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Abstract

A class of computationally-efficient tools to undertake progressive failure and damage
analysis of composites across scales is presented. The framework is based on a class of
refined one-dimensional (1D) theories referred to as the Carrera Unified Formulation
(CUF), a generalized hierarchical formulation that generates a class of refined structural
theories through variable kinematic description. 1D CUF models can provide accurate
3D-like stress fields at a reduced computational cost, e.g., approximately one to two
orders of magnitude of degrees of freedom less as compared to standard 3D brick
elements. The effectiveness of 1D CUF models to undertake physically nonlinear
simulation is demonstrated through a class of problems with varying constitutive
models. The virtual testing platform consists of a variety of computational tools such
as failure index evaluations using component-wise modeling approaches (CUF-CW),
CUF-CW micromechanics, concurrent multiscale framework, interface, and impact
modeling. Failure index evaluation of a class of composite structures underlines the
paramount importance of the accurate stress resolutions.

Within the micromechanical framework, the Component-Wise approach (CW)
is utilized to represent various components of the RVE. The crack band theory is
implemented to capture the damage propagation within the constituents of composite
materials and the pre-peak nonlinearity within the matrix constituents is modeled
using the J2 von-Mises theory. A novel concurrent multiscale framework is developed
for nonlinear analysis of fiber-reinforced composites. The two-scale framework consists
of a macro-scale model to describe the structural level components, e.g, open-hole
specimens, coupons, using CUF-LW models and a sub-scale micro-structural model
encompassed with a representative volume element (RVE). The two scales are interfaced
through the exchange of strain, stress and stiffness tensors at every integration point
in the macro-scale model. Explicit finite element computations at the lower scale
are efficiently handled by the CUF-CW micromechanics tool. The macro tangent
computation based on perturbation method which leads to meliorated performances. A
novel numerical framework to simulate progressive delamination in laminated structures
based on component-wise models is presented. A class of higher-order cohesive elements
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along with a mixed-mode cohesive constitutive law are integrated within the CUF-CW
framework to simulate interfacial cohesive mechanics between various components
of the structure. A global dissipation energy-based arc -length method to trace the
complex equilibrium path exhibited by delamination problem. The capabilities of the
framework are further extended through the introduction of contact kinematics to
handle impact problems.

A combination of the above tools is used to obtain an accurate material response of
the structure in the non-linear regime, from the structural level i.e. macro-scale to the
material constituent level i.e. the micro-scale, in a computationally efficient manner,
providing a suitable virtual testing environment for the progressive damage analysis
of composite structures. The accuracy and efficiency of the proposed computational
platform are assessed via comparison against the traditional approaches as well as
experimental results found in the literature.
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Chapter 1

Introduction

1.1 Motivation

Over the last decades, advanced fiber-reinforced composites have extensively penetrated
into high-performance products such as primary components of aircraft and racing
cars, wind turbine blades and high-performance sports goods. Exponential growth in
demand for carbon-reinforced composite is foreseen mainly in aerospace, automotive
and wind energy sectors. Stringent government regulations on environmental impact
for automobile and aerospace manufactures is yet another driving force for widespread
adoption of composite materials. For instance, Advisory Council for Aeronautical
Research in Europe (ACARE) has set an ambitious target of a 75% and 90% reduction
in CO2 and NOx emissions respectively by 2050 [9]. Weight reduction, achieved mainly
through the adoption of advanced composite materials, shall play an important role in
meeting these targets.

Currently, design and certification of lightweight aircraft composite components
depend extensively on experimental testing, which in turn increases the cost as well as
the development time [74]. Exhaustive experimental campaigns, currently a mandatory
procedure for certification of new composite airframes, are based on the building block
approach termed as test pyramid. First introduced by Rouchon [171], testing pyramid
consists of different stages starting from elementary coupon to full-scale coupons with
progressive design complexity in successive stages. Even though the approach provides
a consistent way to analyze and mitigate risk, it relies on extensive amount of testing
to cover all critical design features with the budgetary and time constraints. This
often leads to restriction of the design space to a limited kind of material or lamination
sequences resulting in conservative structural design. Therefore, reducing the number
of tests can substantially reduce the development time and cost. In addition, the recent
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shift in increased use of composites in commercial products has underlined some of the
deficiency in the existing design and modeling capabilities for composites.

The exorbitant cost associated with design and testing of new-age composite
structures can be alleviated by supplementing different stages of the pyramid with high-
fidelity simulation tools [211]. The activity falls under the paradigm of "virtual testing",
which also come under the broad umbrella of activities such as ICME (Integrated
Computational Materials science and Engineering) [52] and "Digital-twin" programs
(program of creating high-fidelity computational model of entire aircraft to compute
structural response in response to flight condition in real-time) [85]. Virtual testing
frameworks can expand the design space in early stages of the design and provide
a possibility to consider configurations that were too complex to verify with purely
empirical methods. Furthermore, these tools can also augment and guide the physical
testing of large-scale components. But existing computational tools only account for a
fragmented portion of domain covering different length and time scales of composite
design with limited reliability and robustness. The challenges associated with virtual
testing of composites are two-fold: (1) Understanding the underlying physics which
govern the complex deformations across various scales and (2) representation of these
physical phenomena through robust and efficient mathematical models leading to a
reliable computational framework, which can be exploited by designers and engineers.
Former challenge is addressed through continued advances in experimental technology
such as non-destructive, in-situ imaging of internal damage of a loaded specimen using
state of the art X-ray computed tomography [135]. The inherent multiscale nature
of the composite materials along with high complex failure modes pose significant
challenges for mathematical modeling [84]. Extensive studies such as World-Wide
Failure Exercise (WWFE) have emphasized the challenges associated with developing
computational models that yield reliable and accurate results and some of these models
still require numerous validation cases [100]. Some of the crucial aspects involve:

1. Proper physics-based constitutive modeling at relevant length scales that are sup-
plemented by experimental validations. Reliable predictions of complex behaviors
of composite materials must include interactions accounting for different failure
mechanisms such as matrix-cracking, fiber breakage, splitting, and delamination.

2. Need of computationally-efficient numerical models without the loss of fidelity,
especially for large-scale structural analysis and simulations involving multiple
scales. Often the trade-off between accuracy versus computational efficiency is
skewed towards the latter.
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3. In case of multiscale analysis, development of numerical methods to resolve
displacement and stress fields at lower scales and effectively provide equivalent
homogenized properties to subsequent higher-scale with a suitable technique for
interfacing across scales

The objective of this thesis is the advancement of numerical tools for modeling
progressive failure of composite across scales through development of computationally-
efficient advanced structural models. The framework is built using Carrera Unified
Formulation, a hierarchical scheme that yields computationally efficient structural
models through variable kinematic definitions. A class of tools is presented that can
undertake various aspects virtual testing of composite across different stages of test
pyramid including micromechanical progressive failure analysis, nonlinear multiscale
modeling, delamination modeling and impact analysis. Appropriate damage and failure
constitutive models are integrated within the framework to capture various modes of
failure including matrix cracking, shear driven pre-peak nonlinearity and interfacial
cracking. A brief historical excursus on advanced structural models as well as numerical
modeling of composites is presented.

Advanced one-dimensional structural models

Classical structural theories such as Euler-Bernoulli Beam Theory (EBBT) [27, 73] are
formulated based on a fixed number of generalized unknowns. For instance, EBBT
formulation has three unknowns and describes the bending behavior of slender beam
with acceptable accuracy but their usability is restricted to slender prismatic beams.
Similarly, beam theory developed by de Saint-Venant for isotropic beam fails to account
for transverse shear deformation [61, 62]. Timoshenko Beam Theory (TBT) accounted
for rotation about the bending beam axis due to shear deformation through the
inclusion of additional terms to the beam kinematics [187, 188], thereby extending
the suitability of the formulation to thicker beams. Nonetheless, the applicability
of the aforementioned classical models is greatly restricted due to the deficiency in
capturing non-classical effects such cross-section warping, torsion-bending coupling, or
localized boundary effects. In addition, geometrical restriction including slenderness
ratio, material anisotropy, and prismatic nature limit their sphere of applicability.
Washizu postulated the following [202]:

"For a complete removal of the inconsistency and an improvement of the
accuracy of the beam theory, we may assume a finite number of terms in
the kinematic field where the number of terms should be chosen properly "
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Several methods have been proposed to extend on the applicability of 1D models for
diverse set of problems by overcoming the limitations of classical models. Timoshenko
and Goodier improved the global response of classical beam theories by introducing
appropriate shear correction factors [186]. Gruttman and coworkers introduced shear
correction factors for different structural analysis cases including thin-walled and
arbitrary cross-sections [90]. On the theoretical basis of de Saint-Venant solution,
Ladavéze and coworkers established exact beam theory by reducing the full 3D elasticity
equation to beam-like structures [118]. Unlike classical beam models, the formulation
is independent of any kinematic assumption. El Fatmi proposed a non-uniform warping
beam theory that captured the effect of torsion and shear forces through the introduction
of additional warping terms to enhance the normal and shear stresses [68]. Berdichevsky
et al. proposed an alternate class of refined models based on asymptotic-type expansions
on the basis variational methods where the kinematic field is not assumed a priori
and is a result of the analysis [26]. Variational Asymptotic Beam Section Analysis
(VABS), developed by Cesnik and Hodges, splits the generalized 3D nonlinear elasticity
problem into a 2D linear cross-sectional analysis and a 1D nonlinear beam analysis
using variational asymptotic method [46]. The asymptotic series is built using a
characteristic parameter related to the structure such as the cross-section thickness
of the beam. Schardt proposed a new class of higher-order theory called Generalized
Beam Theory (GBT) that describes the kinematic field as a linear combination of
cross-sectional deformation modes [173]. Kapania and Raciti provided a comprehensive
review of different beam theories for a diverse set of applications including bending,
vibration, and buckling [114].

Originally developed by Carrera for two-dimensional structures [32, 33], Carrera
Unified Formulation (CUF) provides a structured basis to derive any class of refined
beam, plate or shell theories through variable kinematic definition. By means of
one- and two-dimensional expansion function for beams and plates/shells respectively,
different classes of structural theory can be generated using compact formulation.
One-dimensional CUF models were first proposed by Carrera and Giunta which
adopted Taylor-like polynomials (TE) as expansion functions [37]. The order (N) of
the expansion function is arbitrary and classical models such as EBBT and TBT can
be retrieved as special cases of linear expansion (N=1). Carrera and Petrolo extended
the capabilities of the 1D CUF model by introducing a new class of theories based
on Lagrange-polynomials (LE) [42]. Lagrange-based CUF models are characterized
by purely translational unknowns whereas TE models consist of displacement and
higher-order derivatives as unknowns. Component-Wise (CW) modeling approach is
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an application of 1D LE model to model complex structures by segregating various
components of the structure into individual constituents and formulating the problem
using 1D LE models in an efficient and concise manner [39]. Purely displacement-
based kinematic formulation also permits easy integration of multi-dimensional models
(one-, two- or three- ) without any ad-hoc techniques [214]. Recently, Pagani et al.
extended the capabilities of the CW approach through the introduction of a new
class of models based on Hierarchical Legendre-type expansion (HLE) function [153].
Unlike Lagrange-based CUF model, HLE models allowed kinematic enrichment of
domain using a single local expansion by altering the polynomial order. Carrera et
al. studied the performance of different classes of higher-order 1D models based on
polynomial, trigonometric, exponential and zig-zag expansion function [36]. Over the
last decade, computational efficiency demonstrated by CUF 1D models have been
extensively employed in solving diverse classes of problems including:

1. Failure index evaluation of composite structures using CW technique [123]

2. Linearized buckling [106], large-deflection and post-buckling of composite struc-
tures [152]

3. Aeroelastic response of wind structures [194] and Flutter analysis of lifting surface
[159]

4. Biomechanics [38] and stoke’s flow [195]

5. Rotordynamics [35] and multifield problems [131]

6. Analysis of thermoelastic [70], piezo-electric [44] and functionally graded beams
[77]

Carrera et al. provided a comprehensive review of various approaches adopted in
developing one-dimensional models along with several applications [41].

Higher-order models for physically nonlinear simulations

Classical beam models (EBBT and TBT) are extensively opted in engineering practice
for stress analysis as they offer a good trade-off between accuracy versus computational
cost. The validity of these classical models in nonlinear regime remains questionable
due to lack of accurate stress resolutions and engineers often resort to computationally
expensive 2D or 3D models in such cases. Nevertheless, the added computational
demand overshadow their effectiveness in the early design stages and parametric
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studies. Over the last few decades, significant effort has led to the development
of computationally efficient physically non-linear simulation frameworks based on
one-dimensional models and a brief overview follows.

A substantial effort has been diverted towards extending the existing one-dimensional
analytical formulation to undertake nonlinear analysis. Timoshenko and Gere extended
the TBT to inelastic beam under perfect elasto-plastic assumptions [189]. The formu-
lation was limited to prismatic beams with doubly-symmetric cross-sections and the
approach neglected shear effects. Davenne et al. developed an efficient one-dimensional
multi-fiber beam FE based for nonlinear dynamic analysis of civil structures that ac-
counts for damage growth in concrete beams [56]. Mata et al. proposed a geometrically
exact formulation for 3D beams that account for geometric and physical nonlinearity
for analysis of framed structures [125]. Even though the formulation accounted for
different kinds of nonlinearity including plasticity and models and exhibited superior
computational efficiency, the approach was formulated under the assumption of the
planarity of cross-section. Orbison et al. presented an efficient approach for modeling
inelastic behavior in 3D beam-column assembly using plastic hinge hypothesis [149].
Most of the analytical and semi-analytical formulation adopts a constrained kinematic,
which often restrict their applicability and may even cause non-physical responses in
some cases. Recently, Abambres et al. extended Generalized Beam Theory (GBT),
originally developed by Schardt [173], for elasto-plastic analysis of thin-walled steel
structures exhibiting strain-hardening behavior. Goncalves and Camotim extended
the elasto-plastic GBT model to account for geometric nonlinearity [86]. Extension
of one-dimensional Variational Asymptotic Beam Section Analysis (VABS) model to
physically nonlinear simulation was successfully undertaken by several authors includ-
ing modeling matrix cracking in helicopter blades [163], modeling hyper-elastic beams
subjected to finite deformation [107] and damage analyses of composite structures
[108].

Micromechanical analysis

Microscale analysis is an integral part of virtual testing frameworks built within the
scheme of Integrated Computational Material Engineering (ICME) [121]. Hierarchical
material systems such as composite or polycrystalline metals necessitates their usage
in capturing lower scales phenomena for reliable simulation. Figure 1.1 depicts the
scanning electron microscopic image of a fiber-reinforced composite under transverse
tensile loading characterized by matrix cracking. Micromechanical analysis captures
the effective behavior of these heterogeneous systems through homogenization (up-
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Fig. 1.1 Scanning electron microscopic image of transverse crack formation under tensile
transverse loading of cross-ply laminate: (a) debonding of fiber and matrix interface
(b) Large transverse cracks are formed by coalescence[80]

scaling) and localization (down-scaling) processes for a given representative volume
element (RVE). Such analysis scheme often enrich physically nonlinear simulation
phenomena such as progressive failure in composites, as they are greatly stimulated
by underlying lower scale features. For example, ply-level damage constitutive models
performs well for modeling fiber-reinforced composite with almost brittle failure but
their usage remains unreliable in case of composite plies that exhibit significant pre-
peak nonlinearity [23]. Constitutive modeling of various constituents at the microscale
analysis are often physics-based as their formulation are phenomenologically driven and
intends to capture the underlying physics. Over the last decades, significant advances
in the field of computation have increased viability of micromechanical simulation
within a multiscale modeling context.

Effectiveness of such micromechanical analysis is greatly influenced by proper
constitutive modeling at lower scales as well as the ability of these models to generate
accurate local fields at the constituent level. The former requires rigorous validation
through in-situ experiments whereas latter greatly depends on the mathematical
approaches employed to formulate the micromechanical boundary value problem.
Mathematical approaches often employed to model such problem can be broadly
classified into three categories:

1. Analytical formulations
Analytical formulation provides closed-form solutions for computing elastic effective

response of heterogeneous systems in terms of volume fractions and elastic properties
of individual constituent such as Rule of mixture by Voigt [200] and Reuss [167], Con-
centric Cylinder Model (CCM) [94], Eshelby methods[72], Mean-Field Homogenization
(MFH) methods of Mori-Tanaka [136] and self-consistent estimate by Hill [98] and G-A



8 | Introduction

meso-mechanics methods for periodic structures [83]. An analytical micromechanics
model based on CCM for the nonlinear composite method was formulated by Zhang
and Waas [216]. The method is able to spatially resolve the matrix fields and equip
the matrix constituents with an inelastic material model offering a distinct computa-
tional advantage over numerical methods. An essential prerequisite for any nonlinear
analysis is the accurate resolution of local fields within various constituents. Even
though analytical methods are computationally very attractive and effective for moduli
predictions, lack of spatially resolved fields often hinders their usage for nonlinear
analysis.

2. Semi-analytical approaches
Unlike standard analytical formulation, semi-analytical approaches provide resolution

of the local field with a substantial reduction in computational overhead as compared
to standard numerical approaches. Significant effort has been dedicated towards
extending MFH techniques to nonlinear regimes including analysis of elasto-plastic
periodic structures [10, 139, 207], elasto-visco-plastic composites [65]. Accorsi and
Nemat-Nasser employed a Fourier series expansion to compute the bounds on overall
elastic and elastoplastic moduli along with local fields [10]. Aboudi introduced a
closed-form micromechanical theory for nonlinear analysis of repeating unit cell called
Method of Cells (MOC) [3, 5]. The generalization of MOC lead to a class of semi-
analytical formulations including Generalized Method of Cells (GMC) [156] and High-
fidelity-generalized method of cells (HFGMC) [7]. Within GMC, RVE is subdivided
into a number of subcells accounting for multiple constituent phases with linearly
expanded displacement fields. HFGMC employs second-order displacement field thereby
addressing the lack of shear-coupling effect in GMC models but with an increased
computational effort. GMC and HFGMC are able to provide accurate local fields within
the subcells with significantly reduced computational effort as compared to standard
FE approach [5]. GMC and HFGMC have been successfully employed to undertake a
class of nonlinear problems including nonlinear composites [92] and progressive failure
analysis of composites [23, 161], multiscale analysis [137].

3. Fully-Numerical methods
The generality of full-numerical approaches such as FEM is often exploited to develop

micromechanical tools especially for 3D microstructures such as textile composites.
Levy and Papazian developed a finite model to predict the tensile stress-strain response
of short fiber-reinforced composites with matrix exhibiting elasto-plastic behavior
[120]. Sun and Vaidya established FE models for RVE with appropriate periodic
boundary conditions and strain energy equivalence for predicting effective moduli of
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uni-directional fiber composites [183]. Classical displacement-based FE methods have
been widely employed to undertake a class of nonlinear micromechanical problems as
versatility exhibited by these model often overshadow the increased computational
cost. Fish et al. developed multi-level asymptotic variational formulation to undertake
damage analysis in brittle composites [78]. González and Llorca developed an FE based
micromechanics toolbox for studying the mechanical behavior of polymer-composites
including damage progression, interface decohesion and matrix plastic deformations [87].
Experimentally validated FE-based direct numerical simulation of 3D woven textile
composites under tensile loading was developed by Deepak et al. [158]. Vaughan et al.
examined the effect of fiber-matrix debonding on the transverse behavior of polymer
composites [196]. D’Mello et al. investigated the effects of the manufacturing process
on the strength estimation of fiber-reinforced composites [64]. Yu and Tang developed
a new class of micromechanics model that could predict effective properties of periodic
materials as well as recover local strain and stress fields using variational asymptotic
method (VAMUCH) [213]. Implemented within the scheme of FE, VAMUCH has
been extensively applied for diverse sets of problems including thermomechanical,
piezo-electric and elasto-viscoplastic heterogenous materials.

A comprehensive review on different varieties of micromechanical approaches can be
found in [95, 97, 101]. In addition, Reduced-order modeling techniques are also employed
to circumvent exorbitant computational cost associated with large system analysis,
where reduced-order technique reduced the size of the global system equations for a
given acceptable accuracy [168]. Even though fully-numerical methods provide accurate
resolution of the local fields, constraints such as high computational cost often hinder
their wide-spread adoption. For instance, commercial packages such as DIGIMAT
still rely on analytical or semi-analytical formulations for their micromechanical and
multiscale platforms [63]. Within the scheme of multi-scale virtual testing simulation,
enhanced efficiency at the lower scales can significantly boost the needed computational
overhead.

