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Abstract: Statistical inference on the circle may strongly depend on the chosen

reference system. Here, we introduce necessary and sufficient conditions to avoid

inferential problems and misinterpretation of parameter estimates for any cir-

cular distribution. The construction of invariant distributions, with respect to

the reference system, is discussed by introducing specific properties. Numerical
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examples on artificial and real data are presented to corroborate and illustrate

theoretical results. Keywords: Circular data, Initial direction, Invariance, Ori-

entation

1 Introduction

Circular data (for a review see e.g. Lee, 2010) arise naturally in many scien-

tific fields where observations are recorded as directions or angles. Such data

are encountered in environmental science (Bulla et al., 2012; ?; Wang and

Gelfand, 2014; Lagona et al., 2015a,b; Mastrantonio et al., 2015, 2016a,b),

animal movements (Eckert et al., 2008; Langrock et al., 2012, 2014; McLel-

lan et al., 2015; Maruotti et al., 2016; Maruotti, 2016), social science (Gill

and Hangartner, 2010) and musicology (Lee and Ho, 2008). Standard tech-

niques cannot be used to analyze circular data, mainly due to the circular

geometry of the sample space (for details, see Section 2). Many ad-hoc

methods and statistical techniques have been developed to analyze and

understand circular data (Mardia, 1972; Fisher, 1996; Mardia and Jupp,

1999; Jammalamadaka and SenGupta, 2001; Pewsey et al., 2013), leading

to important probability distribution theory and inferential results.

Probability distributions for circular data often assume a general struc-

ture using the unit circle as support and having a closed-form density. How-
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ever, circular data have some specific features that should be taken into

account in any analysis. Indeed, circular data have no designed zero (i.e.

initial direction) or end; moreover, the designation of the natural orientation

is arbitrary. Despite having tractable forms, the use of well-known circular

distributions may lead to misleading inference if the issues of the initial

direction and orientation are overlooked. Hence the principal objective of

this article is to study the impact on statistical inference of overlooking

changes in the reference system.

We define two properties for circular distributions: the invariance un-

der changes of initial direction (ICID) and the invariance under changes of

system orientation (ICO). We demonstrate that only a distribution hold-

ing the two aforementioned properties allows inference independent of the

reference system. We give necessary and sufficient conditions that a dis-

tribution must satisfies to verify ICID and ICO, and we investigate the

nature of existing circular distributions in order to check if the invariance

properties hold. We also show that by introducing two additional param-

eters, accounting for changes in the reference system, an invariant circular

distributions can be built from one that does not verify the ICID and ICO

properties.
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This article is organized as follows. Section 2 introduces the notation

used throughout the article and basic definitions on circular variables. It

discusses the ICID and ICO properties and provides examples demonstrat-

ing the importance of those properties to avoid misleading inference. Sec-

tion 3 deals with the construction of invariant distributions. Focusing on

widely-used circular distributions, we present the main statistical properties

of invariant distributions and we will stress the inferential issues of over-

looking the initial direction and orientation in empirical analysis. Section

4 considers some numerical examples pointing out the issues in parameters

interpretation and model fitting if the mentioned data features are ignored.

Section 5 concludes with a summary of the main results and some conclud-

ing remarks. Extensive examples of the use of our proposal are reported in

the supplementary material, where Appendix A illustrates analytical appli-

cations and Appendix B collects some more numerical examples.

2 Invariance in circular distributions

Let {S,A, P} be a probability space, where the sample space S = {(x, y) :

x2 +y2 = 1} is the unit circle, A is the σ−algebra on S and P : S→ [0, 1] is

the normalized Lebesgue measure on the measurable space {S,A}. Let D
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be a subset of R such that its length is 2π, i.e. D = [a, b) with b− a = 2π.

Let us consider the measurable function Θ : S → D, with Θ−1(d) =

(x, y) = (cos d, sin d), let D = σ(D) be the σ−algebra of D induced by Θ,

AΘ,D ≡ {(x, y) : Θ(x, y) ∈ D} and PΘ(D) = P (Θ−1(D)) = P (AΘ,D) , ∀D ∈

D. Then the measurable space induced by Θ is (D,D,PΘ) with

1. PΘ(D) = P (AΘ,D) ≥ 0, ∀D ∈ D;

2. PΘ(D) = P (AΘ,D) = 1;

3. for any countable sequence of disjoint sets {Dj}∞j=1 ofD, PΘ

(
∪∞j=1Dj

)
=

P
(
AΘ,∪∞j=1Dj

)
= P

(
∪∞j=1AΘ,Dj

)
=
∑∞

j=1 P
(
AΘ,Dj

)
=
∑∞

j=1 PΘ(Dj),

i.e. (D,D,PΘ) is a probability space.

