘
𝑛, 𝜆𝑘

𝑛) = R (q𝑘−1
𝑛 , 𝜆𝑘−1

𝑛 ) − F𝛿𝜆𝑘
𝑛 + K𝑡 (q𝑘−1

𝑛 , 𝜆𝑘−1
𝑛 ) ⋅ 𝛿q𝑘

𝑛 = 0 (6.50)

and solving for the increment of the displacement vector 𝛿q𝑘
𝑛 :

𝛿q𝑘
𝑛 = − [K𝑡 (q𝑘−1

𝑛 , 𝜆𝑘−1
𝑛 )]

−1 ⋅ [R (q𝑘−1
𝑛 , 𝜆𝑘−1

𝑛 ) − F𝛿𝜆𝑘
𝑛] (6.51)

This latter equation can be written in a compact form as:

𝛿q𝑘
𝑛 = 𝛿q𝑘

𝑛 + 𝛿𝜆𝑘
𝑛𝛿 ̂q𝑘

𝑛 (6.52)

where the following definitions have been introduced:

𝛿q𝑘
𝑛 = − [K𝑡 (q𝑘−1

𝑛 , 𝜆𝑘−1
𝑛 )]

−1 ⋅ R (q𝑘−1
𝑛 , 𝜆𝑘−1

𝑛 ) (6.53)

𝛿q̂𝑘
𝑛 = [K𝑡 (q𝑘−1

𝑛 , 𝜆𝑘−1
𝑛 )]

−1 ⋅ F (6.54)

In analogy with modified Newton-Raphson procedure, as suggested in Crisfield [57],
the tangent stiffness matrix in Eqs (6.51), (6.53) and (6.54) could be computed at the
last converged equilibrium point (q0

𝑛, 𝜆0
𝑛) rather than at each iteration, such that better

computational performances can be achieved. In this case, also the terms in Eq. (6.54)
could be evaluated at the beginning of each load step only. By defining the cumulative
incremental nodal unknowns vector Δq𝑘

𝑛 at k-th iteration within the current step, the
total nodal unknowns vector q𝑛 and the load parameter 𝜆𝑘

𝑛 :

Δq𝑘
𝑛 = Δq𝑘−1

𝑛 + 𝛿q𝑘
𝑛 (6.55)

q𝑛 = q𝑛−1 + Δq𝑘
𝑛 (6.56)

𝜆𝑘
𝑛 = 𝜆𝑘−1

𝑛 + 𝛿𝜆𝑘
𝑛 (6.57)

A parameter Δ𝑠 representing the radius of a circular arc with center in the current
equilibrium point can be introduced:

Δ𝑠 = √(Δq𝑘
𝑛)

𝑇 ⋅ Δq𝑘
𝑛 (6.58)

From Eqs. (6.52) and (6.58), it is possible to derive the following scalar quadratic relation,
see also Reddy [138]:

𝑎 (𝛿𝜆𝑘
𝑛)

2 + 𝑏 (𝛿𝜆𝑘
𝑛) + 𝑐 = 0 (6.59)

being:
𝑎 = (𝛿q̂𝑘

𝑛)
𝑇 ⋅ 𝛿q̂𝑘

𝑛

𝑏 = 2 (Δq𝑘−1
𝑛 + 𝛿q𝑘

𝑛)
𝑇 ⋅ 𝛿q̂𝑘

𝑛

𝑐 = (Δq𝑘−1
𝑛 + 𝛿q𝑘

𝑛)
𝑇 ⋅ (Δq𝑘−1

𝑛 + 𝛿q𝑘
𝑛) − (Δ𝑠)2

(6.60)

62



6.8 – Solution of non-linear algebraic systems

The solution of the quadratic equation (6.59) provides two values 𝛿𝜆𝑘
𝑛1 and 𝛿𝜆𝑘

𝑛2 cor-
responding to two different values Δq𝑘

𝑛1 and Δq𝑘
𝑛2. The root 𝜆𝑘

𝑛 is chosen according to
the desired sign, positive or negative, of the angle between the incremental displace-
ment vectors at two consecutive iterations, i.e. according to the sign of the product
Δq𝑘−1

𝑛 ⋅ Δq𝑘
𝑛 . In the case both roots are positive, the one closest to the linear solution

𝛿𝜆𝑘
𝑛 = −𝑐/𝑏 should be selected. For the first iteration within the first step, an initial load

increment 𝛿𝜆0
1 needs to be assumed and, by means of the definition in Eq. (6.58), the

starting arc-length increment can be obtained:

Δ𝑠1 = 𝛿𝜆0
1 ⋅ √(𝛿 ̂q0

1)
𝑇 ⋅ 𝛿 ̂q0

1 (6.61)

For all subsequent steps, in order to enhance the performance of the algorithm, the
arc-length within the current step Δ𝑠𝑛 could be automatically adjusted it by scaling it
with respect to the value at the previous step Δ𝑠𝑛−1 according to a desired number of
iterations 𝐼𝑑 and the number of iterations needed for convergence in the previous step
𝐼𝑛−1:

Δ𝑠𝑛 = Δ𝑠𝑛−1 ⋅ √(
𝐼𝑑

𝐼𝑛−1 ) (6.62)

Finally, the value of the incremental load parameter at the first iteration for all steps,
except the first one, is given by:

𝛿𝜆0
𝑛 = ±

Δ𝑠𝑛

√(𝛿q̂0
𝑛)

𝑇 ⋅ 𝛿q̂0
𝑛

(6.63)

where the sign is chosen positive when the tangent stiffness matrix K𝑡 is positive defi-
nite and negativewhenK𝑡 has at least one negative eigenvalue.This occurs, for instance,
when the equilibrium path has overcome a limit point.

6.8.3 Path-following solver based on the Asymptotic Numerical
Method

In this section, a path-following method via the Asymptotic Numerical Method (ANM)
perturbation technique based on Cochelin [53] is described. The displacement and the
stress vectors u, S as well as the load parameter 𝜆 are expanded via a 𝑛-order power
series with respect to a real scalar parameter 𝑎:

u = u𝑗 + 𝑎𝑝u𝑝 = u𝑗 + 𝑎u1 + 𝑎2u2 + ... + 𝑎𝑛u𝑛

S = S𝑗 + 𝑎𝑝S𝑝 = S𝑗 + 𝑎S1 + 𝑎2S2 + ... + 𝑎𝑛S𝑛

𝜆 = 𝜆𝑗 + 𝑎𝑝𝜆𝑝 = 𝜆𝑗 + 𝑎𝜆1 + 𝑎2𝜆2 + ... + 𝑎𝑛
𝑛

(6.64)
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where 𝑝 stands for a summation from 1 to 𝑛 and the subscript 𝑗 refers to the last con-
verged solution.The path parameter 𝑎 is an arc-length measure defined in the following
manner:

𝑎 = u1(u − u𝑗) + 𝜆1(𝜆 − 𝜆𝑗) (6.65)

being (u1, 𝜆1) the tangent vector to the equilibrium path. The sign of 𝑎 defines the di-
rection of the solution path and it is taken as positive when the tangent stiffness matrix
is positive definite and negative otherwise. Finally, as shown in Cochelin [53], by trans-
forming the non-linear problem in Eq. (6.43), which is cubic with respect to the displace-
ments, into a quadratic problem with respect to a temporary mixed displacement-stress
unknown vector, a solution algorithm consisting in a set of linear systems for each ex-
pansion order 𝑝 can be obtained and it is reported below.

Solution algorithm for the first order (p=1)

The set of three linear systems that needs to be solved in order to compute the 1-st order
unknowns u1, S1 and 𝜆1 are given by:

K𝑡 (𝜃(u𝑗))u1 = 𝜆1F (6.66)

S1 = Q𝑘 [H + A(𝜃(u𝑗))]𝜃(u1) (6.67)

u𝑇
1u1 + 𝜆2

1 = 1 (6.68)

where Eqs. (6.5), Eqs. (6.9), (6.20) and Eqs. (6.64) have been accounted for.

Solution algorithm for an order 2 ≤ 𝑝 ≤ 𝑛

For each subsequent order p, the following linear systems need to be solved for the
unknowns u𝑝, S𝑝 and 𝜆𝑝:

K𝑡 (𝜃(u𝑗))u𝑝 = 𝜆𝑝F + F𝑛𝑙
𝑝 (6.69)

S𝑝 = Q𝑘 [H + A(𝜃(u𝑗))]𝜃(u𝑝) + S𝑛𝑙
𝑝 (6.70)

u𝑇
1u𝑝 + 𝜆1𝜆𝑝 = 0 (6.71)

where S𝑛𝑙
𝑝 and F𝑛𝑙

𝑝 can be computed at each order p in terms of displacement and stress
unknowns at previous orders. Their complete expressions are not reported here, for the
sake of brevity, and can be found in Baguet [9].
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Convergence criterion

Finally, the length of each step 𝑎𝑚𝑎𝑥 is computed a posteriori, according to the following
convergence criterion on the displacements:

𝑎𝑚𝑎𝑥 = (𝜖
||u1||
||u𝑛||

)
1

𝑛−1
(6.72)

where 𝜖 is the tolerance parameter. The latter relation in addition to the Eqs. (6.66)
to (6.71) represent 3n+1 linear systems allowing to compute the 3n+1 unknowns in
Eq. (6.64). Due to the higher-order analytical representation, see Eq. (6.64), a larger non-
linear branch can be predicted within a single solution step in an efficient manner, since
the tangent stiffness matrix needs to be computed only at the beginning of the solution
step, as shown in the solution algorithm. These features differentiate the ANM-based
solver from the predictor-corrector methods seen in Sections 6.8.1 and 6.8.2, in which
the non-linear path is piece-wise linearly approximated and therefore a higher num-
ber of steps is needed for strongly non-linear problems. Moreover, unless a modified
Newton-Raphson scheme is used, the assembly and inversion of the tangent stiffness
matrix is required at each iteration within the step. For these reasons, significant com-
putational time saving can be obtained via ANM-based path following, especially when
dealing with instability problems and complex equilibrium paths. A further advantage
of the present method is that, due to the automatic a posteriori computation of the arc-
length in Eq. (6.72), no initial guess for the step length or first increment is needed.
As far as the robustness of the ANM approach in bifurcation problems is concerned,
readers are referred to Baguet and Cochelin [10].
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Numerical Results
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Chapter 7

Mechanical andThermo-Mechanical
Analysis

7.1 Introduction
For some simple structural problems, such as the global bending of slender isotropic
beams, the mechanical response can be accurately yet efficiently predicted by means
of classical one-dimensional models discussed in Chapter 3. Nevertheless, structural
components in advanced engineering applications can often have anisotropic material
properties (such as in laminated or sandwich structures) and be subjected to a different
variety of external loads (multi-field environment) yielding much more complex kine-
matic behaviors. For instance, several aerospace structures, such as engine components
or re-entry vehicles, are often multi-layered structures subjected to harsh thermal loads
that, due to their isotropic nature, generate complex three-dimensional stress fields. For
these kind of problems, a three-dimensional finite elements analysis, although computa-
tionally expensive, is certainly more reliable than a classical one-dimensional modeling
approach.
With the aim of providing an efficient alternative to three-dimensional modeling, this
chapter is devoted to the assessment of a refined one-dimensional approach for the
elastic response of beam structures subjected to mechanical and thermal loadings. A
geometrically linear behavior is assumed. By means of the formulation developed in
Chapter 4, themechanical response of sandwich beams subjected to localized loads is in-
vestigated in Section 7.2, whereas in Section 7.3 the thermal stress analysis of laminated
and functionally graded beam structures is carried out. A complex 3D-like kinematic
response, accounting for cross-sectional warping and torsional effects, as well as an ac-
curate three-dimensional stress field can be predicted by hierarchically increasing the
approximation order of the UF-based one-dimensional models, with remarkable com-
putational savings. The limitation of straight beam axis is relaxed in Section 7.4, where
the mechanics of curved three-dimensional beam structures subjected to in-plane and
out-of-plane mechanical loads is studied by means of UF-based curved beam models
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formulated in Chapter 5. Locking phenomena typical of curved finite elements are as-
sessed towards an exact Navier-type analytical solution showing the effectiveness of the
proposed MITC-based correction strategy. Numerical results presented in this chapter
have been previously published in [60, 61, 75, 132].

7.2 Mechanical analysis of sandwich beams
Sandwich structures exhibit high stiffness-to-weight and strength-to-weight ratios and,
for this reason, they are ideal candidates for several lightweight industrial applications.
Due to the large difference in stiffness between the skins and the core layer, such struc-
tures can show localized deformations in the soft core. Such mechanical behavior can
not be predicted by classical structural theories, since these are based on the hypoth-
esis of rigid cross-section. Therefore, higher-order models are required for an accurate
prediction of the three-dimensional displacement and stress field. In this section, three-
dimensional sandwich beam structures are investigated via one-dimensional hierarchi-
cal finite elements.The beam domain is [0, 𝑙]×[−𝑏/2, 𝑏/2]×[−ℎ/2,ℎ/2] being 𝑙 the beam
length, ℎ the thickness and 𝑏 the width. The thickness of the faces is referred to as ℎ𝑓.
Fig. 7.1 shows the beam geometry as well as the reference coordinate system. A square

Figure 7.1: Adopted notation and cartesian coordinate system for sandwich beam-like
structures.

cross-section (ℎ = 𝑏 = 0.01 m) is considered, being the ratio between the thickness
of the faces and the total thickness ℎ equal to 0.1. Both skins and the hexagonal hon-
eycomb core are made of aluminium. Young’s modulus and the Poisson’s ratio for the
face sheets are 𝐸𝑓 = 69 GPa and 𝜈𝑓 = 0.33, respectively, whereas the equivalent me-
chanical properties of the core are: 𝐸𝑐1 = 𝐸𝑐2 = 1.62 MPa, 𝐸𝑐3 = 2.3 GPa, 𝜈𝑐12 = 0.99,
𝜈𝑐13 = 𝜈𝑐23 = 2.32 ⋅ 10−4, 𝐺𝑐12 = 0.97 MPa, 𝐺𝑐13 = 499 MPa and 𝐺𝑐23 = 324 MPa ,
where 𝐺 is the shear modulus. Such material coefficients are obtained via the analytical
relations given by Gibson and Ashby [71] and Grediac [82], starting from the geometry
of the core cell, i.e. the nominal size 𝜙 = 6.4 ⋅ 10−3 m and the thickness 𝑡 = 80 ⋅ 10−6 m.
The three-dimensional displacement and stress fields obtained via the presented one-
dimensional formulation are assessed towards three-dimensional tri-quadratic 20-node
elements “Solid186” implemented in the commercial software Ansys. A coarse and a
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refined mesh, ‘FEM 3D-C’ and ‘FEM 3D-R’, respectively, are adopted for the three-
dimensional finite elements solution. About the computational costs, the number of
degrees of freedom (𝑁𝐷𝑂𝐹 𝑠) of the UF-based one-dimensional finite elements approach
depends on both the expansion order 𝑁 and the total number of nodes 𝑁𝑛 according
to the following relation:

𝑁𝐷𝑂𝐹 𝑠 = 3 ⋅ (𝑁 + 1) (𝑁 + 2)
2

⋅ 𝑁𝑛 (7.1)

As shown in the full paper [60], one extra order of magnitude in terms of 𝑁𝐷𝑂𝐹 𝑠 is
needed for the refined three-dimensional solution with respect to the most refined one-
dimensional model used in this study, which is a 19th-order theory (N=19).

7.2.1 Strain energy convergence analysis
As a first assessment, the convergence of the proposed one-dimensional finite elements
solution is assessed by analyzing the relative strain energy error Δ𝐸 versus the number
of nodes. An exact Navier-type closed form solution, see Carrera and Giunta [34], is
used as reference.

Δ𝐸 =
ℒNav

int − ℒ FEM
int

ℒNav
int

(7.2)

The relative strain energy error Δ𝐸 versus the dimensionless distance between two
consecutive nodes 𝛿𝑖𝑖+1/𝑙 is shown in Fig. 7.2 for linear (B2), quadratic (B3) and cubic
(B4) elements. These results have been derived via an expansion order 𝑁 = 2 for a
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Figure 7.2: Strain energy error as function of the distance between two consecutive
nodes.

simply supported beam (𝑙/ℎ = 10) loaded by a uniform unitary pressure 𝑝𝑧𝑧 = 1 Pa
acting at the top surface of the beam. Different UF orders 𝑁 and slenderness ratios 𝑙/ℎ
provide a similar behavior. In order to have a good compromise between accuracy and
computational efficiency, a total number of nodes 𝑁𝑛 equal to 121 (corresponding to
𝛿𝑖𝑖+1/𝑙 = 0.0083) is chosen for the following analyses, unless otherwise stated.
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7.2.2 Shear locking correction
In order to tackle the shear locking phenomenon, a selective integration strategy is used.
Fig. 7.3 presents the variation of ̂𝑢𝑧 computed at (𝑥/𝑙, 𝑦/𝑏, 𝑧/ℎ) = (1/2,0,0) via linear (B2)
one-dimensional elements versus 𝑙/ℎ, being ̂𝑢𝑧 the transverse displacement normalized
with respect to the exact Navier-type solution:

̂𝑢𝑧 =
𝑢FEM𝑧

𝑢Nav𝑧
(7.3)

 0.1

 1

 10  100  1000

û
z

l/h

Selective integration
Full integration

TBT
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Figure 7.3: Locking mitigation by means of selective integration. Simply supported
sandwich beam subjected to pressure. B2 elements.

Results show that the locking phenomenon exists if a full integration scheme is adopted,
whereas a selective integration is an effective correction strategy, regardless the choice
of the expansion order 𝑁.

7.2.3 Flexural-torsional response
In order to assess the capability of the proposed approach, a very short sandwich beam
(𝑙/ℎ = 5) subjected to bending, torsion as well as localized deformations provided by
a uniform off-centric unitary line load 𝑙𝑧𝑧 = −1 𝑁/𝑚 applied at (𝑦, 𝑧) = (−𝑏/2,ℎ/2) is
studied. Table 7.1 shows the displacement components for a clamped-clamped beam,
whereas the stress components are given in Table 7.2. The following evaluation points
are considered:

̃𝑢𝑥 = 𝑢𝑥 (
𝑙
4
,

𝑏
2
,

ℎ
2 ) ̃𝑢𝑦 = 𝑢𝑦 (

𝑙
2
,

𝑏
2
,

ℎ
2 ) ̃𝑢𝑧 = 𝑢𝑧 (

𝑙
2
, 0, ℎ

2 )

𝜎̃𝑥𝑥 = 𝜎𝑥𝑥 (
𝑙
2
,

𝑏
2
,

ℎ
2 ) 𝜎̃𝑥𝑧 = 𝜎𝑥𝑧 (
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4
,

ℎ
4 ) 𝜎̃𝑥𝑦 = 𝜎𝑥𝑦 (

𝑙
4
,

𝑏
4
,−ℎ

2 )
(7.4)
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1010 × ̃𝑢𝑥 −109 × ̃𝑢𝑦 −109 × ̃𝑢𝑧
FEM 3D-R𝑎 5.3473 1.6120 5.8759
FEM 3D-C𝑏 5.3456 1.6111 5.8727

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 19 5.2398 5.2865 5.2419 1.5873 1.5878 1.5880 5.6305 5.6325 5.6331
𝑁 = 16 5.2307 5.2776 5.2327 1.5884 1.5889 1.5891 5.5794 5.5809 5.5818
𝑁 = 14 5.1921 5.2386 5.1941 1.5790 1.5796 1.5797 5.4800 5.4815 5.4824
𝑁 = 10 5.1232 5.1690 5.1250 1.5624 1.5629 1.5630 5.3079 5.3093 5.3101
𝑁 = 7 4.9961 5.0409 4.9978 1.5241 1.5245 1.5246 5.2360 5.2373 5.2380
𝑁 = 5 4.7642 4.8069 4.7655 1.4459 1.4462 1.4462 4.9144 4.9152 4.9154
𝑁 = 2 2.1132 2.1290 2.1137 0.5410 0.5410 0.5410 1.1148 1.1151 1.1151
TBT 1.7401 1.7508 1.7401 0.0000 0.0000 0.0000 1.1393 1.1393 1.1393
EBT 1.7401 1.7508 1.7401 0.0000 0.0000 0.0000 0.5805 0.5806 0.5806
𝑎: Mesh 96 × 48 × 48. 𝑏: Mesh 48 × 24 × 24.