Multiscale modeling

In order to effectively capture the entire design envelope of hierarchical material struc-
tures such as composites, it is fundamental to understand the physics of the material at
underlying scales. An integrated multiscale structure and material modeling framework
can serve as a vital tool to obtain the best possible physically-realizable engineering
designs [121]. Understanding the source of physical behavior at lower scales and



10 | Introduction

bridging the effect accurately to upper scales can significantly boost the fidelity of
such simulations. Despite the fact that continuum-based constitutive modeling has
proven to be well suited for predicting the overall response of structures, modeling
localized phenomena such as damage and failure propagation using such approaches
remains questionable as such mechanisms are heavily influenced by the underlying
lower-scale features. Even though multiscale modeling technique effectively increases
the fidelity of the simulations, lack of widespread adoption of such technique could
be attributed to factors concerning scalability to practical engineering problems. Ad-
ditionally, exorbitant computational overhead depreciates the overall efficacy of this
modeling technique.

Macroscale constitutive modeling assumes the material point as a homogeneous
and heterogeneity such as inclusions, voids etc. are accounted through implicit mathe-
matical formulations. Within a multiscale framework, the constitutive response at a
material point is interfaced with a lower scale with explicit heterogeneous definitions
through homogenization [5]. Thus, effective behavior can be captured by solving a
micromechanical boundary value problem (BVP) [5, 96]. In general, micromechanics-
based multiscale framework often consists of macro scale modeled using FE models,
interfaced with a lower micro scale with explicit heterogeneous material definitions.
Based on the coupling scheme adopted to interface different scales, multiscale mod-
eling technique can be broadly classified as (a) Hierarchical, (b) Synergistic and (c)
Concurrent methods [5, 181]. Hierarchical strategies are based on one-way coupling

Fig. 1.2 The balance of multiscale model efficiency versus fidelity for various classes of
multiscale models [5]
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with information passed either bottom-up (homogenization) or top-down(localization).
Concurrent methods are characterized by fully-coupled information interfacing with
bottom-up and top-down occur concurrently with all scales handled simultaneously
in space and time. Synergistic approach is a blend of two approaches where either
field variables are handled sequentially in space and concurrently in time or vice versa.
Figure 1.2 illustrates the placement of the aforementioned modeling approaches in the
model efficiency versus fidelity paradigm. Hierarchical scheme presents with highest
computational efficiency but lowest fidelity whereas concurrent approach provides the
highest fidelity with the lowest efficiency. As depicted in Fig. 1.2, different kinds of
approaches are adopted at the lower scales by various coupling scheme and can be
broadly classified into: mean-field (Analytical) and full-field approach (Semi-analytical
and Numerical).

Mean-field approach are mostly based on analytical methods such as concentric
cylinder model (CCM) [94], Mori-Tanaka method [136] and generalized self-consistent
method (GSCM) [104] are utilized to compute the effective response at the microscale.
Even though these methods are computationally efficient, lack of spatially resolved
information often restricts their usage in the nonlinear regime. Secant-modulus based
approaches are employed to extend mean-field theories for nonlinear analysis but often
lead to overestimated response due to lack of stress concentration [175]. Zhang and
Waas developed an analytical subscale micromechanics model based on two-phase CCM
and three-phase GSCM to undertake nonlinear evolution of matrix constituents within
composite offering distinct computational advantage [216]. The method was successfully
integrated into the multiscale modeling framework for undertaking progressive failure
analysis of laminated fiber-reinforced composite and hybrid 3D textile composites
[215, 217]. Commercial codes such as DIGIMAT utilizes mean-field methods and its
extension for multiscale modeling [63].

A class of semi-analytical methods has been developed to overcome the limitations
of mean-field based approaches. Unlike analytical methods, semi-analytical method
offers the spatial resolution of fields with a significant computational advantage over
fully-numerical approaches. The Method of Cells (MOC) [5] and its extensions including
the Generalized Method of Cells (GMC) [155] and High-Fidelity Generalized Method
of Cells (HFGMC) [6] are a set of powerful semi-analytical tools to undertake effective
behavior of hierarchical materials and structures at the micro scale. These methods are
able to provide an anisotropic response of heterogeneous material via semi-closed form
solution with high-degree of accuracy. GMC-based multiscale models are extensively
applied for undertaking progressive failure and damage modeling for a class of composite
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materials and structures [137, 162, 168], where the micromechanics toolbox is integrated
with a commercial FE solution for macroscale modeling.

Most commonly adopted fully-numerical approach within the multiscale paradigm
are based on finite element models applied at both scale, often referred to as FE2

method. Introduced by Feyel for modeling elasto-visco-plastic analysis of composite
structures [75], FE2 method has been an active area of research [76, 127, 185, 197].
Ladavèze et al. developed a LATIN based methods, which is a non-incremental iterative
computational strategy for multiscale modeling [117], for nonlinear modeling of the
composite. FE2 scheme has been extensively adopted for various classes of multiscale
problems such as non linear analysis of composites [164], thermo-mechanical analysis
of heterogeneous solids [151], micro-diffusive damage modeling with interface elements
[143] and so on. Even though the generality of FE method facilitates application of such
methods to complex problems with highly heterogeneous phase, high computational
cost associated with solving a large set of nonlinear micromechanical boundary value
problem (at every macro gauss point) impedes the use of FE2 method for practical
problems such as impact analysis. To an extent, such exorbitant computational cost can
be addressed through parallel implementation [76]. Fritzen et al. developed a massively
parallel GPU implementation of a hybrid computational homogenization method for
visco-plastic materials using NVIDIA’s CUDA framework [79]. An overall speedup in
the order of 104 with respect to high-performance finite element implementation was
achieved.

Reduced-order modeling is yet another powerful technique to scale down the dimen-
sionality of problem using methods such as proper orthogonal decomposition (POD)
and proper generalized decomposition (PGD) method [49, 140, 165, 168]. Especially,
when implemented at the lower scales, such techniques can significantly boost the
computational efficiency within a multiscale framework as well as increase the viability
of large-scale problems. Chinesta et al. demonstrated that PGD method scales linearly
with the dimension of the problem rather than exponentially-growing characteristics
exhibited by mesh-based discretization methods [49]. Néron and Ladevèze integrated
PGD techniques within the LATIN method for treating multiscale problems and
showed significant gains in terms of computational cost and storage [140]. Recently,
Radermacher et al. presented a new multiscale modeling technique FEPOD for non-
linear analysis by embedding reduced RVE based on POD method into an FE-based
macro-mechanical simulation [165]. Readers are referred to review paper by Kanouté
et al. for a comprehensive review on recent developments within multiscale modeling
techniques for composites [113].
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Delamination modeling in composites

Delamination or interfacial cracking between plies is one of the most dominant forms
of failure in laminated composites. It often arises due to unforeseen events such as run-
way debris impact or tool-drop during maintenance leading to barely visible damage
[8, 205]. In addition, high inter-laminar stress leads to through-thickness failures
owing to either high localized stress due to geometric (such as stiffener terminations,
free-edges) or material discontinuity (such as ply drop-off) [205]. Since delamination
can result in a significant altering of the load-bearing capacity of composite structures,
especially under compression, understanding and predicting onset and propagation of
delamination events in the early stages of design remains crucial.

Within the context of finite element method (FEM), cohesive zone based models
are widely adopted for interface modeling in composites. Originally conceived by
Dugdale [66] and Barenblatt [19], cohesive fracture concept assumes the existence of
a zone around a crack tip which separates the undamaged and delaminated zones of
the interface. Hillerborg et al. first introduced the concept of cohesive zone modeling
within FEM by developing traction-separation law for estimating the strengths of
unreinforced concrete beams [99]. Since then, several contributions addressing cohesive
zone modeling technique have followed including application for ductile metals [138],
bio-mechanics [51] and mixed-mode delamination in composites [15, 30, 128, 210].
Virtual Crack Closure Technique (VCCT) is yet another technique based on linear
elastic fracture mechanics often introduced within the scheme of finite element method
[172]. Although VCCT is a computationally effective approach, it is restricted to
problems with a predefined initial crack [116].

Precursor to precise delamination analysis involves the accurate resolution of trans-
verse stress-fields. At present, the standard approach involves usage of computationally
intensive three-dimensional (3D) FE models or layer-wise two-dimensional (2D) FE
models for accurate transverse stress-field predictions, thereby limiting their applicabil-
ity at early design stages. In addition, cohesive-based finite element analysis incurs few
shortcomings including the requirement of extremely refined mesh near the cohesive
zone and convergence issues, specifically along the descending branch of the equilibrium
path. Turon et al. proposed a set of engineering solutions to overcome some the issue
pertaining to cohesive modeling within standard FEM context, including a closed-form
expression for penalty stiffness estimation and estimation of cohesive strength based on
mesh density [192]. The scalability of the proposed solution to large-scale progressive
delamination problems was highlighted. Xie and Waas proposed a discrete cohesive
zone model (DCZM) to effectively model delamination analysis [210], where DCZM
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uses a rod-type element to enforce cohesive law, unlike the traditional continuum type
cohesive elements. A class of finite element models within the scheme of isogeometric
analysis using B-splines and NURBS (Non-uniform rational B-splines) are employed
to model delamination analysis [103, 142, 145]. Nguyen and co-workers demonstrated
the effectiveness and robustness of higher-order FEM built within the isogeometric
framework for a variety of class of two- and three- dimensional delamination problems
[142, 145].

Some of the attempts at resolving issues related to convergence include the introduc-
tion of viscous regularization technique [81] and developing new classes of solver such
as arc-length based solvers, catering to the needs of fracture problems [12, 91]. Alfano
and Crisfield introduced a new class of local arc-length method in combination with line
search technique to significantly improve the robustness and efficiency FE delamination
solutions [12]. A numerically efficient solver based on LaTIn-based domain decomposi-
tion method was successfully employed by Allix et al. for problems involving multiple
simultaneous delamination [14]. A dissipation-based arc-length scheme was developed
by Gutiérrez for robust simulation of fracture, where the arc-length constraint was
based on the total energy-release rate [91]. Since the energy-dissipated is a global
quantity, no a priori selection of zone or degree of freedom is required and the scheme
provides stable convergence behavior [198]. The numerical scheme has been successfully
adopted for delamination and multiscale analysis of heterogeneous structures [144, 145].

1.2 Outline

The thesis is broadly classified into three parts. Part I focuses on the formulation and
implementation of CUF for nonlinear analysis. Micromechanical and multiscale models
built within the scheme of 1D CUF is discussed in Part II. Novel numerical modeling
of delamination and impact analysis of composites with CUF 1D models is presented
in Part III.

Part I: Physically nonlinear unified formulation

Chapter 2 presents the higher-order one-dimensional models employed in this thesis
work. One-dimensional models based on Carrera Unified Formulation is formulated
within the finite element framework using the principle of virtual work. The capabilities
of CUF 1D models are highlighted through numerical examples dealing with wave
propagation and failure index evaluation of composite specimens. The chapter intends
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to highlight the fundamentals of formulating the higher-order 1D models and their
applicability for various classes of problems.

Chapter 3 intends to highlight the effectiveness of 1D CUF models to undertake
physically nonlinear simulation. Isotropically work-hardening von-Mises constitutive
model is incorporated within the 1D CUF framework to account for material nonlin-
earity. Numerical results for compact and thin-walled beam members in plastic regime
is presented with displacement profiles and beam deformed configuration along with
stress contour plots. The results are compared against classical beam models such as
EBBT and TBT, reference solutions from literature and three-dimensional solid finite
element solution.

Part II: Micromechanics and Multiscale

Chapter 4 presents a novel micromechanics platform formulated within the scheme
of Carrera Unified Formulation to undertake linear and nonlinear analyses for various
classes of representative volume elements (RVE) architectures. The ability of CUF-CW
models to yield accurate local fields along with effective moduli prediction is demon-
strated. The capability is extended to nonlinear analysis with integration of different
nonlinear constitutive models including crack band for progressive failure analysis and
shear driven plasticity model.

Chapter 5 introduces a computationally efficient concurrent multiscale platform
to undertake linear and nonlinear analyses. The framework exploits the refined one-
dimensional model based on CUF to model various components across multiple scales.
The nonlinearity is introduced within individual constituents at the microscale and its
effect is scaled up to the macroscale by means of homogenization. The efficiency of
the framework is quantified through comparisons with the analysis time and memory
requirement against traditional multiscale implementations.

Part III: Interface and Impact modeling

Chapter 6 presents a novel numerical framework to simulate progressive delamina-
tion in laminated structures based on component-wise models is presented. Formulated
within the Lagrange polynomial based CUF models, Component-wise modeling ap-
proach permits modeling of various components of a complex structure through 1D
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CUF models at a reduced computational cost. A class of higher-order cohesive elements
is integrated within the CUF-CW framework to simulate interfacial cohesive mechanics
between various components of the structure. A bilinear constitutive law based on
mixed-mode delamination propagation is implemented. The approach makes use of the
mixed-mode cohesive constitutive law and a global dissipation energy-based arc -length
method to trace complex equilibrium path exhibited by delamination problem. The
effectiveness and computational efficiency of CUF-CW models are highlighted through
benchmark composite delamination problems and composite structures with multiple
delamination fronts.

Chapter 7 presents an application of CUF 1D models for undertaking impact mod-
eling. Formulation of boundary value problem and incorporation of contact modeling
technique within CUF is briefly explained. The work considers normal, frictionless
contact based on a node-to-node formulation and a penalty approach to enforce the
constraints. Explicit time integration scheme is utilized to undertake initial assessment
of the capabilities of CUF 1D models for impact simulation of elastic rods and wave
propagation on impact in rectangular blocks.

Chapter 8 details summary, concluding remarks and future scope of work. Appendix A
lists all the relevant contribution attributed to the thesis including journal publications
and conference proceedings.
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Chapter 2

Unified formulation

The chapter briefly introduces the higher-order one-dimensional models employed in this
thesis work. One-dimensional based on Carrera Unified Formulation is formulated within
the finite element framework using principal of virtual work. The capabilities of CUF
1D models are highlighted through numerical examples dealing with wave propagation
and failure index evaluation of composite specimens. The chapter intends to highlight
fundamentals of formulating the higher-order 1D models and their applicability for
different kinds of problems.1

2.1 Carrera Unified Formulation

The coordinate system adopted for a generic beam is depicted in Fig. 2.1. The
cross-section Ω overlayed on the x − z plane with the beam axis lying on along the y

axis. A generalized three-dimensional displacement vector is defined as:

u(x, y, z) = {ux uy uz}T (2.1)

1Parts of this chapter has been in published in the following journals:

1. Petrolo M., Kaleel I., Pietro G. D., Carrera E. (2018), "Wave propagation in compact, thin-
walled, and layered beams using refined finite element model", International Journal for
Computational Methods in Engineering Science and Mechanics 19(3): 207-220

2. de Miguel A.G., Kaleel I., Nagaraj M. H., Petrolo M. Pagani A., Carrera E. (2018), Accurate
evaluation of failure indices of composite layered structure via various FE models”, Composite
Science and Technology 167(2):174-189
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Fig. 2.1 Cartesian system for a generic beam

Carrera Unified Formulation (CUF) is hierarchical scheme that provide a structured
basis to generate different classes of axiomatic structural theories [34]. Within one-
dimensional CUF (1D CUF) introduced first by Carrera and Giunta [37], theories
of structures are defined through the definition of cross-section expansion function
Fτ (x, z):

u = uτ (y)Fτ (x, z), ∀ τ = 1, . . . , M (2.2)

where M is the number of terms in the expansion function and uτ (y) is the generalized
displacement vector. Contrary to classical beam models such as EBBT and TBT, the
choice of Fτ along with the number of terms M remains arbitrary and determines the
theory of structure. Various classes of basis functions including polynomial, harmonic,
trigonometric or exponential could be adopted as Fτ without any formal modification
to the formulation [34]. Over the past decades, three classes of expansion functions
are introduced within the context of 1D CUF, namely: (a) Taylor Expansions (TE)
[37], (b) Lagrange Expansions [42] and (c) Hierarchical Legendre Expansion (HLE)
[153]. Within the scope of current work, TE and LE models are widely adopted and
described in detail in the upcoming section.

2.1.1 Taylor Expansion

Taylor Expansion functions are formulated by using McLaurin’s polynomial of kind
xizj as Fτ . Originally formulated by Carrera and Giunta [37], TE CUF models are
hierarchical in nature with user input N determining the theory of structure. Table
2.1 tabulates the polynomial functions for different orders of TE models.
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Table 2.1 Mac Laurin’s polynomials for TE models

Order No. of terms Expansion function
(N) (M) Fτ

TE1 3 F1 = 1, F2 = x, F3 = z

TE2 6 F4 = x2, F5, = xz F6 = z2

TE3 10 F7 = x3, F8 = x2z, F9 = xz2, F10 = z3

. . . . . . . . .

TEN (N + 1)(N + 2)
2 FN2+N+2

2

= xN , FN2+N+4

2

= xN−1z, . . . , F (N+1)(N+2)

2

= zN

Classical beam models such as EBBT and TBT can be obtained as special cases of
TE1. For instance, kinematic field for TBT with 5 unknowns is expressed as:

ux = ux1 (2.3)
uy = uy1 + xuy2 + zuy3 (2.4)
uz = uz1 (2.5)

Detailed information on the formulation of TE models can be found in [37]

2.1.2 Lagrange Expansion

Lagrange expansions are formulated using Lagrange-type polynomial thereby circum-
venting some of the intrinsic limitations with TE models such as inclusion of higher-order
terms, which lack physical meaning [42]. With the adoption of iso-parametric formula-
tion, LE models can be employed to model arbitrary cross-sections and permits local
refinement of kinematics in the region of interest as shown in Fig. 2.2(b). It is impor-
tant to emphasis that the each unknown involved in LE model has a precise physical
meaning as the unknowns are characterized with purely translational displacements, in
contrast to TE models. In the original work by Petrolo and Carrera, three types of
LE cross-section elements were introduced, namely (a) three-node L3, (b) four-node
L4 and (c) nine-node L9 with linear, bi-linear and bi-quadratic displacement field
approximation respectively [42].
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Fig. 2.2 CUF LE elements: (a)L9 cross-section elements and (b) piece-wise discretization
of arbitray beam cross-section using L9 elements with local refinement on top flange

The kinematic field within an L9 cross-section element can be expressed as (see
Fig. 2.2(a)):

ux = F1ux1 + F2ux2 + ... + F9ux9

uy = F1uy1 + F2uy2 + ... + F9uy9

uz = F1uz1 + F2uz2 + ... + F9uz9

(2.6)

where ui1 , . . . , ui9 denotes the nine translational displacement unknowns associated
with L9 in direction i. The interpolation function for the L9 element is given by:

Fτ = 1
2(r2 + rrτ )(s2 + ssτ ) τ = 1, 3, 5, 7

Fτ = 1
2r2

τ (r2 + rrτ )(1 − s2) + 1
2s2

τ (s2 + ssτ )(1 − r2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2) τ = 9

(2.7)

where rτ and sτ are the coordinates of nine nodes of L9 element as depicted in Fig.
2.2(a) and the value of r and s vary from −1 to +1. In addition, LE models facilitate
integration of various classes of variable kinematic models – one-, two- and three-
dimensional models – as kinematic congruence can easily be guaranteed across the
interfaces of elements with different kinematics without any ad-hoc mathematical
manipulations [214].



2.2 Finite Element Formulation of 1D CUF | 23

Mid-span
cross-section

assembled

1D CUF: L-elements
discretizing the cross-sections of

each component

Component-wise
approach

Reinforced-shell
structure

Fig. 2.3 Illustration of CW modeling technique for reinforced shell structure [40]

Component-Wise modeling

Component-Wise (CW) approach is an application of LE based CUF models that allows
modeling of multi-component structures through a compact and unique 1D formulation
[39, 40]. CW approach facilitates the usage of 1D FE model for various component
of a multi-component structure. Figure 2.3 illustrates the CW modeling approach
utilized to model a reinforced shell element [40]. Various component of the reinforced-
shell including panels and ribs are degenerated into individual 1D finite element. By
superimposing the cross-sectional nodes along the interfaces, compatibilities across
various components can be enforced. CW approach also enables local tuning of
kinematics of components of interest. Since the mathematical models are built using
physical boundaries, artificial reference geometric features such as lines for beam axis
and surfaces for plate/shell can be omitted. Figure 2.4 depicts the application of CW
approach for analysis of composite structures across different scales.