It follows that Θ is a circular random variable and PΘ is its probability

distribution. Accordingly, for all d ∈ D, Θ−1(d) = Θ−1(d mod (2π)). D can

be either continuous or discrete and, in the latter case, it is composed of l <

∞ distinct points equally spaced between 0 and 2π with D ≡ {2πj/l}l−1
j=0.

If D is a continuous domain, Θ is a continuous circular variable and PΘ

is the Lebesgue measure; if D is discrete, Θ is a discrete circular variable

and PΘ is its counting measure. In both cases, let fΘ be the probability

density function (pdf) of Θ, with fΘ = dPΘ/dPΘ : D → R+, i.e. PΘ(D) =∫
D
fΘdPΘ.
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In the representation of circular variables, a key role is played by the ini-

tial direction and the orientation of the domain (clockwise or anti-clockwise).

Both are uniquely determined by the choice of the orthogonal reference

system on the plane. Any statistical tool for circular variables should be

invariant with respect to different choices of the reference system to avoid

conflicting or misleading conclusions, see Section 3.3.

Let ψ be the vector of parameters, ICID and ICO distributions are defined

as follow:

Definition 1. A probability density function fΘ is ICID, i.e. invariant

under changes of initial direction, if for all ξ ∈ D and ψ ∈ Ψ, there exists

ψ∗ ∈ Ψ such that fΘ(θ|ψ) = fΘ(θ − ξ|ψ∗) for all θ ∈ D

Definition 2. A probability density function fΘ is ICO, i.e. invariant under

changes of the reference system orientation, if for all ψ ∈ Ψ, there exists

ψ∗ ∈ Ψ such that fΘ(θ|ψ) = fΘ(−θ|ψ∗) for all θ ∈ D.

The following examples help to visualize definitions 1 and 2 and why

inference should not depend on the reference system. In Figure 1 (a), a

wrapped skew normal (WSN) density (Pewsey, 2000) is plotted. The origin

(initial direction) is chosen according to a geographical template and set to

East. The orientation is anti-clockwise. By changing the initial direction

(Figure 1 (b)) or the system orientation (Figure 1 (c)), we can obtain WSN
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Figure 1: Probability density functions of a WSN (a-c) and a WE (d-f)

under different initial directions and orientations. The arrows indicate the

axis orientation

pdfs with shapes exactly as the one in Figure 1 (a), i.e. there exists ψ∗

such that fΘ(θ|ψ) = fΘ(θ − π|ψ∗) (the ICID definition) andfΘ(θ|ψ) =

fΘ(−θ|ψ∗∗) (the ICO definition). This example is not sufficient to prove

that the WSN verifies the ICID and ICO because the properties must hold

for all possible reference systems; the formal demonstration will be given in
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Section 3.3 using Theorem 1 that will be introduced in the next section.

A further example is provided in Figure 1 (d): a wrapped exponential (WE)

distribution (Jammalamadaka and Kozubowski, 2004) is considered here.

We proceed as before, changing the initial direction (Figure 1 (e)) and the

system orientation (Figure 1 (f)). The intuition tells us that a necessary

(but not sufficient) condition for a circular distribution to be ICID and

ICO is that the circular variance must be constant across reference systems

(technical details are given in Section 3.2). By investigating the WE, we

can see that this is verified only by the densities in Figure 1 (e) and (f) that,

on the other hand, concentrate their probability mass in different portion

of the circle with respect to Figure 1 (d). Hence the wrapped exponential

is not ICID nor ICO.