Table 7.1: Displacements [m] for a very thick doubly-clamped sandwich beam subjected
to an off-centric line load.

−10−3 × 𝜎̃𝑥𝑥 −10−1 × 𝜎̃𝑥𝑧 10−2 × 𝜎̃𝑥𝑦
FEM 3D-R𝑎 3.7175 9.9206 10.126
FEM 3D-C𝑏 3.7192 9.9214 10.132

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 19 3.5135 3.5129 3.5083 10.086 10.445 10.154 9.8592 10.1940 9.9967
𝑁 = 16 3.6194 3.6210 3.6208 8.8559 9.1464 8.9525 9.8497 10.182 9.9808
𝑁 = 14 3.5605 3.5621 3.5619 9.8799 10.191 9.9743 9.8181 10.149 9.9487
𝑁 = 10 3.6506 3.6523 3.6519 11.169 11.507 11.260 9.6825 10.010 9.8122
𝑁 = 7 3.6239 3.6255 3.6251 10.656 10.978 10.747 9.4915 9.8162 9.6192
𝑁 = 5 3.4314 3.4330 3.4324 8.2948 8.5636 8.3791 9.3204 9.6422 9.4456
𝑁 = 2 1.4695 1.4703 1.4700 0.3778 0.3994 0.3894 3.6036 3.7375 3.6562
TBT 1.2806 1.2810 1.2807 1.0994 1.1387 1.1164 0.0000 0.0000 0.0000
EBT 1.2806 1.2810 1.2807 −𝑐 − − − − −
𝑎: Mesh 96 × 48 × 48. 𝑏: Mesh 48 × 24 × 24.
𝑐: Result not provided by the theory.

Table 7.2: Stresses 𝜎̃𝑥𝑥, 𝜎̃𝑥𝑧 and 𝜎̃𝑥𝑦 [Pa] for a very thick doubly-clamped sandwich beam
subjected to an off-centric line load.

Despite the limitations of an ESL approach in modeling sandwich structures, relative
differences on the displacements of about 4%, at worst, with respect to the three-
dimensional finite elements solution, can be obtained via a theory with 𝑁 = 19,
whereas stress predictions differ by 5.6%, at worst. The comparison of the cross-
sectional distribution of the displacement components provided by a 19th-order theory
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and the 3D FEM is given in Figs. 7.4 to 7.6, whereas the axial and shear stress distri-
butions 𝜎𝑥𝑥 and 𝜎𝑥𝑦 are presented in Figs. 7.7 and 7.8, showing that a fairly accurate
mechanical description can be obtained. Shear deformation, cross-sectional warping
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Figure 7.4: Cross-sectional distribution of the axial displacement 𝑢𝑥 [m] at 𝑥 = 𝑙/4 via
three-dimensional finite elements (left) and 19th-order B4 one-dimensional elements
(right). Doubly-clamped sandwich beam (𝑙/ℎ = 5) subjected to an off-centric line load.

XY

Z

-.202E-08

-.161E-08

-.119E-08

-.777E-09

-.362E-09

.522E-10

.467E-09

.881E-09

.130E-08

.171E-08

XY

Z

-.202E-08

-.161E-08

-.119E-08

-.777E-09

-.362E-09

.522E-10

.467E-09

.881E-09

.130E-08

.171E-08

Figure 7.5: Cross-sectional distribution of the through-the-width displacement 𝑢𝑦 [m] at
𝑥 = 𝑙/2 via three-dimensional finite elements (left) and 19th-order B4 one-dimensional
elements (right). Doubly-clamped sandwich beam (𝑙/ℎ = 5) subjected to an off-centric
line load.

and localized deformations are all accounted for in the higher-order model. Due to the
great difference in stiffness between face-sheets and core, sandwich beams present a
complex stress state that calls for highly refined beam models.
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Figure 7.6: Cross-sectional distribution of the through-the-thickness displacement 𝑢𝑧
[m] at 𝑥 = 𝑙/2 via three-dimensional finite elements (left) and 19th-order B4 one-
dimensional elements (right). Doubly-clamped sandwich beam (𝑙/ℎ = 5) subjected to
an off-centric line load.
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Figure 7.7: Cross-sectional distribution of the axial stress 𝜎𝑥𝑥 [Pa] at 𝑥 = 𝑙/2 via three-
dimensional finite elements (left) and 19th-order B4 one-dimensional elements (right).
Doubly-clamped sandwich beam (𝑙/ℎ = 5) subjected to an off-centric line load.

7.2.4 Comparison with experiments
The linear load-displacement relation provided by the proposed approach for a three
point bending test of a sandwich beam is compared with experimental results carried
out by Kim and Swanson [101]. The skins are made of carbon/epoxy composite and the
core is made of polyurethane foam, with the following material properties: 𝐸𝑓 = 68300
MPa, 𝜈𝑓 = 0.05, 𝐸𝑐 = 72 MPa, 𝜈𝑐 = 0.3 and 𝐺𝑐 = 23.2 MPa. The foam panel and
the face sheets are bonded together by means of Hysol EA 9309NA adhesive. The beam
length is 𝑙 = 152.4 mm, the core thickness is ℎ𝑐 = 6.35 mm, the thickness of the faces is
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Figure 7.8: Cross-sectional distribution of the shear stress 𝜎𝑥𝑦 [Pa] at 𝑥 = 𝑙/4 via three-
dimensional finite elements (left) and 19th-order B4 one-dimensional elements (right).
Doubly-clamped sandwich beam (𝑙/ℎ = 5) subjected to an off-centric line load.

ℎ𝑓 = 0.526 mm and the width is 𝑏 = 25.4 mm.The applied load versus the displacement
evaluated at the center of the cross-section is shown in Fig. 7.9 for a 19th-order theory
(B4, 121 nodes), a three-dimensional FEM solution (40 × 40 × 24 mesh), a Timoshenko’s
model and experiments. In the linear regime, a fairly accurate match between UF-based
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Figure 7.9: Load-displacement response for a sandwich beam with carbon/epoxy com-
posite faces and core layer made of polyurethane foam. Three-point bending test.

refined one-dimensional model and the experimental results is found.
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7.3 Thermal stress analysis
The thermo-elastic behavior of three-dimensional composite laminated and function-
ally graded beam-like structures is studied via UF-based one-dimensional finite ele-
ments. The temperature field is obtained by exactly solving the Fourier’s heat conduc-
tion equation via a Navier-type closed form solution and it is accounted as an external
load within the mechanical analysis, as it is done in classical one-way staggered so-
lution procedures [122]). A three-dimensional finite element solution provided by the
commercial software Ansys is used for comparison for both the thermal and mechani-
cal analysis, by using the tri-quadratic elements “Solid90” and “Solid186”, respectively.
The thermal load leads to a three-dimensional stress state and numerical investigations
show that the proposed hierarchical one-dimensional approach yield accurate yet com-
putationally efficient predictions.

7.3.1 Orthotropic laminated beams
A two-layer composite beam is considered, in which the laminae are parallel to the 𝑂𝑥𝑦
plane, the fibers in the top layer are aligned to the beam axis and in the bottom layer
they are orthogonal to it. Such configuration is referred to as [0/90] lamination stacking
sequence. The elastic and thermal material properties are the following: 𝐸𝐿 = 172.72
GPa, 𝐸𝑇 = 6.91 GPa, 𝐺𝐿𝑇 = 3.45 GPa, 𝐺𝑇 𝑇 = 1.38 GPa, 𝜈𝐿𝑇 = 𝜈𝑇 𝑇 = 0.25, 𝐾𝐿 = 36.42
W/mK,𝐾𝑇 = 0.96W/mK, 𝛼𝐿 = 0.57⋅10−6 K−1 and 𝛼𝑇 = 35.60⋅10−6 K−1, where the sub-
scripts “L” and “T” refer to the longitudinal and transverse direction, respectively, with
respect to the fibers.The domain of the beam structure is [0, 𝑙]×[−𝑎/2, 𝑎/2]×[−𝑏/2, 𝑏/2]
being 𝑙 the length, 𝑏 the thickness and 𝑎 the width, as shown in Figure 7.10. A very short

Figure 7.10: Reference system and cross-section of the laminated two-layer beam.

beam is considered, being the slenderness ratio 𝑙/𝑏 = 3, with a square cross-section
(𝑎 = 𝑏 = 1 m). The applied over-temperature profile varies sinusoidally along the axis
direction, with amplitudes 𝑇⊤ = 400 K and 𝑇⊥ = 300 K at the top and bottom surfaces
of the beam, respectively. The through-the-width variation of the over-temperature is
considered to be constant. As far as the computational costs are concerned, the DOFs’
number (𝑁𝐷𝑂𝐹 𝑠) for the most refined three-dimensional finite elements solution is
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about 2.7 ⋅ 106, corresponding to a mesh of 60 × 60 × 60 elements used for an ac-
curate description of the thermal stress state, whereas for the most computationally
expensive one-dimensional model used in this analysis, which is a 14th-order theory
and 121 nodes, 𝑁𝐷𝑂𝐹 𝑠 is about 4.4 ⋅ 104. In Fig. 7.11, the through-the-thickness tem-
perature profile 𝑇 (𝑧) at the mid-span of the beam is shown for different slenderness
ratios 𝑙/𝑏, showing that the numerical results provided by 3D FEM solution match the
Navier-type analytical solution of Fourier’s heat conduction equation. By reducing the
beam slenderness (𝑙/𝑏 ≤ 25), a non-linear through-the-thickness temperature variation
can be observed. The following displacements and stresses are shown in Tables 7.3, 7.4
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Figure 7.11: Through-the-thickness variation of the over-temperature 𝑇 (𝑧) [K] at 𝑥 =
𝑙/2 for different slenderness ratios 𝑙/𝑏.

and 7.5 for a very thick cantilever beam.
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(7.5)

Results that are very close to the three-dimensional solution can be obtained via the
proposed family of one-dimensional elements. The relative difference for the displace-
ments obtained via a 𝑁 = 9 B4 is about 0.4%, at worst, with respect to the refined three-
dimensional solution, whereas, for the stress components, a relative error of about 1.9%
for B3 and B4, at worst, can be achieved.The errors on the shear stresses 𝜎̃𝑥𝑧 and 𝜎̃𝑦𝑧 ob-
tained via the B2 elements are due to the fact that the one-dimensional finite elements
solution has not converged yet for linear elements and 𝑁𝑛 = 121. Figs. 7.12 to 7.15
present the cross-sectional distribution for the through-the-thickness displacement 𝑢𝑧,
axial stress 𝜎𝑥𝑥, and transverse normal stresses 𝜎𝑧𝑧 and 𝜎𝑦𝑦 obtained via 14th-order
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102 × ̃𝑢𝑥 103 × ̃𝑢𝑦 102 × ̃𝑢𝑧
FEM 3D-R𝑎 1.0544 5.3013 1.2740
FEM 3D-C𝑏 1.0545 5.3012 1.2742

B2 B3 B4 B2 B3,B4 B2 B3 B4
𝑁 = 14 1.0543 1.0542 1.0542 5.3017 5.3014 1.2770 1.2770 1.2770
𝑁 = 11 1.0540 1.0539 1.0540 5.2874 5.2871 1.2777 1.2777 1.2776
𝑁 = 9 1.0525 1.0524 1.0524 5.2891 5.2888 1.2789 1.2790 1.2790
𝑁 = 7 1.0528 1.0527 1.0528 5.1668 5.1665 1.2774 1.2773 1.2773
𝑁 = 4 1.0424 1.0423 1.0423 5.1206 5.1203 1.2834 1.2835 1.2835
𝑁 = 3 1.0041 1.0041 1.0041 4.3826 4.3823 1.2085 1.2084 1.2084
𝑁 = 2 1.0443 1.0443 1.0443 1.3259 1.3259 1.1748 1.1747 1.1747
𝑎: Mesh 40 × 40 × 40. 𝑏: Mesh 20 × 20 × 20.

Table 7.3: Displacements [m] for a very thick (𝑙/𝑏 = 3) cantilever two-layer laminated
beam. [0/90] stacking sequence.

−10−8 × 𝜎̃𝑥𝑥 10−5 × 𝜎̃𝑥𝑦 10−6 × 𝜎̃𝑥𝑧
FEM 3D-R𝑎 1.1976 4.6410 2.3747
FEM 3D-C𝑏 1.1942 4.6604 2.3947

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 14 1.2013 1.2038 1.2037 3.5669 4.6279 4.6292 2.6051 2.3536 2.3535
𝑁 = 11 1.1971 1.1996 1.1994 3.5804 4.6404 4.6417 2.5549 2.3022 2.3022
𝑁 = 9 1.2104 1.2128 1.2127 3.6198 4.6779 4.6792 2.6416 2.3882 2.3882
𝑁 = 7 1.1768 1.1792 1.1791 3.4760 4.5540 4.5553 2.7151 2.4626 2.4626
𝑁 = 4 1.2895 1.2920 1.2918 3.7074 4.9019 4.9029 2.2309 1.9837 1.9836
𝑁 = 3 1.1263 1.1303 1.1303 2.3786 3.4114 3.4127 0.8488 0.6219 0.6219
𝑁 = 2 1.0907 1.0946 1.0946 0.1218 0.4345 0.4349 0.9138 0.7354 0.7354
𝑎: Mesh 60 × 60 × 60. 𝑏: Mesh 20 × 20 × 20.

Table 7.4: Axial stress 𝜎̃𝑥𝑥 and shear stresses 𝜎̃𝑥𝑦 and 𝜎̃𝑥𝑧 [Pa] for a very thick (𝑙/𝑏 = 3)
cantilever two-layer laminated beam. [0/90] stacking sequence.

model and cubic elements (B4). Although a fairly accurate description of the displace-
ment field can be obtained with lower-order theories, such a refined model is required
for the prediction of the three-dimensional thermal stress state.

7.3.2 Functionally graded beams
Functionally Graded Materials (FGMs) made of metal and ceramic constituents are
characterized by high thermal resistance and smooth stress distributions, due to the

79



7 – Mechanical and Thermo-Mechanical Analysis

−10−7 × 𝜎̃𝑦𝑦 10−6 × 𝜎̃𝑧𝑧 −10−6 × 𝜎̃𝑦𝑧
FEM 3D-R𝑎 4.0689 4.8927 3.0258
FEM 3D-C𝑏 3.9995 4.9166 3.0501

B2 B3 B4 B2 B3 B4 B2 B3, B4
𝑁 = 14 4.0824 4.0832 4.0832 4.9833 4.9831 4.9832 3.0698 3.0696
𝑁 = 11 4.0635 4.0643 4.0643 5.0429 5.0427 5.0427 2.8530 2.8528
𝑁 = 9 4.2319 4.2327 4.2327 4.4578 4.4577 4.4577 3.1068 3.1067
𝑁 = 7 3.9861 3.9869 3.9869 4.5607 4.5607 4.5607 3.3787 3.3785
𝑁 = 4 3.0560 3.0569 3.0569 9.7645 9.7645 9.7646 1.9877 1.9876
𝑁 = 3 4.6257 4.6267 4.6267 18.790 18.789 18.790 1.6755 1.6754
𝑁 = 2 10.214 10.214 10.214 19.781 19.781 19.781 0.1973 0.0197
𝑎: Mesh 60 × 60 × 60. 𝑏: Mesh 20 × 20 × 20.

Table 7.5: Normal stresses 𝜎̃𝑦𝑦, 𝜎̃𝑧𝑧 and shear stress 𝜎̃𝑦𝑧 [Pa] for a very thick (𝑙/𝑏 = 3)
cantilever two-layer laminated beam. [0/90] stacking sequence.
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Figure 7.12: Cross-sectional distribution of the through-the-thickness displacement 𝑢𝑧
[m] at 𝑥 = 𝑙/2 via three-dimensional finite elements (left) and 14th-order B4 one-
dimensional elements (right). Very thick (𝑙/𝑏 = 3) laminated cantilever beam.

gradual variation of the material properties. These features make them good candi-
dates for structural applications in a high temperature environment. In this study, the
thermo-elastic response of beam-like structures made of FGM are investigated consid-
ering a power law variation of the material properties (both elastic and thermal co-
efficients) along the thickness direction. As shown in Fig. 7.16, the beam domain is
[0, 𝑙]×[0, 𝑎]×[0, 𝑏]. As in the previous case studies, a square cross-section is considered
(𝑎 = 𝑏 = 1 m). A ceramic-metal material is considered, being Zirconia (ZrO2) the ce-
ramic constituent and Monel (70Ni-30Cu) the metallic one, whose materials properties
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Figure 7.13: Cross-sectional distribution of the axial stress 𝜎𝑥𝑥 [Pa] at 𝑥 = 𝑙/2 via three-
dimensional finite elements (left) and 14th-order B4 one-dimensional elements (right).
Very thick (𝑙/𝑏 = 3) laminated cantilever beam.
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Figure 7.14: Cross-sectional distribution of the through-the-thickness normal stress 𝜎𝑧𝑧
[Pa] at 𝑥 = 𝑙/2 via three-dimensional finite elements (left) and 14th-order B4 one-
dimensional elements (right). Very thick (𝑙/𝑏 = 3) laminated cantilever beam.

are given in Table. 7.6. By assuming a power law for the volume fraction gradation of
the constituent materials and applying the mixture rule, see Praveen and Reddy [136]
and Chakraborty et al. [48], the generic material property 𝑓 will also vary along the
thickness coordinate 𝑧 according to a power law with order 𝑛𝑧:

𝑓 = (𝑓1 − 𝑓2) (𝛼𝑧𝑧 + 𝛽𝑧)
𝑛𝑧 + 𝑓2 (7.6)

where 𝑓𝑖 is the generic property of each constituent material. Due to the choice of the
reference system, 𝛼𝑧 = 1/𝑏 and 𝛽𝑧 = 0. In the following analyses, different values for
the gradation law order 𝑛𝑧 are considered. As far as the boundary conditions of the
thermal problem are concerned, a sinusoidal variation of the applied over-temperature
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Figure 7.15: Cross-sectional distribution of the through-the-width normal stress 𝜎𝑦𝑦
[Pa] at 𝑥 = 𝑙/2 via three-dimensional finite elements (left) and 14th-order B4 one-
dimensional elements (right). Very thick (𝑙/𝑏 = 3) laminated cantilever beam.

Figure 7.16: Adopted reference system and geometry of the FGM beam.

along the axis direction is considered, being 𝑇𝑡 = 150 K and 𝑇𝑏 = 50 K the amplitudes at
the beam top surface (𝑧 = 𝑏) and bottom surface (𝑧 = 0). Within the three-dimensional
FEM solution that is used for validation purposes, the FGM is modeled by assigning to
each finite element the material properties computed at its central point according to
the Eq. (7.6). Therefore, a refined finite elements discretization is needed for both an
accurate approximation of the material variation law as well as an accurate mechanical
response prediction. About the computational costs, a 13th-order theory and 121 nodes
is the highest-order one-dimensional model used in this study, corresponding to about
3.8 ⋅ 104 𝑁𝐷𝑂𝐹 𝑠, whereas 𝑁𝐷𝑂𝐹 𝑠 are about 2.7 ⋅ 106 for a refined three-dimensional
mesh with 60 × 60 × 60 elements and about 1.1 ⋅ 105 for a coarse 3D FEM solution with
20 × 20 × 20 elements. The through-the-thickness distribution of the temperature field
at the mid-span of the beam (𝑥 = 𝑙/2) is given in Fig. 7.17 for a slender (𝑙/𝑏 = 100)
and for a thick beam (𝑙/𝑏 = 5). The analytical solution of the Fourier’s heat conduction
equation, which is thoroughly described in De Pietro et al. [61], is in good agreement
with the temperature field provided by the refined 3D FEM solution. Concerning the
mechanical response of the structure to the applied thermal load, the displacements for
a very thick beam (𝑙/𝑏 = 5) with a linear material gradation (𝑛𝑧 = 1) are shown in
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7.4 – Mechanical analysis of curved beams

𝐸 [GPa] 𝜈 𝐾 [W/mK] 𝛼 [10−6 K−1]
Zirconia 151.01 0.300 2.09 10.
Monel 179.40 0.368 25.00 15.

Table 7.6: Elastic and thermal properties of the FGM constituents materials.
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Figure 7.17: Through-the-thickness profile of the over-temperature 𝑇 (𝑧) [K] at 𝑥 = 𝑙/2
for slender and thick FGM beam-like structures. 𝑛𝑧 = 1.