2.2 Finite Element Formulation of 1D CUF

2.2.1 Preliminaries

The strain and stress vectors are expressed as:

σ = {σxx σyy σzz σyz σxz σxy}T , ϵ = {ϵxx ϵyy ϵzz 2ϵyz 2ϵxz 2ϵxy}T (2.8)

Under small strain assumptions, the linear strain-displacement relationship is given by:

ϵ = D u (2.9)
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Fig. 2.4 CW modeling adopted for linear static analysis of composites across different
scales along with comparison against traditional methods (Ref1 [111], Ref2 [60], Ref3
[40])

where D is the linear differential operator on displacement vector u and is given by:

D =



∂x 0 0
0 ∂y 0
0 0 ∂z

0 ∂z ∂y

∂z 0 ∂x

∂y ∂x 0


(2.10)

∂x = ∂(·)
∂x

, ∂y = ∂(·)
∂y

, ∂z = ∂(·)
∂z

(2.11)

By introducing a 6 × 6 generic constitutive matrix C̃ with 36 non-zero constants, the
stress-strain behavior can be expressed as:

σ = C̃ϵ (2.12)

By adopting conventional finite element approach, the beam axis along y-axis is
discretized into discrete number of finite elements. Therefore, the displacement field in
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Fig. 2.5 Representation of 1D CUF finite element

Eqn. 2.1 can be reformulated as:

u(x, y, z) = Fτ (x, z)Ni(y)uτi ∀ τ = 1, . . . , M i = 1, . . . , p + 1 (2.13)

where Ni stands for ith shape function of order p and uτi denotes generic nodal
displacement vector:

uτi = [uxτi
uyτi

uzτi
]T (2.14)

Figure 2.5 depicts a 1D CUF finite element with shape function Ni(y) along the
beam axis in y direction and expansion function Fτ (x, z) overlayed on x − z plane It is
important to emphasis the fact that choice of FE shape function Ni remains independent
of kind of expansion function Fτ employed. Standard Lagrange polynomials are adopted
as shape functions. Three types of 1D finite elements are extensively adopted in this
work, namely (a) two-node B2, (b) three-node B3 and (c) four-node B4 corresponding
to linear, quadratic and cubic approximations respectively. The shape functions along
with the location of their ith node are expressed as [20]:

B2:
N1 = 1

2 (1 − ξ)
N2 = 1

2 (1 + ξ)

}
ξ1 = −1
ξ2 = 1

B3:
N1 = 1

2 ξ(1 − ξ)
N2 = −(1 − ξ)(1 + ξ)
N3 = 1

2 ξ(1 + ξ)


ξ1 = −1
ξ2 = 0
ξ3 = 1

B4:
N1 = − 9

16 (ξ + 1
3 )(ξ − 1

3 )(ξ − 1)
N2 = 27

16 (ξ − 1)(ξ − 1
3 )(ξ + 1)

N3 = − 27
16 (ξ + 1)(ξ + 1

3 )(ξ − 1)
N4 = 9

16 (ξ + 1
3 )(ξ − 1

3 )(ξ + 1)


ξ1 = −1
ξ2 = −1/3
ξ3 = 1/3
ξ4 = 1

(2.15)
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2.2.2 Weak formulation of 1D CUF

Consider a domain Ω with essential boundary conditions acting along the boundary Γu

and traction ti prescribed along Γn.The equilibrium equation for the balance of linear
momentum leads to:

σij,j + bi = ρüi, ∀ i, j = 1, 2, 3 (2.16)
with ti = σijnj in Γn (2.17)

where σij refers to the components of Cauchy stress, ρ denotes the mass density, bi are
body force components and ü denotes the second partial derivative of displacement
with respect to time. Displacement-based finite element solutions are often formulated
on the basis of Principle of Virtual Displacement (PVD) which states that for any
imposed virtual displacement on a body in a state of equilibrium, the total internal
virtual work equals the total external virtual work [20]:∫

Ω
δui ρ ü dΩ︸ ︷︷ ︸

δLine

+
∫

Ω
δϵij σij dΩ︸ ︷︷ ︸

δLint

−
∫

Ω
δui bi dΩ −

∫
Γt

δui ti dΓ︸ ︷︷ ︸
δLext

= 0 (2.18)

where δ stands for the virtual variation and Lint, Lext and Line stands for internal strain
energy, work done by the external loads and work due to inertial loading respectively.
The virtual variation of strain energy in the matrix form can be expressed as:

δLint =
∫

V
δϵ σ dV (2.19)

=
∫

V
δϵ C̃ ϵ dV (2.20)

The strain-displacement relationship expressed in Eqn. 2.9 is reformulated using Eqn.
2.13:

ϵ = Dτi uτi Dτi =



NiFτ,x 0 0
0 Ni,yFτ 0
0 0 NiFτ,z

0 NiFτ,z Ni,yFτ

NiFτ,z 0 NiFτ,x

Ni,yFτ NiFτ,x 0


(2.21)
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Analogously, the virtual variation of strain vector can be expressed in terms of virtual
variation of nodal unknowns usj:

δϵ = Dsj δusj (2.22)

with

δu(x, y, z; t) = Fs(x, z)Ni(y)δusj(t) ∀ s = 1, . . . , M j = 1, . . . , p + 1 (2.23)

Therefore, the virtual variation of strain energy can be reformulated as:

δLint = δusj

∫
V

{
DT

sj C̃ Dτi dV
}

uτi (2.24)

= δusj kτsij uτi (2.25)

where kijτs is termed as the Fundamental Nucleus (FN) of the structural stiffness for
1D CUF FE model. The nucleus is a matrix of dimension 3 × 3 of the form:

kτsij =


kxx

τsij kxy
τsij kxz

τsij

kyx
τsij kyy

τsij kyz
τsij

kzx
τsij kzy

τsij kzz
τsij

 (2.26)

The expansion of indices i, j, τ, s leads to construction of structural stiffness matrix
of a single 1D CUF finite element. Diagonal and off-diagonal terms have recurrent
expressions stemming from the following:

kxx
τsij = (C̃11Fs,xNj + C̃51Fs,zNj + C̃61FsNj,y)Fτ,xNi + (C̃15Fs,xNj + C̃55Fs,zNj +(2.27)

C̃65FsNj,y)Fτ,zNi + (C̃16Fs,xNj + C̃56Fs,zNj + C̃66FsNj,y)Fτ Ni,y

kxy
τsij = (C̃12Fs,xNj + C̃52Fs,zNj + C̃62FsNj,y)Fτ Ni,y + (C̃14Fs,xNj + C̃54Fs,zNj +(2.28)

C̃64FsNj,y)Fτ,zNi + (C̃16Fs,xNj + C̃56Fs,zNj + C̃66FsNj,y)Fτ,xNi

(2.29)

In matrix notation, the expression for virtual variation of work due to inertial loading
reads:

δLine =
∫

V
δu ρ ü dV (2.30)
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Recalling the 1D CUF FE kinematic approximation in Eqn. 2.13, the nodal accelerator
vector can be expressed as:

ü(x, y, z; t) = Fτ (x, z)Ni(y)üτi(t) ∀ τ = 1, . . . , M i = 1, . . . , p + 1 (2.31)

üτi denotes generic nodal displacement vector at given instance of time t. Therefore,
the δLine can be rewritten as:

δLine = δusj

∫
V

{Nj Fs ρ I Ni Fτ dV } üτi (2.32)

= δusjmτsijüτi (2.33)

where I is the 3 × 3 identity matrix and mτsij is the fundamental nuclei of the mass
matrix for 1D CUF FE model. Analogous to the structural FN, nucleus is a matrix of
dimension 3 × 3 and the complete mass matrix for a 1D CUF finite element can be
built by expanding the indices i, j, τ, s. The virtual variation of external work holds

δLext =
∫

V
δuT gdV +

∫
S

δuT qdS +
∫

l
δuT rdl + δuT Pm (2.34)

where g, q, r and Pm are body forces per unit volume, surface forces per unit area, line
forces per unit line and concentrated force acting at point m respectively. Accounting
for Eqn 2.23, the work due to external loading δLext can be expressed as:

δLext = δusj

{∫
V

NjFs g dV +
∫

S
NjFs q dS +

∫
l
NjFs r dl + NjFsPm

}
(2.35)

= δusj psj (2.36)

Detailed information on the derivation of various types of external loadings can found
in [193].

The fundamental nuclei formulated is an invariant, i.e formal expressions in the
nucleus remains the same irrespective of the choice of shape function or expansion
function. For an assembly of generic, arbitrary higher-order beam elements of order p

and expansion function with M terms, the global assembly is achieved by expanding
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indices of FNs τ, s = 1, 2, . . . M and i, j = 1, 2, . . . p + 1:

Kτsij =
nelem∑
n=1

p+1∑
i,j=1

M⋃
τ,s=1

kτsij (2.37)

Mτsij =
nelem∑
n=1

p+1∑
i,j=1

M⋃
τ,s=1

mτsij (2.38)

psj =
nelem∑
n=1

p+1∑
j=1

M⋃
s=1

psj (2.39)

where operator ∑ is the finite element assembly operator that sum the corresponding
contribution from nelem elements for a given shared degrees of freedom, operator⋃ is the CUF assembly operator which sums the corresponding contribution based
on order of FE and the theory of structure and array Kτsij, Mτsij and pτi are the
global assembled stiffness matrix, global mass matrix and global external load vector
respectively. Graphical illustration of assembly process is depicted in Fig. 2.6 where
fundamental nucleus forms the building block, loop through expansion function indices
τ and s leads to a matrix for a given pair of FEM indices i and j, loop through FEM
indices of i and j leads to matrix of a given FEM element and loop though all the
FEM elements leads to global assembled matrix. Detailed information on the assembly
procedure can be found in the book by Carrera et al. [34].

Fig. 2.6 Illustration of assembly process using fundamental nuclei within CUF [34]
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2.2.3 Governing Equation

Recalling the weak form of equilibrium equation from Eqn. 2.18:

δLine + δLint − δLext = 0 (2.40)

Introducing fundamental nuclei of structural stiffness matrix (Eqn. 2.24), mass matrix
(Eqn. 2.32) and vector of external loadings (Eqn. 2.35) into Eqn. 2.40:

δusjmτsijüτi + δusj kτsij uτi − δusj psj = 0 (2.41)
δusj {mτsijüτi + kτsij uτi − psj = 0} (2.42)

∀ i, j = 1, . . . , p + 1 τ, s = 1, . . . , M (2.43)

Using the global assembled finite element matrix defined in Eqn. 2.37, the compact
form of governing equation can be expressed as:

Mτsijüτi + Kτsijuτi = Psj (2.44)

It is important to emphasis the fact that compact formulation expressed in Eqn. 2.44
are invariant to the choice of shape function as well as cross-section expansion functions.
Therefore, same numerical implementation can yield a class of structural theories where
the choice of expansion function is a free parameter.

Nonlinear incremental quasi-static solver

Within the context of quasi-static nonlinear FEM, the incremental form of equilibrium
equation is formulated by neglecting the inertia terms:

fint(u) − p = 0 (2.45)

where fint is the global vector of internal force which depends on the global unknowns
vector u and fext stands for global external force vector. Using the notation introduced
for 1D CUF finite elements in Section 2.2.2, the compact form of Eqn. 2.45 using CUF
fundamental nuclei can be expressed as:

ks
τsijuτi − psj = 0 (2.46)

where ks
τsij denotes the fundamental nuclei of secant stiffness matrix obtained using

secant material matrix in Eqn. 2.24. Therefore, the compact form of the nonlinear
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governing equation can be expressed as:

Ks
τsijuτi = Psj (2.47)

The incremental finite element scheme is realized through parametrization of external
loading by introducing load factor λ (see Fig. 2.7(a)):

fint(u) − λnp = 0 (2.48)

where λn refers to the prescribed load factor at time instance tn. Newton-Raphson
(N-R) scheme is adopted to obtain step-wise solution from an equilibrium point n to
n + 1. Using the solution vector at time instance tn+1, the Taylor series expansion of

λn+1

λn

un=u0
n+1

uk uk+1u1

n+1n+1n+1
u

n+1
u

λ Local NR Iteration

λ1

λ2

λn

λn+1

λ

u1 u2 un un+1 u

Global load increment

(a) (b)

Fig. 2.7 One-dimensional representation of Newton-Raphson iteration with load control:
(a) Parametrization of external loading and (c) local iterations within each load
increment

internal force vector is given by [20]:

fint(uk+1
n+1) = fint(uk

n+1)+ ∂fint(uk
n+1)

∂uk
n+1

(uk+1
n+1 −uk

n+1)+ 1
2

∂2fint(uk
n+1)

∂uk 2
n+1

(uk+1
n+1 −uk

n+1)2 + ....

(2.49)
where k denotes the iteration index for the current increment. By truncating the Taylor
series expansion at linear term, N-R scheme for linearized incremental equilibrium
equation can be formulated:

fint(uk+1
n+1) = fint(uk

n+1) + ∂fint(uk
n+1)

∂uk
n+1︸ ︷︷ ︸

KT

∆u; ∆u = uk+1
n+1 − uk

n+1 (2.50)
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where ∆u is the incremental displacement for a given iteration and KT refers to tangent
stiffness matrix obtained by taking partial derivative of current internal force with
respect to current solution. Compact form of Eqn. 2.50 using CUF matrix notations
can be expressed as:

φres
sj = KT

τsij∆uτi (2.51)

where kT
τsij refers to global tangent stiffness nucleus and φres

sj denotes the residual
nodal vector of unbalanced forces. As illustrated in Fig. 2.7(b), a new tangent matrix
computed at each iteration. In order to acheive asymptotic quadratic convergence
exhibted by N-R methods, exact computation of tangent stiffness matrix is crucial.
Since current work is limited to physically nonlinear problems, formulation of tangent
stiffness nucleus is reduced to obtaining material tangent matrix.

The effectiveness of an incremental solution methods relies on robust and realistic
termination criteria. A loose convergence criteria can yield inaccurate results whereas
tight convergence criteria can lead to very high computational cost due to increased
number of additional iterations. A displacement-based convergence criteria is set:

||∆uk
n+1||2

||un+1||2
≤ TOL (2.52)

Dynamic response

Introducing damping contribution into the governing equation (Eqn. 2.44), the equation
of motion for dynamic analysis yields:

Mτsijüτi + Cτsiju̇τi + Kτsijuτi = Psj (2.53)

where u̇τi refers to the nodal velocity vector and the global damping matrix Cτsij is
formulated using Rayleigh damping coeficients γ and β as:

Cτsij = γMτsij + βKτsij (2.54)

Two classes of solution methods are widely adopted to solve the system of linear
differential equation of second order:

1. Direct method

Direct method are characterized with no a priori transformation of equation to
different forms with integration of the governing equation using a step-by-step
numerical scheme, for instance Central difference scheme (CDS), Newmark scheme
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and Houbolt method. The equilibrium equation (2.53) is satisfied at discrete time
intervals within the solution interval. Two types of time integration operators
are comprised within direct time integration method, namely (a) Implicit and (b)
Explicit. The fundamental difference between the operators is that the former
computes the current solution based on current as well as previous known solution
states whereas the latter computes the new solution purely based on the known
quantities. Implicit schemes such as Newmark method are characterized as
unconditionally stable thereby allowing large time steps but requires an iterative
scheme along with factorization of assembled global matrices at every time step.
Explicit scheme such as CDS method are characterized as conditionally stable and
the adopted time step size can effect the stability and lead to spurious oscillation.
Popularity of explicit schemes can be attributed to the computational efficiency
of the method as the computation operations are limited to basic mathematical
matrix-vector operations unlike implicit methods.

2. Mode superposition

Mode superposition method involves solving the equilibrium equation by trans-
forming the unknown vector using a finite number of eigen modes. In direct
method, the computational cost associated with the solution is directly depen-
dent on the total number of time steps and their effectiveness deteriorates as the
system of equation grows larger. Even though mode superposition methods are
very powerful, their application is limited to loadings with low frequency contents
[20].

Dynamic response analysis for different classes of structures using CUF framework
have been widely studied in the past. Carrera and Varello investigated the accuracy of
variable kinematic CUF models for compact and thin-walled structures with dynamic
loading by employing implicit Newmark scheme [43]. Pagani et al. investigated dynamic
response of typical aerospace structure using mode-superposition method within CUF
framework [154]. In this work, an explicit time integration method based on the
Tchamwa-Wielgosz (TW) scheme, an extension of central difference scheme through
introduction of additional damping terms [122]. Finite element solution involving
high frequency loading such as wave propagation or impact analysis often exhibits
spurious oscillation due to spatial and temporal dispersion error [21, 122, 146]. Some
of the attempts at reducing such dispersion error involves introduction of lumped mass
matrices [208], adoption of higher-order FE [132], filtering of spurious modes [102]
and employing numerical dissipation in time integration scheme such as bulk viscosity
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method (BVM) [24] and TW scheme [122]. Since higher-order formulation within CUF
naturally addresses the spatial dispersion error, dissipative explicit method based on
TW scheme is adopted and can be expressed as follows (for sake of brevity, indices are
excluded):

Ut+∆t = Ut + ∆tU̇t + φ∆t2Üt

U̇t+∆t = U̇t + 1
2∆Üt

Üt+∆t = M−1
[
Fext

t+∆t − C ˙Ut+∆t − KUt+∆t

] (2.55)

where ∆t is the time increment and the parameter φ controls the damping efficiency of
the scheme. Since closed-form expression are not readily available to compute critical
time step for higher-order finite elements, power iteration is used to compute the
highest-frequency ωn of the system [134]. Thereore, the critical time step size is defined
as:

∆tcr = 2
ωn

(2.56)

2.3 Numerical cases

2.3.1 One-dimensional stress wave propagation

The accuracy and stability of the CUF 1D formulation to undertake linear dynamic
problem is analyzed by modeling the classic 1D stress wave problem. The 1D numerical
case is commonly adopted in the literature to validating and benchmarking new
numerical frameworks as analytical solutions are available [122, 146]. An isotropic
beam with a square cross-section of 0.2 m and length of 5.0 m is considered. The
Young’s modulus (E) of beam is taken as 207 GPa with a Poisson’s ratio of zero and
density (ρ) of 7800 kgm−3 is assumed. Figure 2.8 depicts the geometry and boundary
conditions of the problem. A pulse load p0 = 0.1 MPa was applied for a duration from
0 (t0) - 0.19 (t1) ms.

L w

hp

Fig. 2.8 Geometry and boundary conditions for 1D stress wave problem
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p0

t0 t1 t2

p

t

Fig. 2.9 Time history of loading for 1D stress wave problem

A cross-section model with 1L9 element is associated to the beam assembly with a
varying number of B4 elements. An explicit Tchamma-Wielgosz numerical scheme is
employed to run the analysis for a duration of 1.2 ms. The damaping parameter φ is
set as 1.013. In addition, stiffness proportional damping is also introduced into the
system. A similar model is developed in ABAQUS using 250 linear brick element with
a BVM based explicit scheme for time integration.

For a 1D wave propagation problem, the governing wave equation reads:

∂2u

∂y2 = 1
c2

0

∂2u

∂t2 , c0 =
√

E

ρ
(2.57)

where c0 denotes the wave speed of the material. Using the method of d’Alembert,
solution for the wave equation can be written as:

u(y, t) = f(y − c0 t) + g(y + c0 t) (2.58)

where f and g are arbitrary functions representing right-traveling and left-traveling
waves, respectively [88]. The solution obtained using CUF models are compared
against analytical and ABAQUS results. Figure 2.10 compares the stress and velocity
distribution along the axis of the beam at various time instances obtained using
CUF-CW model with 70B4 elements against analytical and ABAQUS solution. The
contour plot stress wave (σyy) at various time instances for CUF-CW model with 70B4
element is depicted in Fig. 2.11. The effect of mesh density along the axis on the stress
distribution is studied in Fig. 2.12.

Following observations can be drawn:

1. CUF models are able to capture the wave propagation with great accuracy

2. As the mesh density is increased, the spurious oscillations are easily mitigated,
even at the reflected wave front
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3. From Fig. 2.12, it is evident that the dispersion error gets almost nullified with
70 B4 elements along the beam axis whereas ABAQUS models required 250
elements.

2.3.2 Failure index evaluation of a notched composite speci-
men

The numerical example focuses on the importance of accurate stress fields for evaluating
failure indices. A rectangular plate with a hole under axial displacement is investigated.
Three sets of lamination sequences are considered: (a) [0], (b) [90] and (c) [0/90]s.
Figure 2.13 depicts the geometry and boundary condition of the notched specimen.

Figure 2.14 illustrates the CW modeling technique employed to model the CUF-LW
notched specimen as a three-component beam assembly. In order to compare the
accuracy of the obtained results, various 3D FEM models based on standard 3D brick
elements with varying mesh density is built using ABAQUS. Information regarding
the mesh configuration along with the problem size and analysis time is tabulated in
Table 2.2. The far-notch beam configuration is modeled with a combination of B4
beam elements along with L9 cross-section elements, where the beam is oriented in the
y-direction. Each far-notch zone spans 49 mm in length. A combination of B3 beam
elements along with L9 elements is employed to model the near-notch region. Since
CW models contain only displacement unknowns, various components can be easily
interfaced. Detailed information on the integration of 1-, 2- and 3-dimensional refined
models within the CUF framework can be found in the [214].