3 Building invariant circular distributions

In this section we introduce necessary and sufficient conditions for a distri-

bution to verify ICID and ICO. Based on these conditions, we derive the

ICID and ICO counterparts of existing distributions.
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3.1 Invariance: necessary and sufficient conditions

3.1 Invariance: necessary and sufficient conditions

Theorem 1. Let fΘ(·|ψ) be the pdf of the circular variable Θ ∈ D, with

ψ ∈ Ψ. Let Θ∗ = δ(Θ + ξ), with δ = {−1, 1} and ξ ∈ D and fΘ∗(·|ψ∗),

ψ∗ ∈ Ψ∗. Then fΘ is ICID and ICO iff fΘ∗(θ
∗|ψ∗) = fΘ(θ∗|ψ∗) everywhere

with Ψ∗ ≡ Ψ, i.e. fΘ and fΘ∗ belong to the same parametric family.

Proof. From the rule of variable transformation we have that

fΘ∗(θ
∗|ψ∗) = fΘ(δθ∗ − ξ|ψ), (3.1)

where ψ∗ is a function of (ψ, δ, ξ).

1. If fΘ∗(θ
∗|ψ∗) = fΘ(θ∗|ψ∗) then fΘ is ICID and ICO

Equation (3.1) is true for all θ∗ ∈ D, ξ ∈ D, δ ∈ {−1, 1}. As long as

fΘ∗ and fΘ belong to the same parametric family it is Ψ∗ ≡ Ψ. Then

we can write

fΘ(θ∗|ψ∗) = fΘ(δθ∗ − ξ|ψ). (3.2)

It is sufficient to set δ = 1 in equation (3.2) to satisfy Definition 1

and δ = −1 and ξ = 0 to satisfy Definition 2.

2. If fΘ is ICID and ICO then fΘ∗(θ
∗|ψ∗) = fΘ(θ∗|ψ∗).

According to the ICID and ICO properties the following relation
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3.1 Invariance: necessary and sufficient conditions

holds: fΘ(δθ∗−ξ|ψ) = fΘ(θ∗|ψ∗∗), whereψ∗∗ ∈ Ψ. Since fΘ∗(θ
∗|ψ∗) =

fΘ(δθ∗− ξ|ψ) (equation (3.1)) we have fΘ∗(θ
∗|ψ∗) = fΘ(θ∗|ψ∗∗) that

implies ψ∗ ≡ ψ∗∗, ending the proof.

It is always possible to transform any non invariant pdf so to obtain its

ICID and ICO version.

Proposition 1. If fΘ(·|ψ) is not ICID and ICO, the density fΘ∗(·|ψ∗),

where Θ∗ = δ(Θ + ξ), δ ∈ {−1, 1}, ξ ∈ D and ψ∗ = (ψ, δ, ξ) ∈ Ψ∗, is ICID

and ICO.

Proof. Let Θ∗∗ = δ∗(Θ∗ + ξ∗). Following Theorem 1, if fΘ∗∗ belongs to

the same parametric family as fΘ∗ , then fΘ∗ is ICID and ICO. Because

fΘ∗∗(θ
∗∗|ψ∗∗) = fΘ∗(δ

∗θ∗∗ − ξ∗|ψ∗) and fΘ∗(θ
∗|ψ∗) = fΘ(δθ∗ − ξ|ψ), the

following identities hold: fΘ∗∗(θ
∗∗|ψ∗∗) = fΘ∗(δ

∗θ∗∗−ξ∗|ψ∗) = fΘ(δ(δ∗θ∗∗−

ξ∗)−ξ|ψ).Now let δ∗∗ = δδ∗ and ξ∗∗ = (δξ∗+ξ) we can write fΘ∗∗(θ
∗∗|ψ∗∗) =

fΘ(δ∗∗θ∗∗ − ξ∗∗|ψ). Bearing in mind that δ∗∗ ∈ {−1, 1} and ξ∗∗ ∈ D, Θ∗∗ is

obtained starting from Θ by transforming Θ∗ and the vector of parameters

(ψ, δ∗∗, ξ∗∗) belonging to the same space Ψ∗ of ψ∗ = (ψ, δ, ξ). Then fΘ∗∗

and fΘ∗ belong to the same parametric family.
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3.2 Invariance: statistical properties

By applying the previous proposition, we get the invariant version of

any circular density.

3.2 Invariance: statistical properties

A wide number of circular distributions have been extensively studied in the

literature, and their characteristic functions, as well as the trigonometric

moments, circular means and concentrations have been defined. Here we

show how to obtain these quantities when ICID and ICO distributions are

obtained by using Proposition 1.