Table 7.7. The relative error provided by one-dimensional models with expansion order
𝑁 as low as 4 with respect to the benchmark results is about 1.6%, whereas for the
stress components a 13th-order model and cubic shape functions are required in order
to achieve a relative error of 3.3%, as shown in Tables 7.8 and 7.9. Previous tabular
results refer to the following evaluation points for displacements and stresses:

𝑢𝑥 = 𝑢𝑥 (𝑙, 𝑎
2
, 𝑏) 𝑢𝑦 = 𝑢𝑦 (
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4) 𝜎𝑥𝑦 = 𝜎𝑧𝑧 (
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𝑙
2
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𝑎
4
,

3
4
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(7.7)

The cross-sectional variation of the shear stresses 𝜎𝑥𝑦 and 𝜎𝑦𝑧 are presented in Figs. 7.18
and 7.19 for different types of material gradation law (𝑛𝑧 = 0.5, 𝑛𝑧 = 1 and 𝑛𝑧 = 2),
showing that higher-order theories such as 𝑁 = 13 yield accurate yet computationally
efficient results.

7.4 Mechanical analysis of curved beams
In this section, closed-form and weak-form finite element solutions based on Uni-
fied Formulation are shown for the prediction of the mechanical behavior of three-
dimensional curved beams. Straight finite elements with a very refined discretization
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-103 × 𝑢𝑧 103 × 𝑢𝑥 104 × 𝑢𝑦
FEM 3D-R𝑎 4.6144 3.9723 6.9765
FEM 3D-C𝑏 4.6669 3.9899 7.0240

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 13 4.6893 4.6895 4.6896 3.9986 3.9985 3.9984 7.0261 7.0255 7.0256
𝑁 = 11 4.6893 4.6895 4.6896 3.9986 3.9984 3.9984 7.0229 7.0223 7.0224
𝑁 = 8 4.6894 4.6896 4.6897 3.9988 3.9986 3.9986 7.0124 7.0119 7.0119
𝑁 = 4 4.6867 4.6868 4.6869 3.9953 3.9952 3.9952 6.8768 6.8763 6.8763
𝑁 = 2 4.5242 4.5243 4.5243 3.9814 3.9814 3.9814 6.1463 6.1458 6.1458
𝑎: Mesh 60 × 60 × 60. 𝑏: Mesh 20 × 20 × 20.

Table 7.7: Displacements [m] 𝑢𝑧, 𝑢𝑥 and 𝑢𝑦. Very thick (𝑙/𝑏 = 5) metal-ceramic FGM
(𝑛𝑧 = 1) cantilever beam.

10−6 × 𝜎𝑥𝑥 -10−6 × 𝜎𝑥𝑦 10−6 × 𝜎𝑥𝑧
FEM 3D-R𝑎 8.5121 2.3812 1.4490
FEM 3D-C𝑏 8.7014 2.4166 1.4815

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 13 8.7749 8.8410 8.7890 2.2846 2.4063 2.4050 0.9233 1.4857 1.4767
𝑁 = 11 8.8734 8.9397 8.8875 2.3079 2.4295 2.4282 0.9185 1.4810 1.4719
𝑁 = 9 8.8864 8.9524 8.9005 2.3342 2.4558 2.4545 0.9242 1.4867 1.4775
𝑁 = 7 8.8520 8.9185 8.8661 2.4193 2.5414 2.5398 0.9178 1.4803 1.4712
𝑁 = 4 6.3049 6.3715 6.3191 1.2997 1.4227 1.4217 0.7969 1.3593 1.3502
𝑁 = 2 22.250 22.315 22.264 1.9555 2.0653 2.0634 −0.5945 −0.0544 −0.0632
𝑎: Mesh 60 × 60 × 60. 𝑏: Mesh 20 × 20 × 20.

Table 7.8: Stresses [Pa] 𝜎𝑥𝑥, 𝜎𝑥𝑦 and 𝜎𝑥𝑧. Very thick (𝑙/𝑏 = 5) metal-ceramic FGM (𝑛𝑧 =
1) cantilever beam.

are often used in order to approximate curved geometries and model curved structural
components. Computationally more efficient solutions can be obtained by developing
models accounting for the curvature of the structure. Nevertheless, curved beam ele-
ments exhibit locking phenomena that can compromise the accuracy of the results and
the convergence performance of the element. In this study, locking is tackled via a cor-
rection strategy based on theMixed Interpolation of Tensorial Components (MITC). For
validation purposes, displacement and stress components are assessed through com-
parison with benchmark results from the literature, elasticity solutions and commercial
software finite elements showing that a correct mechanical response of curved beams
can be efficiently obtained via UF-based one-dimensional models. The domain of the
beam structure in curvilinear coordinate is [0, 𝑙] × [−ℎ/2,ℎ/2] × [−𝑏/2, 𝑏/2], as shown
in Figure 7.20. Homogeneous isotropic beams are considered with material properties
𝐸 = 30 GPa and 𝜈 = 0.17.
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10−6 × 𝜎𝑦𝑦 10−6 × 𝜎𝑧𝑧 -10−6 × 𝜎𝑦𝑧
FEM 3D-R𝑎 4.7895 6.3625 4.0032
FEM 3D-C𝑏 4.8667 6.4935 4.1018

B2 B3 B4 B2 B3 B4 B2 B3 B4
𝑁 = 13 4.9357 4.9494 4.9233 6.4854 6.4990 6.4729 4.0826 4.0824 4.0824
𝑁 = 11 5.0384 5.0522 5.0260 6.6774 6.6911 6.6649 4.0817 4.0815 4.0815
𝑁 = 9 5.0554 5.0688 5.0430 6.6990 6.7124 6.6865 4.0295 4.0293 4.0293
𝑁 = 7 4.9819 4.9961 4.9695 6.6645 6.6787 6.6521 3.9214 3.9212 3.9212
𝑁 = 4 1.9724 1.9868 1.9602 1.9703 1.9847 1.9581 1.7367 1.7366 1.7366
𝑁 = 2 26.398 26.411 26.385 26.845 26.857 26.832 0.0552 0.0552 0.0055
𝑎: Mesh 60 × 60 × 60. 𝑏: Mesh 20 × 20 × 20.

Table 7.9: Stresses [Pa] 𝜎𝑦𝑦, 𝜎𝑧𝑧 and 𝜎𝑦𝑧. Very thick (𝑙/𝑏 = 5) metal-ceramic FGM (𝑛𝑧 = 1)
cantilever beam.

7.4.1 Convergence performance
Under the assumption of a plane stress state, simply supported circular arches are herein
investigated, in order to evaluate the convergence performance of the proposed formu-
lation. The beam thickness and width are ℎ = 0.6 m and 𝑏 = 0.4 m, respectively,
whereas an opening angle Φ = 2

3𝜋 is considered. Tables 7.10 and 7.11 show the trans-
verse displacement evaluated at (𝑠 = 𝑙/2, 𝜉 = 0) for a very thick (𝑙/ℎ = 5) and a very
slender beam (𝑙/ℎ = 1000) subjected to a uniform pressure 𝑝𝜉 = 1 Pa at the top surface
(𝜉 = ℎ/2). The reference solution is an exact Navier-type closed form solution, also

109 × 𝑢𝜉
Navier 8.0640
𝑁𝑒 B4 MITC4
60 8.0640 8.0640
40 8.0640 8.0640
20 8.0640 8.0640
10 8.0640 8.0640
8 8.0640 8.0640
6 8.0639 8.0640
4 8.0627 8.0640
2 7.9893 8.0619

Table 7.10: Transverse displacement 𝑢𝜉 [m] versus number of elements 𝑁𝑒. Very thick
simply supported circular beam. 2nd-order UF-based model (TE2).

developed in the framework of Unified Formulation. Classical cubic elements (B4) and
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Figure 7.18: Shear stress 𝜎𝑥𝑦 [Pa] at 𝑥 = 𝑙/4. Very thick (𝑙/𝑏 = 5) metal-ceramic FGM
cantilever beam.
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Figure 7.19: Shear stress 𝜎𝑦𝑧 [Pa] at 𝑥 = 𝑙/2. Very thick (𝑙/𝑏 = 5) metal-ceramic FGM
cantilever beam.
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Figure 7.20: Adopted reference system, geometry and cross-section of a thick arch struc-
ture.

𝑢𝜉
Navier 10.1613
𝑁𝑒 B4 MITC4
60 10.1613 10.1613
40 10.1613 10.1613
20 10.1587 10.1613
10 10.0565 10.1613
8 9.9082 10.1613
6 9.5641 10.1613
4 8.7190 10.1613
2 5.8122 10.1587

Table 7.11: Transverse displacement 𝑢𝜉 [m] versus number of elements 𝑁𝑒. Very thick
simply supported circular beam. 2nd-order UF-based model (TE2).

MITC-based cubic elements (MITC4) are compared, being𝑁𝑒 the number of elements. A
significant improvement on the convergence rate of the beam element can be observed
due to the MITC-based locking correction technique. In fact, the radial component of
the displacement can be exactly predicted with only 4 curved cubic MITC-corrected
elements instead of 40 elements required if standard cubic beam elements were consid-
ered. The presented results are obtained for a 2nd-order beam theory based on Taylor
expansion (𝑇 𝐸2), nevertheless similar behavior is obtained for different order of the
theory and different expansion base functions.
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7.4 – Mechanical analysis of curved beams

7.4.2 Circular thick arch
The validation of the displacement and stress field prediction obtained via UF-based
modeling approach towards literature results and elasticity solutions is provided here.
Plane stress hypothesis is assumed and, therefore, bi-quadratic 8-node two-dimensional
Ansys elements “Plane183” are used for further comparison. The most computationally
expensive UF-based model used in this study is a 5th-order theory and 121 nodes, ei-
ther within a Hierarchical Legendre expansion (HL5) or Taylor expansion (TE5), for
which 𝑁𝐷𝑂𝐹 𝑠 is equal to 1452. For the two-dimensional finite elements solution used
for validation (120 × 24 elements), 𝑁𝐷𝑂𝐹 𝑠 = 70274.

Validation towards literature

A doubly-clamped beam with rectangular cross-section (ℎ = 0.6 m and 𝑏 = 0.4 m),
constant radius of curvature 𝑅 = 4 m and opening angle Φ = 2/3𝜋 is studied. Two
different loading conditions are considered: a concentrated force 𝐹 = 1000 N applied
at the mid-span central point of the beam (𝑠 = 𝑙/2, 𝜉 = 0) and a uniform transverse
load per unit length along the beam axis 𝑝𝜉𝑏 = 1000 N/m applied at 𝜉 = 0. Table 7.12
presents the dimensionless displacement components ̃𝑢 = 𝑢/𝑙 evaluated at the mid-
span bottom point (𝑠 = 𝑙/2, 𝜉 = −ℎ/2) provided by the proposed UF-based finite ele-
ments as well as literature results provided by Tupecki and Arpaci [159], Litewka and
Rakowski [111] and Ansys two-dimensional plane stress finite elements. Through UF-

Radial force 𝐹𝜉 Axial force 𝐹𝑠 Uniform pressure 𝑝𝜉𝑏
106 × ̃𝑢𝜉 106 × ̃𝑢𝑠 105 × ̃𝑢𝜉

PLANE183 0.2456 0.1488 0.1183
Tufekci and Arpaci [159] 0.2205𝑎 0.1412𝑎 -

0.2488𝑏 0.1537𝑏 -
Litewka and Rakowski [111] 0.2205𝑎 0.1412𝑎 0.1190𝑎

0.2488𝑏 0.1537𝑏 0.1180𝑏

TE5 0.2458 0.1493 0.1183
TE4 0.2457 0.1492 0.1183
TE3 0.2448 0.1478 0.1183
TE2 0.2410 0.1457 0.1185
𝑎: Axial deformation only. 𝑏: Axial and shear deformation.

Table 7.12: Dimensionless axial and radial displacements ̃𝑢𝑠 and ̃𝑢𝜉. Thick doubly-
clamped circular beam subjected to different in-plane loading conditions.

based higher-order theories, shear and localized deformations can be accounted for,
allowing to obtain displacement predictions with errors being lower than 0.1% for the
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7 – Mechanical and Thermo-Mechanical Analysis

concentrated radial load and as high as 0.3% for the concentrated axial load, with re-
spect to the two-dimensional reference solution.

Validation towards elasticity solution

An elasticity solution provided by Timoshenko and Goodier [156] is used as a reference
for the stress analysis of a cantilever circular beam with radius of curvature 𝑅 = 1 m,
opening angle Φ = 𝜋/2 and square cross-section (ℎ = 𝑏 = 𝑙/10). A concentrated radial
load 𝐹𝜉 = 1 N is applied at the beam free end (𝑠 = 𝑙, 𝜉 = 0). The distribution of the
dimensionless stresses 𝜎̃ = 𝜎𝑏ℎ/(𝐹𝜉√2) at 𝑠 = 𝑙/2 versus the dimensionless thickness
coordinate ̃𝜉 = 𝜉/ℎ is given in Figure 7.21, showing that, unlike classical beam models,
higher-order theories, such as TE5, lead to the exact prediction of the through-the-
thickness distribution of all the stresses, including axial, shear and radial components.
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Figure 7.21: Dimensionless axial, radial and shear stress components at 𝑠 = 𝑙/2. Thick
cantilever circular arch.
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7.4 – Mechanical analysis of curved beams

7.4.3 Three-dimensional balcony structure
As a last case study, a semi-circular balcony is studied, in order to assess the capabil-
ity of the proposed approach to predict the mechanical behavior of curved structural
components subjected to out-of-plane loadings in a more general three-dimensional
case. Radius of curvature 𝑅 = 3 m, opening angle Φ = 𝜋 and square cross section
(ℎ = 𝑏 = 0.3 m) are chosen. Clamped-clamped boundary conditions and a uniform line
load 𝑙𝜂 = 5 kN/m are applied, see Figure 7.22. Within the framework of the Unified

R

�

Φ

l

ξ

s

O

Figure 7.22: Semi-circular three-dimensional balcony structure subjected to a uniform
out-of-plane line load.

Formulation, a Hierarchical Legendre (HL) expansion for the cross-sectional kinemat-
ics is used and results are validated towards Abaqus “C3D8” linear three-dimensional
elements. 𝑁𝐷𝑂𝐹 𝑠 is about 4.2 × 102 for the HL5 beam model and 61 nodes, which is
the most refined UF-based one-dimesional model used in this analysis, whereas 𝑁𝐷𝑂𝐹 𝑠
is about 2.8 × 105 for the three-dimensional solution used as a reference, with a mesh
of 200 × 10 × 10 elements. The variation of the transverse displacement along the arch
axis is shown in Figure 7.23 for the Abaqus brick elements, for the proposed hierar-
chical one-dimensional finite elements based on Legendre expansions as well as for a
reference literature result provided by Zhang et al. [173]. Finally, the three-dimensional
distribution of the axial stress 𝜎𝑠𝑠 and transverse shear stresses 𝜎𝑠𝜂 and 𝜎𝑠𝜉 obtained via
a fifth-order HL5 model is shown in Figure 7.24. By enriching the beam cross-sectional
kinematics in the framework of the Unified Formulation, the mechanical response of
thick curved beam-like structures in terms of both displacements and stresses can be
predicted with a solid-like accuracy, at reduced computational costs with respect to
three-dimensional commercial software finite elements. Full details about the exten-
sion of UF-based one-dimensional models to the study of curved beam-like structures
can be found in [132], whereas the application of such formulation to the stress analysis
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Figure 7.23: Longitudinal variation of the transverse displacement 𝑢𝜂. Out-of-plane line
load. Three-dimensional semi-circular balcony structure.

in curved laminates and 3D micro-mechanics analysis of fiber-reinforced composites is
reported in the companion paper by de Miguel et al. [119].
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Figure 7.24: Axial and transverse shear stress distributions. Out-of-plane line load.
Three-dimensional semi-circular balcony structure.
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Chapter 8

Large Deflection and Bistability
Analysis

8.1 Introduction
By means of the UF-based advanced one-dimensional finite elements formulation de-
veloped in Chapter 6 within the framework of a total Lagrangian formulation and under
small strains hypothesis, geometrically non-linear structural problems are investigated
in this chapter. Large deflection of metallic andmulti-layered beams is addressed in Sec-
tion 8.2, whereas Section 8.3 focuses on the study of pre-buckled bistable beams with
different material properties, slenderness ratios and boundary conditions.Thanks to the
UF-approach, several advanced one-dimensional models featuring an enriched kine-
matic field can be straightforwardly formulated within the same mathematical frame-
work. Validation of the proposed modeling approach towards reference solutions and
commercial software finite elements is provided. Refined non-linear equilibrium paths
can be achieved by hierarchically enriching the cross-sectional displacement field with
no need to resort to computationally expensive two- or three-dimensional finite ele-
ments. Furthermore, the stress prediction capabilities (including axial, transverse shear
and normal stresses) in strongly non-linear regime such as post-buckling and snap-
through analyses are demonstrated, showing that the presented UF-based hierarchical
framework can represent a viable alternative to state-of-the-art modeling solutions as
implemented in commercial software finite elements for a safe yet efficient design of
multi-stable composite structures. Some of the work described hereafter has been pre-
viously published in [93].
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8 – Large Deflection and Bistability Analysis

8.2 Beam-like structures under large deflection
In the following results, N-order Taylor’s polynomials are used as expansion functions
through the thickness in the framework of an Equivalent Single Layer approach, un-
less stated otherwise. A locking correction strategy based on the Mixed Interpolation
of Tensorial Components has been implemented. The weak form of the non-linear gov-
erning equations is derived by means of the PVD and they are solved via a classical
Newton-Raphson procedure, see Subsection 6.8.1. Besides the polynomial order 𝑁, the
number of nodes per element 𝑁𝑒

𝑛 is also a free input parameter within the present for-
mulation. Linear (B2), quadratic (B3) and cubic (B4) elements are considered hereafter.
The support of the beam is [0, 𝑙] × [−ℎ/2,ℎ/2] × [−𝑏/2, 𝑏/2]. Both displacements and
stresses are computed in the fixed global coordinate system, see Figure 3.1.