Hashin 3D failure criteria is employed to evaluate intra-laminar failure indices with
1- denoting the fiber direction and 2-3 represents the transverse directions of the ply
[93]:

1. Fibre Tension: (
σ2

11
XT

)2

+ σ2
12 + σ2

13
S2

12
≥ 1 (2.59)

2. Fibre Compression: (
σ2

11
XC

)2

≥ 1 (2.60)

3. Matrix Tension:

(σ22 + σ33)2

Y 2
T

+ σ2
23 − σ22σ33

S2
23

+ σ2
12 + σ2

13
S2

12
≥ 1 (2.61)
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(a) Propagating wave

0 1 2 3 4 5
Distance along the beam axis [m]

-0.1

-0.08

-0.06

-0.04

-0.02

0.00

0.02

S
tr

es
s 

- 
yy

 [M
P

a]

Analytical
ABAQUS
CUF-LE

0 1 2 3 4 5
Distance along the beam axis [m]

-25

-20

-15

-10

-5

0

5

V
el

oc
ity

 -
 v

y [m
s-1

]

10-4

Analytical
ABAQUS
CUF-LE

(b) At boundary - superposition of waves
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(c) Reflecting wave
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(a) Stress distribution
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Fig. 2.10 Stress and velocity distribution along the beam for time (a) t = 0.58ms (b)
t = 1.01ms and (c) t = 1.2ms using 70 B4-elements for one-dimensional stress wave
problem
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Fig. 2.11 Stress (σyy) wave propagation in beam at time (a) 0.58ms (b) 1.03ms and (c)
1.2ms for one-dimensional stress wave problem
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Fig. 2.12 Comparison of Stress (σyy) plot along the beam axis for different mesh density
at time 0.58ms for 1D stress wave problem
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Fig. 2.13 Geometry and boundary conditions for failure evaluation of notched composite
specimens
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Table 2.2 Model information for failure index evaluation of notched composite specimens

Model Discretization DOF CPU Time (s)
Laminate 1 : [0]
CUF-LW C2: 7L9-10B4 and C1:136L9-1B3 (One el-

ement per layer)
9,414 4

ABQ3D-Coarse Linear brick elements (C3D8) with an aver-
age element size of 0.275 around the notch.
Two elements per layer.

25,632 6

ABQ3D-Refined Linear brick elements (C3D8) with an av-
erage element size of 0.2 around the notch.
Two elements per layer.

39,348 12

Laminate 2 : [90]
CUF-LW C2: 7L9-10B4 and C1:136L9-1B3 (One el-

ement per layer)
9,414 4

ABQ3D-Coarse Linear brick elements (C3D8) with an aver-
age element size of 0.275 around the notch.
Two elements per layer.

25,632 6

ABQ3D-Medium Linear brick elements (C3D8) with an av-
erage element size of 0.2 around the notch.
Two elements per layer.

39,348 7

ABQ3D-Refined Linear brick elements (C3D8) with an av-
erage element size of 0.1 around the notch.
Two elements per layer.

93,960 15

Laminate 3 : [0/90]s
CUF-LW1 C2: 28L9-10B4 and C1:136L9-4B3 (One el-

ement per layer)
28,242 19

CUF-LW2 C2: 28L9-10B4 and C1:136L9-12B3 (Two
elements per layer)

53,346 42

ABQ3D-1L Linear brick elements (C3D8) with an av-
erage element size of 0.1 around the notch.
One element per layer.

187,320 42

ABQ3D-2LQ Quadratic brick elements (C3D20) with
an average element size of 0.2 around the
notch. Two element per layer.

265,782 68

ABQ3D-4LR Linear brick elements (C3D8) with an aver-
age element size of 0.05 around the notch.
Four elements per layer.

1,306,977 602
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Fig. 2.14 Modeling of notched composite specimens using refined 1D CUF-LW models

4. Matrix Compression:[(
YC

2S23

)2
− 1

] (
σ22 + σ33

YC

)
+ (σ22 + σ33)2

4S2
23

+ σ2
23 − σ22σ33

S2
23

+ σ2
12 + σ2

13
S2

12
≥ 1

(2.62)

where σij represents the components of the stress tensor in the material coordinate
system. X, Y represents that of the material strengths in fiber and transverse direction,
with the subscripts T and C denoting tensile and compressive loading, respectively.
The material shear strengths is denoted by Sij. A mixed-mode quadratic criteria
proposed by Brewer and Lagace is used to determine the delamination index [28]:

(
< σ33 >

ZT

)2
+
(

σ23

S23

)2
+
(

σ13

S13

)2
≥ 1 (2.63)

where σ33 denotes the transverse normal stress in the material coordinate system,
S13 and S23 are the transverse shear stresses with ZT being the inter-laminar normal
strength while S13 and S23 are the transverse shear strengths.

The first ply failure load is computed as the load at which one of the failure indices
attains the unity. Table 2.3 tabulates the first ply failure load for different models
along with the mode of failure. Figures 2.15a and 2.15b depicts the in-plane stress
distribution along the width of the [0] and [90] notched specimens respectively. The
Hashin 3D matrix tension contour plot for [0] and [90] laminates are depicted in Fig.
2.16 and Fig. 2.17 respectively, where an applied displacement of 0.2 mm corresponded
to first ply failure for [0] whereas an applied displacement of 0.45 mm was required for
[90] laminate.

Figures 2.18, 2.19 and 2.20 depicts the through-the-thickness axial stress σyy, the
transverse shear stresses σxy and σyz for [0/90]s notched laminate respectively. The
contour plots in Fig. 2.21 and Fig. 2.22 refers to Hashin-3D matrix tension and the
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Table 2.3 Numerical results for load at first ply failure for different models of notched
composite specimens

Model DOF Load at first ply failure [N] First ply failure mode

Laminate 1 : [0]
CUF-LW 9,414 1,120
ABQ3D-Coarse 25,632 1,142 Matrix Tension
ABQ3D-Refined 39,348 1,120

Laminate 2 : [90]
CUF-LW 9,414 141

Matrix Tension
ABQ3D-Coarse 25,632 147
ABQ3D-Medium 39,348 146
ABQ3D-Refined 93,960 141

Laminate 3 : [0/90]s
CUF-LW1 28,242 1,531

Matrix Tension
CUF-LW2 53,346 1,500
ABQ3D-1L 187,320 2,097
ABQ3D-2LQ 265,782 1,737
ABQ3D-4LR 1,306,977 1,797
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Fig. 2.15 Normal stress distribution along the width of notched composite specimen,
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Fig. 2.16 Hashin3D matrix tension (MT) failure index for [0] laminate under an applied
displacement of 0.2 mm
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Fig. 2.17 Hashin3D matrix tension (MT) failure index for [90] laminate under an
applied displacement of 0.45 mm
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delamination failure indices, for the [0/90]s laminate under an applied displacement of
0.125 mm

Fig. 2.18 Normal stress distribution σyy through the thickness of [0/90]s notched
laminate under an applied displacement of 0.125 mm, x = 16.875, y = 69

Fig. 2.19 In-plane shear stress distribution σxy through the thickness of [0/90]s notched
laminate under an applied displacement of 0.125 mm, x = 16.875, y = 69

Following observations can be made:
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Fig. 2.20 Transverse shear stress distribution σyz through the thickness of [0/90]s
notched laminate under an applied displacement of 0.125 mm, x = 17.04, y = 68
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Fig. 2.21 Hashin3D matrix tension (MT) failure index for [0/90]s laminate under an
applied displacement of 0.125 mm
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Fig. 2.22 Delamination failure index for [0/90]s laminate under an applied displacement
of 0.125 mm
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1. In comparison to ABAQUS 3D solutions, CUF models are able to accurately
capture in-plane stress predictions (See Fig. 2.15a and Fig. 2.15a for the [0] and
[90] ply laminates respectively)

2. In case of [0] and [90] ply laminates, load at first ply failure tends to agree well
for ABAQUS and CUF models.

3. For [0/90]s, ABAQUS models severely underestimates the out-of-plane stresses
as compared to CUF models as seen in Fig. 2.20. The effect of under-predictions
is significantly reflected in the failure index evaluations as shown in Fig. 2.21 and
2.22 for matrix tension delamination index predictions. The predictions from
ABAQUS models tends to improve as the through-the-thickness mesh density is
improved.

4. From Table 2.3, it is evident that failure to capture accurate stress fields can
substantially over-predict the load at first ply failure.

2.4 Conclusion

The chapter presented the higher-order one-dimensional formulation adopted in the
thesis work. The one-dimensional models are based on Carrera Unified Formulation
(CUF), a hierarchical formulation that provide a structured basis to derive any class of
refined beam, plate or shell theories through variable kinematic definition. Using the
principle of virtual work, the governing equation for CUF models are formulated in
concise manner though the definition of fundamental nuclei. Special emphasis placed
on the invariant nature of the formulation as the same numerical implementation can be
employed for generating different classes of higher-order models. The ability of CUF-1D
model to accurately capture three-dimensional fields at a reduced computational cost is
highlighted through two numerical case. Stress wave propagation in an isotropic beam
underlined the CUF models to efficiently capture severe stress gradients at the wave
fronts. The efficiency can be exploited in modeling impact problems . Failure index
evaluation of notched composite specimen emphasized the importance of higher-order
models in resolving three-dimensional stress fields for computing failure indexes. For
instance, the inability of standard 3D FEM to capture out-of-plane stresses highlights
the importance of non-traditional higher-order models for high-fidelity analysis in
composites. Since accurate resolution of displacement and stress fields is a precursor for
reliable nonlinear simulations, proposed higher-order 1D models are apt for undertaking
physically nonlinear simulation with an added benefit of computational efficiency.





Chapter 3

Study on higher-order models for
physically nonlinear simulations
using elastoplastic models

The present chapter intends to highlight the effectiveness of 1D CUF models to undertake
physically nonlinear simulation. Isotropically work-hardening von-Mises constitutive
model is incorporated within the 1D CUF framework to account for material nonlinearity.
Numerical results for compact and thin-walled beam members in plastic regime is
presented with displacement profiles and beam deformed configuration along with stress
contour plots. The results are compared against classical beam models such as EBBT
and TBT, reference solutions from literature and three-dimensional solid finite element
solution. 1

3.1 Elastoplastic material models

The theory of elastoplasticity provides a realistic mathematical description of inelastic
behavior in metals. The von-Mises theory is based on the hypothesis that metal yields
when the J2 stress deviator reaches the critical value [133]. The inelastic deformations

1Parts of this chapter has been in published in the following journal:

1. Carrera E., , Petrolo M. (2017), “Elastoplastic analysis of compact and thin-walled structures
using classical and refined beam finite element models”, Mechanics of Advanced Materials and
Structures

2. Kaleel I., Petrolo M., Carrera E., Waas A., (2019) "On the effectiveness of higher-order models
for physically non linear analysis", in “Advances in Predictive Models and Methodologies for
Numerically Efficient Linear and Nonlinear analysis of Composites”
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are accompanied by dissipation of energy, which in turn leads to permanent deformation
when completely unloaded. Within the context of geometrically linear theorem, the
classical theory of plasticity can be defined based on a set of equations, which determine
the elastic material behaviour and inelastic deformation evolution:

1. Additive split of strain tensor

An important hypotheses within the small strain theory of plasticity is the
decomposition of total strain into sum of elastic strain, ϵe, (reversible) and plastic
strain, ϵp, (permanent),

ϵ = ϵe + ϵp (3.1)

2. Elastic domain

Elastic domain is the range of stress within which the behavior is completely
elastic and the domain is delimited by the yield boundary. Therefore, the yield
function Φ is of the form

Φ(σ, ζ) ≤ 0 (3.2)

The hardening parameter ζ determines the extent of yield function in the contin-
ued process of plastification. Therefore the boundary of elastic domain is given
by Φ(σ, ζ) = 0 and stress states outside the elastic domain is not admissible.

E E
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�
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�

�
e

Eep

f<0

f>0

f=0
y

(a) (b)

2

1

Fig. 3.1 Elastoplastic material behavior: (a) elastic domain and yield function in stress
space and (b) additive split of total strain

3. Plastic flow rule
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The plastic yielding occurs when the yield function Φ = 0 with a nonzero plastic
strain rate ϵ̇p, which is given by:

ϵ̇p = γ̇ sign(σ) (3.3)

where γ̇ is the plastic multiplier and sign function decides the sign of the plastic
strain rate (positive for tension and negative for compression). The criteria for
plastic flow (loading/unloading) condition is formulated in a concise manner
based on Kuhn-Tucker condition:

Φ ≤ 0, γ̇ ≥ 0, Φγ̇ = 0 (3.4)

4. Hardening law

Hardening law describes the evolution of yield stress based on the evolution of
plastic strain. Isotropic hardening is characterized with expanding yield surface
in the stress space, which can be expressed as:

σy = σy(ϵ̄p) (3.5)

where ϵ̄p is the accumulated plastic strain. Based on the plastic flow rule,
accumulated plastic strain can be expressed as:

ϵ̄p =
∫ t

0
|ϵ̇p| dt =

∫ t

0
|γ̇| dt (3.6)

3.1.1 Numerical aspects of von Mises plasticity model

The condition for von Mises plasticity model with an isotropic hardening case can be
expressed as:

f = q(σ) − σy(ϵ̄p) (3.7)

with

q(σ) =
√

3J2 =
√

1
2
[
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σ2

xy + σ2
xz + σ2

yz)
]

(3.8)
where f is the von-Mises yield locus, q(σ) is the von-Mises stress, σy is the yield stress
(elastic limit), J2 is the second invariant of deviatoric stress and ϵ̄p is the isotropic
hardening parameter. The flow rule is given by the Prandtl-Reuss equation, which
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is obtained by considering the von-Mises yield function (see Eqn. 4.7) as the flow
potential. The flow vector reads:

N = ∂f

∂σ
=
√

3
2

s
||s||

(3.9)

where s is the deviatoric stress tensor. Hardening is a phenomenological aspect of
plastic yielding which is characterized by the dependence of the critical yield value on
the history of plastic strains.

For the current framework, a rate-independent isotropic hardening is considered.
It is incorporated into the formulation by making the yield stress as a function of
accumulated plastic strain as given in Eqn. 4.7 and corresponds to uniform expansion
of initial yield locus. On the other hand, a perfectly plastic behavior is characterized
with no hardening. The yield stress does not depend on the accumulated plastic strain.
In the current framework, strain hardening approach is utilized to treat the isotropic
hardening behavior. Taking into account the associative flow rule, the rate evolution
equation can be formulated as

ϵ̄ =
√

2
3 ||ϵp|| (3.10)

The implementation of constitutive model is based on the book by Neto et. al. [141].

Implicit numerical integration scheme

Two essential material specific operations involved are: (1) the state update procedure,
where stress σk

n+1 and hardening variable ϵ̄k
p are computed at every gauss point and

(2) computing the tangent stiffness matrix for solving the nonlinear finite element
equations. In the state update procedure presented here, backward Euler scheme is

Fig. 3.2 Geometrical illustration of Return-Mapping scheme: (a) perfect plasticity and
(b) with hardening
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utilized. This leads to a two-step algorithm for the state update as follows:

1. Elastic Predictor Step
In a given increment [tn − tn+1] with a strain increment ∆ϵ, solution is assumed
to be elastic and leads to an elastic trial solution

ϵe,trial
n+1 = ϵe

n + ∆ϵ (3.11)

ϵ̄pn+1 = ϵ̄pn (3.12)

The corresponding elastic trial stress is computed and solution is accepted, if
the elastic trail stress lies within the yield locus. In case the elastic trial stress
exceeds the yield locus, Plastic Corrector Step is initiated

2. Plastic Corrector Step
A scalar nonlinear equation with incremental plastic multiplier ∆γ as the unknown
is solved using Newton-Raphson (NR) method

f̄(∆γ) = qtrial
n+1 − 3G∆γ − σy(ϵ̄p

n + ∆γ) (3.13)

where qtrial
n+1 is the trial von-Mises stress. With solution ∆γ at hand, state variables

are updated

sn+1 =
(

1 − ∆γ3G

qtrial
n+1

)
strial

n+1 (3.14a)

σn+1 = sn+1 + ptrial
n I (3.14b)

ϵe
n+1 = 1

2G
sn+1 + 1

3ϵe,trial
v I (3.14c)

ϵ̄p
n+1 = ϵ̄p

n+1 + ∆γ (3.14d)

Geometrical interpretation of return-mapping scheme is illustrated in Fig. 3.2. It
should be noted that each iteration step consists of a global Newton-Raphson step for
computing the global incremental solution and local Newton-Raphson step at every
gauss point to compute the incremental plastic multiplier as shown in Eqn. 3.13.

Consistent elastoplastic tangent operator

Newton-Raphson scheme is often characterized with good convergence qualities. Quadratic
rate of asymptotic convergence of the global iteration procedure can only be guaranteed
when a full tangent matrix is used. In order to ensure robustness of Newton-Raphson
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iterative scheme, it is important to compute the elastoplastic tangent modulus (Cep)
correctly. The elastoplastic tangent modulus is a fourth-order tensor, which is obtained
by taking variations of integrated equations with respect to the solution variables. An
elastoplastic consistent tangent operator is defined as follows:

Cep = ∂σ

∂ϵe,trial
n+1

(3.15)

After straightforward manipulation of Eqns. 3.14-3.15, following expression can be
obtained

Cep = Ce − ∆γ 6G2

qtrial
n+1

Id + 6G2
(

∆γ

qtrial
n+1

− 1
3G + H

)
N̄n+1 ⊗ N̄n+1 (3.16)

where G and H are the hardening and bulk modulus respectively [141]. The elastoplastic
consistent tangent operator (see Eqn. 3.16) is consistent with the implicit return-
mapping scheme employed for state update procedure and is based on the works of
Simo and Taylor [178]. Based on the consistent tangent material operator (Eqn. 3.16),
we can formulate the tangent fundamental nucleus for CUF (2.24) as follows

ktan
ijτs =

∫
l

∫
Ω

DT Cep Ddl dΩ (3.17)

Additionally, the isotropic hardening curve (σy(ϵ̄p)) is assumed to be piece-wise linear.
The framework accepts a set of data points that approximate the arbitrarily nonlinear
hardening curve. Linear interpolation is employed to approximate between the data
points. This allows the use of experimental hardening curve directly into the simulation.

3.2 Numerical results

The section encompasses three sets of numerical results illustrating advanced capabilities
of non-linear CUF framework for solving elastoplastic problems. First, an elastoplastic
cantilever beam with compact cross-section under a bending load is investigated. An
analytical solution is available for the proposed problem and the example serves a
good benchmark to evaluate the accuracy of refined-beam models. The second and
third numerical examples investigate the refined capabilities of CUF models to analyze
thin-walled beams. A lipped channel beam and Z-beam is investigated and complex
mechanical behaviors such as coupled bending -torsion and localized plasticity growth
is efficiently analyzed by the CUF models. For each set of numerical example, a
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classical three-dimensional finite element model is built in ABAQUS [2] and the results
serve as a benchmark to assess the accuracy and efficiency of the refined beam models.
Displacement profiles, three-dimensional deformed configuration, accumulated plastic
growth contour and stress contours are presented for validation purposes.

3.2.1 Elasto-Plastic Cantilever Beam

A cantilever beam with rectangular cross-section under a vertical load at the tip is
investigated. Two classes of cantilever beam are considered, namely (a) Single-layered
and (b) Multi-layered beam.

Single-layered cantilever beam

The material and geometric properties of the beam is illustrated in Table 3.1 and the
example is based on the work of Wen et al. [203]. An ideal elastic-perfect plastic
stress-strain model is adopted, where the stress remains the same beyond the yield
point.

Timoshenko and Gere developed an analytical solution for deflection of isotropic
elastoplastic beam of rectangular cross-section under bending load [189]. The non-
dimensional form of the solution is given as follows:

Elastic Region

δ

δy

= P

Py

(
0 ≤ P

Py

≤ 1
)

(3.18a)

Plastic Region

δ

δy

=
(

P

Py

)2 [
5 −

(
3 + P

Py

)√
3 − 2P

Py

] (
1 ≤ P

Py

≤ 3
2

)
(3.18b)

where δy is the displacement at the yield load Py. The equilibrium path is depicted in
Fig. 3.3. The ratio between the limit load and yield load is termed as plastic strength
factor. The geometry of the beam is illustrated in Fig. 3.4. The beam is discretized
using B4 elements. A vertical load is applied at the tip of the beam in increments.
The cross-section of the beam is modeled using LE and TE models as illustrated in
Fig. 3.4. The results from various models are tabulated in Table 3.2. The results are
given in terms of vertical displacement at limit load and yield load and plastic strength



54 | Study on higher-order models for physically nonlinear simulations using
elastoplastic models

P
Py

y

1

1.5

1 20
9

Fig. 3.3 Equilibrium path for the elasto-plastic cantilever beam [189]

Table 3.1 Geometric and material properties of elasto-plastic cantilever beam

Parameters Values Units
Geometrical Properties
Beam Length (L) 50.0 m
Cross-section width (w) 1000.0 mm
Cross-section heigth (h) 800.0 mm
Material Properties
Young’s modulus 210.0 GPa
Poisson’s Ratio 0.3 -
Yield Stress 210.0 MPa

w

h

P

L

N = 1

.....