The trigonometric moments, αp = E cos pΘ and βp = E sin pΘ, of

a circular density are related to the characteristic function ϕΘ(p) of Θ :

ϕΘ(p) = E(exp (ipΘ)) = αp + iβp. Let cp = |ϕΘ(p)| =
√
α2
p + β2

p and

µp = atan∗(βp/αp) (the function atan∗ is the modified inverse tangent

function, see for example Jammalamadaka and SenGupta (2001)). It is

well known that ϕΘ(p) = cp exp (iµp) = cp cosµp + icp sinµp, and then

αp = cp cosµp and βp = cp sinµp. When p = 1, the quantities µ1 and c1

are called circular mean and circular concentration respectively. Now let

Θ∗ = δ(Θ + ξ) and suppose that the density of Θ is not invariant. Fol-

lowing Proposition 1, the density of Θ∗ is ICID and ICO. Θ∗ is a linear
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3.3 Examples of inferential problems

transformation of Θ and its characteristic function is then

ϕΘ∗(p) = eipδξϕΘ(δp) = cδpe
i(pδξ+µδp). (3.3)

ϕΘ(−p) is the complex conjugate of ϕΘ(p) and since |ϕΘ(−p)| = |ϕΘ(p)|

then cp = c−p, α−p = αp, β−p = −βp and it follows that µ−p = −µp. Then

equation (3.3) can be written as cp exp (i(pδξ + δµp)) = cp cos(pδξ+ δµp) +

icp sin(pδξ+ δµp). Let α∗p, β
∗
p , µ

∗
p and c∗p be the trigonometric moments, the

circular mean and concentration of the random variable Θ∗, we have that

α∗p = cp cos(pδξ + δµp) = cp cos(pξ + µp), (3.4)

β∗p = cp sin(pδξ + δµp) = δcp sin(pξ + µp), (3.5)

with µ∗p = pδξ + δµp and c∗p = cp. Notice that, for all invariant distribu-

tions, equations (3.4) and (3.5) can be used to compute the trigonometric

moments when the reference system is changed.

3.3 Examples of inferential problems

Let us consider a WE(λ) circular variable Θ, first of all we verify if this

distribution is ICID and ICO. The WE (Jammalamadaka and Kozubowski,

2004) has density

fΘ(θ|λ) =
λe−λθ

1− e−2πλ
, λ > 0. (3.6)
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3.3 Examples of inferential problems

We find the density of the random variable Θ∗ that is

fΘ∗(θ
∗|λ, δ, ξ) =

λe−λ(δθ∗−ξ)

1− e−2πλ
. (3.7)

To see that the WE is not ICID and ICO, it is sufficient to prove that for

a given λ, δ and ξ, does not exist a λ∗ such that (3.7) can be written as a

WE density, i.e. the following equality does not hold

λe−λ(δθ∗−ξ)

1− e−2πλ
=
λ∗e−λ

∗(θ∗ mod (2π))

1− e−2πλ∗
. (3.8)

In (3.8) the modulus on the right side is required to ensure that the density

is well defined. To show that the WE is not ICID and ICO, it is sufficient to

show that −λ(δθ∗−ξ) 6= −λ∗(θ∗ mod (2π)) for a set of values. For example,

at Θ∗ = 2π, with δ = 1, we obtaining −λ(2π − ξ) = −λ∗0; thus, the WE

is not ICID and ICO. Notice that the density of Θ∗ in equation (3.7) is

the invariant version of the wrapped exponential (IWE) and it depends on

parameters λ, δ, ξ. The domain of Θ∗ depends on δ and ξ and this may

lead to issues in model fitting, then we prefer to write (3.7) as

fΘ∗(θ
∗|λ, δ, ξ) =

λe−λ[(δθ∗−ξ) mod (2π)]

1− e−2πλ
, θ∗ ∈ D.

The trigonometric moments of the WE (see Jammalamadaka and Kozubowski,

2004) are λ/
√
λ2 + p2 cos (atan∗(p/λ)) and λ/

√
λ2 + p2 sin (atan∗(p/λ)) and

from them, using the results of Section 3.2, we can derive the ones of the
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3.3 Examples of inferential problems

IWE; αp = λ√
λ2+p2

cos
(
pξ + atan∗ p

λ

)
and βp = δ λ√

λ2+p2
sin
(
pξ + atan∗ p

λ

)
.