8.2.1 Metallic structures
Slender (𝑙/ℎ = 100) as well as thick beams (𝑙/ℎ = 10) made of aluminium (𝐸 = 75 GPa
and 𝜈 = 0.33) with square cross-sections (ℎ = 𝑏 = 1 m) are first studied. Cantilever,
doubly-clamped and simply supported boundary conditions are considered. The exter-
nal load is a concentrated force𝑃𝑧 applied at (𝑥/𝑙 = 1, 𝑧/ℎ = 0) for cantilever beams and
(𝑥/𝑙 = 1/2, 𝑧/ℎ = 0) for doubly-clamped and simply supported cases. A dimensionless
form of the external load is adopted:

𝜆 =
𝑃𝑧𝑙2

𝐸𝐼
(8.1)

where 𝐼 is the moment of inertia of the cross-section.
The results provided by the presented UF-based advanced one-dimensional finite el-
ements formulation are compared with two-dimensional small-strain finite elements
solution developed within a total Lagrangian formulation, see Hu et al. [89], and re-
ferred to as “FEM 2D TL”. Classical one-dimensional solutions from the literature as
well as Ansys one-dimensional co-rotational finite elements “Beam3” based on both
Euler-Bernoulli’s (EBT) and Timoshenko’s beam theory (TBT) are used for compar-
ison. Finally, results provided by large-strain Ansys two-dimensional finite elements
“Plane183” are also reported, for the sake of completeness. As far as the computational
costs of the proposed approach are concerned, a fifth-order theory (𝑁 = 5) with 121
nodes, which represents the most refined UF-based model used in this numerical in-
vestigation, corresponds to 1.5 ⋅ 103 degrees of freedom (𝑁𝐷𝑂𝐹 𝑠). On the other hand,
a mesh of 240 × 24 two-dimensional finite elements, used for an accurate stress field
prediction in both thick and slender structures, corresponds to 𝑁𝐷𝑂𝐹 𝑠 equal to about
3.6 ⋅ 104. Since a full Newton-Raphson solution procedure is used, the tangent stiffness
matrix needs to be assembled and inverted at each iteration within a single load step,
therefore such computational advantage can be achieved at each iteration.
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8.2 – Beam-like structures under large deflection

Locking and convergence assessment

Due to membrane and shear locking phenomena, the performance of non-linear one-
dimensional finite elements could be strongly degraded, unless proper correction strate-
gies are implemented. Such numerical phenomena are even more evident in the anal-
ysis of very slender structures by means of finite elements with low-order shape func-
tions [113, 138]. A locking correction technique based on Mixed Interpolation of Ten-
sorial Components (MITC) has been developed in this work. The locking phenomenon
in linear finite elements (B2) for increasing slenderness ratios 𝑙/ℎ and the effectiveness
of MITC-based mitigation technique is shown in Fig. 8.1, where ̂𝑢𝑧 = 𝑢𝑧/𝑢Cubic𝑧 is the
normalized transverse displacement with respect to the converged solution 𝑢Cubic𝑧 ob-
tained with 40 cubic (B4) elements. By looking at the results for 𝑁 = 2 and 𝑁 = 5,

 0.3

 1

 10  100  500

û
z

l/h

MITC B2

B2

N = 2

N = 5

Figure 8.1: Locking phenomenon in linear elements for increasing slenderness ratios
and effectiveness of the MITC-based correction method. Doubly-clamped boundary
conditions. 𝜆 = 2. ̂𝑢𝑧 computed at (𝑙/2,−ℎ/2).

it is worth mentioning that the enrichment of the cross-sectional kinematics via UF
neither influence the locking phenomenon nor the effectiveness of its correction. Re-
sults for different boundary conditions are qualitatively similar to Fig. 8.1 and they are
not reported, for the sake of brevity. In Figure 8.2 it is shown that the locking correc-
tion via MITC also leads to a significant improvement of convergence rate in slender
beams. ̂𝑢𝑧 is the normalized transverse displacement as defined before and 𝑁𝑛 is the to-
tal number of nodes. Reference solution 𝑢Cubic𝑧 for normalization of ̂𝑢𝑧 is here obtained
with 140 cubic (B4) one-dimensional finite elements. Convergence improvement is even
more evident for beam elements with lower-order shape functions, such as linear (B2)
or quadratic (B3) elements. As it can be noticed from Fig. 8.2, a classical monotonic con-
vergence “from below” is no longer ensured when finite elements adopting MITC are
considered [107]. From the convergence study, a total number of nodes 𝑁𝑛 = 121 will
be used for the following numerical results.
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Figure 8.2: Convergence analysis for classical and MITC-based cubic one-dimensional
finite elements. Simply supported beam (𝑙/ℎ = 100). 𝜆 = 3. ̂𝑢𝑧 evaluated at (𝑙/2,ℎ/2).

Cantilever beam

In order to validate the proposed approachwith respect to classical beammodels, a slen-
der beam structure (𝑙/ℎ = 100) has been considered. Cantilever boundary conditions
are applied. Displacements and Cauchy stresses expressed in the fixed global reference
system are given in a dimensionless form:

̃𝑢𝑖 = 𝑢𝑖/𝑙

𝜎̃𝑔
𝑖𝑗 = 𝜎𝑔

𝑖𝑗
2𝐼

𝑃𝑧𝑙ℎ
(8.2)

Dimensionless thickness coordinate ̃𝑧 = 𝑧/ℎ is also considered. Cubic beam elements
(B4) have been used for the plots, whereas linear (B2), quadratic (B3) and cubic (B4)
elements have been compared in the tables. In Figure 8.3 the evolution of the axial
and transverse displacements with the load factor is shown. ̃𝑢𝑥 and ̃𝑢𝑧 components
have been computed at the locations (𝑙,ℎ/2) and (𝑙,−ℎ/2), respectively. As expected,
the reference solution provided by Mattiasson [115] based on Euler-Bernoulli’s beam
theory yields a good prediction of the non-linear load-displacement response for slen-
der homogeneous beams. Higher-order UF-based models as well as two-dimensional
FEM solutions perfectly match the reference solution. On the other hand, higher-order
effects become more significant for smaller slenderness ratios, as shown in Fig. 8.4.
At least a second-order expansion (𝑁 = 2) should be adopted in order to match the
two-dimensional finite elements solutions. Table 8.1 provides a more detailed numeri-
cal assessment, showing that a Timoshenko’s beam model yields errors of about 5.5%
with respect to two-dimensional finite element solution, whereas higher-order models
(𝑁 ≥ 2) lead to differences in the displacement predictions as high as 0.7%. In Figure 8.5
the through-the-thickness variation of the stresses for the thick beam case is provided.
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Figure 8.3: Geometrically non-linear response of a slender cantilever beam (𝑙/ℎ = 100).
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Figure 8.4: Geometrically non-linear response of a thick cantilever beam (𝑙/ℎ = 10).

Stresses are expressed in the global fixed reference system. Small differences in the
stress prediction provided by the large-strain two-dimensional formulation “Plane183”
and the small-strain elements “FEM 2D TL” can be noticed. Furthermore, as shown in
Table 8.2, the UF-based one-dimensional theories yield accurate stress results, being
the relative errors with respect to the two-dimensional small-strain solution as high as
0.6% for 𝑁 ≥ 3 and B4 elements. Finally, Figure 8.6 shows the mechanical response in
terms of axial and shear stress components over the whole beam domain. Unlike clas-
sical beam models, global accurate predictions of thick structures in the geometrically
non-linear regime can be provided by the present UF-based higher-order models, in-
cluding localized concentrations of axial, shear and normal stresses in the proximity of
boundary conditions, as shown in Figure 8.6.

Doubly-clamped beam

Doubly-clamped beams are now considered. In Figure 8.7 the non-linear relations be-
tween load and displacements for a slender beam are provided, whereas a thick beam
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10 × − ̃𝑢𝑥 10 × ̃𝑢𝑧
Plane183 6.1163 8.7165
Beam3 TBT 6.4377 8.2409
Beam3 EBT 6.3579 8.1661
Mattiasson [115] 6.2652 8.1061
N B2 B3 B4 B2 B3 B4
5 6.1579 6.1585 6.1585 8.6817 8.6820 8.6820
4 6.1575 6.1580 6.1581 8.6809 8.6812 8.6812
3 6.1596 6.1601 6.1601 8.6760 8.6764 8.6764
2 6.1521 6.1527 6.1527 8.6671 8.6674 8.6674

Table 8.1: Displacement components prediction provided by UF-based models and sev-
eral reference solutions. Thick cantilever beam. 𝜆 = 10.

10 × 𝜎̃𝑔
𝑥𝑥 10 × 𝜎̃𝑔

𝑧𝑧 10 × 𝜎̃𝑔
𝑥𝑧

Plane183 2.4166 1.3372 1.7978
FEM 2D TL 2.7403 1.5302 2.0480
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 2.5622 2.7426 2.7414 1.6556 1.5336 1.5291 2.0730 2.0496 2.0474
4 2.5632 2.7435 2.7424 1.6552 1.5332 1.5287 2.0730 2.0494 2.0472
3 2.5554 2.7355 2.7344 1.6468 1.5248 1.5203 2.0779 2.0546 2.0522
2 2.4216 2.5995 2.5984 1.7133 1.5896 1.5851 2.1354 2.1114 2.1090

Table 8.2: Global Cauchy stresses computed at (𝑙/4,−ℎ/2). Thick cantilever beam. 𝜆 =
5.20.

is considered in Figure 8.8. ̃𝑢𝑥 and ̃𝑢𝑧 are evaluated at (𝑙/4,ℎ/2) and (𝑙/2,−ℎ/2), respec-
tively. In analogy with the previous case, an error reduction from 4.6% (TBT) to 0.3%
(𝑁 ≥ 3) with respect to the small-strain 2D FEM can be achieved through enrichment
of the cross-sectional kinematics, as shown in Table 8.3.The importance of higher-order
models for stress prediction in a thick doubly-clamped beam is highlighted in Figure 8.9
as well as in Table 8.4. This latter shows that a relative error of 27.8% provided by a
second-order model may be reduced to 0.8%, at worse, for models with 𝑁 ≥ 3.

Simply supported beam

To conclude, a simply-supported thick beam structure (𝑙/ℎ = 10) is investigated.
Fig. 8.10 provides the load-displacement non-linear responses, whereas in Fig. 8.11 the
through-the-thickness distribution of the Cauchy stress components expressed in global
reference system is shown. ̃𝑢𝑥 and ̃𝑢𝑧 are evaluated at (0,−ℎ/2) and (𝑙/2,ℎ/2), respec-
tively. Similarly to the previous cases, by increasing the order of the approximating
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Figure 8.5: Through-the-thickness distribution of global Cauchy stresses at 𝑥 = 𝑙/4.
𝜆 = 5.20. Thick cantilever beam.

polynomial 𝑁, the relative error on the displacement prediction can be enhanced from
about 3.7% for a second-order model to 0.8% for 𝑁 = 5, as can be seen from the results
in Table 8.5. Table 8.6 shows that enhancement in the stress prediction can be achieved
as well. A second-order theory (𝑁 = 2) and cubic (B4) elements yield relative errors of
about 2.3% for 𝜎̃𝑥𝑥, 60.5% for 𝜎̃𝑧𝑧 and 35.2% for 𝜎̃𝑥𝑧, whereas for a fifth-order model
(𝑁 = 5) and cubic (B4) finite elements, the errors reduce to about 0.3% with respect to
“FEM 2D TL”. Finally, Fig. 8.12 provides the stress distributions at 𝑥 = 𝑙/4 obtained via
a fifth-order model (𝑁 = 5) and reference two-dimensional solution at increasing load
factors 𝜆, showing that the stress capabilities of the proposed formulation are preserved
throughout the whole non-linear deformation path.

8.2.2 Asymmetric laminate
The enhanced capabilities of the proposed UF-based one-dimensional finite elements
demonstrated in the previous section for the analysis of thick metallic structures are
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8 – Large Deflection and Bistability Analysis

(a) FEM 2D TL, 𝜎̃𝑥𝑥 (a) N=5, 𝜎̃𝑥𝑥

(b) FEM 2D TL, 𝜎̃𝑥𝑧 (b) N=5, 𝜎̃𝑥𝑧

Figure 8.6: (a) Axial and (b) shear stress components two-dimensional distribution.
Thick cantilever beam. 𝜆 = 3.79.
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Figure 8.7: Geometrically non-linear response of a slender doubly-clamped beam (𝑙/ℎ =
100).

herein assessed for the study of laminated beam structures. The study provided by Pa-
gani and Carrera [124] is taken as reference. In [124], the authors demonstrated the
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Figure 8.8: Geometrically non-linear response of a thick doubly-clamped beam (𝑙/ℎ =
10).

103 × − ̃𝑢𝑥 102 × ̃𝑢𝑧
Plane183 9.4375 7.1822
FEM 2D TL 8.8841 6.7892
Beam3 TBT 9.2102 7.1003
Beam3 EBT 9.5180 6.4598
N B2 B3 B4 B2 B3 B4
5 8.8863 8.8848 8.8848 6.7911 6.7918 6.7918
4 8.8857 8.8841 8.8841 6.7879 6.7887 6.7887
3 8.8829 8.8814 8.8814 6.7725 6.7733 6.7733
2 8.8476 8.8461 8.8460 6.7109 6.7117 6.7117

Table 8.3: Displacement components prediction provided by UF-based models and sev-
eral reference solutions. Thick doubly-clamped beam. 𝜆 = 15.89.

advantages of UF-based layer-wise approach for the geometrically non-linear analysis
of composites. The aim of this work, instead, is to assess the accuracy and efficiency
of an equivalent single layer approach for the same kind of problem. As discussed in
Chapter 6, a two-dimensional plane stress approach is considered for the geometri-
cally non-linear formulation. A cross-ply two-layer laminate with laminae parallel to
the 𝑂𝑥𝑦 plane and stacking sequence [90/0] is investigated. Therefore, the fibers in
the top layer are in a direction orthogonal to the beam axis, whereas, in the bottom
layer, they are aligned to the longitudinal axis.The beam structure is made of AS4/3501-
6 graphite/epoxy composite material with the following equivalent orthotropic prop-
erties: 𝐸𝐿 = 144.8 GPa, 𝐸𝑇 = 9.65 GPa, 𝐺𝐿𝑇 = 4.14 GPa, 𝐺𝑇 𝑇 = 3.45 GPa and
𝜈𝐿𝑇 = 𝜈𝑇 𝑇 = 0.3. The geometric properties of the beam structure are 𝑙 = 9 m, ℎ = 0.6
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Figure 8.9: Through-the-thickness distribution of global Cauchy stresses at 𝑥 = 𝑙/4.
𝜆 = 5.20. Thick doubly-clamped beam.

103 × 𝜎̃𝑔
𝑥𝑥 103 × 𝜎̃𝑔

𝑧𝑧 102 × 𝜎̃𝑔
𝑥𝑧

Plane183 8.6194 3.2658 1.1290
FEM 2D TL 9.8958 3.1957 1.1281
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 9.9050 9.8829 9.8987 3.1738 3.2083 3.1858 1.1210 1.1315 1.1250
4 9.9077 9.8858 9.9014 3.1859 3.2205 3.1979 1.1208 1.1312 1.1248
3 9.9050 9.8830 9.8987 3.1858 3.2200 3.1976 1.1210 1.1314 1.1249
2 10.4620 10.4390 10.4550 2.3066 2.3405 2.3182 0.8477 0.8581 0.8516

Table 8.4: Global Cauchy stresses computed at (𝑙/4, 0). Thick doubly-clamped beam.
𝜆 = 11.04.

m and 𝑏 = 1 m. The two layers possess the same thickness 𝑡 = ℎ/2 = 0.3 m. Can-
tilever boundary conditions are considered and a uniform non-follower surface load
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Figure 8.10: Geometrically non-linear response of a thick simply supported beam (𝑙/ℎ =
10).
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Figure 8.11: Through-the-thickness distribution of global Cauchy stresses at 𝑥 = 𝑙/4.
𝜆 = 6.03. Thick simply supported beam-like structure.
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102 × ̃𝑢𝑥 10 × ̃𝑢𝑧
Plane183 3.9585 1.3032
FEM 2D TL 3.8909 1.2805
N B2 B3 B4 B2 B3 B4
5 3.9239 3.9239 3.9192 1.2843 1.2843 1.2839
4 3.9011 3.9000 3.8960 1.2820 1.2819 1.2814
3 3.8267 3.8251 3.8232 1.2739 1.2738 1.2735
2 3.7501 3.7482 3.7474 1.2583 1.2580 1.2579

Table 8.5: Displacement components prediction provided by UF-based models and two-
dimensional finite elements solutions. Thick simply supported beam. 𝜆 = 8.36.

102 × −𝜎̃𝑔
𝑥𝑥 103 × −𝜎̃𝑔

𝑧𝑧 102 × −𝜎̃𝑔
𝑥𝑧

Plane183 8.6470 5.2555 2.1314
FEM 2D TL 8.2064 4.8990 2.0056
N B2 B3 B4 B2 B3 B4 B2 B3 B4
5 8.2878 8.2030 8.2002 6.9946 4.8699 4.9120 2.2776 2.0010 2.0067
4 8.2696 8.1840 8.1811 6.9402 4.8190 4.8614 2.2707 1.9942 2.0002
3 8.2018 8.1142 8.1125 6.7966 4.6917 4.7352 2.2464 1.9717 1.9779
2 8.4861 8.3928 8.3917 4.0106 1.8893 1.9344 1.5683 1.2941 1.3006

Table 8.6: Global Cauchy stresses computed at (𝑙/4,−ℎ/2).Thick simply supported beam.
𝜆 = 6.03.

𝑝0 = 3 MPa is applied at the top surface of the beam. In Tables 8.7 and 8.8 displace-
ment, axial and shear stress values provided by the proposed UF-based plane stress ESL
models (referred to as “ESL PS”) are given. Numerical resuts are assessed towards a
three-dimensional ABAQUS solution given in [124], two-dimensional plane stress An-
sys finite elements “Plane183”, bi-linear, quadratic and cubic layer-wise models devel-
oped in the UF framework [124] and a plane stress UF-based layer-wise cubic model,
referred to as “LW PS cubic”. Axial and transverse displacements have been evaluated
at (𝑙, 0), whereas axial and shear stresses are computed at (𝑙/2,−ℎ/2) and (𝑙/2,−ℎ/4),
respectively. Fourty cubic one-dimensional elements are used for the finite element
discretization along the axis. The equivalent single layer theories starting from the
second-order provide all a fairly accurate estimation of axial, transverse displacements
as well as axial stress with respect to two-dimensional and three-dimensional reference
solutions, whereas a further refinement of the cross-sectional kinematics is required
for the shear stress prediction in order to reach the accuracy level provided by the re-
fined layer-wise models. Figure 8.13 presents the through-the-thickness distribution of
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8.2 – Beam-like structures under large deflection
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Figure 8.12: Through-the-thickness distribution of global Cauchy stresses at increasing
load factors 𝜆. Thick simply-supported beam. 𝑥 = 𝑙/4.

axial, transverse shear and normal stresses at the mid-span of the beam (𝑥 = 𝑙/2) pro-
vided by a second-order ESL model, a fifth-order ESL model and a LW cubic model. In
those figures, the following dimensionless quantities have been plotted: 𝜎̃ = 𝜎/𝑝0 and

̃𝑧 = 𝑧/ℎ. As it is well-known, since pure displacement-based theories are considered
in this work, the inter-laminar continuity of the transverse stresses is not ensured. It
is clear that by enriching the Taylor’s polynomial expansion of the kinematic field via
higher-order terms, ESL models (N=5, in this particular case) yield stress predictions
as accurate as refined LW models. For the sake of completeness, Figure 8.14 shows the
global two-dimensional distribution of axial, shear and normal stresses over the beam
domain. Unlike classical beam theories, UF-based refined models allow the prediction
of localized axial, shear and normal stress concentrations (in the bottom layer and at
the clamped edge). Table 8.8 reports the computational costs in terms of number of
degrees of freedom (𝑁𝐷𝑂𝐹 𝑠) for the different models considered in the analysis. It is
clear that a considerable reduction in degrees of freedom is possible by means of the
UF-approach, either LW or ESL, with respect to three-dimensional commercial software
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8 – Large Deflection and Bistability Analysis

−𝑢𝑥 [m] 𝑢𝑧 [m]
FEM 3D [124] 0.85 3.43
PLANE183 0.84 3.43
LW cubic [124] 0.99 3.51
LW quadratic [124] 0.88 3.51
LW bi-linear [124] 0.88 3.50
LW PS cubic 0.89 3.52
ESL PS 𝑁 = 8 0.89 3.52
ESL PS 𝑁 = 5 0.89 3.52
ESL PS 𝑁 = 2 0.89 3.51

Table 8.7: Displacements in a cantilever laminated beam-like structure under large de-
flection via LW and ESL refined models.

𝜎𝑥𝑥 [MPa] 𝜎𝑥𝑧 [MPa] 𝑁𝐷𝑂𝐹 𝑠
FEM 3D [124] 959.4 41.0 573675
LW cubic [124] 1007.7 40.3 5124
LW quadratic [124] 1003.8 29.4 2745
LW bi-linear [124] 1019.3 29.8 1098
LW PS cubic 1000.5 40.2 1936
ESL PS 𝑁 = 8 1000.8 40.9 2178
ESL PS 𝑁 = 5 1001.0 39.1 1452
ESL PS 𝑁 = 2 1010.0 27.2 726

Table 8.8: Axial and shear stresses in a cantilever laminated beam-like structure under
large deflection via LW and ESL refined models.

finite elements. As far as the comparison between ESL or LW approach is concerned, for
this particular case the choice of a higher-order ESL model such as N=5 yields the best
compromise between results accuracy and computational costs. Nevertheless, laminates
with a higher number of layers and extremely complex stress profiles would call for very
high-order ESL models, which means that their computational benefits, in these cases,
could be not so evident.Themechanical behavior of composites in linear as well as non-
linear regime is strongly problem-dependent. An a priori choice of the best kinematic
model is often not possible and this is why the capability to handle different kinematic
descriptions as well as different approximation orders via UF proves to be very useful.
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8.2 – Beam-like structures under large deflection

(a) 𝜎̃𝑥𝑥 (b) 𝜎̃𝑧𝑧

(c) 𝜎̃𝑥𝑧

Figure 8.13:Through-the-thickness profile of (a) axial, (b) normal through-the-thickness
and (c) transverse shear stress components via ESL and LW refined models. Two-layer
[90/0] laminated beam under large deflection. 𝑥 = 𝑙/2.