N = 4

TE Model

LE Model

1L9

4L9

Fig. 3.4 Geometry and cross-section configurations of the elasto-plastic cantilever beam
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factor. Classical models such as EBBT and TBT as well as refined beam models are
compared against ABAQUS 1D beam and 3D solid results. Comparison of equilibrium
path for various beam models is illustrated in Fig. 3.5. Convergence study for various
beam with number of elements along the beam is tabulated in Table 3.3.

Table 3.2 Comparison of displacement and plastic strength factor (PSF) for various
beam models of elasto-plastic cantilever beam

Type NDOF uz at yield force uz at limit load PSF
Value (m) Error (%) Value (m) Error (%) Value Error (%)

Analytical - 2.08 - 4.622 - 1.5 -
Secant Stiff. Form. [203] - - - 4.82 4.28 1.51 0.67
ABAQUS
1D Beam 606 2.084 0.18 3.612 21.87 1.51 0.43
3D Solid (Coarse) 22,590 2.067 0.62 4.281 7.38 1.55 3.57
3D Solid (Refined) 148,797 2.077 0.14 4.467 3.35 1.54 2.38
Classical Models
EBBT 549 2.083 0.16 6.406 38.60 3.08 105.00
TBT 549 2.084 0.18 6.407 38.61 3.08 105.00
TE
N = 1 549 2.084 0.18 6.407 32.38 3.08 105.00
N = 2 1098 2.079 0.07 4.937 6.81 1.55 3.33
N = 3 1830 2.079 0.06 4.735 2.44 1.53 2.00
N = 4 2745 2.079 0.06 4.624 0.03 1.52 1.29
LE
1L9 1647 2.0787 0.06 3.623 21.61 1.35 10.00
4L9 4575 2.0789 0.05 4.534 1.90 1.52 1.29

Multi-layered cantilever beam

Two types of multi-layered configuration are considered: (a) unsymmetric two-layered
and (b) symmetric three-layered. The material properties for the multi-layered beam
are tabulated in Table 3.4. As depicted in Fig. 3.4, the length of the beam is taken as
0.5 m and a square cross-section of side 10 mm is considered. The beam is discretized
using 40 B4 elements. Figure 3.6 compares the equilibrium path for two-layered and
three-layered beam configuration using different models. Table 3.5 enlists the maximum
accumulated equivalent plastic strain for different models for multi-layered cantilever
beam under bending.

Following observations can be made

1. All models provide accurate results within the elastic regime. It is clear that
classical beam models as well as ABAQUS 1D Beam model fail, when the load
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Table 3.3 Convergence study of various refined beam models for elasto-plastic cantilever
beam

Type NDOF Displacement at yield force Displacement at limit load Plastic Strength Factor
Value [m] Error [%] Value [m] Error [%] Value Error [%]

B4 - 10 elements
TE
EBBT 155 2.0833 0.16 6.501 40.64 3.10 106.67
TBT 155 2.0837 0.18 6.502 40.68 3.10 106.67
N=1 279 2.0837 0.18 6.502 40.68 3.10 106.67
N=2 558 2.0717 0.40 5.052 9.30 1.57 4.33
N=3 930 2.0719 0.39 4.852 4.97 1.56 3.67
N=4 1395 2.0719 0.39 4.729 2.30 1.55 3.00
LE
1L9 837 2.0718 0.39 3.062 33.76 1.35 10.00
4L9 2325 2.0719 0.39 4.514 2.34 1.52 1.66

B4 - 20 elements
TE
EBBT 305 2.0833 0.16 6.407 38.60 3.08 105.00
TBT 305 2.0837 0.18 6.408 38.64 3.08 105.00
N=1 549 2.0837 0.18 6.408 38.64 3.08 105.00
N=2 1098 2.0770 0.14 4.909 6.20 1.55 3.33
N=3 1830 2.0772 0.13 4.695 1.58 1.54 2.67
N=4 2745 2.0772 0.13 4.659 0.77 1.53 2.00
LE
1L9 1647 2.0771 0.14 3.623 21.61 1.35 10.00
4L9 4575 2.0773 0.13 4.534 1.90 1.52 1.29

B4 - 30 elements
TE
EBBT 455 2.0833 0.16 6.407 38.60 3.08 105.00
TBT 455 2.0837 0.18 6.408 38.61 3.08 105.00
N=1 819 2.0837 0.18 6.408 38.63 3.08 105.00
N=2 1638 2.0786 0.07 4.937 6.81 1.55 3.33
N=3 2730 2.0788 0.06 4.735 2.44 1.53 2.00
N=4 4095 2.0788 0.06 4.624 0.03 1.52 1.33
LE
1L9 2457 2.0787 0.06 3.579 22.56 1.35 10.00
4L9 6825 2.0789 0.05 4.591 0.69 1.52 1.32
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Fig. 3.5 Equilibrium path of various beam models for elaso-plastic cantilever beam (30
B4 elements used for TE and LE model)

Table 3.4 Material properties for multi-layered cantilever beam under bending

Young’s modulus Poisson’s ratio Yield stress
(GPa) (-) (MPa)

Mat1 210.0 0.3 210.0
Mat2 70.0 0.3 110.0
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Fig. 3.6 Comparison of equilibrium path for two-layered and three-layered beam
configuration using various models

Table 3.5 Comparison of maximum accumulated equivalent plastic strain for different
models for multi-layered cantilever beam under bending

Two-layered Three-layered
Model DOF ϵ̄max

p [×10−3] DOF ϵ̄max
p [×10−3]

3D FE models
ABQ-Coarse 21,084 7.66 42,210 4.79
ABQ-Refined 64,260 8.07 63,210 4.89

TE models
EBBT 363 - 363 -
TBT 605 - 605 -
TE1 1,089 - 1,089 -
TE2 2,178 5.65 2,178 3.57

LE models
8L41/12L42 5,445 5.35 7,623 3.99
8L91/12L92 16,335 8.56 23,595 4.87
1Two-layered beam 2Three -layered beam

exceeds the elastic limit. In case of single-layered beam, classical beam models
fail to attain plasticity at the given load, whereas ABAQUS 1D underestimates
the displacement at limit load by 21% (see Table 3.2).
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2. For different classes of layered beams, higher order CUF 1D models are able to
capture plastic behavior very accurately at a very reduced computational cost as
compared to ABAQUS 3D solution.

3. From Table 3.3 and Table 3.5, it is evident further refinement of CUF models
lead to increased accuracy in results

4. Failure of classical beam models such as EBBT and TBT and the lower-order
models to capture plasticity is due to that fact that these models lack accurate
description of stress fields.

3.2.2 Fixed-ended Lipped Channel Beam

The current example demonstrates the advanced capability of CUF for analyzing
thin-walled metallic structures with material nonlinearity. The problem statement is
based on the works of Abambres et al. [1]. The geometry and boundary conditions of
the beam are illustrated in Fig. 3.7. Two vertical line loads of λN/mm is applied at
the mid-span of the beam along the top and bottom flanges. The material behavior is
assumed to be elasto-plastic with a Young’s modulus, E = 200GPa, Poisson’s ratio,
ν = 0.3 and yield stress, σy = 450MPa. A perfect plastic case is considered with
strain-hardening slope H = 0. TE and LE models are used to model the problem as

101.5

201.5

1.5

16.5

λ N/mm

λ N/mm

1500

F =101λ N

F

A

Fig. 3.7 Geometry of Fixed-ended Lipped Channel Beam

illustrated in Fig. 3.8. For the sake of comparison, additional FE model are developed
in ABAQUS using shell elements (full integration with 5 Gauss points through the
thickness) and 3D linear elements (linear elements with full integration) with degrees
of freedom of 69,948 and 1,342,656 respectively [2].

The displacements are evaluated at point A (see Fig. 3.7) at two load points:
(1) λ = 12.69 (elastic regime) and (2) λ = 40.94 (elasto-plastic regime), henceforth
referred to as elastic and elasto-plastic point respectively. Table 3.6 comprises the
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computed displacement at point A (see Fig. 3.7) for various beam models. The results
are compared against reference solution obtained from the work of Abambres et al [1]
and ABAQUS solutions. Three-dimensional deformation configuration obtained from
LE-44L9 model and ABAQUS 3D model is illustrated in Fig. 3.10. Displacement profile
(Uz) at point A along the length of the beam is depicted in Fig. 3.9. Figures 3.11-3.13
consists of contour plots at elasto-plastic point for von-Mises stress (σvm) distribution,
equivalent plastic strain (ϵ̄p) distribution and transverse stress (σxy) distribution.

14 L9 24 L9 44 L9N = 1

....

N = 13

....

TE LE

L9

Fig. 3.8 TE and LE models for lipped channel beam

Following observations can be made:

1. CUF beam models - especially LE models - demonstrates the ability to pro-
duce accurate displacement and stress fields for thin-walled beams and their
applicability for plasticity analysis

2. From Fig. 3.9, it is evident that displacement profiles for 44L9 and ABAQUS 3D
model are similar and within the acceptable limits.

3. Local accumulation of plasticity can be observed at mid-span of the beam along
the tip of the lip, flange and web-flange intersection.

4. From Table 3.6, it is evident that continued enrichment of the displacement field
yields accurate results. LE-44L9 model requires only about 5.42% of the total
degrees of freedom of that of an ABAQUS 3D model to provide similar results.

5. Since the deformation is localized at the mid-span of the beam, TE models fail
to provide accurate displacement and stress fields
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6. LE models tend to perform better as it is able to capture the local deformation
and stress field more accurately.

Table 3.6 Vertical displacement at point A for various models for fixed-ended lipped
channel beam

NDOF Displacement (uz)

λ = 12.69 λ = 40.94
GBT [1] 3,222 13.63 77.6
ABAQUS - Shell 69,948 13.47 74.93
ABAQUS - 3D Brick 1,342,656 13.31 69.92
B4-10 elements
TE
EBBT 155 0.002 0.006
TBT 155 0.002 0.006
N=1 279 0.002 0.006
N=2 558 0.004 0.120
N=3 930 0.011 0.036
N=4 1,395 0.088 0.285
N=5 1,953 0.139 0.448
N=6 2,604 1.724 5.699
N=7 3,348 2.344 8.308
N=8 4,185 7.632 28.324
N=9 5,115 9.411 36.542
N=10 6,138 10.262 42.096
N=11 7,254 11.221 48.179
N=12 8,463 11.768 53.037
LE
14L9 8,091 13.143 68.110
24L9 13,671 13.270 69.630
44L9 24,831 13.300 70.850
B4-20 elements
TE
EBBT 305 0.002 0.006
TBT 305 0.002 0.006
N=1 549 0.002 0.006
N=2 1,098 0.004 0.012
N=3 1,830 0.011 0.036
N=4 2,745 0.088 0.285
N=5 3,843 0.139 0.448
N=6 5,124 1.724 5.713
N=7 6,588 2.345 8.315
N=8 8,235 7.638 29.076
N=9 10,065 9.421 37.621
N=10 12,678 10.273 12.678
N=11 14,274 11.234 49.376
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N=12 16,653 11.783 54.473
LE
14L9 15,921 13.160 71.910
24L9 26,901 13.280 74.156
44L9 48,861 13.320 76.009
B4-30 elements
TE
EBBT 455 0.002 0.006
TBT 455 0.002 0.006
N=1 819 0.002 0.006
N=2 1,638 0.004 0.012
N=3 2,730 0.011 0.036
N=4 4,095 0.088 0.285
N=5 5,733 0.139 0.448
N=6 7,644 1.725 5.708
N=7 9,828 2.345 8.317
N=8 12,285 7.640 29.004
N=9 15,015 9.424 37.619
N=10 18,018 10.277 43.409
N=11 21,294 11.238 50.266
N=12 24,843 11.786 55.495
LE
14L9 23,751 13.170 73.220
24L9 40,131 13.285 75.947
44L9 72,891 13.321 78.340

3.2.3 Clamped Z-beam under pressure load

A clamped Z - beam is acted upon by a pressure load along its length L = 1000
mm and at both flanges as depicted in Fig. 3.14. The pressure load acts in opposite
directions, thereby inducing bending and torsional displacement effects in the structure.
The cross-section of the beam is modeled using TE and LE models are depicted in
Fig. 3.15. The material behavior of Aluminium is assumed with a Young’s modulus,
E = 70 GPa, Poisson’s ratio, ν = 0.3 and nominal yield stress, σy = 300 MPa. An
isotropic elastoplastic with isotropic hardening is modeled with hardening data as
tabulated in Table 3.7.

Table 3.7 Isotropic hardening data for Clamped Z-beam problem [119]

Stress (MPa) 300 340 355 375 390 410 430 450 470 484
Plastic Strain 0.000 0.00047 0.0012 0.0045 0.01036 0.0213 0.0344 0.0513 0.0800 0.147
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Fig. 3.10 Deformed configuration (uz) at λ = 40.98 for fixed-ended lipped channel
beam

  1.65
 39.01
 76.38
113.74
151.10
188.46
225.83
263.19
300.55
337.91
375.28
412.64
450.00

(a) LE-44L9

  1.78
 39.14
 76.49
113.84
151.19
188.54
225.89
263.24
300.59
337.95
375.30
412.65
450.00

(b) ABAQUS 3D

Fig. 3.11 von-Mises stress (σxy) distribution at λ = 40.98 for fixed-ended lipped channel
beam
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A similar model was developed in ABAQUS using shell elements (full integration
with 5 Gauss points through the thickness) and 3D linear elements (linear elements
with full integration) with degrees of freedom 697,392 and 42,210 respectively [2].
Two load points are considered for evaluation: (1) λ = 12 (elastic regime) and (2)
λ = 50 (elasto-plastic regime), henceforth referred to as elastic and elasto-plastic point
respectively. The displacement ux and uz is evaluated at point A and tabulated for
different beam models in Table 3.8. Contour plots of the LE-30L9 with 30 B4 elements
models are compared against the reference ABAQUS 3D solutions. All the contour
plots are evaluated at elasto-plastic point. The displacement profile (ux) at point A
along the beam is given in Fig. 3.16. Three-dimensional deformation configuration
of the beam at elasto-plastic point for ux and uz are depicted in Fig. 3.17 and Fig.
3.18 respectively. von-Mises stress (σvm) distribution, equivalent plastic strain (ϵ̄p)
distribution and transverse stress (σxy) distribution are depicted in Figs. 3.19-3.21.
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Fig. 3.16 Displacement profile (ux) along of the beam for clamped Z beam

Following observations can be made

1. In contrast to classical models, higher order CUF models can capture displacement
mechanisms and produces accurate stress field.

2. Local accumulation of plastic growth can be observed at clamped end of the
beam at the flange-end
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Table 3.8 Displacement for various beam configurations for clamped Z beam

Type NDOF Displacement at λ = 12 Displacement at λ = 50
ux uz ux uz

ABAQUS 3D 697,392 3.74 3.046 20.62 14.85
ABAQUS 2D 42,210 3.79 2.803 21.02 13.89
B4 - 10 elements
TE
EBBT 155 0.045 0.021 0.186 0.086
TBT 155 0.045 0.021 0.186 0.086
N=1 279 0.045 0.021 0.186 0.086
N=2 558 0.466 0.202 1.942 0.841
N=3 930 0.476 0.207 1.981 0.864
N=4 1,395 2.710 1.173 11.589 5.015
N=5 1,953 2.736 1.312 11.765 5.613
N=6 2,604 3.436 1.694 15.958 7.775
N=7 3,348 3.425 2.025 15.852 9.101
N=8 4,185 3.642 2.164 17.756 10.131
N=9 5,115 3.646 2.417 17.458 11.045
LE
11L9 6,417 3.703 2.786 17.902 12.673
20L9 11,439 3.704 2.835 17.930 12.880
33L9 18,693 3.705 2.852 17.940 12.962
B4 - 20 elements
TE
EBBT 305 0.045 0.021 0.186 0.086
TBT 305 0.045 0.021 0.186 0.086
N=1 549 0.045 0.021 0.186 0.086
N=2 1,098 0.466 0.202 1.943 0.841
N=3 1,830 0.477 0.208 1.987 0.866
N=4 2,745 2.723 1.178 11.857 5.129
N=5 3,843 2.750 1.318 12.058 5.734
N=6 5,124 3.457 1.703 17.103 8.266
N=7 6,588 3.446 2.033 17.023 9.592
N=8 8,235 3.665 2.174 19.114 10.714
N=9 10,065 3.669 2.427 19.066 11.733
LE
11L9 12,627 3.726 2.796 19.599 13.399
20L9 22,509 3.728 2.845 19.627 13.609
33L9 36,783 3.727 2.869 19.710 13.758
B4 - 30 elements
TE
EBBT 455 0.045 0.021 0.186 0.086
TBT 455 0.045 0.021 0.186 0.086
N=1 819 0.045 0.021 0.186 0.086
N=2 1,638 0.466 0.202 0.186 0.086
N=3 2,730 0.477 0.208 0.186 0.086
N=4 4,095 2.727 1.180 1.943 0.841
N=5 5,733 2.755 1.319 1.988 0.867
N=6 7,644 3.463 1.706 12.035 5.206
N=7 9,828 3.452 2.036 18.089 10.041
N=8 12,285 3.672 2.177 20.445 11.288
N=9 15,015 3.676 2.430 20.577 12.379
LE
11L9 18,837 3.733 2.799 20.056 13.596
20L9 33,579 3.735 2.848 20.160 13.840
33L9 54,873 3.735 2.886 20.541 14.223
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Fig. 3.17 Deformed configuration (ux) at λ = 50 for clamped Z beam
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Fig. 3.18 Deformed configuration (uz) at λ = 50 for clamped Z beam

 18.406
 51.781
 85.156
118.532
151.907
185.282
218.657
252.032
285.407
318.782
352.158
385.533
418.908

(a) LE-30L9

 12.514
 49.305
 86.097
122.889
159.680
196.472
233.264
270.055
306.847
343.639
380.430
417.222
454.014

(b) ABAQUS 3D

Fig. 3.19 von-Mises stress (σvm) distribution at λ = 50 for clamped Z beam
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Fig. 3.20 Equivalent plastic strain (ϵ̄p) distribution at λ = 50 for clamped Z beam
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Fig. 3.21 Transverse stress (σxy) distribution at λ = 50 for clamped Z beam

3. In the case of TE models, only TE with N=9 or higher are able to capture the
deformation mechanism quite accurately. This is because, unlike LE models,
Taylor expansion functions have a global description of the cross-section.

4. Even the less-refined LE models (11L9) can capture the deformation mechanism
quite accurately. It requires less than 2% of the total degrees of freedom of a 3D
ABAQUS model to provide an accuracy within 7%.

5. LE-30L9 model requires only about 7.8% of the total degrees of freedom of that
of an ABAQUS 3D model to provide similar displacement and stress fields.

3.3 Conclusion

A computationally efficient framework for physically non-linear structural simulation
based on refined beam model is presented. von-Mises plasticity theory was incorporated
along with Carrera Unified Formulation (CUF) to undertake non-linear finite element
simulation. Isotropic non-linear strain-hardening is integrated into the constitutive
model to account for material non-linearity. Modeling approaches based on TE (Taylor
Expansion) and LE (Lagrange Expansion) are considered. Using the principle of virtual
work, the nonlinear governing equations and related finite element approximation
were formulated. Numerical results related to compact and thin-walled isotropic
beam structures demonstrates the versatility and effectiveness of the CUF framework.
Classical beam models such as Euler-Bernoulli Beam Theory (EBBT) and Timoshenko
Beam Theory (TBT) fails to capture accurate stress field, which in turn leads to an
inaccurate description of non-linear deformation state. CUF 1D models are able to
detect 3D like effects and capture phenomena such as cross-section warping, bending-
torsion coupling and localized deformation and plasticity growth, among the others,
with great computational efficiency. The need of iterative schemes for physically
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nonlinear problem leads to prohibitive computational cost and CUF 1D models can
reduce such an overhead given that 10-100 times less unknown variables than traditional
2D/3D models are required.