The circular mean is then µ1 = δξ + δatan∗(1/λ) and the circular concen-

tration is c1 = λ/
√
λ2 + 12.

Now consider n observations θ1, . . . θn WE distributed, in a reference sys-

tem with zero direction set to North and clockwise orientation. We are

interested in finding the maximum likelihood estimator (MLE) of λ, i.e. λ̂.

Notice that the WE density, equation (3.6), has the same functional form of

the truncated exponential defined over the domain [0, 2π). Then, likelihood

functions based on the WE or the truncated exponential lead to the same

MLE. For a truncated exponential likelihood over a given interval [a, b), the

MLE of λ exists only if the arithmetic mean of the observations is smaller

than (b + a)/2 (Walter L. Deemer, 1955), then, in our setting λ̂ is defined

only if
∑
θi/n < π. Let us assume that we observed the same circular

variable but we recorded its values using an anticlockwise orientation. The

data have the same nature as before, they represent the same phenomenon

and we just changed the reference system. In the new reference system the

values of the circular variables become 2π−θi and the MLE of λ exists only

if 2π −
∑
θi/n < π ⇒

∑
θi/n > π. The two conditions for the existence

of λ̂ in the two reference systems, i.e.
∑
θi/n < π and

∑
θi/n > π, cannot

be verified at the same time. It follows that the inference with the WE
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3.3 Examples of inferential problems

depends on the choice of the reference system orientation.

For the same phenomenon, we record the values of the circular variable

in a new reference system, where the zero direction is now set to be the

angle d ∈ [0, 2π) of the first system; the observed circular variable’s val-

ues become θi − d. Let suppose d ≥ maxi,i=1,...,n θi, and then θi − d =

2π+ θi− d. In this new reference system, the condition for the existence of

λ̂ is 2π +
∑
θi/n− d < π ⇒

∑
θi/n < d− π. If d = π, the MLE does not

exist.

On the other hand, the MLEs of λ, δ and ξ, under an IWE likelihood, always

exists. λ̂, in the original reference system, exists if
∑

[(δθi − ξ) mod (2π)]/n <

π holds, that is at least when δ = 1 and ξ = 0 if
∑
θi/n < π and

δ = −1 and ξ = ε otherwise where ε ∈ (0,mini,i=1,...,n θi). In the sec-

ond reference system (anticlockwise orientation) the condition becomes∑
[(δ2π − δθi − ξ) mod (2π)]/n < π that is verified at least when δ = −1

and ξ = 0 if
∑
θi/n < π and δ = 1 and ξ = ε otherwise. To conclude,

In the third reference system (changed zero direction) the existence condi-

tion is
∑

[(δθi − δd− ξ) mod (2π)]/n < π that is verified with δ = 1 and

ξ = 2π − d if
∑
θi/n < π and δ = −1 and ξ = d+ ε otherwise. We are not

able to find a closed form for the MLE of δ and ξ but the log-likelihood is

proportional to −
∑

[(δθ∗i − ξ)] that is a finite function of (δ, ξ) and this is
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3.3 Examples of inferential problems

a sufficient condition for the existence of their MLEs.

As a further example, let us now consider a discrete circular variable Θ that

can assume l equally spaced points on the circle, such variable is said to

follow a wrapped Poisson (WP) distribution with parameter λ > 0 (Mardia

and Jupp, 1999), i.e. Θ ∼ WPl(λ), if it has pdf
∑∞

k=0 λ
θ l
2π

+kle−λ/(θl/2π + kl)!.

The WP is not ICID and ICO (see the Supplementary material for de-

tails) but, using Proposition 1, we can obtain its invariant invariant version

(IWP), that has density

fΘ∗(θ
∗|λ, δ, ξ) =

∞∑
k=0

λ[(δθ∗−ξ) mod (2π)] l
2π

+kle−λ(
[(δθ∗ − ξ) mod (2π)] l

2π
+ kl

)
!
, θ∗ ∈ D. (3.9)

Now let Θ ∼ WPl(λ) with n samples θi, in a reference system with zero

direction North and clockwise orientation. Let λ̂ be the MLE of λ and µ̂1

and ĉ1 the associated circular mean and concentration, that are respectively

µ1 = λ sin(2π/l) and c1 = exp(−λ (1− cos(2π/l))). If we change orienta-

tion, in the new reference system the circular observations become 2π− θi.