8.2.3 Three-layer beam
As already mentioned, models based on an equivalent single layer description suffer in
terms of accuracy when dealing with either a high number of different layers or very
different mechanical properties from layer to layer. In these circumstances, the use of a
layer-wise approach is recommended. In this subsection, the capabilities of a UF-based
cubic layer-wise model for the analysis of a three-layer beam structure in the geomet-
rically non-linear regime are assessed. A full Newton-Raphson scheme is adopted in
order to solve the non-linear governing equations. Results are compared with a two-
dimensional small-strain quadratic finite elements solution based on a total Lagrangian
approach within the framework of a ANM-based solution scheme [89] and referred to
as “FEM 2D TL”. The following geometric properties are considered: 𝑙 = 20 m, square
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(a) LW PS cubic, 𝜎̃𝑥𝑥 (a) N=5, 𝜎̃𝑥𝑥

(b) LW PS cubic, 𝜎̃𝑧𝑧 (b) N=5, 𝜎̃𝑧𝑧

(c) LW PS cubic, 𝜎̃𝑥𝑧 (c) N=5, 𝜎̃𝑥𝑧

Figure 8.14: Two-dimensional distribution of dimensionless (a) axial, (b) normal
through-the-thickness and (c) transverse shear stress components. Two-layer [90/0]
laminated beam under large deflection. 𝜎̃𝑖𝑗 = 𝜎𝑖𝑗/𝑝0.
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8.2 – Beam-like structures under large deflection

cross-section (ℎ = 𝑏 = 1 m) and layers of equal thickness 𝑡 = ℎ/3. Isotropic materials
are considered. The mechanical properties of top and bottom layers are the following:
𝐸𝑡𝑜𝑝 = 𝐸𝑏𝑜𝑡 = 75 GPa, 𝜈𝑡𝑜𝑝 = 𝜈𝑏𝑜𝑡 = 0.33, whereas the mechanical properties of the
middle layer are: 𝐸𝑚𝑖𝑑 = 0.75 GPa, 𝜈𝑚𝑖𝑑 = 0.33. A cantilever beam with a transverse
concentrated force 𝑃𝑧 = 𝜆𝑧𝑃𝑟𝑒𝑓 applied at thee free end (𝑥 = 𝑙, 𝑧 = −ℎ/2) is considered,

being 𝜆𝑧 the load factor, 𝑃𝑟𝑒𝑓 =
𝐸𝑏𝑜𝑡𝐼

𝑙2 and I the cross-section moment of inertia. Fig-
ure 8.15 shows the through-the-thickness profile of axial and transverse displacements,
respectively, at the free end of the beam (𝑥 = 𝑙) for a load factor 𝜆𝑧 = 1.The following di-
mensionless form of displacements and thickness coordinate is considered: ̃𝑢 = 𝑢/𝑙 and

̃𝑧 = 𝑧/ℎ. Due to the strong discontinuity in themechanical properties through the thick-
ness direction, localized cross-sectional deformations occur in the softer middle layer,
which can be fairly well predicted by the cubic LW models. Figure 8.16 presents the

Figure 8.15: Through-the-thickness profile of axial and through-the-thickness displace-
ment components in a three-layer beam under large deflection. 𝜆𝑧 = 1. 𝑥 = 𝑙.

through-the-thickness distribution of axial, shear and normal stresses at 𝑥 = 𝑙/4 at in-
creasing load factors 𝜆𝑧, showing the capabilities of the presented refined LWmodel in
accurately predicting the evolution of the full in-plane stress state throughout the large
deflection analysis. Dimensionless stress 𝜎̃ = 2𝐼𝜎

𝜆𝑓𝑖𝑛
𝑧 𝑃𝑟𝑒𝑓𝑙ℎ

is considered, being 𝜆𝑓𝑖𝑛
𝑧 = 2

the final load factor. Finally, Figure 8.17 shows the global two-dimensional distribution
of the shear stress component at the final load factor 𝜆𝑧 = 2. The accurate prediction of
an extremely complex shear stress distribution in the vicinity of the boundary condi-
tions with localized concentrations in the middle layer as well as in the proximity of the
external load application point should be noticed. Concerning the computational costs
of the considered models, the number of degrees of freedom for the refined LW-based
one-dimensional model is about 2.7⋅103 (4-node Lagrange expansion for each layer and
121-node discretization along the beam axis), whereas a mesh of 120 × 12 elements was
used for the two-dimensional 8-node quadratic finite elements solution, corresponding
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(a) 𝜎̃𝑥𝑥 (b) 𝜎̃𝑧𝑧

(c) 𝜎̃𝑥𝑧

Figure 8.16: Evolution of (a) axial, (b) normal through-the-thickness and (c) transverse
shear stress profiles from 𝜆𝑧 = 1 to 𝜆𝑧 = 2 in a three-layer beam under large deflection.
𝑥 = 𝑙/4.

to 9.2 ⋅ 103 DOFs. Therefore, if the same non-linear solver is adopted, about 70% saving
in terms of DOFs could be exploited every time the tangent stiffness matrix is assembled
and inverted within the adopted non-linear solution scheme.

8.3 Bistability analysis of pre-buckled beams
After assessing the proposed geometrically non-linear UF-based one-dimensional finite
elements for the large deflection analysis of composite beam structures, post-buckling
and snap-through analyses need to be addressed in order to model the mechanical
response of pre-buckled bistable beam structures. Such elastic instability phenomena
involve highly non-linear equilibrium paths that calls for robust non-linear solution
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8.3 – Bistability analysis of pre-buckled beams

(a) FEM 2D TL (b) LW PS cubic

Figure 8.17: Transverse shear stress 𝜎̃𝑥𝑧. Three-layer beam under large deflection. 𝜆𝑧 =
2.

schemes. For this reason, the ANM-based path-following technique described in Sec-
tion 6.8.3 has been used in obtaining the following numerical results.

8.3.1 Influence of ANM parameters
Afirst preliminary analysis on the post-buckling behavior of a slender simply supported
metallic beam is carried out in order to show the influence on the final solution of the
parameters peculiar of the ANM procedure, i.e. the expansion order 𝑛 and the tolerance
parameter 𝜖. The following geometric and material properties have been considered:
𝑙 = 100 m, ℎ = 𝑏 = 1 m, 𝐸 = 75 GPa and 𝜈 = 0.33. Simply supported boundary
conditions are assumed (𝑢𝑧 = 0 at 𝑥 = 0, 𝑥 = 𝑙 and 𝑢𝑥 = 0 at 𝑥 = 𝑙/2). Two opposite

compressive loads 𝑃𝑥 = 𝜆𝑥
𝜋2𝐸𝐼

𝑙2 are applied at the beam ends (0,0) and (𝑙,0) together

with a perturbation transverse load 𝑞𝑧 = 10−3 ⋅ 𝑃𝑥 acting at (𝑙/2, 0). A second-order
ESL UF-based model (𝑁 = 2) is used as beam model. The influence of the tolerance
parameter 𝜖 on the load-displacement responses for a fixed expansion order is shown
in Figure 8.18. It is clear that the tolerance parameter 𝜖 drives the solution accuracy and
that convergence is obtained for 𝜖 < 10−6. Moreover, Figure 8.19 shows the influence
of the ANM expansion order on the solution for a fixed tolerance parameter. Each line
marker symbol (circle- or plus-symbol) corresponds to the beginning of a new solution
step, therefore the total number of markers correspond to the number of times that
the tangent stiffness matrix needs to be assembled and inverted. It can be noticed that
by increasing the order 𝑛 of the asymptotic expansion, larger non-linear branches and,
therefore, a lower number of steps can be obtained with a negligible accuracy loss.
A very robust solution is obtained for sufficiently small tolerance values, even in the
presence of very localized non-linearities, as shown in Fig. 8.19 (a). Since this work
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(a) 𝑢𝑥 [m] (b) 𝑢𝑧 [m]

Figure 8.18: Influence of the ANM tolerance parameter in the post-buckling of a simply
supported beam. ANM order 𝑛 = 10. 𝑁 = 2 beam model.

(a) 𝑢𝑥 [m] (b) 𝑢𝑧 [m]

Figure 8.19: Influence of the ANM order parameter in the post-buckling of a simply
supported beam. ANM tolerance 𝜖 = 10−8. Beam model 𝑁 = 2.

focuses on advanced mechanical modeling approaches rather than non-linear solution
procedures, quite conservative values of the ANM parameters have been chosen for the
following analyses (𝑛 = 10 and 𝜖 = 10−8) in order to avoid the introduction of errors
that, although small, could have made the assessment of the proposed UF-based refined
models more difficult.
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8.3 – Bistability analysis of pre-buckled beams

8.3.2 Validation towards literature: bistable air inlet
A first assessment to validate the proposed methodology in bistability analysis is pre-
sented in this section. The study carried out by Arena et al. [2] is taken as reference. A
pre-buckled, doubly-clamped beam-like structure was investigated in order to design
mono- and bi-stable shape-adaptive air inlets providing flow regulation and control. In
response to the external aerodynamic forces, the inlet can passively snap between the
closed and open configuration, with no need of joints, linkages and classical actuation
mechanisms. If the behavior of the beam component is designed to be mono-stable, the
structure will snap-back to the closed configuration after load removal, whereas if it is
bistable, an external transverse force 𝐹𝑧 will be required in order to trigger the snap-
back phenomenon. The axial dimension of the beam is 150 mm, the width is 11.2 mm
and the thickness 1.04 mm The initial buckled configuration is obtained by t a vertical
deflection 𝑢𝑧0 = 15 mm and, in a second step, a horizontal deflection 𝑢𝑥0 = 1.5 mm
at the end of the beam (𝑥/𝑙 = 1). A graphical sketch of the shape-adaptive air inlet
concept is shown in Figure 8.20. The structure is made of unidirectional glass fibre-

Figure 8.20: Graphical sketch of a pre-buckled beam component embedded in a passively
actuated shape-adaptive air inlet (Arena et al. [2]).

epoxy resin composite (Glass/913) with the following elastic properties: 𝐸𝐿 = 43.7
GPa, 𝐸𝑇 = 7.5 GPa, 𝐺𝐿𝑇 = 4.3 GPa and 𝜈𝐿𝑇 = 0.3. Numerical results in [2] were ob-
tained via 8-node linear brick elements Abaqus solution and arc-length Riksmethodwas
used as non-linear solver, since a classical Newton-Raphson force controlled solution
procedure would not be able to follow the negative stiffness branches of the equilib-
rium path. An external transverse mechanical force 𝐹𝑧 is considered to be applied at
the mid-span of the beam (𝑙/2, 0) and the resulting deflection is evaluated at the same
point. Fig. 8.21 shows the snap-through phenomenon and the existence of two differ-
ent stable mechanical configurations corresponding to those equilibrium points where
the external applied force is zero and the tangent stiffness matrix is positive definite
(positive slope of the force-displacement curve). Triggered by the central concentrated
force, the shape-adaptive air inlet can suddenly snap from the open configuration to
the closed one by harnessing the snap-through instability phenomenon. As expected,
due to the high slenderness of the structure and the homogeneity of the material, no
influence of the higher-order theories is found on the load-displacement behavior. As
shown in Fig. 8.21, both a second- and a third-order theory (𝑁 = 2 and 𝑁 = 3) match
the 3D finite elements solution provided by Arena et al. [2]. For the sake of complete-
ness, the pre-buckled beam shape (for 𝐹𝑧 = 0 N) and the snapped deformed shape (for
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Figure 8.21: Equilibrium path of a bistable beam-like air inlet. Uni-directional glass fibre-
epoxy resin composite laminate.

𝐹𝑧 = 3 N) are given in Figs. 8.22.

(a) Open configuration (b) Closed configuration

Figure 8.22: Open-closed configurations of a bistable air inlet. Resultant displacement
𝑢𝑟𝑒𝑠 [m]. 𝑁 = 3 beam model.

8.3.3 Refined post-buckling and snap-through equilibrium
paths

As already seen in the previous section, a possible way to obtain mechanically bi-stable
structures is to pre-buckle an initially straight beam by generating an initial transverse
deflection and an initial stress field inside the beam and then, in a second phase, apply a
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transverse load in order to trigger a snap-through buckling and force the curved beam to
flip to a second stable position. In this study case, in order to demonstrate the influence
of higher-order theories on the mechanics of bistable beams, a lower slenderness ratio
(𝑙/ℎ = 20) has been chosen with respect to the typical values found in literature and a
two-phase analysis, consisting of a non-linear buckling and a snap-through phase, has
been carried out on a beam structure made of an homogeneous material (𝐸 = 75 GPa
and 𝜈 = 0.33) and square cross-section (ℎ = 𝑏 = 1 m). Several boundary conditions
are investigated. The following dimensionless parameters have been used: ̃𝑢𝑥 = 𝑢𝑥/𝑙,

̃𝑢𝑧 = 𝑢𝑧/𝑙, 𝜆𝑥 = −
𝑃𝑥𝑙2

𝜋2𝐸𝐼
, 𝜆𝑧 = −𝑃𝑧/𝑃𝑥, 𝜎̃𝑥𝑥 =

𝜎𝑥𝑥2𝐼
𝑃𝑥𝑙ℎ

and 𝜎̃𝑥𝑧 =
𝜎𝑥𝑧2𝐼
𝑃𝑥𝑙ℎ

.

Results obtained via the present refined one-dimensional finite elements under the hy-
pothesis of a plane stress state, large displacements, large rotations and small strains are
assessed towards two-dimensional finite elements (“FEM 2D TL”) based on small strains
assumption and developed using a Total Lagrangian formulation, see Hu et al. [89]. 121
nodes and MITC B4 elements are used for the one-dimensional finite elements dis-
cretization. As far as computational costs are concerned, the number of degrees of free-
dom for the most refined UF-based one-dimensional model adopted in the following
numerical results is 1.5 ⋅ 103, corresponding to a mesh of 121 nodes (𝑁𝑛) and beam
theory 𝑁 = 5. The generic relation among 𝑁𝐷𝑂𝐹 𝑠, N and 𝑁𝑛 is given by:

𝑁𝐷𝑂𝐹 𝑠 = 2 ⋅ (𝑁 + 1) ⋅ 𝑁𝑛 (8.3)

A mesh of 120 × 12 elements was used for the 8-node quadratic 2D FEM solutions,
corresponding to 9.2 ⋅ 103 DOFs.

Doubly-clamped beam

Thefirst case study deals with a pre-buckled simply-supported beam, which is then fully
constrained and the beam ends in order to obtain a doubly-clamped bistable structure.
Fig. 8.23 shows the load-displacement curves for the non-linear buckling of a simply
supported beam ( ̃𝑢𝑧 = 0 at 𝑥/𝑙 = 0, 𝑥/𝑙 = 1 and ̃𝑢𝑥 = 0 at 𝑥/𝑙 = 1/2) loaded by two
opposite axial forces at the ends of the beam, whereas numerical values at specific eval-
uation points for displacements as well as axial and shear stresses at the end of the
load step (𝜆𝑥 = 2.1835) can be found in Table 8.9. For the sake of clarity, a qualita-
tive color plot distribution of each displacement component is also shown within the
line plots. The following evaluation points have been chosen for both line plots and
tables: 𝑢𝑥(𝑙,ℎ/2), 𝑢𝑧(𝑙/2,−ℎ/2), 𝜎𝑥𝑥(𝑙/2,−ℎ/2) and 𝜎𝑥𝑧(𝑙/4,0). The small kink of the equi-
librium path in Fig. 8.23 (a) can be explained by an initial compression phase (small
negative axial displacements), followed by the onset of buckling which allows the right
beam end to rotate (top point of the cross-section experiences positive values of the
axial displacements) and finally, when the buckling is fully triggered, the right sup-
port can slide towards negative values of the axial displacement component again. It
should be noticed that a second-order theory (N=2) is not refined enough to accurately
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(a) ̃𝑢𝑥 (b) ̃𝑢𝑧

Figure 8.23: Pre-compression load vs. axial and transverse displacements. Post-buckling
response. Simply supported beam. 𝑙/ℎ = 20.

−102 × ̃𝑢𝑥 10 × ̃𝑢𝑧 −10 × 𝜎̃𝑥𝑥 103 × 𝜎̃𝑥𝑧
FEM 2D 4.1517 1.9954 1.3065 6.3942
𝑁 = 5 4.2403 2.0149 1.3098 6.3428
𝑁 = 4 4.2099 2.0074 1.3050 6.3202
𝑁 = 3 4.0510 1.9789 1.2867 6.2333
𝑁 = 2 3.8134 1.9255 1.2556 4.2963

Table 8.9: Displacement and stress components in a post-buckled simply supported
beam. 𝑙/ℎ = 20. 𝜆𝑥 = 2.1835.

predict the post-buckling response. Based on Table 8.9, Fig. 8.24 shows that the rela-
tive difference between reference results provided by 2D FEM and those provided by
higher-order 1D theories goes from amaximum difference of 8.2% for displacements ob-
tained via a second-order theory to a maximum 2.1% obtained with fifth-order theory;
the shear stress prediction improvement is even more meaningful, going from 32.8%
error given by second-order theory to 0.8% when computed using N=5. Starting from
the previous buckled configuration and applying doubly-clamped boundary conditions
with an additional central constraint ( ̃𝑢𝑥, ̃𝑢𝑧 = 0 at 𝑥/𝑙 = 0, 𝑥/𝑙 = 1/2 and 𝑥/𝑙 = 1),
as already done in previous works presented in the literature [160], a bistable structure
can be obtained. Fig. 8.25 provides the load-displacement evolution due to a transverse
vertical force 𝜆𝑧 applied at the center of the beam. The axial and transverse displace-
ments are evaluated at (𝑙/4,−ℎ/2) and (𝑙/2,−ℎ/2), respectively. The highly non-linear
snap-through buckling is well-described by higher-order theories such as N=4. In addi-
tion to the right choice of a refined structural theory, the importance of the asymptotic
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Figure 8.24: Error trends on displacements, axial and shear stress components via re-
fined UF-based one-dimensional models. Post-buckled simply supported beam. 𝑙/ℎ =
20. 𝜆𝑥 = 2.1835.

(a) ̃𝑢𝑥 (b) ̃𝑢𝑧

Figure 8.25: Transverse actuation load vs. axial and transverse displacements. Snap-
through behavior of a pre-buckled doubly-clamped beam. 𝑙/ℎ = 20.

numerical method as non-linear solver should be pointed out, due to its total automa-
tion and computational efficiency in following complex non-linear paths. Unlike clas-
sical predictor-corrector schemes, no choice of the step length or first increment (for
those algorithms with auto-stepping) is required, therefore avoiding time-consuming
and case-dependent trial and error before a computationally efficient solution can be
performed. For the sake of clarity, the steps accumulation in the vicinity of limit points
provided by the ANM-based solution technique is not shown in Fig. 8.25. Therefore,
marker symbols do not correspond to the steps of the non-linear solution procedure.
The resultant displacement field in the buckled configuration (𝜆𝑥 = 2.1835) and in the
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snapped configuration (𝜆𝑧 = 2.6135) are shown in Fig. 8.26. A good prediction of the

Figure 8.26: Dimensionless resultant displacement ̃𝑢𝑟𝑒𝑠. Post-buckled and snapped con-
figurations. 𝑙/ℎ = 20. UF-based one-dimensional model 𝑁 = 5.

snap-through load can be obtained by all higher-order theories of the proposed family,
as shown in Table 8.10, being the error provided by N=2 about 3.8%, which can be fur-
therly reduced to 1.2%, if a fifth-order displacement approximation is used. By looking at

𝜆𝑧
FEM 2D 2.3355
𝑁 = 5 2.3637
𝑁 = 4 2.3521
𝑁 = 3 2.3082
𝑁 = 2 2.2480

Table 8.10: Snap-through load for a pre-buckled doubly-clamped beam structure via UF-
based refined one-dimensional models. 𝑙/ℎ = 20. Pre-compression load 𝜆𝑥 = 2.1835.

the load-deflection curves in Fig. 8.25, the phenomenon consists in the transition from
a stable force-displacement region to another stable region (increasing external force)
passing through an instability region (decreasing external force). From a mathematical
point of view, stability regions are assessed by checking the positive definiteness of the
tangent stiffness matrix, whereas instability condition is given by the existence of at
least one negative eigenvalue. In the end, the two stable shapes of the bistable structure
are those equilibrium states corresponding to the external load equal to zero. Due to
the rotations of the beam ends given by the previous non-linear buckling phase, the
energy to snap the structure from the first configuration to the second one is higher
than the one required to snap from the second to the first one, resulting in an asym-
metric force-displacement curve, see Fig. 8.25 (b). Figs. from 8.27 to 8.29 present the
distribution of axial, normal through-the-thickness and transverse shear stress fields
over the whole 2D beam domain for the post-buckled (𝜆𝑥 = 2.1835) and snapped con-
figurations (𝜆𝑧 = 2.6135). An accurate and complete mechanical description can be
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efficiently obtained by UF-based higher-order one-dimensional theories throughout a
highly non-linear deformation path. Unlike classical structural theories, that are lim-
ited by Saint-Venant’s principle, accurate predictions even in the vicinity of boundary
constraints and load application points can be achieved (see Figs. 8.27 and 8.29). Nev-

(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.27: Dimensionless axial stress 𝜎̃𝑥𝑥 distribution in the post-buckled (a,c) and
snapped configurations (b,d). 𝑙/ℎ = 20.

ertheless, in some cases, especially when dealing with strongly non-linear analyses,
the increase of the order of the approximating polynomials can yield numerical insta-
bility phenomena as it can be seen from Fig. 8.28, where some non-physical normal
stress peaks start to arise at the edges in the vicinity of the beam ends. These numerical
problems need to be treated with care and a possible solution could be the use of an
appropriate pre-conditioner matrix within the numerical solution procedure or, more
simply, the use of a bias one-dimensional mesh with higher refinement in proximity of
discontinuities.