Part II

Micromechanics and Multiscale





Chapter 4

A high-fidelity nonlinear
micromechanical framework for
hierarchical systems

The chapter presents a novel micromechanics platform formulated within the scheme of
Carrera Unified Formulation to undertake linear and nonlinear analysis for various
classes of representative volume elements (RVE) architectures. The ability of CUF-CW
models to yield accurate local fields along with effective moduli prediction is demonstrated.
The capability is extended to nonlinear analysis with integration of different nonlinear
constitutive models including crack band for progressive failure analysis and shear driven
plasticity model.1

4.1 Micromechanical formulation

Within continuum mechanics, the homogeneous continuum is assumed to retain its
bulk material properties irrespective of the scale. In case of real materials, the

1Parts of this chapter has been in published in the following journals:

1. Kaleel I., Petrolo M., Waas A.M., Carrera E. (2017), "Computationally efficient, high-fidelity
micromechanics framework using refined 1D models", Composite Structures 181:358-367

2. Kaleel I., Petrolo M., Waas A. M., Carrera E. (2017), Micromechanical Progressive Failure
Analysis of Fiber-Reinforced Composite using Refined Beam Models. ASME. J. Appl. Mech.
85(2)

3. Kaleel I., Petrolo M., Carrera E. (2018), "Elastoplastic and progressive failure analysis of
fiber-reinforced composites via an efficient nonlinear microscale model", Aerotecnica Missili
and Spazio 97(2):103-110
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assumption starts to fade at lower scales as they turn heterogeneous in nature [5]. The
micromechanical formulations intends to capture the explicit heterogeneous nature of
the microstructure and provide an effective continuum to the higher-scale by defining
representative volume elements (RVE). RVE is defined as a volume of element that is
large enough to effectively capture the nature of the microstructure from a statistical
viewpoint. Homogenization provides effective properties based on the individual
constituents of the RVE whereas de-homogenization (or localization) intends to capture
the response of local constituents based on the response of the structure. Under an
imposed deformation state, homogenization is achieved through volume averaging the
stress and strain fields:

ϵ̄ij = 1
V

∫
V

ϵijdV (4.1)

σ̄ij = 1
V

∫
V

σijdV (4.2)

where V is the volume of RVE, σij and ϵij are the local stress and local strain within
the individual constituents of the RVE, respectively.

4.1.1 Component-wise modeling within CUF

(a) (b)

+

(c)x2

x3
x1

Fig. 4.1 A representation of CW modeling of periodic microstructure arbitrary con-
stituents (a) a generic triply-periodic microstructure with three phases, (b) Individual
components of RVE modeled via CW technique and (c) Assembled configuration of
RVE with cross-section element overlayed on x-z plane and beam elements along the
axis of beam
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A heterogeneous triply-periodic microstructure RVE is formulated using the CW
modeling technique elaborated in Chapter 2. Various constituents of the RVE is
degenerated into individual component beams and assembled to construct the overall
RVE. The CW also enable displacement continuity across the interface of different
constituents. As illustrated in Fig. 4.1(c), multiple Lagrange elements are overlayed
on the x2-x3 plane attributing different consitutents of the RVE. The cross-section
extends along the span of the beam in x1 direction.

The micromechanical formulation is postulated based on the assumption of period-
icity. A Representative Volume Element (RVE) is assumed based on heterogeneous
distribution of the constituent at the micro-scale. Sun and Vaidya laid out a rigorous
mechanical foundation for periodic 3D RVE using strain energy equivalence [183]. In
order to maintain compatibility of displacement along different faces of RVE, periodic
boundary conditions (PBCs) need to be applied, which must maintain the energy
equivalence [183, 209]. Therefore, displacements along the opposing boundary faces
read:

uj+
i (x, y, z) − uj−

i (x, y, z) = ϵ̄ik(xj+
k − xj−

k ) (4.3)

where ϵ̄ik is the average strains, indices j+ and j− represent the positive and negative
directions along xk. As formulated by Sun and Vaidya [183], the average strains
(ϵ̄ij) and stresses (σ̄ij) the RVE are given by: The effective material matrix of the
homogenized RVE can be formulated as

σ̄ij = C̄ijklϵ̄ij (4.4)

where C̄ijkl is the homogenized material matrix of the RVE. The components of C̄ijkl

matrix is populated by applying six individual unit strain. The homogenized stress for
an applied unit strain corresponds to the respective column in the C̄ijkl matrix.

Introduction of PBC within a 3D RVE often requires tedious tracking and manipu-
lation of degrees of freedom corresponding to boundary faces. CW modeling technique
simplifies the PBC assignment by classifying them into two types: (1) PBC over the
cross-section DOFs and (2) PBC over the end nodes of the beam, as illustrated in
Fig. 4.2. For an applied macro strain ϵ̄ij, explicit terms for PBC associated with
cross-section of the RVE can be formulated as:

u1
2+ − u1

2− = ϵ̄22l2

u2
2+ − u2

2− = 2 ϵ̄21l2

u3
2+ − u3

2− = 2 ϵ̄23l2

u1
3+ − u1

3− = ϵ̄33l3

u2
3+ − u2

3− = 2 ϵ̄31l3

u3
3+ − u3

3− = 2 ϵ̄32l3

(4.5)
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Fig. 4.2 Application of PBC for CUF-CW RVEs: (a) cross-section of the beam and (b)
end nodes of the beam

where uk
x+ and uk

x− represents the degrees of freedom associated with dimension x

along the positive and negative direction of k respectively, l2 and l3 are the lengths of
the cross-section along x2 and x3, respectively. These constraints are applied for all
corresponding cross-section degrees of freedom corresponding to every beam node in
the RVE. PBCs associated with end beam nodes reads:

u1
1+ − u1

1− = ϵ̄11L

u2
1+ − u2

1− = 2 ϵ̄12L

u3
1+ − u3

1− = 2 ϵ̄13L

(4.6)

where uk
1− and uk

1+ are the degrees of freedom associated with negative and positive
end nodes of the beam element along the direction k and L is the length of the beam
element. PBCs are inserted into the global system of arrays through penalty approach.

4.2 Constitutive models

Two classes of nonlinear constitutive models are integrated within the CUF-CW
framework. Shear-driven inelastic nature of matrix constituents in polymer composites
is modeled through plasticity based models. Progressive failure modeling of matrix
constituents is achieved through crack band model implementations.

4.2.1 Shear-driven plasticity model

Non linear shear response exhibited by unidirectional laminates is usually associated
with inelastic deformation within the matrix constituents of the composite. Experimen-
tal observations highlights the existence of ductile behavior of epoxy resin, especially
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under shear loading conditions [71]. Ductile nature of the matrix implies the presence
of pronounced plastic behavior under matrix-dominant deformations. Phenomenologi-
cal material models based on plasticity formulations are often utilized to model the
shear-driven pre-peak nonlinearity of polymer composites. Plasticity based inelastic
models are often utilized to simulate the shear-driven non-linear behavior of polymer
for meso-level and microscale analysis [182, 199, 219].

Recalling von-Mises J2 theory from Section 3.1, the yield function reads:

Φ = q(σ) − σy(ϵ̄p) (4.7)

where q(σ) is the equivalent von-Mises stress and σy(ϵ̄p) is the hardening function
which is a function of accumulated plastic strain ϵ̄p. In order to accurately characterize
experimental curves, a four-parameter hardening model based on the work of Zhou et
al is employed [219]:

σy(ϵ̄p) = σ0 + σ∞(1 − ηeβϵp)(1 − ηeµϵp) (4.8)

where σ0 is the initial threshold often referred to yield stress, β, η and µ are parameters
used to fit the hardening curve. Detailed information on constitutive model of the
von-Mises model along with numerical implementation and tangent material matrix
can found in Section 3.1.1.

4.2.2 Crack band model

Physical behaviour of crack band

Proposed by Bazant and Oh for heterogeneous aggregate materials (such as concrete),
the crack band model captures the progressive micro-cracking in heterogeneous material
systems characterized with strain-softening behavior by smearing the gradual effect of
micro-cracking over a band of material with known dimension [22]. The theory combines
concept of cohesive zone modeling within the classical continuum mechanics framework
by characterizing the crack band growth on three parameters, namely fracture energy,
the material strength and the dimension of the band. The formulation assumes linear
elastic behavior until initiation of crack band, followed by linear degradation of stiffness
until final failure. The tangent slope of post-peak softening curve is scaled by a
characteristic length (band dimension) to ensure the total energy release upon complete
failure corresponds to prescribed fracture toughness. The fracture toughness Gc of the
material is estimated as the area under the traction-separation law, which governs the
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Fig. 4.3 Constitutive modeling of bilinear crack band model [22]

cohesive behavior of the crack growth.

Gc =
∫ δf

0
σ du (4.9)

where u is the crack displacement within the fracture zone. The original formulation
hypothesized the orientation of the band perpendicular to the direction of maximum
principal stress (pure mode I). Further reformulation of the crack band theory can be
found extensively in found in literature [59, 124, 161]. de Borst and Nauta reformulated
smeared crack band model to incorporate non orthogonal cracks [59]. The formulation
also accounted for other non-linear phenomena such as plasticity, creep, thermal
dilation and shrinkage. Maimí et al. extended the crack theory for prediction of
failure mechanisms in laminated composite by incorporating sophisticated initiation
criteria [124]. Pineda et al. implemented a variation of crack band model within the
HFGMC micromechanics framework to model failure in fiber-reinforced polymer matrix
composite [161].

Numerical implementation of crack band

The crack band model for mode I under tensile principal stress state is implemented
within the CUF-CW micromechanics framework. The nature of the crack band mode
is determined by the principal stress state [σm

1 , σm
2 , σm

2 ] along with principal directions
[nm

1 , nm
2 , nm

3 ] computed at every gauss point of the RVE. The spurious mesh dependency
is mitigated by rationally scaling fracture energy as depicted in Fig. 4.3. As proposed
by Bazant [22], a characteristic length scale lc computed based on the unit normal
vector n1 to the crack band is introduced. The crack band is assumed to be in Mode I
when the largest magnitude of the principal stress is tensile in nature. Therefore, the
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crack band initiation criteria is set as [184]:

σm
1

σm
c

= 1 (4.10)

where σm
c is the cohesive strength of the crack band. The orientation of the crack band

is fixed after the crack is initiated. The post-peak softening slope EIT and the strain
at failure is computed based on characteristic length lc and matrix fracture toughness
Gc [22]

ϵf = 2Gc

σm
c lc

(4.11)

EIT =
(

1
E0

m

− ϵf

σm
c

)−1

(4.12)

where E0
m is the undamaged Youngs modulus of the matrix. Since EIT must remain

less than zero, an upper limit is enforced on the characteristic length lcmax:

lcmax <
2GcE

0
m

σm
c

(4.13)

The damage variable DI is calculated as:

DI = 1 + EIT (ϵm
c − ϵm

1 )
E0

m

(4.14)

where rotated strain state ϵm
1 is computed based on the rotation matrix for principal

frame T:
ϵm

1 = T m
1i ϵm

ij T m
1i (4.15)

The secant material matrix due to damage growth is computed as:

Sd = 1
(1 − DI)S (4.16)

4.3 Numerical results

Three sets of numerical results are discussed in the section. First set of numerical ex-
amples pertains to linear elastic homogenization of different types of RVE architectures.
Pre-peak nonlinearity exhibited by various kinds of composite material systems is
studied in second set of numerical cases. Progresive failure analysis of a square-packed
and randomly distributed RVE is investigated in the third set of numerical cases.
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4.3.1 Linear elastic homogenization

Effective moduli of fiber-reinforced composite

The predictive capabilities of CUF-CW micromechanics framework is examined through
evaluation of effective module for composite material systems. Two types of mate-
rial systems are considered, namely Boron/Aluminum (Br/Al) and Graphite/Epoxy
(Gr/Ep) material systems. The material properties for the material systems are tabu-
lated in Table 4.1 with fiber volume fraction of 47% and 60% for Br/Al and Gr/Ep
respectively The CW discretization of the cross-section for different material systems

Table 4.1 Material properties for effective moduli predictions of fiber-reinforced com-
posite

Material E11 E22 G12 ν12 ν23

[GPa] [GPa] [GPa] [-] [-]
Graphite fiber 235.0 14.0 28.0 0.20 0.25
Boron fiber 379.3 379.3 172.41 0.10 0.10
Epoxy matrix 4.8 4.8 1.8 0.34 0.34
Aluminum matrix 68.3 68.3 26.3 0.30 0.30

is illustrated in Fig. 4.4. The beam of the RVE is discretized with 2 B4 element along
with a cross section containing 20 L9 elements. The total degrees of freedom amounts
to 1869. The predicted results are compared against literature including solution based
on

1. Finite element approach by Sun et al [183]

2. CCM by Rotem et al. [94]

3. Method of Cells (MOC) by Aboudi [4]

4. Generalized Method of Cells (GMC) by Paley et al. [157]

5. High Fidelity Generalized Method of Cells (HFGMC) by Aboudi et al. [7],

6. Elasticity based Cell Method (ECM) by Williams [204]

7. Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) by
Yu et al. [213]

The predicted effective properties for two material systems along with literature
comparisons are enlisted in Table 4.2 and Table 4.3.
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Boron or Graphite

Aluminium or Epoxy

2 B4

+

20 L9

Fig. 4.4 CW modeling of the square-packed RVE for effective moduli prediction of
Boron/Aluminium and Graphite/Epoxy material systems

Table 4.2 Predicted effective moduli for Boron/Aluminum composites

Models E11 E22 G12 G23 ν12 ν23

[GPa] [GPa] [GPa] ([GPa] [-] [-]

CUF-CW 215.2 144.3 54.4 46.0 0.195 0.253
FEM [183] 215.0 144.0 57.2 45.9 0.190 0.290
CCM [94] 231.9 127.3 54.0 49.6 0.193 0.282
MOC [4] 215.0 142.6 51.3 43.7 0.200 0.250
GMC [157] 215.0 141.0 51.2 43.7 0.197 0.261
HFGMC [7] 215.4 144.0 54.3 45.8 0.195 0.255
ECM (3rd) [204] 215.0 143.4 54.3 45.1 0.190 0.260
VAMUCH [213] 215.0 144.1 54.4 45.9 0.195 0.255

Table 4.3 Predicted effective moduli for Graphite/Epoxy composites

Models E11 E22 G12 G23 ν12 ν23

[GPa] [GPa] [GPa] [GPa] [-] [-]

CUF-CW 142.8 9.6 6.10 3.13 0.252 0.349
FEM [183] 142.6 9.6 6.00 3.10 0.250 0.350
CCM [94] 144.6 8.9 5.8 3.3 0.252 0.361
MOC [4] 143.0 9.6 5.47 3.08 0.250 0.350
GMC [157] 143.0 9.5 5.68 3.03 0.253 0.358
HFGMC [7] 142.9 9.6 6.09 3.10 0.252 0.350
ECM (3rd) [204] 143.0 9.6 5.85 3.07 0.250 0.350
VAMUCH [213] 142.9 9.6 6.10 3.12 0.252 0.350
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Effect of fiber packing architecture

A study on the effect of fiber-packing architecture on the effective moduli is investigated.
Two types of RVE architectures are taken into consideration: (a) square-packed and
(b) hex-packed RVE. As depicted in Fig. 4.5, square-packed RVE is modeled with
20 L9 element whereas 44 L9 elements are utilized to model hex-packed RVE. A 2B4
beam configuration is used for both architecture. As tabulated in Table 4.4, predicted
results are compared against solutions of Sun and Vaidya [183].

Boron or Graphite

Aluminium or Epoxy

20 L9 44 L9

Fig. 4.5 CW modeling of the square-packed and hex-packed RVE for studying the
effect of fiber packing architecture

Table 4.4 Comparison of elastic moduli for various RVE architecture for
Boron/Aluminium and Graphite/Epoxy material system

Boron/Aluminium (Fiber VF=47%) Graphite/Epoxy (Fiber VF=60%)
Square-packed Hex-packed Square-packed Hex-packed

CUF-CW FEM [183] CUF-CW FEM [183] CUF-CW FEM [183] CUF-CW FEM [183]

E1 215.22 215.0 215.19 215.0 142.83 142.60 142.83 142.6
E2 144.29 144.0 132.91 136.5 9.63 9.60 9.17 9.20
ν12 0.19 0.19 0.19 0.19 0.25 0.25 0.25 0.25
ν23 0.25 0.29 0.31 0.34 0.35 0.35 0.38 0.38
G12 54.44 57.2 54.18 54.0 6.10 6.00 5.86 5.88
G23 46.03 45.9 51.13 52.5 3.13 3.10 3.34 3.35

De-homogenization of randomly distributed fiber reinforced composite

The following numerical case emphasizes on the ability of CUF-CW models to produce
accurate 3D fields at a reduced computational overhead. A randomly distributed
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fiber-reinforced RVE with a volume fraction of 60% is considered. The size of the
RVE is 21.25µm × 21.25µm and it is based on the work of Pineda et al. [161]. The
material properties for fiber and matrix are enlisted in 4.1 and the cross-section of
the RVE is modeled with 265 L9 elements (see Fig. 4.6). A beam confifuration of
2 B4 element is utlized to model the RVE, thereby amounting to a total degree of
freedom of 19,080. For the sake of comparison, a similar RVE is modeled in ABAQUS
using 24,765 3D linear elements. The mesh density of 3D FE model was chosen post a
mesh convergence analysis. A global transverse strain ϵ̄22 of 0.001 is applied to the
RVE. Table 4.5 compares the numerical results for CUF-CW and ABAQUS 3D models

Fiber

Matrix

Fig. 4.6 CW discretization of the cross-section of RVE with 13 randomly distributed
fibers and a fiber volume fraction of 60%

along with the total analysis time. Comparisons are made between contour plots of
maximum principal strain (ϵp

1) and transverse stress (σ22) for CUF-CW and ABAQUS
3D for as depicted in Fig. 4.7 and Fig. 4.8 respectively.

Table 4.5 Numerical results from de-homogenization of RVE with 13 randomly dis-
tributed fibers subjected to transverse tensile strain

DOF Maximum principal strain Maximum transverse stress Analysis time
(-) ϵmax

1 ×10−3 σmax
22 (MPa) (s)

CUF-CW 19,080 2.08 14.92 18
ABAQUS 3D 91,305 2.11 14.22 324

Results suggests:

1. The effective moduli of different composite material systems are accurately
predicted by CUF-CW models

2. CUF-CW are able to capture the effect of different RVE architecture on the
effective moduli
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(a) CUF-CW (19080 DOFs)
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(b) ABAQUS 3D - (91305 DOFs)

Fig. 4.7 Maximum principal strain contours ϵp
1 over the cross-section of the RVE with

13 randomly distributed fibers subjected to transverse tensile strain (a) CW-CUF
model and (b) ABAQUS 3D model

 4.58
 5.45
 6.31
 7.17
 8.03
 8.89
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11.48
12.34
13.20
14.06
14.92

(a) CUF-CW (19080 DOFs)

 1.76
 2.80
 3.84
 4.87
 5.91
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10.06
11.10
12.14
13.18
14.22

(b) ABAQUS 3D - (91305 DOFs)

Fig. 4.8 Transverse stress contours σ22 [MPa] over the cross-section of the RVE with 13
randomly distributed fibers subjected to transverse tensile strain (a) CW-CUF model
and (b) ABAQUS 3D model



4.3 Numerical results | 85

3. Comparison of contour plots obtained by CUF-CW models against ABAQUS 3D
solution demonstrates the high-fidelity of the framework.

4. In addition, the analysis time taken by CUF-CW models are 18s whereas ABAQUS
3D model requires 324s, thereby demonstrating computational efficiency of CUF-
CW framework.

Effective moduli of Void filled composite

CUF-CW framework is utilized to investigate global and local behaviour of void-filled
composite RVEs. The void-filled RVE is assigned with a material properties of Copper
with Young’s modulus of 127 GPa and Poisson ratio of 0.34. Two classes of inclusion
shapes are investigated, namely (a) square and (b) circular. A 2B4 beam configuration
is used and the total degrees of freedom amounts to 4,032 and 3,780 for circular and
square voided composite RVE respectively. Figure 4.9 depicts the CW modeling of
two void-filled Cu composite. The effective transverse Young’s modulus is predicted

Circular void (40L9) Square void (40L9)

Fig. 4.9 CW discretization of the circular and square void for analysis of void filled Cu
composite

for different void volume fractions of 0.0204, 0.1837, 0.5102 and 0.7511. As tabulated
in Table 4.6, the predicted results are compared against solutions from the literature
including

1. Method of Cells (MOC) by Aboudi [4]

2. Elasticity-based Cell Method (ECM) (3rd and 5th order) by Williams [204],

3. Variational Asymptotic Method for Unit Cell Homogenization (VAMUCH) by
Yu et al. [213]
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For sake of comparison, a similar 3D FEM model using linear brick element is developed
for square voided Cu composite RVE with volume fraction of 0.5102. The ability of
CUF-CW models to capture strong stress gradients around the corner on square voided
Cu composite is demonstrated by comparing the von-Mises stress contour plot against
ABAQUS 3D solution. The von-Mises stress contour plot for an applied transverse
tensile strain (ϵ̄11) of 0.001 is depicted in Fig. 4.10. The total degrees of freedom for
ABAQUS 3D model amounted to 72,225 with analysis time of 201s whereas CUF-CW
model requires only 3456 degrees of freedom with analysis time of 5s.

Table 4.6 Predicted transverse Young modulus E22 (GPa) of void-filled Cu composite
with varying void volume fraction

Void volume fraction
0.0204 0.1837 0.5102 0.7511

Circular void
CUF-CW 120.36 82.27 39.57 10.32
VAMUCH [213] 120.34 82.67 39.08 10.31
FEM [213] 120.34 82.64 39.08 10.31
Square void
CUF-CW 120.22 82.02 39.85 18.28
MOC [4] 110.20 75.27 38.22 17.99
G-F [201] 120.63 83.50 40.48 18.40
ECM (3rd)[204] 110.20 75.38 38.23 17.99
ECM (5th)[204] 118.90 80.97 39.64 18.20
VAMUCH [213] 120.22 81.73 39.75 18.25
FEM [213] 120.22 81.70 39.75 18.25

The results suggest that

• In comparison to reference solutions, the CUF-CW models accurately predicts
the transverse Young modulus

• Strong stress-gradients exhibted by square voided composite is efficiently captured
by CUF-CW models.