Since the transformation 2π − θi is linear and the data are the same as

in the first reference system, the circular concentration should remain the

same, i.e. ĉ∗1 = ĉ1, while the circular mean will change according to the

transformation, i.e. µ̂∗1 = 2π − µ̂1. Since ĉ1 = exp(−λ̂ (1− cos(2π/l))),

then ĉ∗1 = ĉ1 only if λ̂∗ = λ̂ and it follows that the equivalence µ̂∗1 = 2π− µ̂1

is never verified, i.e. λ̂∗ sin(2π/l) 6= 2π − λ̂ sin(2π/l) if λ̂∗ = λ̂.
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If we set to d ∈ [0, 2π) the new zero direction, the circular observations

become θi − d. Here again we expect ĉ∗1 = ĉ1 while µ̂∗1 = µ̂1 − d. Since

the two circular concentrations should be the same, then λ̂∗ = λ̂ and again

the equivalence λ̂∗ sin(2π/l) = λ̂ sin(2π/l)− d is never verified if d > 0. On

the other hand the circular mean of any invariant density can be written

as δξ + δµ1, where we can think of µ1 as a “baseline” circular mean, and

parameters δ and ξ can account for changes in the reference system in a

coherent way without affecting the circular concentration, see Section 3.2.

4 Numerical examples

Two examples are considered in this section. The first is based on simulated

continuous data and the other is a real life problem where discrete circular

variables were observed. Our intent lies in highlighting the consequences

of the lack of ICO and ICID properties on model inference. We use three

reference systems: the first fixes North as zero direction and chooses a

clockwise orientation (RS1), in the second reference system (RS2) we move

the zero direction to East, while we obtain the third reference system (RS3)

by changing the orientation of RS1. In each reference system, we find the

MLEs of the invariant distribution parameters, that are the IWE modeling
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continuous data and the IWP describing discrete data, and the MLE of the

corresponding non invariant distributions parameters, (i.e. the WE with

continuous data and WP for discrete data), together with their circular

means and concentrations. We indicate with λ̂i, µ̂1,i and ĉ1,i the MLEs of

the non invariant distribution parameter, circular mean and concentration

in the ith reference system, respectively, while λ̂∗i , δ̂
∗
i , ξ̂

∗
i , µ̂

∗
1,i and ĉ∗1,i are the

parameters of the invariant distribution, circular mean and concentration in

the ith reference system. The MLEs are found using numerical optimization

procedures. Notice that an exact evaluation of the IWP density is not

possible since it involves the evaluation of an infinite sum (see equation

(3.9)) and a truncation strategy, often used with wrapped distributions (see

for example Coles and Casson, 1998; Jona Lasinio et al., 2012), is adopted;

in detail we approximate (3.9) with

fΘ∗(θ
∗|λ, δ, ξ) =

kmax∑
k=0

λ[(δθ∗−ξ) mod (2π)] l
2π

+kle−λ(
[(δθ∗ − ξ) mod (2π)] l

2π
+ kl

)
!
, θ∗ ∈ D,

and we choose kmax so that the total probability mass captured by the

approximation is > 0.99999.

Artificial data - Wrapped exponential We simulate 500 observations

from a WE(1) in the RS1. The MLEs of the WE and IWE parameters are

shown in Table 1 while Figure 2 illustrates the real density used to simulate
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WE IWE

λ̂i µ̂1,i ĉ1,i λ̂∗i δ̂∗i ξ̂∗i µ̂∗1,i ĉ∗1,i

RS1 1.04 0.7658 0.7208 1.04 1 0 0.7658 0.7208

RS2 · · · 1.04 1 4.7124 5.4782 0.7208

RS3 · · · 1.04 -1 0 5.5174 0.7208

Table 1: Simulated example - MLE of the WE and IWE parameters, circular

mean and concentration

the data and the WE and IWE densities obtained with the MLEs in the

three reference systems.

Real data - Wind direction The wind direction data are recorded on

January 2000 at the monitoring station of Capo Palinuro (South Italy).