Clamped-simply supported beam

Similarly to the case shown in the previous section, the second study case is a clamped-
simply supported beam ( ̃𝑢𝑥, ̃𝑢𝑧 = 0 at 𝑥/𝑙 = 0 and ̃𝑢𝑧 = 0 at 𝑥/𝑙 = 1) which is initially
buckled due to an axial load 𝜆𝑥 at 𝑥/𝑙 = 1. Starting from the deformed shape and full
pre-stress field generated by the buckling step, the beam is pushed towards a reversed
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(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.28: Dimensionless normal through-the-thickness stress 𝜎̃𝑧𝑧 distribution in the
post-buckled (a,c) and snapped configurations (b,d). 𝑙/ℎ = 20.

curvature configuration by means of a transverse load 𝜆𝑧 applied at 𝑥/𝑙 = 1/2. The geo-
metric properties, material properties as well as the evaluation points for plots and ta-
bles are the same as in the previous case. Figs. 8.30 and 8.31 show the load-displacement
evolution for both buckling and snap-through steps. The resultant displacement field
in the buckled state and in the snapped state are shown in Fig. 8.32. As in the previous
case, higher-order theories such as N=4 and N=5 lead to errors on the displacement
prediction as high as 2.6% and 0.9%, at worse, on the axial and shear stresses, whereas
a lower-order theory such as N=2 yields much poorer results, being 9.4% for the dis-
placements, 4.4% for the axial stress and 33.0% for the shear stress, as it is shown in
Table 8.11 and Fig. 8.33. As shown in Table 8.12, improvements on the accuracy of
the snap-through load prediction are also obtained, being the error for N=2 as high as
7.8%, 4.2% for N=3 and being as high as 0.7% for N=4 and N=5. The stiffer structural be-
haviour (i.e. higher snap-through load) provided by higher-order models (such as N=5)
with respect to less refined models (such as N=2) is affected by the prediction of the pre-
buckling phase, which provides a more shallow initial shape for lower-order theories
and, therefore, lower values of the snap-through load 𝜆𝑧. In Figs. 8.34 to 8.36, the distri-
bution of axial, shear and normal stresses for both buckled and snapped configurations
are provided. Again, it is clear how, unlike classical structural models such as Euler-
Bernoulli’s and Timoshenko’s theory, refined one-dimensional lead to an accurate yet
efficient prediction of localized stresses over the whole domain of the structure.
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(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.29: Dimensionless transverse shear stress 𝜎̃𝑥𝑧 distribution in the post-buckled
(a,c) and snapped configurations (b,d). 𝑙/ℎ = 20.

(a) ̃𝑢𝑥 (b) ̃𝑢𝑧

Figure 8.30: Pre-compression load vs. axial and transverse displacements. Post-buckling
response. Clamped-simply supported beam. 𝑙/ℎ = 20.

8.3.4 Stress prediction in bistable composites
In this section, slender composite beam structures (𝑙/ℎ = 100) with pinned-roller
boundary conditions ( ̃𝑢𝑥 = ̃𝑢𝑧 = 0 at (0,0) and ̃𝑢𝑧 = 0 at (𝑙,0)) are investigated in
order to assess the stress capabilities of the UF-based refined ESL models when dealing
with bistable composites. Beam cross-section is square with ℎ = 𝑏 = 1 m. The material
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(a) ̃𝑢𝑥 (b) ̃𝑢𝑧

Figure 8.31: Transverse actuation load vs. axial and transverse displacements. Snap-
through behavior of a pre-buckled clamped-simply supported beam. 𝑙/ℎ = 20.

Figure 8.32: Dimensionless resultant displacement ̃𝑢𝑟𝑒𝑠. Post-buckled and snapped con-
figurations. Clamped-simply supported beam. 𝑙/ℎ = 20. UF-based one-dimensional
model 𝑁 = 5.

is glass fibre-epoxy resin composite (Glass/913) with equivalent orthotropic proper-
ties given in Section 8.3.2. Uni-directional and three-layer symmetric cross-ply stack-
ing sequence [0/90/0] are considered. An axial pre-compression load 𝑃𝑥 = 𝜆𝑥𝜋2𝐸𝐿𝐼/𝑙2

with 𝜆𝑥 = 1.1 is applied at (𝑙,0) in the first buckling phase (transverse disturbance
𝑞 = 0.001𝜋2𝐸𝐿𝐼/𝑙2) and a transverse load 𝜆𝑧 is applied at the mid-span of the beam
(𝑙/2,0) in the subsequent snap-through phase. Stress components are expressed in the
global fixed reference system, unless stated otherwise. Reference solution is obtained
via two-dimensional quadratic Ansys finite elements “Plane183” (120 × 12 elements
mesh) based on an updated Lagrangian formulation. Plane stress hypothesis are as-
sumed for both the UF-based one-dimensional models and the two-dimensional finite
elements solution.The computational costs in terms of degrees of freedom are the same
as in Section 8.3.3.
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102 × − ̃𝑢𝑥 10 × ̃𝑢𝑧 102 × −𝜎̃𝑥𝑥 103 × 𝜎̃𝑥𝑧
FEM 2D 3.6025 1.1951 7.4363 4.6339
𝑁 = 5 3.6956 1.2071 7.5044 4.6517
𝑁 = 4 3.6653 1.2015 7.4731 4.6313
𝑁 = 3 3.4891 1.1755 7.3307 4.5319
𝑁 = 2 3.2647 1.1356 7.1131 3.1055

Table 8.11: Displacement and stress components in a post-buckled clamped-simply sup-
ported beam. 𝑙/ℎ = 20 𝜆𝑥 = 2.6347.

Figure 8.33: Error trends on displacements, axial and shear stress components via
refined UF-based one-dimensional models. Post-buckled clamped-simply supported
beam. 𝑙/ℎ = 20. 𝜆𝑥 = 2.6347.

Uni-directional laminate

The evolution of axial and transverse displacement components response in the snap-
through phase evaluated at (𝑙,ℎ/2) and (𝑙/2,−ℎ/2), respectively, is given in Fig. 8.37.
Figure 8.38 shows the through-the-thickness distribution of stress components at the
initial and final configuration throughout the snap-through phenomenon: the first con-
figuration corresponds to the post-buckled state (𝜆𝑧 = 0) and it is referred to as “C1”,
whereas the second configuration, referred to as “C2”, corresponds to the snapped con-
figuration at the final load 𝜆𝑧 = 0.1265. The capability of UF-based models to predict
the evolution of the full in-plane stress field throughout the snapping phenomenon is
shown. At least a third-order model is required in order to predict the peak of nor-
mal through-the-thickness stress at the central point of the cross-section, as shown in
Fig. 8.38 (b).
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102 × 𝜆𝑧
FEM 2D 5.1738
𝑁 = 5 5.2111
𝑁 = 4 5.1915
𝑁 = 3 4.9553
𝑁 = 2 4.7726

Table 8.12: Snap-through load for a pre-buckled clamped-simply supported beam struc-
ture via UF-based refined one-dimensional models. 𝑙/ℎ = 20. Pre-compression load
𝜆𝑥 = 2.6347.

(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.34: Dimensionless axial stress 𝜎̃𝑥𝑥 distribution in the post-buckled (a,c) and
snapped configurations (b,d). Clamped-simply supported beam. 𝑙/ℎ = 20.

Three-layer cross-ply symmetric laminate

The three-layer stacking sequence [0/90/0] is addressed hereafter. A configuration in
close proximity to buckling given by a pre-compression parameter 𝜆𝑥 = 0.8 is analyzed
in Fig. 8.39. The through-the-thickness distribution of the stresses in the buckled and in
the snapped configurations is provided in Figure 8.40.
A fairly accurate prediction of the axial stress via either a second- or third-order model
in both pre-buckled and snapped configuration can be achieved. As shown in Fig. 8.40
(a), tension and compression states are inverted at top and bottom layers due to the
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(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.35: Dimensionless normal through-the-thickness stress 𝜎̃𝑧𝑧 distribution in the
post-buckled (a,c) and snapped configurations (b,d). Clamped-simply supported beam.
𝑙/ℎ = 20.

reversed curvature in the buckled and snapped configurations. Similarly to the uni-
directional lay-up case, at least a third-order theory should be adopted in order to im-
prove the description of the normal stress through-the-thickness profile.
To conclude, through UF-based modeling approach, a unified higher-order description
of the cross-sectional kinematics can be obtained within the same mathematical frame-
work yielding a refined description of the kinematics of pre-buckled bistable beams.
Accurate load-displacement responses, snap-through loads and stable geometries can
be derived by properly choosing the approximation order of the theory as well as
an accurate evolution of the full in-plane stress field throughout strongly non-linear
post-buckling and snap-through instability phenomena. Due to the one-dimensional
modeling approach, the mathematical model developed via UF is characterized by a
lower number of unknown variables, when compared to two-dimensional or three-
dimensional finite elements solution. For the numerical results presented in this last
section, a two-dimensional solution with 120 × 12 elements was used as reference, cor-
responding to about 9.2 × 103 number of degrees of freedom, whereas the most refined
UF-based model was a fourth-order model (𝑁 = 4) with 121-node one-dimensional fi-
nite elements discretization, corresponding to 1.2 × 103 number of degrees of freedom
(-86.8%). For these reasons, the presented hierarchical framework represents a reliable
yet efficient modeling approach for the analysis of multi-stable composite structures.
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(a) N=5 (b) N=5

(c) FEM 2D TL (d) FEM 2D TL

Figure 8.36: Dimensionless transverse shear stress 𝜎̃𝑥𝑧 distribution in the post-buckled
(a,c) and snapped configurations (b,d). Clamped-simply supported beam. 𝑙/ℎ = 20.

(a) ̃𝑢𝑥 (b) ̃𝑢𝑧

Figure 8.37: Transverse actuation load vs. (a) axial and (b) transverse displacements.
Snap-through behavior of a pre-buckled pinned-roller composite beam. 𝑙/ℎ = 100. Uni-
directional lay-up.
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(a) 𝜎̃𝑔
𝑥𝑥 at 𝑥 = 𝑙/4 (b) 𝜎̃𝑔

𝑧𝑧 at 𝑥 = 𝑙/2

(c) 𝜎̃𝑔
𝑥𝑧 at 𝑥 = 𝑙/4

Figure 8.38: Through-the-thickness profile of global Cauchy stresses in the pre-buckled
and snapped configurations. Pinned-roller composite beam. 𝑙/ℎ = 100. Uni-directional
lay-up.
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(a) 𝜎̃𝑔
𝑥𝑥 at 𝑥 = 𝑙/2 (b) 𝜎̃𝑔

𝑥𝑧 at 𝑥 = 𝑙/4

Figure 8.39: Through-the-thickness profile of global Cauchy stresses prior to buckling.
𝜆𝑥 = 0.8. Pinned-roller composite beam. 𝑙/ℎ = 100. Three-layer cross-ply lay-up.
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(a) 𝜎̃𝑔
𝑥𝑥 at 𝑥 = 𝑙/2 (b) 𝜎̃𝑔

𝑥𝑧 at 𝑥 = 𝑙/4

(a) 𝜎̃𝑔
𝑧𝑧 at 𝑥 = 𝑙/2, C1 (b) 𝜎̃𝑔

𝑧𝑧 at 𝑥 = 𝑙/2, C2

Figure 8.40: Through-the-thickness profile of global Cauchy stresses in the pre-buckled
and snapped configurations. Pinned-roller composite beam. 𝑙/ℎ = 100. Three-layer
cross-ply lay-up.
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Chapter 9

Conclusions and Outlooks

9.1 Concluding remarks
Multi-stable structures have recently received great attention thanks to their potential
to increase the efficiency and extend the functionalities of conventional engineering
systems. This can be achieved by properly harnessing the high-rate release of energy
andmotion deriving from a snap-through elastic instability phenomenon.The enhance-
ment of the existing computational tools for the analysis of multi-stable structures in
terms of accuracy and efficiency is needed for their full exploitation in industrial ap-
plications. To this aim, a novel computational framework based on an advanced struc-
tural modeling approach, i.e. the Unified Formulation, has been proposed in this dis-
sertation. Thanks to an elegant compact notation of the displacement field, UF allows
several refined one-dimensional models and different variable description approaches
to be incorporated into a single mathematical framework. In order to address post-
buckling and snap-through behaviors involved in multi-stability phenomena via UF ap-
proach, the extension of the formulation to account for geometric non-linearities was
required. Therefore, UF-based refined finite elements accounting for Green-Lagrange
strain-displacement relations have been developed in the framework of a total La-
grangian formulation. Based on linear elasticity, plane stress state and small strains as-
sumptions, the explicit form of the fundamental nuclei of the linear, initial-displacement
and initial-stress contributions to the tangent stiffness matrix has been obtained. By
means of geometrically non-linear UF methodology and a path-following non-linear
solver based on the Asymptotic Numerical Method, a hierarchical computational frame-
work for a refined higher-order description of the kinematics of pre-buckled bistable
beam structures has been developed. The proposed formulation has been validated to-
wards literature results obtained by Arena et al. [2] via three-dimensional commercial
software finite elements and arc-length solution procedure for the analysis of a bistable
shape-adaptive air inlet, showing that, due to the high slenderness ratio and material
homogeneity, a second-order UF-based model is sufficient for an accurate prediction of
the load-displacement response in this case. Nevertheless, pre-buckled bistable beams
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with a reduced slenderness ratio (𝑙/ℎ = 20) yield a more complex kinematic behavior
that calls for higher-order one-dimensional models. Both symmetric and asymmetric
bistability phenomena have been investigated, i.e. featuring symmetric or asymmetric
non-linear equilibrium paths. The assumption of a second-order model for the non-
linear response in the post-buckling phase yields maximum errors close to ten percent
on the displacement prediction with respect to a two-dimensional small-strain finite
elements formulation, which can be reduced to a few percent if a fifth-order model is
considered. The enrichment of the model kinematics is even more significant for stress
prediction, since a second-order model yields maximum errors greater than thirty per-
cent (on the shear stress component), which can be reduced to less than one percent for
a fifth-order expansion.The peculiar capability of UF-based refinedmodels to predict lo-
calized stresses, even in the vicinity of boundary conditions and load application points,
has been shown. Inaccuracies in the post-buckling phase provided by low-order models
have also an influence on the subsequent bistability analysis, in which the snap-through
load prediction can be refined up to maximum errors of a few percent. Ultimately, by
properly choosing the approximation order of the theory, accurate load-displacement
responses, snap-through loads and stable geometries can be derived. Moreover, the en-
hanced stress capabilities of the presented UF-based modeling approach in composite
bistable beams have been shown. For the considered cases, the evolution of the through-
the-thickness profile of a full in-plane stress field (including axial, transverse shear and
transverse normal stress components) could be accurately predicted throughout the
whole snap-instability phenomenon by means of either a second- or third-order the-
ory. Finally, due to the one-dimensional nature of the UF-based modeling strategy, the
size of the resulting governing algebraic system to be solved is significantly lower than
in two-dimensional finite elements formulation (reductions between eighty and ninety
percent for the considered cases), yielding a computational gain every time that the tan-
gent stiffness matrix has to be assembled and inverted within the adopted non-linear
solution scheme.

9.2 Original contributions
The present research represents the first known attempt to investigate multi-stability
phenomena via higher-order structural models and wants to contribute to fill the gap
between classical structural models and computationally expensive two- and three-
dimensional commercial software finite elements for the analysis of multi-stable struc-
tures. The main novel contributions of the present research are summarized below:

• Geometrically non-linear UF-based models adopting an Equivalent Single Layer
modeling strategy have been developed and assessed for the first time for large
deflection analysis of metallic and multi-layered composite beam structures.

• The formulation resulting from the developed geometrically non-linear UF-based
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models combined with an advanced path-following non-linear solver based on
the Asymptotic Numerical Method has been implemented in a novel power-
ful computational tool for the analysis of non-linear and multi-stable composite
beam structures.

• The significance of enriching the cross-sectional beam kinematics via higher-
order terms in bistability analysis has been demonstrated for the first time, yield-
ing refined post-buckling and snap-through equilibrium paths as well as im-
proved predictions of snap-through loads and stable geometries in pre-buckled
bistable beam structures.

• The capabilities of UF-based models to accurately predict the stress field evolu-
tion in strongly non-linear bistable composite structures via a computationally
efficient one-dimensional approach has been demonstrated.

Additional original contributions provided within the present dissertation are herein
reported:

• A weak form finite elements solution of the governing differential equations for
themechanical and thermo-mechanical analysis of composite beam structures via
UF-based models adopting an Equivalent Single Layer approach has been devel-
oped, allowing to relax the limitations in terms of boundary conditions provided
by strong form solutions previously developed by Giunta et al. [77, 80, 72].

• UF methodology has been extended to curved beam models for the first time.
By expressing the principle of virtual displacements in local coordinates and ac-
counting for curvature-dependent terms in the strain-displacement relations, the
governing differential equations have been derived and solved via both strong
form Navier-type solution and weak form finite elements solution. Finally, the
fundamental nucleus of the stiffness matrix, typical of UF approach, has been
obtained for both curved beam analytical models and curved beam elements.

• TheMixed Interpolation of Tensorial Components approach has been extended to
UF-based curved beam elements in the linear regime and UF-based straight beam
elements in the geometrically non-linear regime, allowing a mitigation of detri-
mental locking phenomena and improved convergence rate of the finite elements
solution.

9.3 Scope for future research
This work laid the foundations for future research on the potential of advanced one-
dimensional models in the framework of a Unified Formulation for multi-stable com-
posite structures. In future studies, the versatility and efficiency of the developedmathe-
matical tool for accurate modeling of homogeneous as well as multi-layered structures
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could be exploited for material tailoring of bistable beam structures with no need to
resort to two-dimensional or three-dimensional finite elements. By changing the com-
posite material properties, the number of layers and the stacking sequence, the snap-
through equilibrium path of the bistable structure can be tailored to fit the desired
behavior depending on the application. Due to the enhanced capabilities of higher-
order models to provide a good estimation of inter-laminar and intra-laminar stresses
in composite structures by means of a one-dimensional approach, the developed com-
putational framework also shows a great potential for efficient failure analysis in safe
design of multi-stable composite applications.The prediction of first-ply failure indices,
dominating failure modes and onset of delamination in pre-buckled bistable composite
beam structures by means of the proposed UF-based one-dimensional finite elements is
therefore an interesting and straightforward follow-up of the present research. As far
as the further development of the modeling framework is concerned, several possible
advancements can be identified stemming from this dissertation. By relaxing the plane
stress hypothesis considered in Chapter 6, three-dimensional multi-stable structures,
such as beams as well as plates and shells, may be investigated via a UF-based one-
dimensional approach, with potentially dramatic computational savings with respect
to three-dimensional non-linear finite elements solution. Furthermore, the extension
of the UF-based curved beam formulation developed in Chapter 5 to the geometrically
non-linear regime could open up new modeling possibilities for the design of initially
curved stress-freemulti-stable structures. Finally, by accounting for thermo-mechanical
coupling, see Chapter 4, within the geometrically non-linear framework of Chapter 6,
the three-dimensional stress capabilities of the developed UF-based models could be
extremely effective to investigate challenging thermally-induced multi-stability phe-
nomena. Besides the thermo-mechanical coupled problem, piezo-mechanical coupling
could be also considered for the study of piezo-actuated multi-stable structures.