Effective moduli of Periodical cellular material

The effective moduli of a peridical cellular material is predicted using CUF-CW models.
The architecture of RVE under investigation is hexagonal (see Fig. 4.11(a)) with an
isotropic material of Young’s modulus E0 of 0.91 GPa and Poisson ratio ν of 0.3. Table
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 10.339
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 53.162
 74.573
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138.808
160.219
181.631
203.042
224.454
245.865
267.277

(a) CW-CUF model (3456 DOFs)

 27.014
 46.340
 65.667
 84.993
104.320
123.646
142.973
162.299
181.626
200.952
220.279
239.605
258.931

(b) ABAQUS 3D - (72225 DOFs)

Fig. 4.10 von-Mises stress contours σvm [MPa] over the cross-section of the RVE of
void-filled Cu composite with a void volume fraction of 0.5102 subjected to transverse
tensile strain (ϵ11): (a) CUF-CW and (b) ABAQUS 3D

4.7 lists the dimensions of the hexagonal honeycomb RVE. As depicted in Fig. 4.11(b),
the RVE is modeled using 28L9 elements. The micromechanical formulation dictates
the insertion of elements in the void areas (white areas in Fig. 4.11(b)) with a weak
material of very low stiffness (Evoid/E0 = 10−5). The RVE is discretized with 2B4
elements along the axis. Accounting for additional degrees of freedom due to void
elements, the total degrees of freedom amounts to 6,993. A similar ABAQUS 3D model
is developed using 3D linear element with a total degrees of freedom of 79,104.

Table 4.7 Dimensions of hexagonal honeycomb RVE

a t/a φ

3−3/4 √
3/12 600

Φ

a

t

(a) (b)

Fig. 4.11 Architecture of hexagonal honeycomb RVE: (a) Dimensions of the hexag-
onal honeycomb RVE and (b) CW discretization of the cross-section for hexagonal
honeycomb RVE using 18L9 elements
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The predicted transverse Young’s modulus for different models are tabulated in Table
4.8 along with reference solution by Gibson and Ashby [83]. A de-homogenization
analysis is undertaken with RVE being subject to transverse strain (ϵ33) of 0.001.
Maximum principal strain (ϵp

1) contour and von-Mises stress (σvm) are depicted in Fig.
4.12 and Fig. 4.13, respectively. Results suggests that

Table 4.8 Predicted tranverse Young modulus E22 (GPa) of the celluar hexagonal
honeycomb RVE

CUF-CW G-A MMM [83] FEM 3D
0.0504 0.0498 0.0485

+1.190e−04
+2.535e−04
+3.880e−04
+5.225e−04
+6.569e−04
+7.914e−04
+9.259e−04
+1.060e−03
+1.195e−03
+1.329e−03
+1.464e−03
+1.598e−03
+1.733e−03

(a) CUF-CW (6993 DOFs)

(Avg: 75%)
E, Max. Principal

+1.000e−07
+1.156e−05
+1.203e−04
+4.140e−04
+5.682e−04
+7.237e−04
+8.656e−04
+1.007e−03
+1.149e−03
+1.291e−03
+1.433e−03
+1.575e−03
+1.717e−03

(b) ABAQUS 3D - (79104 DOFs)

Fig. 4.12 Maximum principal strain contours ϵp
1 for hexagonal honeycomb RVE with

subjected to transverse tensile strain (ϵ33) (a) CW-CUF model and (b) ABAQUS 3D
model

0.114
0.217
0.321
0.424
0.528
0.631
0.735
0.838
0.942
1.046
1.149
1.253
1.356

(a) CUF-CW (6993 DOFs)

0.000
0.041
0.091
0.309
0.425
0.562
0.685
0.753
0.911
1.020
1.128
1.236
1.345

(b) ABAQUS 3D - (79104 DOFs)

Fig. 4.13 von-Mises stress contours σvm [MPa] for hexagonal honeycomb RVE with
subjected to transverse tensile strain (ϵ33) (a) CW-CUF model and (b) ABAQUS 3D
model
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• In comparison to the reference solution and FEM 3D results, CUF-CW can
predict the transverse Young modulus accurately.

• CUF-CW can effectively capture strong gradients within the honyecomb RVE.

4.3.2 Modeling pre-peak nonlinearity in composites

Nonlinear shear behavior of unidirectional composites

In-plane shear response of three different material systems are investigated. The
material system under consideration are:

1. E-Glass-MY750

2. HTA-6376

3. IM7-8552

Table 4.9 Mechanical properties of fibers

Fiber type E-Glass [179] HTA [147] IM7 [109]
Vf (%) 60 62 60
E1

f (GPa) 74.0 223.0 272.5*
E2

f (GPa) 74.0 23.0 15.5*
G12

f (GPa) 30.8 32.0 29.0*
G23

f (GPa) 30.8 7.0 7.0
ν12

f (-) 0.20 0.28 0.2
* Calibrated values

The calibrated elastic material properties various constituents of the material system are
enlisted in Table 4.9 and Table 4.10. A four-parameter hardening model is employed
to simulate the pre-peak nonlinearity within the matrix constituents. Table 4.11
tabulates the calibrated hardening properties for different matrices (see Fig. 4.14 for
the hardening curves). The cross-section configuration of the square-packed RVE is
similar to the one presented in Section 4.3.1 with a dimension of 10µm×10µm×0.1µm

(length × width × thickness).
In Fig. 4.15, the in-plane shear response obtained using CUF-CW is compared

against experimental and reference literature solution for three different material system.
In order to emphasis on the efficiency of the CUF-CW model, an additional assessment
on comparison of shear response prediction is undertaken. The assessment employs a
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Table 4.10 Predicted elastic properties for three unidirectional laminates

Fiber Type E-Glass HTA IM7
Matrix Type MY750 6376 8552
E1 (GPa) 46.1 139.6 165.0
E2 (GPa) 15.9 10.1 9.0
G12 (GPa) 5.9 5.9 5.6
G23 (GPa) 4.3 3.1 3.1
ν12 (-) 0.2 0.19 0.34

Table 4.11 Calibrated material properties for matrix along with hardening curve
parameters

Matrix E ν R0 R∞ β η µ

(GPa) (-) (MPa) (MPa) (-) (-) (-)
MY750 4.3 0.27 60.0 115.0 -3.5 0.56 -170.0
6376 3.7 0.20 40.3 120.0 -12.5 0.40 -170.0
8552 4.1 0.29 65.0 120.0 -10.0 0.60 -250.0
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Fig. 4.14 Hardening curve for three laminate systems with curve parameters
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square-packed RVE modeled using 1656 standard 3D brick element for comparison.
The in-plane shear response of HTA-6376 material response using CUF-CW and FEM
3D models are depicted in Fig. 4.16. Table 4.12 compares the modeling information
including total degrees of freedom, number of gauss points within each model and total
analysis time for CUF-CW and 3D FEM model.

Table 4.12 Numerical results for from 3D FEM and CUF-micro model for the in-plane
shear response of HTA-6376

DOF Number of gauss points Total analysis time [s]
CUF-micro 1,869 1,440 130
FE-micro 6,405 13,248 271

Modeling pre-peak nonlinearity in randomly distributed fiber RVE

The numerical example focuses on simulating pre-peak nonlinearity within a randomly
distributed fiber RVE. Current example is an extension of the dehomogenization
analysis for a randomly distributed RVE undertaken in Section 4.3.1. The architecture
of the RVE is depicted in Fig. 4.6. The fiber is assumed to be transversely isotropic
elastic and matrix constituents of the RVE exhibits inelastic deformations based on
plasticity model. The material properties of fiber and matrix constituents of the RVE
is tabulated in Table 4.13. The matrix is assumed to exhibit perfect plasticity with a
yield stress σy of 5 MPa. A transverse strain ϵ̄22 of 0.003 is applied across the faces
of RVE. A similar model using ABAQUS 3D linear brick elements is developed using
24,765 C3D8 elements.

Table 4.13 Numerical results for from 3D FEM and CUF-micro model for the in-plane
shear response of HTA-6376

E11 E22 ν12 G12 G13

(GPa) (GPa) (-) (GPa) (GPa)
Fiber 126 7.5 0.263 4.98 2.97
Matrix 4.65 4.65 0.35 1.72 1.72

Figure 4.17 compares the contour plots for inelastic plastic strain for CUF-CW
and ABAQUS 3D models. The global nonlinear stress-strain response of randomly
distributed RVE for CUF-CW and ABAQUS 3D model are compared in Fig. 4.18.
Table 4.14 enlists the numerical results including maximum plastic strain, model size
and analysis time for different models.
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Fig. 4.15 Comparison of in-plane shear responses for three unidirectional material
systems
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Fig. 4.16 Comparison between 3D FEM and CUF-micro for the in-plane shear response
of HTA-6376 material system
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Fig. 4.17 Contour plots of inelastic plastic strain for randomly distributed RVE under
transverse strain ϵ̄22 of 0.003

Table 4.14 Numerical results for pre-peak nonlinear response of randomly distributed
RVE under transverse strain ϵ̄22 of 0.003

Models DOF No. of
gauss
points

ϵmax
p

(×10−2)
Total

analysis
time [s]

Average
iters per
NR step

Time per
increment

[s]
CUF-CW 13,644 9,540 2.61 1,109 4 36
ABAQUS 3D 91,305 99,060 1.72 4,034 4 134
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Fig. 4.18 Comparison of global stress-strain response for pre-peak nonlinear response
of randomly distributed RVE under transverse strain ϵ̄22 of 0.003

Following observations can be drawn:

1. In comparison to reference experimental and numerical solution, CUF-CW models
provides accurate nonlinear shear behavior.

2. For randomly distributed fiber RVE, in addition to capturing the global stress-
strain curve accurately, CUF-CW models provide accurate resolution of local
inelastic strain contour plot within the RVE.

3. On average, CUF-CW models provide a reduction in total analysis time by a
factor of 3.

4. In addition, CUF-CW exhibits multi-fold reduction in the required number of
gauss points within the RVE, which can lead to great reduction in memory
overhead within a multiscale framework.

4.3.3 Progressive failure analysis of fiber-reinforced compos-
ite

The post-peak softening behavior exhibited by uni-directional E-Glass/MY750 Epoxy
composite under transverse loading due to matrix cracking is simulated. Based on the
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work of Pineda et al., two classes of RVE architecture are considered in the current
study: (a) Square-packed and (b) Randomly distributed fiber-reinforced RVE [160, 161].
The fiber is assumed to be linear elastic and bi-linear crack band model is employed
for matrix constituents. Material properties including fracture properties are tabulated
in Fig. 4.15.

Table 4.15 Material properties of glass fiber and epoxy matrix for progressive failure
analysis of fiber-reinforced composite [160, 161]

Young’s modulus Poisson Ratio Shear modulus Fracture properties
E (GPa) ν (-) G (GPa) σc (MPa) Gc(N/mm)

Fiber 74.00 0.20 30.80 - -
Matrix 4.65 0.35 1.79 66.5 0.000563

In addition to CUF-CW model, 3D FEM model using standard 3D linear brick
element is developed for the randomly distributed RVE. Table 4.16 enlists numerical
details including the total degrees of freedom and number of gauss points for different
models used for both RVE architecture. As listed in Table 4.16, two CUF-CW models,
namely CUF-CW (265L9) and CUF-CW (276L9), are developed for analyzing randomly-
distributed RVE with the latter model having increased kinematics within the matrix
zone with additional L9 elements (see Fig. 4.19). A global transverse strain ϵ̄22 of 0.008
and 0.004 is applied for square-packed and randomly distributed fiver RVE respectively.

Fiber

Matrix

265 L9 276 L9

Fig. 4.19 CW discretization of the cross-section of RVE with 13 randomly distributed
fibers

Figure 4.20 depicts the global transverse stress-strain curve for different RVE
architectures. In case of square-packed RVE, the results are compared against the
solutions of Pineda et al. [160] whereas the CUF-CW results for randomly distributed
RVE is compared against solutions obtained using 3D FEM model. Numerical results
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Table 4.16 Model information for progressive failure analysis of fiber-reinforced com-
posite

Models Model information DOF No. of GP
Square-packed RVE (Dimension: 0.8 µm x 8 µm x 8 µm, VF: 58% )
CUF-CW The cross-section is modeled using 20L9 along

with 2 B4 element along the beam axis (see Fig.
4.5).

1,869 1,440

Randomly distributed RVE (Dimension: (3µm x 21.25µm x 21.25µm), VF: 59% )
CUF-CW (265L9) The cross-section is modeled using 265L9 along

with 2 B4 element along the beam axis (see Fig.
4.19).

23,877 19,080

CUF-CW (276L9) The cross-section is modeled using 276L9 along
with 2 B4 element along the beam axis (see Fig.
4.19). Additional L9 elements are added in the
matrix zone to enrich the kinematic field within
matrix consituents.

24,843 19,872

FEM -3D 24,765 standard linear 3D brick elements. Mesh
density is chosen after a convergence study with
respect to elastic fields

91,305 198,120

including the ultimate transverse stress and strain are tabulated in Table 4.17 and
Table 4.18 for square-packed and randomly distributed RVE respectively. The final
damage contour plot obtained using CUF-CW for square-packed RVE is compared
against the solutions of Pineda et al. [160] in Fig. 4.21. Various stages of damage
progression for different models of randomly distributed RVE is depicted in Fig. 4.22.

Table 4.17 Numerical results for square-packed RVE under transverse tension

Ultimate
transverse stress

(MPa)

Strain at ultimate
transverse stress

(-)
GMC [160] 54.6 0.00310
HFGMC [160] 56.8 0.00313
FEM-2D [160] 51.3 0.00267
CUF-CW 59.7 0.00314

Results suggests:
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Fig. 4.20 Transverse tensile stress versus strain for progressive failure analysis under
transverse tension for different RVE architecture

Table 4.18 Numerical results for randomly distributed RVE under transverse tension

Ultimate
global stress

Strain at
ultimate stress

Strain at
complete
failure

Total CPU
time

(MPa) (-) (-) (min)
CUF-CW (265 L9) 46.15 0.0031 0.0037 36
CUF-CW (276 L9) 45.71 0.0031 0.0038 48
FEM 3D 51.11 0.0029 0.0040 108

(a) HFGMC (b) GMC (c) FEM 2D) (d) CUF-Micro

Fig. 4.21 Comparison of final damage contour plots for CUF-CW against solutions
from literature [160] for square-packed under transverse tension
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CUF-CW (265 L9) FEM 3D

(a)

(b)

(c)

(d)

CUF-CW (276 L9)

Fig. 4.22 Damage progression in the randomly distributed fiber composite under
transverse tension at global strains (a)0.00225, (b) 0.00275 (c) 0.0035 and (d) 0.004
(Gray: Fiber, Blue: Undamaged matrix, Red: Damaged matrix)
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1. The capability of CUF-CW to capture various stages of damage progression is
successfully illustrated.

2. It is evident from Fig. 4.21 and Fig. 4.22 that the CUF-CW models captures the
brittle nature of failure by losing its load-carrying capacity in steps, evidenced in
experimental observations.

3. The global stress-strain curves for different RVE architectures are comparable to
reference solutions as well as the results obtained using 3D FEM models. The
predicted ultimate global transverse stress by CUF-CW models are within the
acceptable limits of accuracy.

4. In case of randomly distributed RVE, lack of first load drop within 3D FEM
model can be ascribed to the stagnation of the first crack band at the top of
RVE.

5. In case of randomly distributed RVE, the total analysis time for two CUF-CW
models are 36 and 48 minutes wheareas 3D FEM model requires 108 minutes for
the analysis. A three-fold reduction in total computational time and a ten-fold
reduction in the terms of memory requirement can be observed. analysis.

4.4 Conclusion

A novel and computationally-efficient micromechanics framework, built within the
scheme of Carrera Unified Formulation (CUF), for physically nonlinear analysis is
presented. The representative volume element (RVE) is modeled using the Component-
Wise approach (CW), an extension of CUF beam model based on Lagrange type
polynomials. Nonlinear constitutive models such as crack band for progressive failure
analysis and shear driven plasticity model is incorporated into the framework. The
versatility of the framework is demonstrated through numerical results taken from
literature for fiber-reinforced composite, void-filled composite and periodic cellular
material. CUF-CW models are able to accurately predict the effective moduli in
tandem with accurate 3D fields recovery.

Pre-peak nonlinearity within the matrix constituent is modeled using von-Mises
plasticity model. CUF-CW models accurately predicted the nonlinear shear behavior
for different material systems in comparison to experimental and literature reference
solutions. For randomly distributed RVE, CUF-CW provided accurate resolution of
inelastic strain within matrix constituents of the RVE. Micromechanical progressive



100 | A high-fidelity nonlinear micromechanical framework for hierarchical systems

failure analysis of a square-packed and randomly distributed RVE under transverse
tension is undertaken. The predicted failure modes using CUF-CW corresponds well
with the analogous FEM 3D model and observations made in the experiments. On
average, CUF-CW models are able to produce solutions in the range of 3D FE models
with a three-fold decrease in terms of analysis time and ten-fold reduction in the
memory requirement. In the view of multi-fold efficiency, these models serve as an ideal
canidates for computationally-intensive concurrent multiscale framework. Employing
CUF-CW at the lower scale in such frameworks can significantly boost the overall
efficiency both in terms of analysis time and memory requirements.



Chapter 5

A computationally-efficient
nonlinear concurrent multiscale
framework

A computationally efficient concurrent multiscale platform to undertake linear and
nonlinear analysis is presented in the chapter. The framework exploits refined one-
dimensional model based on CUF to model various components across multiple scales.
The nonlinearity is introduced within individual constituents at the micro scale and its
effect is scaled up to the macroscale by means of homogenization. The efficiency of
the framework is quantified through comparisons with the analysis time and memory
requirement against traditional multiscale implementations.1

5.1 Multiscale framework within CUF

The CUF micromechanics framework is interfaced with a macro scale CUF framework
as schematically illustrated in Fig. 5.1. In the proposed multiscale scheme, the material
response of each integration point in the macro model is established by applying
macroscopic strain on micro RVE model through periodic boundary conditions. Scale
transition between the scales is achieved through homogenization technique, i.e, volume

1Parts of this chapter has been in published in the following journals:

1. Kaleel I., Petrolo M., Carrera E., Waas A.M. (2019), "A computationally efficient concurrent
multiscale framework for the nonlinear analysis of composite structures" (Under review)

2. Kaleel I., Petrolo M., Carrera E., Waas A.M. (2019), "A computationally efficient concurrent
multiscale framework for the linear analysis of composite structures" (Under review)
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x

Macroscale

CUF 1D element

+

Microscale

Macro Strain M

Macro stress M

Integration point

Material tangent matrix CM

Fig. 5.1 Illustration of multiscale modeling within the CUF framework

averaging of the microscopic quantities in the microscale RVE. The generality within
the CUF framework facilitates the usage of same implementation at multiple scales.
Additionally, variable kinematic nature of the framework aids in integrating various
classes of finite element in a competent manner. Detailed information on the formulation
of micromechanical problem can be found in Chapter 4. Algorithm 1 outlines the steps
involved for every micromechanical update call received from the macro scale.