The monitoring station of Capo Palinuro (WMO code 16310) is one of

the coastal stations managed by the Meteorological Service of the Italian

Air Force. The station is located on the rocky cape of Capo Palinuro,

in the town of Centola in the province of Salerno, South Italy. Wind di-

rections are monitored and routinely collected by several environmental

agencies. Analyzed data come from reports prepared at the station and pro-

vided by the National Center of Aeronautical Meteorology and Climatology
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Figure 2: Simulated example - Density used to simulate the data (solid

line), wrapped exponential (dashed line) and invariant wrapped exponential

(dotted line) density computed using the MLE of the parameters in the

three reference systems (the WE MLE does not exist in RS2 and RS3).

(C.N.M.C.A.), special office of the Meteorological Service of the Italian Air

Force. The database includes date and time of registration, direction of the

wind in degrees, with eight daily measurements (every three hours) in the

month of January 2000, i.e. we have 240 observations. The measuring in-

strument, anemometer, is placed away from obstacles and at an height of 10

meters above ground. A relevant issue with this measurement instrument

is that it measures wind directions on a discrete scale dividing the circle
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WP IWP

λ̂i µ̂1,i ĉ1,i λ̂∗i δ̂∗i ξ̂∗i µ̂∗1,i ĉ∗1,i

RS1 37.3434 0.2014 0.567 50.1254 1 4.0143 0.1520 0.4657

RS2 64.1283 4.8526 0.3775 50.1254 1 2.4435 4.8644 0.4657

RS3 71.3427 12.3885 0.3383 50.1254 -1 4.0143 6.1312 0.4657

Table 2: Wind example - MLE of the WP and IWP parameters, circular

mean and circular concentration

into ten-degrees intervals (l = 36). The MLEs are reported in Table 2 while

the barplot of the observed data and the WP and IWP densities obtained

with the MLEs in the three reference systems, are shown in Figure 3.

General Comments The arithmetic mean
∑
θi/n in the first example

is equal to 0.9523 in the RS1, 4.4710 in the RS2 and 5.3308 in the RS3 and

then, keeping in mind the results of Section 3.3, it is not surprising that

the MLE of the WE parameter can be estimated only in the RS1.

In all the examples, see Table 1 and 2, we can appreciate how the MLEs of

the invariant densities parameters are coherent in moving among the three

reference systems. More precisely λ̂∗1 = λ̂∗2 = λ̂∗3, i.e. the MLE of λ∗ is

unaffected by changes of orientation or zero direction, we have (δ̂∗2, ξ̂
∗
2) =
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Figure 3: Wind example - Density estimate of observed data (solid line),

wrapped Poisson (dashed line) and invariant wrapped Poisson (dotted line)

density computed using the MLE of the parameters in the three reference

systems

(
δ̂∗1, ξ̂

∗
1 − π/2

)
since in the RS2 we change the zero direction to π/2, and

in the RS3, where we modify the orientation, we have (δ̂∗3, ξ̂
∗
3) =

(
−δ̂∗1, ξ̂∗1

)
.

Moreover the circular concentration remains the same in the three reference

systems, i.e. ĉ∗1,1 = ĉ∗1,2 = ĉ∗1,3, while the circular mean changes according

to the reference system, i.e. µ̂∗1,2 = µ̂∗1,1 − π/2 and µ̂∗1,3 = −µ̂∗1,2. For the

non invariant densities, even the circular concentration changes with the

reference system as well as the MLE of the parameter λ and the circular
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mean. The shapes of the invariant densities remain the same in the three

reference systems, see Figures from 2 to 3.

5 Summary and concluding remarks

In this paper we formally introduced two properties, i.e. the invariance

under changes of initial direction and the invariance under changes of the

reference system orientation, that any circular distribution should hold to

avoid misleading inferential results. We introduced the necessary and suf-

ficient conditions that a circular distribution must satisfy to verify these

two properties (ICID and ICO). By considering simulated and real data

examples, we illustrated how misleading the use of not invariant distribu-

tions can be. We showed that not all the circular distributions proposed in

the literature satisfy ICID and ICO properties and we developed a method

to build ICID and ICO circular distributions. Trigonometric moments are

easily obtained starting from those of the non invariant version of circular

distributions (see Supplementary Material for more details and examples).

Further use of the invariant distributions in complex models can be found

in Mastrantonio and Calise (2016), where it is extended, in a Bayesian

framework, to address classification issues with discrete circular and linear
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variables; in the paper a hidden Markov model for discrete valued time

series with linear and circular components is introduced. We believe that

our proposal opens all new possibilities for the practical use of circular

information measured on any scale.
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