136



Curriculum Vitae

Name: Gabriele
Last name: De Pietro
Date of birth: 27 February 1990
Place of birth: Foggia, Italy
E-mail: gabriele.depietro@polito.it

Education
⋄ October 2015 - March 2019: PhD candidate in Mechanical Engineering at Poly-
technic of Turin. Dissertation: “Modeling and Design of Multi-Stable Composite
Structures”.
⋄ 3-7 April 2017: Summer school on “Computational Methods for the Analysis,
Design and Failure of Composites”, International Centre for Mechanical Sciences
(CISM), Udine, Italy.
⋄ July 2015: Master of Science in Aerospace Engineering from Polytechnic of Turin,
Italy. Dissertation: “Wave propagation and damage analysis in metallic and composite
aerospace structures via refined structural models”.
⋄ September 2013 - March 2014: Visiting student at Institut Polytechnique des
Science Avancées (IPSA), Paris, France.
⋄ October 2012: Bachelor of Science in Aerospace Engineering from Polytechnic of
Turin, Italy. Dissertation: “Methods of reduction of pollutant emissions for gas turbine
combustors”.

Working Experience
⋄ October 2015 - October 2018: Marie Curie research fellow at Luxembourg Institute
of Science and Technology (LIST), Materials Research and Technology Department.
⋄ July - August 2018: Visiting research fellow at University of Bristol, Bristol
Composite Institute.
⋄ March - June 2018: Visiting research fellow at Thales Alenia Space Belgium
(Mont-sur-Marchienne), Technology Department.
⋄ January - May 2015: Visiting research fellow at Royal Melbourne Institute of

137



Technology (RMIT), Aerospace Engineering Department.

Publications
International journal articles

- Y. Hui, G. De Pietro, G. Giunta, S. Belouettar, H. Hu, E. Carrera, A. Pagani, “Geo-
metrically non-linear analysis of beam structures via hierarchical one-dimensional finite
elements”, Mathematical Problems in Engineering, 2018.
- G. De Pietro, A. G. de Miguel, E. Carrera, G. Giunta, S. Belouettar, A. Pagani, “Strong
and weak form solutions of curved beams via Carrera’s Unified Formulation”, Mechanics
of Advanced Materials and Structures, 2018.
- M. Petrolo, I. Kaleel, G. De Pietro, E. Carrera, “Wave propagation in compact, thin-
walled and layered beams using variable kinematic beam theories”, International Journal
for Computational Methods in Engineering Science & Mechanics, 2018.
- A. G. de Miguel, G. De Pietro, E. Carrera, G. Giunta, A. Pagani, “Locking-free curved
elements with refined kinematics for the analysis of composite structures”, Computer
Methods in Applied Mechanics and Engineering, 337: 481-500, 2018.
- G. De Pietro, G. Giunta, S. Belouettar, E. Carrera, “A static analysis of three-dimensional
sandwich beam structures by hierarchical finite elements modelling”, Journal of Sandwich
Structures and Materials, 2016.
- G. De Pietro, Y. Hui, G. Giunta, S. Belouettar, E. Carrera, H. Hu, “Hierarchical
one-dimensional finite elements for the thermal stress analysis of three-dimensional
functionally graded beams”, Composite Structures, 153: 514-528, 2016.
- G. Giunta, G. De Pietro, H. Nasser, S. Belouettar, E. Carrera, M. Petrolo, “A thermal
stress finite element analysis of beam structures by hierarchical modelling”, Composites
Part B: Engineering, 95: 179-195, 2016.

Book chapters

- G. De Pietro, G. Giunta, S. Belouettar, E. Carrera, “Bistable buckled beam-like struc-
tures by one-dimensional hierarchical modelling”, Advances in predictive models and
methodologies for numerically efficient linear and nonlinear analysis of composites,
Springer. To be published.

Conference proceedings

- G. De Pietro, G. Giunta, Y. Hui, E. Carrera, S. Belouettar, H. Hu, “One-dimensional
hierarchical modelling of bistable composite beams”, IX International Conference on the
Design, Modelling and Experiments of Advanced Structures and Systems (DeMEASS),
Sesimbra, Portugal, 2018.
- Y. Hui, G. Giunta, G. De Pietro, R. Xu, S. Belouettar, H. Hu, E. Carrera, “Multi-scale
CUF-FE2 nonlinear analysis of beam structures”, IX International Conference on the

138



Design, Modelling and Experiments of Advanced Structures and Systems (DeMEASS),
Sesimbra, Portugal, 2018.
- G. De Pietro, G. Giunta, Y. Hui, S. Belouettar, H. Hu, E. Carrera, “Geometrically
non-linear hierarchical finite elements for the analysis of bi-stable beam structures”,
International Conference on Mechanics of Advanced Materials and Structures (IC-
MAMS), Turin, Italy, 2018.
- G. Giunta, G. De Pietro, Y. Hui, S. Belouettar, “Newton’s series expansion based theories
in the framework of Carrera’s Unified Formulation for the analysis of plates”, Interna-
tional Conference on Mechanics of Advanced Materials and Structures (ICMAMS),
Turin, Italy, 2018.
- Y. Hui, G. Giunta, G. De Pietro, S. Belouettar, H. Hu, E. Carrera, “Hierarchical beam
finite elements for multi-scale geometrically nonlinear analysis of beam structures via
multi-scale asymptotic numerical method”, International Conference on Mechanics of
Advanced Materials and Structures (ICMAMS), Turin, Italy, 2018.
- I. Liemans, J. Garnier, J. Polome, Garray D., Vermeir S., De Pietro G., “Topology opti-
mization of a PCB supporting frame”, European Conference on Spacecraft Structures,
Materials and Environmental Testing (ECSSMET), Noordwijk, Netherlands, 2018.
- G. De Pietro, G. Giunta, S. Belouettar, A. Pagani, E. Carrera, “Geometrically nonlinear
hierarchical finite elements via a unified formulation”, XX International Conference on
Composite Structures (ICCS), Paris, France, 2017.
- G. De Pietro, G. Giunta, S. Belouettar, E. Carrera, “A thermal stress analysis of
functionally graded beam structures by hierarchical finite elements”, II International
Conference on Mechanics of Composites (MechComp), Porto, Portugal, 2016.
- G. Giunta, S. Belouettar, G. De Pietro, “A thermal stress finite element analysis of
isotropic and laminated beams via unified formulation”, XXIII Conference of the Italian
Association of Aeronautics and Astronautics (AIDAA), Turin, Italy, 2015.
- M. Petrolo, E. Carrera, G. De Pietro, A. Rosati, “Evaluation of damage effects on metallic
and composite aerospace structures via refined models”, XXIII National Conference of
the Italian Association of Aeronautics and Astronautics (AIDAA), Turin, Italy, 2015.
- M. Petrolo, E. Carrera, G. De Pietro, “Dynamic response analysis of structures through
component-wise models”, XXIII National Conference of the Italian Association of
Aeronautics and Astronautics (AIDAA), Turin, Italy, 2015.

139





Bibliography

[1] V. R. Aitharaju and R. C. Averill. “𝐶0 zig-zag finite element for analysis of
laminated composite beams”. In: Journal of Engineering mechanics 125.3 (1999),
pp. 323–330.

[2] G. Arena et al. “Adaptive compliant structures for flow regulation”. In: Proc. R.
Soc. A 473.2204 (2017), p. 20170334.

[3] G. Arena et al. “Design and testing of a passively adaptive inlet”. In: Smart Ma-
terials and Structures 27.8 (2018), p. 085019.

[4] A. F. Arrieta et al. “Broadband vibration energy harvesting based on cantilevered
piezoelectric bi-stable composites”. In: Applied Physics Letters 102.17 (2013),
p. 173904.

[5] A. F. Arrieta et al. “Passive load alleviation aerofoil concept with variable stiff-
ness multi-stable composites”. In: Composite structures 116 (2014), pp. 235–242.

[6] R. C. Averill and Y. C. Yip. “Thick beam theory and finite element model with
zig-zag sublaminate approximations”. In: AIAA journal 34.8 (1996), pp. 1627–
1632.

[7] M. Aydogdu. “Vibration analysis of cross-ply laminated beams with general
boundary conditions by Ritz method”. In: International Journal of Mechanical
Sciences 47.11 (2005), pp. 1740–1755.

[8] M. Aydogdu andV. Taskin. “Free vibration analysis of functionally graded beams
with simply supported edges”. In:Materials & design 28.5 (2007), pp. 1651–1656.

[9] S. Baguet. “Stabilité des structures minces et sensibilité aux imperfections par la
méthode asymptotique numérique”. PhD thesis. Université de la Méditerranée-
Aix-Marseille II, 2001.

[10] S. Baguet and B. Cochelin. “On the behaviour of the ANM continuation in the
presence of bifurcations”. In: Communications in numerical methods in engineer-
ing 19.6 (2003), pp. 459–471.

[11] A. Baker. Composite materials for aircraft structures. AIAA, 2004.

141



[12] J. R. Banerjee and A. J. Sobey. “Dynamic stiffness formulation and free vibration
analysis of a three-layered sandwich beam”. In: International Journal of Solids
and Structures 42.8 (2005), pp. 2181–2197.

[13] C. Basaglia, D. Camotim, and N. Silvestre. “Post-buckling analysis of thin-walled
steel frames using Generalised Beam Theory (GBT)”. In: Thin-Walled Structures
62 (2013), pp. 229–242.

[14] K. J. Bathe. Finite element procedures. Prentice hall, 1996.

[15] K. J. Bathe and E. N. Dvorkin. “A formulation of general shell elements - the
use of mixed interpolation of tensorial components”. In: International Journal
for Numerical Methods in Engineering 22.3 (1986), pp. 697–722.

[16] K. J. Bathe and E. N. Dvorkin. “A four-node plate bending element based on
Mindlin/Reissner plate theory and amixed interpolation”. In: International Jour-
nal for Numerical Methods in Engineering 21.2 (1985), pp. 367–383.

[17] K. J. Bathe, A. Iosilevich, and D. Chapelle. “An evaluation of the MITC shell
elements”. In: Computers & Structures 75.1 (2000), pp. 1–30. issn: 0045-7949.

[18] K. J. Bathe, P. S. Lee, and J. F. Hiller. “Towards improving the MITC9 shell ele-
ment”. In: Computers & Structures 81.8 (2003). K.J Bathe 60th Anniversary Issue,
pp. 477–489.

[19] D. Bernoulli. “Commentarii academiae scientiarum imperialis petropolitanae”.
In: Petropoli. Chap. De vibrationibus et sono laminarum elasticarum (1751).

[20] M. A. Bessa and S. Pellegrino. “Design of ultra-thin composite deployable shell
structures through machine learning”. In: IASS Annual Symposium “Interfaces:
architecture. engineering. science”. 2017.

[21] M. A. Bessa and S. Pellegrino. “Design of ultra-thin shell structures in the
stochastic post-buckling range using Bayesian machine learning and optimiza-
tion”. In: International Journal of Solids and Structures (2018).

[22] W. B. Bickford. “A consistent higher order beam theory”. In: Developments in
Theoretical and Applied Mechanics 11 (1982), pp. 137–150.

[23] C. R. Bowen et al. “Modeling and characterization of piezoelectrically actuated
bistable composites”. In: IEEE transactions on ultrasonics, ferroelectrics, and fre-
quency control 58.9 (2011), pp. 1737–1750.

[24] T. E. Bruns, O. Sigmund, and D. A. Tortorelli. “Numerical methods for the topol-
ogy optimization of structures that exhibit snap-through”. In: International Jour-
nal for Numerical Methods in Engineering 55.10 (2002), pp. 1215–1237.

[25] E. Carrera. “A class of two-dimensional theories for anisotropic multilayered
plates analysis”. In: Accademia delle scienze di Torino, Memorie Scienze Fisiche
19-20 (1995-1996), pp. 1–39.

142



[26] E. Carrera. “C0
𝑧 Requirements for the two dimensional analysis of multilayered

structures”. In: Composite Structures 37 (1997), pp. 373–383.

[27] E. Carrera. “Historical review of Zig-Zag theories for multilayered plates and
shells”. In: Appl. Mech. Rev. 56 (2003), pp. 287–308.

[28] E. Carrera. “Theories and finite elements for multilayered plates and shells: a
unified compact formulation with numerical assessment and benchmarking”.
In: Archives of Computational Methods in Engineering 10.3 (2003), pp. 215–296.

[29] E. Carrera and M. Filippi. “Variable kinematic one-dimensional finite elements
for the analysis of rotors made of composite materials”. In: Journal of Engineer-
ing for Gas Turbines and Power 136.9 (2014), p. 092501.

[30] E. Carrera, M. Filippi, and E. Zappino. “Analysis of rotor dynamic by one-
dimensional variable kinematic theories”. In: Journal of engineering for gas tur-
bines and power 135.9 (2013), p. 092501.

[31] E. Carrera, M. Filippi, and E. Zappino. “Free vibration analysis of rotating com-
posite blades via Carrera Unified Formulation”. In: Composite Structures 106
(2013), pp. 317–325.

[32] E. Carrera and G. Giunta. “Hierarchical closed form solutions for plates bent by
localized transverse loadings”. In: Journal of Zhejiang University SCIENCE A 8.7
(2007), p. 1026 1037.

[33] E. Carrera and G. Giunta. “Hierarchical models for failure analysis of plates bent
by distributed and localized transverse loadings”. In: Journal of Zhejiang Univer-
sity SCIENCE A 9.5 (2008), p. 600 613.

[34] E. Carrera and G. Giunta. “Refined BeamTheories based on a Unified Formula-
tion”. In: International Journal of Applied Mechanics 2.1 (2010), pp. 117–143.

[35] E. Carrera, G. Giunta, and M. Petrolo. Beam Structures: Classical and Advanced
Theories. Wiley-Blackwell, 2011.

[36] E. Carrera, D. Guarnera, and A. Pagani. “Static and free-vibration analyses of
dental prosthesis and atherosclerotic human artery by refined finite element
models”. In: Biomechanics and modeling in mechanobiology 17.2 (2018), pp. 301–
317.

[37] E. Carrera, I. Kaleel, and M. Petrolo. “Elastoplastic analysis of compact and thin-
walled structures using classical and refined beam finite element models”. In:
Mechanics of Advanced Materials and Structures 0.0 (2017), pp. 1–13.

[38] E. Carrera, M. Maiarú, and M. Petrolo. “Component-wise analysis of laminated
anisotropic composites”. In: International Journal of Solids and Structures 49.13
(2012), pp. 1839–1851.

143



[39] E. Carrera, A. G. de Miguel, and A. Pagani. “Component-wise analysis of lami-
nated structures by hierarchical refined models with mapping features and en-
hanced accuracy at layer to fiber-matrix scales”. In:Mechanics of Advanced Ma-
terials and Structures 25.14 (2018), pp. 1224–1238.

[40] E. Carrera, A. G. de Miguel, and A. Pagani. “Extension of MITC to higher-order
beam models and shear locking analysis for compact, thin-walled, and compos-
ite structures”. In: International Journal for Numerical Methods in Engineering
112.13 (2017), pp. 1889–1908.

[41] E. Carrera, A. G. de Miguel, and A. Pagani. “Hierarchical theories of structures
based on Legendre polynomial expansions with finite element applications”. In:
International Journal of Mechanical Sciences 120 (2017), pp. 286–300.

[42] E. Carrera, A. Pagani, and M. Petrolo. “Classical, refined, and component-
wise analysis of reinforced-shell wing structures”. In: AIAA journal 51.5 (2013),
pp. 1255–1268.

[43] E. Carrera, A. Pagani, andM. Petrolo. “Refined 1Dfinite elements for the analysis
of secondary, primary, and complete civil engineering structures”. In: Journal of
Structural Engineering 141.4 (2014), p. 04014123.

[44] E. Carrera, E. Zappino, and G. Li. “Analysis of beams with piezo-patches by
node-dependent kinematic finite element method models”. In: Journal of Intel-
ligent Material Systems and Structures 29.7 (2018), pp. 1379–1393.

[45] E. Carrera et al. “A component-wise approach in structural analysis”. In: Com-
putational methods for engineering science 4 (2012), pp. 75–115.

[46] E. Carrera et al. “Recent developments on refined theories for beams with ap-
plications”. In: Mechanical Engineering Reviews 2.2 (2015), pp. 14–00298.

[47] T. Cavallo et al. “Effect of localized damages on the free vibration analysis of civil
structures by component-wise approach”. In: Journal of Structural Engineering
144.8 (2018), p. 04018113.

[48] A. Chakraborty, S. Gopalakrishnan, and J. N. Reddy. “A new beam finite element
for the analysis of functionally graded materials”. In: International Journal of
Mechanical Sciences 45.3 (2003), pp. 519–539.

[49] T. Chen, J. Mueller, and K. Shea. “Integrated design and simulation of tunable,
multi-state structures fabricated monolithically with multi-material 3D print-
ing”. In: Scientific reports 7 (2017), p. 45671.

[50] S. Chiacchiari et al. “Vibration energy harvesting from impulsive excitations
via a bistable nonlinear attachment”. In: International Journal of Non-Linear Me-
chanics 94 (2017), pp. 84–97.

144



[51] Y. B. Cho and R. Averill. “An improved theory and finite-element model for
laminated composite and sandwich beams using first-order zig-zag sublaminate
approximations”. In: Composite Structures 37.3 (1997), pp. 281–298.

[52] J. Cleary and H. J. Su. “Modeling and experimental validation of actuating a
bistable buckled beam via moment input”. In: Journal of Applied Mechanics 82.5
(2015), p. 051005.

[53] B. Cochelin. “A path-following technique via an asymptotic-numerical method”.
In: Computers & structures 53.5 (1994), pp. 1181–1192.

[54] F. Cottone et al. “Piezoelectric buckled beams for random vibration energy har-
vesting”. In: Smart materials and structures 21.3 (2012), p. 035021.

[55] G. R. Cowper. “The shear coefficient in Timoshenko beam theory”. In: Journal
of Applied Mechanics 33.10 (1966), pp. 335–340.

[56] B. S. Cox et al. “Exploring the design space of nonlinear shallow archeswith gen-
eralised path-following”. In: Finite Elements in Analysis and Design 143 (2018),
pp. 1–10.

[57] M. A. Crisfield. Non-linear finite element analysis of solids and structures. Vol. 1.
Chichester, England: John Wiley and Sons, 1991.

[58] A. R. Damanpack and S. M. R. Khalili. “High-order free vibration analysis of
sandwich beams with a flexible core using dynamic stiffness method”. In: Com-
posite Structures 94.5 (2012), pp. 1503–1514.

[59] C. Darwin and F. Darwin. Insectivorous plants. J. Murray, 1888.

[60] G. De Pietro et al. “A static analysis of three-dimensional sandwich beam struc-
tures by hierarchical finite elements modelling”. In: Journal of Sandwich Struc-
tures & Materials (2017), p. 1099636217732907.

[61] G. De Pietro et al. “Hierarchical one-dimensional finite elements for the thermal
stress analysis of three-dimensional functionally graded beams”. In: Composite
Structures (2016).

[62] C. G. Diaconu, P. M. Weaver, and F. Mattioni. “Concepts for morphing airfoil
sections using bi-stable laminated composite structures”. In: Thin-Walled Struc-
tures 46.6 (2008), pp. 689–701.

[63] S. A. Emam and D. J. Inman. “A review on bistable composite laminates for
morphing and energy harvesting”. In: Applied Mechanics Reviews 67.6 (2015),
p. 060803.

[64] A. Entezari, M. Filippi, and E. Carrera. “Unified finite element approach for
generalized coupled thermoelastic analysis of 3D beam-type structures, part
1: Equations and formulation”. In: Journal of Thermal Stresses 40.11 (2017),
pp. 1386–1401.

145



[65] L. Euler. “Additamentum I: De Curvas Elasticis”. In: Methodus inveniendi lineas
curvas maximi minimive proprietate gaudentes [...] (1744), pp. 245–310.

[66] M. Filippi and E. Carrera. “Bending and vibrations analyses of laminated beams
by using a zig-zag-layer-wise theory”. In: Composites Part B: Engineering 98
(2016), pp. 269–280.

[67] M. Filippi, A. Entezari, and E. Carrera. “Unified finite element approach for gen-
eralized coupled thermoelastic analysis of 3D beam-type structures, part 2: Nu-
merical evaluations”. In: Journal of Thermal Stresses 40.11 (2017), pp. 1402–1416.

[68] M. Filippi, A. Pagani, and E. Carrera. “Accurate nonlinear dynamics and mode
aberration of rotating blades”. In: Journal of Applied Mechanics 85.11 (2018),
p. 111004.

[69] Y. Forterre et al. “How the Venus flytrap snaps”. In: Nature 433.7024 (2005),
p. 421.

[70] R. Gao et al. “A novel design method of bistable structures with required snap-
through properties”. In: Sensors and Actuators A: Physical 272 (2018), pp. 295–
300.

[71] L. J. Gibson and M. F. Ashby. Cellular solids: structure and properties. Cambridge
University Press, 1999.

[72] G. Giunta, S. Belouettar, and E. Carrera. “A thermal stress analysis of three-
dimensional beams by refined one-dimensional models and strong form solu-
tions”. In: Composite Materials and Structures in Aerospace Engineering. Vol. 828.
Applied Mechanics and Materials. Trans Tech Publications, Apr. 2016, pp. 139–
171.

[73] G. Giunta, S. Belouettar, and A. J. M. Ferreira. “A static analysis of three-
dimensional functionally graded beams by hierarchical modelling and a col-
location meshless solution method”. In: Acta Mechanica 227.4 (2016), pp. 969–
991.

[74] G. Giunta, Y. Koutsawa, and S. Belouettar. “Analysis of three-dimensional piezo-
electric beams via a unified formulation”. In: Advanced Materials Research.
Vol. 745. Trans Tech Publ. 2013, pp. 101–118.

[75] G. Giunta et al. “A thermal stress finite element analysis of beam structures by
hierarchical modelling”. In: Composites Part B: Engineering 95 (2016), pp. 179–
195.

[76] G. Giunta et al. “A thermo-mechanical analysis of functionally graded beams
via hierarchical modelling”. In: Composite Structures 95 (2013), pp. 676–690.

[77] G. Giunta et al. “A thermo-mechanical analysis of isotropic and composite
beams via collocation with radial basis functions”. In: Journal ofThermal Stresses
36.11 (2013), pp. 1169–1199.

146



[78] G. Giunta et al. “Free vibration analysis of composite beams via refined theories”.
In: Composites Part B: Engineering 44.1 (2013), pp. 540–552.

[79] G. Giunta et al. “Free vibration and stability analysis of three-dimensional sand-
wich beams via hierarchical models”. In: Composites Part B: Engineering 47
(2013), pp. 326–338.

[80] G. Giunta et al. “Hierarchical models for the static analysis of three-dimensional
sandwich beam structures”. In: Composite Structures 133 (2015), pp. 1284–1301.

[81] G. Giunta et al. “Static, free vibration and stability analysis of three-dimensional
nano-beams by atomistic refined models accounting for surface free energy ef-
fect”. In: International Journal of Solids and Structures 50.9 (2013), pp. 1460–1472.

[82] M. Grediac. “A finite element study of the transverse shear in honeycomb cores”.
In: International journal of solids and structures 30.13 (1993), pp. 1777–1788.

[83] R. M. J. Groh and A. Pirrera. “Generalised path-following for well-behaved non-
linear structures”. In: Computer Methods in Applied Mechanics and Engineering
331 (2018), pp. 394–426.

[84] R. M. J. Groh and P. M. Weaver. “Static inconsistencies in certain axiomatic
higher-order shear deformation theories for beams, plates and shells”. In: Com-
posite Structures 120 (2015), pp. 231–245.

[85] L. Hanten et al. “Free vibration analysis of fibre-metal laminated beams via hi-
erarchical one-dimensional models”. In: Mathematical Problems in Engineering
(2018).

[86] R. L. Harne and K. W. Wang. “A review of the recent research on vibration
energy harvesting via bistable systems”. In: Smart materials and structures 22.2
(2013), p. 023001.

[87] P. R. Heyliger and J. N. Reddy. “A higher order beam finite element for bending
and vibration problems”. In: Journal of sound and vibration 126.2 (1988), pp. 309–
326.

[88] D. H. Hodges et al. “On a simplified strain energy function for geometri-
cally nonlinear behaviour of anisotropic beams”. In: Composites Engineering 2.5
(1992), pp. 513–526.

[89] H. Hu et al. “A novel finite element for global and local buckling analysis of
sandwich beams”. In: Composite Structures 90.3 (2009), pp. 270–278.

[90] H. Hu et al. “Assessment of various kinematic models for instability analysis of
sandwich beams”. In: Engineering Structures 33.2 (2011), pp. 572–579.

[91] W. Hufenbach and M. Gude. “Analysis and optimisation of multistable compos-
ites under residual stresses”. In: Composite structures 55.3 (2002), pp. 319–327.

147



[92] Y. Hui et al. “A free vibration analysis of three-dimensional sandwich beams
using hierarchical one-dimensional finite elements”. In: Composites Part B: En-
gineering 110 (2017), pp. 7–19.

[93] Y. Hui et al. “Geometrically nonlinear analysis of beam structures via hierarchi-
cal one-dimensional finite elements”. In: Mathematical Problems in Engineering
(2018).

[94] M.W.Hyer. “The room-temperature shapes of four-layer unsymmetric cross-ply
laminates”. In: Journal of Composite Materials 16.4 (1982), pp. 318–340.

[95] B. D. Jensen et al. “Design optimization of a fully-compliant bistable micro-
mechanism”. In: ASME International Mechanical Engineering Congress and Ex-
position. 2001, pp. 1–7.

[96] R. M. Jones. Mechanics of composite materials. CRC press, 2014.
[97] I. Kaleel et al. “Computationally efficient, high-fidelity micromechanics frame-

work using refined 1D models”. In: Composite Structures 181 (2017), pp. 358–
367.

[98] I. Kaleel et al. “Micromechanical progressive failure analysis of fiber-reinforced
composite using refined beam models”. In: Journal of Applied Mechanics 85.2
(2018), p. 021004.

[99] S. Kapuria, P. C. Dumir, and A. Ahmed. “An efficient higher order zigzag theory
for composite and sandwich beams subjected to thermal loading”. In: Interna-
tional Journal of Solids and Structures 40.24 (2003), pp. 6613–6631.

[100] S. Kapuria, P. C. Dumir, and N.K. Jain. “Assessment of zigzag theory for static
loading, buckling, free and forced response of composite and sandwich beams”.
In: Composite Structures 64.3–4 (2004), pp. 317–327.

[101] J. Kim and S. R. Swanson. “Design of sandwich structures for concentrated load-
ing”. In: Composite Structures 52.3 (2001), pp. 365–373.

[102] Y. Koutsawa, G. Giunta, and S. Belouettar. “A free vibration analysis of piezo-
electric beams via hierarchical one-dimensional finite elements”. In: Journal of
Intelligent Material Systems and Structures 25.8 (2014), pp. 1009–1023.

[103] Y. Koutsawa, G. Giunta, and S. Belouettar. “Hierarchical FEMmodelling of piezo-
electric beam structures”. In: Composite Structures 95 (2013), pp. 705–718.

[104] Y. Koutsawa et al. “Static analysis of shear actuated piezo-electric beams via
hierarchical FEM theories”. In: Mechanics of Advanced Materials and Structures
22.1-2 (2015), pp. 3–18.

[105] D. Krajcinovic. “Sandwich beam analysis”. In: Journal of Applied Mechanics 39.3
(1972), pp. 773–778.

[106] E. Lamacchia et al. “Morphing shell structures: a generalised modelling ap-
proach”. In: Composite Structures 131 (2015), pp. 1017–1027.

148



[107] A. Laulusa et al. “Evaluation of some shear deformable shell elements”. In: In-
ternational Journal of Solids and Structures 43.17 (2006), pp. 5033–5054.

[108] D. Lentink et al. “How swifts control their glide performance with morphing
wings”. In: Nature 446.7139 (2007), p. 1082.

[109] L. Léotoing, S. Drapier, and A. Vautrin. “Nonlinear interaction of geometrical
andmaterial properties in sandwich beam instabilities”. In: International Journal
of Solids and Structures 39.13-14 (2002), pp. 3717–3739.

[110] M. Levinson. “A new rectangular beam theory”. In: Journal of Sound and vibra-
tion 74.1 (1981), pp. 81–87.

[111] P. Litewka and J. Rakowski. “The exact thick arch finite element”. In: Computers
& Structures 68.4 (1998), pp. 369–379.

[112] A. Mahi et al. “An analytical method for temperature-dependent free vibration
analysis of functionally graded beams with general boundary conditions”. In:
Composite Structures 92 (2010), pp. 1877–1887.

[113] D. S. Malkus and T. J. R. Hughes. “Mixed finite element methods - Reduced and
selective integration techniques: A unification of concepts”. In: Computer Meth-
ods in Applied Mechanics and Engineering 15.1 (1978), pp. 63–81.

[114] R. Masana and M. F. Daqaq. “Relative performance of a vibratory energy har-
vester in mono-and bi-stable potentials”. In: Journal of Sound and Vibration
330.24 (2011), pp. 6036–6052.

[115] K. Mattiasson. “Numerical results from large deflection beam and frame prob-
lems analysed by means of elliptic integrals”. In: International Journal for Nu-
merical Methods in Engineering 17.1 (1981), pp. 145–153.

[116] F. Mattioni et al. “Analysis of thermally induced multistable composites”. In:
International Journal of Solids and Structures 45.2 (2008), pp. 657–675.

[117] F. Mattioni et al. “The application of thermally induced multistable composites
to morphing aircraftt structures”. In: Industrial and Commercial Applications of
Smart Structures Technologies. 2008.

[118] A. G. de Miguel et al. “Accurate evaluation of failure indices of composite lay-
ered structures via various FE models”. In: Composites Science and Technology
167 (2018), pp. 174–189.

[119] A. G. de Miguel et al. “Locking-free curved elements with refined kinematics
for the analysis of composite structures”. In: Computer Methods in Applied Me-
chanics and Engineering 337 (2018), pp. 481–500.

[120] M. Montemurro et al. “A general multi-scale two-level optimisation strategy
for designing composite stiffened panels”. In: Composite Structures 201 (2018),
pp. 968–979.

149



[121] F. Nicassio et al. “Low energy actuation technique of bistable composites for
aircraft morphing”. In: Aerospace Science and Technology 75 (2018), pp. 35–46.

[122] J. L. Nowinski. Theory of thermoelasticity with applications. Sijthoff and Noord-
hoff, The Netherlands, 1978.

[123] Y. S. Oh and S. Kota. “Robust design of bistable compliant mechanisms using
the bistability of a clamped-pinned beam”. In: ASME 2008 International Design
Engineering Technical Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers. 2008, pp. 273–282.

[124] A. Pagani and E. Carrera. “Large-deflection and post-buckling analyses of lam-
inated composite beams by Carrera Unified Formulation”. In: Composite Struc-
tures 170 (2017), pp. 40–52.

[125] A. Pagani and E. Carrera. “Unified formulation of geometrically nonlinear re-
fined beam theories”. In: Mechanics of Advanced Materials and Structures 25.1
(2018), pp. 15–31.

[126] A. Pagani et al. “Analysis of laminated beams via Unified Formulation and Leg-
endre polynomial expansions”. In: Composite Structures 156 (2016), pp. 78–92.

[127] A. Paknejad et al. “Analytical solution of piezoelectric energy harvester patch
for various thin multilayer composite beams”. In: Composite Structures 154
(2016), pp. 694–706.

[128] S. Park and D. Hah. “Pre-shaped buckled-beam actuators: theory and experi-
ments”. In: Sensors and Actuators A: Physical 148.1 (2008), pp. 186–192.

[129] M. Petrolo et al. “A global-local approach for the elastoplastic analysis of com-
pact and thin-walled structures via refined models”. In: Computers & Structures
206 (2018), pp. 54–65.

[130] C. N. Phan, Y. Frostig, and G. A. Kardomateas. “Analysis of sandwich beamswith
a compliant core andwith in-plane rigidity-extended high-order sandwich panel
theory versus elasticity”. In: Journal of Applied Mechanics 79.4 (2012), p. 041001.

[131] G. De Pietro et al. “Hierarchical one-dimensional finite elements for the thermal
stress analysis of three-dimensional functionally graded beams”. In: Composite
Structures 153 (2016), pp. 514–528.

[132] G. De Pietro et al. “Strong and weak form solutions of curved beams via Car-
rera’s unified formulation”. In: Mechanics of Advanced Materials and Structures
0.0 (2018), pp. 1–12.

[133] A. Pirrera, D. Avitabile, and P. M. Weaver. “Bistable plates for morphing struc-
tures: a refined analytical approach with high-order polynomials”. In: Interna-
tional Journal of Solids and Structures 47.25-26 (2010), pp. 3412–3425.

[134] M. E. Pontecorvo et al. “Bistable arches for morphing applications”. In: Journal
of Intelligent Material Systems and Structures 24.3 (2013), pp. 274–286.

150



[135] P. Portela et al. “Analysis of morphing, multi stable structures actuated by piezo-
electric patches”. In: Computers & Structures 86.3-5 (2008), pp. 347–356.

[136] G. N. Praveen and J. N. Reddy. “Nonlinear transient thermoelastic analysis of
functionally graded ceramic-metal plates”. In: International Journal of Solids and
Structures 35.33 (1998), pp. 4457–4476.

[137] J. Qiu, J. H. Lang, and A. H. Slocum. “A curved-beam bistable mechanism”. In:
Journal of microelectromechanical systems 13.2 (2004), pp. 137–146.

[138] J. N. Reddy. An Introduction to Nonlinear Finite Element Analysis: with applica-
tions to heat transfer, fluid mechanics, and solid mechanics. OUP Oxford, 2014.

[139] J. N. Reddy. Energy and variational methods in applied mechanics: with an intro-
duction to the finite element method. Wiley New York, 1984.

[140] J. N. Reddy.Mechanics of laminated composite plates and shells. Theory and Anal-
ysis. 2nd ed. CRC Press, 2004.

[141] J. N. Reddy, C. M. Wang, and K. H. Lee. “Relationships between bending solu-
tions of classical and shear deformation beam theories”. In: International Journal
of Solids and Structures 34.26 (1997), pp. 3373–3384.

[142] E. Reissner. “On a certain mixed variational theorem and a proposed applica-
tion”. In: International Journal for Numerical Methods in Engineering 20 (1984),
pp. 1366–1368.

[143] D. Restrepo, N. D. Mankame, and P. D. Zavattieri. “Phase transforming cellular
materials”. In: Extreme Mechanics Letters 4 (2015), pp. 52–60.

[144] M. Santer and S. Pellegrino. “Concept and design of a multistable plate struc-
ture”. In: Journal of Mechanical Design 133.8 (2011), p. 081001.

[145] M. Savoia, F. Laudiero, and A. Tralli. “A refined theory for laminated beams:
Part I—A new high order approach”. In: Meccanica 28.1 (1993), pp. 39–51.

[146] G. Scarselli et al. “A novel bistable energy harvesting concept”. In: Smart Mate-
rials and Structures 25.5 (2016), p. 055001.

[147] S. Shan et al. “Multistable architected materials for trapping elastic strain en-
ergy”. In: Advanced Materials 27.29 (2015), pp. 4296–4301.

[148] N. Silvestre and D. Camotim. “First-order generalised beam theory for arbitrary
orthotropic materials”. In:Thin-Walled Structures 40.9 (2002), pp. 755–789.

[149] N. Silvestre and D. Camotim. “Second-order generalised beam theory for arbi-
trary orthotropic materials”. In:Thin-Walled Structures 40.9 (2002), pp. 791–820.

[150] K. P. Soldatos and I. Elishakoff. “A transverse shear and normal deformable or-
thotropic beam theory”. In: Journal of Sound Vibration 155 (1992), pp. 528–533.

[151] V. Steinberg. “Hydrodynamics: Bend and survive”. In: Nature 420.6915 (2002),
p. 473.

151



[152] C. Thill et al. “Morphing skins”. In: The Aeronautical Journal 112.1129 (2008),
pp. 117–139.

[153] T. Timarci and K. P. Soldatos. “Comparative dynamic studies for symmetric
cross-ply circular cylindrical shells on the basis of a unified shear deformable
shell theory”. In: Journal of sound and vibration 187.4 (1995), pp. 609–624.

[154] S. P. Timoshenko. “On the corrections for shear of the differential equation for
transverse vibrations of prismatic bars”. In: Philosophical Magazine 41 (1921),
pp. 744–746.

[155] S. P. Timoshenko. “On the transverse vibrations of bars of uniform cross sec-
tion”. In: Philosophical Magazine 43 (1922), pp. 125–131.

[156] S. P. Timoshenko and J. N. Goodier.Theory of elasticity. McGraw-Hill, New York,
1970.

[157] M. Touratier. “A generalization of shear deformation theories for axisymmet-
ric multilayered shells”. In: International Journal of Solids and Structures 29.11
(1992), pp. 1379–1399.

[158] S. W. Tsai. Introduction to composite materials. Routledge, 2018.

[159] E. Tufekci and A. Arpaci. “Analytical solutions of in-plane static problems for
non-uniform curved beams including axial and shear deformations”. In: Struc-
tural Engineering and Mechanics 22.2 (2006), pp. 131–150.

[160] M. Vangbo. “An analytical analysis of a compressed bistable buckled beam”. In:
Sensors and Actuators A: Physical 69.3 (1998), pp. 212–216.

[161] A. Varello and E. Carrera. “Nonhomogeneous atherosclerotic plaque analysis via
enhanced 1D structural models”. In: Smart Structures and Systems 13.4 (2014),
pp. 659–683.

[162] P. Vidal, L. Gallimard, and O. Polit. “Composite beam finite element based on
the proper generalized decomposition”. In: Computers & Structures 102 (2012),
pp. 76–86.

[163] P. Vidal and O. Polit. “A thermomechanical finite element for the analysis of
rectangular laminated beams”. In: Finite Elements in Analysis and Design 42.10
(2006), pp. 868–883.

[164] P. Vidal and O. Polit. “Vibration of multilayered beams using sinus finite
elements with transverse normal stress”. In: Composite Structures 92 (2010),
pp. 1524–1534.

[165] V. V. Volovoi et al. “Asymptotic theory for static behavior of elastic anisotropic
I-beams”. In: International Journal of Solids and Structures 36.7 (1999), pp. 1017–
1043.

152



[166] Y. Wang and X. Wang. “Static analysis of higher order sandwich beams by weak
form quadrature element method”. In: Composite Structures 116 (2014), pp. 841–
848.

[167] K. Washizu. “Some considerations on a naturally curved and twisted slender
beam”. In: Studies in Applied Mathematics 43.1-4 (1964), pp. 111–116.

[168] C. Xu et al. “Bi-stable energy harvesting based on a simply supported piezoelec-
tric buckled beam”. In: Journal of Applied Physics 114.11 (2013), p. 114507.

[169] R. D. Yamaletdinov et al. “Snap-through transition of buckled graphene mem-
branes for memcapacitor applications”. In: Scientific reports 8.1 (2018), p. 3566.

[170] Y. Yan et al. “Exact solutions for the macro-, meso-and micro-scale analysis of
composite laminates and sandwich structures”. In: Journal of Composite Materi-
als (2018), p. 0021998318761785.

[171] E. Zappino and E. Carrera. “Thermo-piezo-elastic analysis of amplified piezoce-
ramic actuators using a refined one-dimensionalmodel”. In: Journal of Intelligent
Material Systems and Structures 29.17 (2018), pp. 3482–3494.

[172] E. Zappino, G. Li, and E. Carrera. “Node-dependent kinematic elements for the
dynamic analysis of beams with piezo-patches”. In: Journal of Intelligent Mate-
rial Systems and Structures 29.16 (2018), pp. 3333–3345.

[173] G. Zhang, R. Alberdi, and K. Khandelwal. “Analysis of three-dimensional curved
beams using isogeometric approach”. In: Engineering Structures 117 (2016),
pp. 560–574.

153



This Ph.D. thesis has been typeset by
means of the TEX-system facilities. The
typesetting engine was LuaLATEX. The
document class was toptesi, by Clau-
dio Beccari, with option tipotesi
=scudo. This class is available in every
up-to-date and complete TEX-system
installation.

154