5.1.1 Computation of consistent macroscopic tangent matrix

The efficiency and convergence behavior of a multiscale iterative scheme hinges on
accurate computation of macroscopic tangent matrix, which must be consistent with
the macroscopic stress evolution. In case of numerical microscale model, lack of explicit
macroscale constitutive formulation necessitates the extraction of macroscopic stress
and material tangent matrix in an ensemble averaged sense. Numerical tangent matrix
computation within a multi-level FE framework was first formulated by Kouznetsova
et al. [115], where fourth-order consistent macroscopic tangent tensor was derived
from condensing the micro finite element tangent matrix. The procedure involves
computation of Schur complement for matrix inversion, which could be memory
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Algorithm 1 Iterative algorithm for non linear CUF-CW micromechanics toolbox
Input: ∆ϵt

ij , ∆t

Output: Ct
tan, σ̄t, HistM t

1. Recall last converged state macro solution state
σ̄t−∆t

ij ; ϵ̄t−∆t
ij ; HistM t−∆t; NLF lagt−∆t ◃ NLFlag is true for nonlinear RVEs

2. if .not. NLFlag then ◃ RVE is in elastic regime

(a) Computing the deformation state of RVE based on input total and incremental macro strain
∆ϵt

ij ◃ Eqn1
(b) Evaluate incremental and total strains at all integration points in the RVE
(c) Evaluate stress updates at all integration points in the RVE and check for non linear initiation
(d) if (Initiation condition satisfied) then

NLFlag ← True

(e) Compute and update the macro stress and state variables

σ̄t ← ⟨σ(αβ)i

ij ⟩; HistM t ← ⟨Histm(αβ)i

⟩

3. if NLFlag then ◃ RVE is in non-linear regime

(a) Recall last converged state micro solution state

U (αβ)t−∆t

; σ
(αβ)t−∆t

ij ; ϵ
(αβ)t−∆t

ij ; Histm(αβ)t−∆t

(b) while (∥R∥ ≤ tol) do ◃ Iterative Newton-Raphson iteration

i. Assemble the overall global tangent stiffness matrix K
(αβ)i−1

tan with incremental strain
applied as PBC

ii. Compute the global incremental displacement of the RVE

K
(αβ)i−1

tan δU (αβ)i

= Ri−1; ∆U (αβ)i

= ∆U (αβ)i−1
+ δU (αβ)i

U (αβ)i

= U (αβ)t−∆t

+ ∆U (αβ)i

iii. Evaluate incremental and total strain at all integration points in the RVE based on current
displacement field

∆ϵ
(αβ)i

ij ← ∆U (αβ)i

; ϵ
(αβ)i

ij ← U (αβ)i

iv. Perform non linear stress updates at all integration points in the RVE to obtain updated
stress and history variables

σ
(αβ)i

ij ; Histm(αβ)i

v. Compute and assemble global residual error R based on current micro stress σ
(αβ)i

ij

(c) Update the micro solution variables

U (αβ)t

← U (αβ)i

; σ
(αβ)t

ij ← σ
(αβ)i

ij ; ϵ
(αβ)t

ij ← ϵ
(αβ)i

ij ; Histm(αβ)t

← Histm(αβ)i

(d) Compute effective tangent stiffness

i. Incremental unit strain is applied as PBC to the current global stiffness matrix K
(αβ)i

tan

ii. Populate the effective macro tangent matrix by using perturbation scheme (See Section
5.1.1)

(e) Compute and update the macro stress and state variables

σ̄t ← ⟨σ(αβ)i

ij ⟩; HistM t ← ⟨Histm(αβ)i

⟩



104 | A computationally-efficient nonlinear concurrent multiscale framework

expensive for large micro models. In this work, macroscopic tangent matrix is computed
numerically using perturbation technique based on forward difference approximation
developed by Miehe and Koch [130]. This numerical scheme has been successfully
adopted in a wide range of non linear multiscale problems for computing material
tangent [82, 129, 180].

The macroscopic material tangent matrix is computed by numerical linearization
around the current macroscopic loading. The numerical tangent is computed by
applying six infinitesimally small perturbation strain δϵ on the current equilibrium
strain field:

δσ = Cδϵδϵ (5.1)

where δσ is the perturbed stress due to applied perturbed strain δϵ. The perturbation
value depends on the machine precision, as too small value may lead to numerical
problems and error would accumulate in case of large values [129]. During the per-
turbation step, the internal variables H must be able to evolve in order to obtain a
consistent numerical tangent [129]. Therefore, the perturbation is done by adding
the perturbation strain to the current macro strain. Thus the internal variables H

evolve unconstrained and inelastic during perturbation procedure. At step ∆tn+1,
macroscopic stress and internal variables are obtained through volume averaging the
micro stresses and internal variables respectively. The perturbed stress δσ̄ increment
can be computed as

δσ̄n+1 = σ̄(ϵn+1 + δϵ,Hn+1 + δH) − σ̄(ϵn+1,Hn+1) (5.2)

Each column of the numerical tangent matrix Cδϵ is populated by solving six non
linear microscopic boundary value problems. Therefore, each micro call procedure
involves one nonlinear BVP solution to compute the macro stress and six nonlinear
BVP solution to compute the tangent stiffness matrix.

In order to investigate the effectiveness and accuracy of the method, a validation
test is undertaken. A specimen with a hole is modeled using 12L9 and 1B2 CUF
element. As illustrated Fig. 5.2a, the macro model is interfaced with a microstructure
modeled with a homogeneous isotropic material exhibiting von-Mises plasticity. A
single scale analysis of the same problem with von-Mises plasticity model is undertaken
to compare the overall response of the structure as well the global convergence behavior
(see Fig. 5.2b).

Table 5.1 tabulates the number of iterations required for each load step for different
perturbation values. The effectiveness of the algorithm can be examined by comparing
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Fig. 5.2 Validation test for consistent macroscopic tangent matrix computation using
von-Mises theory

the homogenized tangent matrix against the analytical tangent matrix of von-Mises
model for a perturbation value of 10−6:

Canalytical =



6179.1670 4682.6240 4638.2090 −80.3894 45.2823 −23.0188
4682.6240 7066.4530 3750.9230 41.6662 −23.4701 11.9308
4638.2090 3750.9230 7110.8690 38.7232 −21.8123 11.0880
−80.3894 41.6662 38.7232 1663.9490 3.0005 −1.5253
45.2823 −23.4701 −21.8123 3.0005 1667.5860 0.8592

−23.0188 11.9308 11.0880 −1.5253 0.8592 1668.8390



CδE =



6178.3770 4681.9150 4637.4760 −80.3608 45.2666 −23.0105
4681.7960 7065.9650 3750.1660 41.6634 −23.4686 11.9299
4637.3200 3750.1870 7110.2600 38.7186 −21.8099 11.0867
−80.6796 41.8166 38.8630 1663.8320 3.0114 −1.5308
44.9858 −23.3163 −21.6694 2.9809 1667.5690 0.8535

−23.3154 12.0845 11.2309 −1.5449 0.8703 1668.7720
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Table 5.1 Convergence behavior for different perturbation strain δE (Relative macro
residuum = 10−4)

Load Step Number of Newton-Raphson iterations
∥δE∥

Analytical 10−7 10−6 10−5 10−4 10−3

3 2 2 2 2 2 2
4 3 3 3 3 3 3
5 2 2 2 2 3 5

10-6 10-4 10-2

|| E||

5400

5600

5800

6000

6200

C
ta

n
11

Analytical
Homogenized numerical

10-6 10-4 10-2
|| E||

0

500

1000

1500

C
ta

n
44

Analytical
Homogenized numerical

Fig. 5.3 Convergence behaviour of various components in homogenized material tangent
matrix for different perturbation values
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Figure 5.3 depicts the convergence behavior two different components of tangent
matrix for different perturbation values. A perturbation value ||δϵ|| of 10−6 for further
computations.

5.1.2 Implementation aspects

A standard single-scale finite implementation spends a significant amount of time on
stiffness matrix computations and global matrix decomposition for solution [48]. As
the system grows larger, the contribution from the latter tends to increase. In case of
multiscale framework, due to the requirement of solving significantly large set of local
problems associated with micro solutions, majority of the computational effort is spent
on macro gauss point update procedures. Such significant computational effort is often
addressed through parallel implementations.
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Fig. 5.4 Speed up obtained in the parallel version of multiscale framework for a system
with ∼ 130, 000 degrees of freedom

As depicted in Figure 5.5, macro scale is interfaced with the micro framework
through the update macro gauss point subroutine, where the micro framework receives
the current incremental macro strain as the input. The micro framework computes
the updated macro tangent matrix, macro stress and solution variables and sends it
back to the macro gauss point update subroutine. Due to the iterative nature of the
framework, the solution variables of every gauss point within the micro RVE associated
with a macro gauss points needs to be stored. This may lead to exponential increase in
the memory usage as the size of the numerical problem grows. The current framework
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manages memory in an efficient manner by storing the solution variables for micro
RVEs only when it enters the nonlinear regime.
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Fig. 5.5 Flowchart for the concurrent multiscale framework based on CUF

A hybrid MPI-OpenMP based parallelization strategy is adopted at multiple phases
within the framework [55]. MPI based constructs are employed to parallelize the global
level operations such as updating solution variables at macro gauss points and global
stiffness assembly. OpenMP commands are utilized at the local level operations such
as macro tangent computation, where all six nonlinear BVP solutions are carried out
in a parallel manner. Within multiscale framework, since majority of the analysis
time is spent on solving the micromechanical BVP at every macro gauss point, the
parallelization strategy adopted above yields a near-ideal speedup as depicted in Fig.
5.4. Since tangent computation is associated with additional 6 nonlinear BVP solution
at micro scale per macro gauss point, a modified Newton scheme is adopted to solve
all the numerical cases. Therefore tangent material matrix is computed only at the
beginning of each load increment.
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5.2 Numerical Results

The robustness and effectiveness of the proposed concurrent multiscale framework
is demonstrated through numerical cases for linear and nonlinear analysis. The
framework is also able to handle standard three-dimensional eight-node brick finite
elements, commonly used in literature for FE2 framework based multiscale analysis.
Based on the kind of finite elements used in the two scales, different multiscale models
are used to solve the problem as enlisted in Table 5.2.

Table 5.2 Nomenclature for various models used in multiscale analysis

Model name Macro scale Micro scale
1D-1D CUF beam element CUF beam element
1D-3D CUF beam element Standard 3D brick element
3D-1D Standard 3D brick element CUF beam element
3D-3D Standard 3D brick element Standard 3D brick element

The first three sets of numerical cases deals with linear elastic multiscale analysis.
First example predicts the stiffness for notched and un-nnotched specimens for various
multidirectional laminate system. Linear elastic analysis of an open-hole composite
specimen under tension with a large randomly distributed fiber RVE in the microscale
is taken as the second numerical case. The third example deals with analysis of simply
supported honeycomb sandwich beam under bending load. In order to validate and
assess the robustness of the framework to undertake nonlinear multiscale analysis,
multi-layered structure under pure shear loading condition is simulated as the fourth
numerical case. The last two sets of numerical cases deals with investigation of
nonlinearity exhibited by off-axis laminates with comparison against experimental
results and prediction of nonlinear response of open-hole composite specimen.

5.2.1 Stiffness prediction of multi-directional laminates

The numerical example evaluates the stiffness of three different multi-directional
laminate systems: (1) Layup 1: [0/45/90/−45]2s, (2) [60/0/−60]3s and (3) [30/60/90/−
30/ − 60]2s. The laminates are made up of uni-directional IM7/977-3 graphite epoxy
material system. The static tensile and compressive stiffness of above mentioned
laminate system for un-notched and notched specimens are evaluated. Clay et al.
conducted a study on exploring existing state of the art in composite damage analysis
[50, 69]. This study is limited to stiffness prediction for above mentioned laminate
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system. The architecture of the microscale RVE is taken as square-packed with a

Carbon ber

Epoxy matrix

2 B4

+

20 L9

Fig. 5.6 Microscale RVE model for stiffness prediction of multi-directional laminates

volume fraction of 65% (see Fig. 5.6). Based on the experimental results for uniaxial
tension and compression, the elastic material properties of the RVE are calibrated
[50, 137] (see Table 5.3). As depicted in Fig. 5.6 , the square-packed RVE is modeled
using 2B4 beam elements along with 20L9 elements across the section. The macro-scale
models for un-notched and notched specimens are modeled through the CW modeling
approach as illustrated in Fig. 5.7. The details pertaining to CUF models for different
layups with total analysis time for static analysis is tabulated in Table 5.4. Table
5.5 enlists the predicted stiffness values for different laminate system for notched
and un-notched specimens along with comparison against experimental and literature
results.

Table 5.3 Calibrated constituent properties of RVE for multiscale analysis for stiffness
prediction of multi-directional laminates

E1 E2 E3 ν12 ν23 G12

[GPa] [GPa] [GPa] [−] [−] [GPa]
IM7 Fiber 256.0T/215.0C 15.0 15.0 0.28 0.19 15.0
Epoxy 977-3 3.2 3.2 3.2 0.38 0.38 1.16

T: Tension C: Compression

Following observations can be drawn:

1. The predicted stiffness by multiscale models for a variety of multi-directional
coupons are of great accuracy

2. It is evident from Table 5.5 that the error obtained by 1D-1D models for coupons
under tension and compression are within 4% and 8% respectively.

3. CUF multiscale framework are able to efficiently model non-prismatic structures
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Fig. 5.7 An illustration of the modeling of composite specimens using refined 1D CUF
models for stiffness prediction of multi-directional laminates [60]

Table 5.4 Macro model information for stiffness prediction of multi-directional laminates

Model Information DOF CPU Time (s)

Layup1 : [0/45/90/ − 45]2s

Un-notched 48L9-4B4 21,483 7.5
Notched C2: 64L9-4B4 and C1:80L9-16B3 45,540 19.1
Layup2 : [60/0/ − 60]3s

Un-notched 54L9-10B4 24,087 7.8
Notched C2: 72L9-4B4 and C1:80L9-18B3 48,708 20.3
Layup3 : [30/60/90/ − 30/ − 60]2s

Un-notched 60L9-10B4 26,691 8.9
Notched C2: 80L9-4B4 and C1:80L9-20B3 51,060 21.0
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Table 5.5 Stiffness prediction for notched and unnotched multi-directional laminates

Experimental [50] MAC/GMC [137] NCYL [215] 1D-1D
Unnotched Tensile
Layup 1:
[0/45/90/ − 45]2s

60.5 59.6 (1.49%) 60.6 (0.17%) 59.4 (1.82%)

Layup 2: [60/0/ −
60]3s

59.5 59.8 (0.50%) 61.5 (3.36%) 59.2 (0.50%)

Layup 3:
[30/60/90/ −
30/ − 60]2s

38.0 39.0 (2.63%) 39.7 (4.47%) 39.1 (2.89%)

Unnotched Compression
Layup 1:
[0/45/90/ − 45]2s

48.0 51.0 (6.25%) 52.3 (8.96%) 50.9 (6.17%)

Layup 2: [60/0/ −
60]3s

48.9 51.2 (4.70%) 52.3 (6.95%) 51.0 (4.29%)

Layup 3:
[30/60/90/ −
30/ − 60]2s

33.5 33.3(0.60%) 34.8 (3.88%) 34.11 (1.82%)

Notched Tension
Layup 1:
[0/45/90/ − 45]2s

48.3 49.1 (1.66%) 50.3 (4.14%) 49.4 (2.28%)

Layup 2: [60/0/ −
60]3s

48.8 48.9 (0.20%) 51.1 (4.71%) 50.44 (3.36%)

Layup 3:
[30/60/90/ −
30/ − 60]2s

32.4 33.7 (4.01%) 34.5 (6.48%) 33.25 (2.62%)

Notched Compression
Layup 1:
[0/45/90/ − 45]2s

44.5 41.6 (6.52%) 41.9 (5.84%) 41.2 (7.42%)

Layup 2: [60/0/ −
60]3s

44.4 41.9 (5.63%) 41.9 (5.63%) 41.0 (7.70%)

Layup 3:
[30/60/90/ −
30/ − 60]2s

30.1 29.2 (3.00%) 29.8 (1.00%) 28.63 (4.88%)

All units in GPa. Quantities in parenthesis represent error with respect to experimental result
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5.2.2 Linear multiscale simulation of a randomly distributed
large RVE

The following numerical case demonstrates the capability of the multiscale framework
to efficiently compute the local micro stress fields. Ricks et al. [168] undertook a linear
elastic multiscale analysis of notched rectangular specimen with dimensions 304.8 mm
× 38.1 mm × 3.5mm (length × width × height) with a circular notch of diameter
6.35 mm. As depicted in Fig. 5.7 (b), an equivalent model is developed using CW
technique with configuration: C2: 4L9-2B4 and C1:80L9-1B3. Fibers are oriented in
parallel along the length of specimen and a displacement of 6.9 mm is applied at one
end of the specimen with the other end clamped. The macro model is interfaced with
randomly distributed fiber RVE as illustrated in Fig. 5.8 (b). The architecture of the
RVE is based on work undertaken by Kaleel et al. [111, 112]. The micro model RVE
is modeled using 265 L9 with 2 B4 elements and the material properties are same
as the previous numerical example (Table 5.3). A similar RVE model is developed
using 24,765 3D brick finite elements. Two classes of multiscale models are developed,
namely (a) 1D-1D: Both micro and macro scale is modeled using CUF beam elements
and (b) 1D-3D: Macro CUF model is interfaced with a standard FE based micro model.
The mesh configuration for the 3D FE micro model is based on convergence study and
details of the same can be found in paper by Kaleel et al. [111].

d = 6.35 mm

w
 =

 3
8
.1

 m
m

L = 304.8 mm

uapplied=6.9 mm

Fiber direction

(a) Unnotched

Fiber

Matrix

265 L92 B4

+

(b) Notched

Fig. 5.8 Geometry for linear multiscale simulation of a randomly distributed large RVE

Figure 5.9 depicts the global von-Mises stress distribution around the notch for
1D-1D and 1D-3D models. Local fields are plotted at locations A and B (see Fig. 5.8)
around the notch in Fig. 5.10 and Fig. 5.11 respectively. The macro strain at the
aforementioned macro gauss points locations used for dehomogenization is tabulated in
Table 5.6. Numerical results enlisted in Table 5.7 provides information regarding the
model size, analysis time and memory requirements. The analysis time is compared
for two cases: one with computation and storage of local stress fields in micro RVEs
and other one without it. Local stress fields in micro RVE is obtained by undertaking
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dehomogenization at every gauss point in the macro structure. Memory required to
store the local micro stress field is also computed.

  71.94
 376.56
 681.18
 985.80
1290.42
1595.04
1899.66
2204.28
2508.90
2813.52
3118.14
3422.76
3727.38

(a) 1D-1D

  71.12
 376.16
 681.21
 986.25
1291.30
1596.34
1901.39
2206.43
2511.48
2816.52
3121.57
3426.61
3731.66

(b) 1D-3D

Fig. 5.9 von-Mises stress distribution around the hole for linear multiscale simulation
of a randomly distributed large RVE

Table 5.6 Strain computed at two location for dehomogenization linear multiscale
simulation of a randomly distributed large RVE

ϵ22 ϵ11 ϵ33 ϵ23 ϵ13 ϵ12

×10−2 ×10−2 ×10−2 ×10−3 ×10−3 ×10−2

Location A (23.2, 152.4, 0.0)
1D-1D -1.297 8.412 1.703 1.155 0.919 1.914
1D-3D -1.309 8.478 -1.725 1.390 1.128 -1.936

Location B (23.0, 151.9, 0.0)
1D-1D 1.011 3.553 -1.253 -3.136 -6.367 9.695
1D-3D 1.020 3.551 -1.261 -3.082 -7.771 9.745

Results suggests the following:

1. In comparison to 3D models at the microscale, 1D models are able to effectively
capture the local fields with great accuracy.

2. The capability of the multiscale framework to interface different kinds of higher-
order finite element models at micro scale is highlighted.

3. In comparison with the analysis time for 1D-3D model, it is evident from Table
5.7 that the 1D-1D models requires only one-third of the time for analysis without
local fields and one-fourth of the time for analysis with local fields.
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(b) Micro-3D

Fig. 5.10 Local stress field σ11 obtained at location A for linear multiscale simulation
of a randomly distributed large RVE
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(b) Micro-1D

Fig. 5.11 Local stress field σ12 obtained at location B for linear multiscale simulation
of a randomly distributed large RVE

Table 5.7 Numerical results for linear multiscale simulation of a randomly distributed
large RVE

Macro Model Micro Model Analysis time (s) Memory required
DOF No. of DOF No. of Without local With local per macro GP 1

GPs GPs micro fields micro fields [MB]
1D-1D 4,140 2,736 13,642 9,540 3.0 10.1 1.5
1D-3D 4,140 2,736 31,524 61,008 9.6 42.7 9.8

DOF: Degrees of freedom. GP: Gauss point.
1 Required memory per each macro GP is calculated as 20 state variables stored per each gauss point
in the micro RVE using double precision real (8 bytes)
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4. The efficiency of the 1D-1D models can be further exemplified by comparing the
memory requirements for the two models. A 6.5 times savings in terms of total
memory required to store the local fields are obtained for 1D-1D models.

5.2.3 Simply-supported honeycomb sandwich beam under bend-
ing loading

The current numerical example highlights the capabilities of CUF multiscale framework
to handle multiple types of RVE efficiently through multiscale modeling of honeycomb
sandwich beam. The numerical example consists of a simply supported honeycomb
sandwich structure with an aluminium core and composite face sheet under bending
loading. The face sheets consists of a laminate [0]2 modeled through RVE described in
the previous example (Section 5.2.1).

+

Micro model: Composite

+

Micro model: Honeycomb core

x

x

Macro model: Honeycomb sandwich beam

Composite plate

Honeycomb core

x

y

(a)

+

L9  B4

(b)

z

Fig. 5.12 Multiscale modeling of honeycomb sandwich using CUF multiscale framework:
(a) Interfacing two kinds of micro models for sandwich beam and (b) CW discretization
of macro sandwich beam model using L9 cross-section and B4 beam elements

Based on the work of Catapano and Montemurro [45], the honey comb core is
modeled using properties enlisted in Table 5.8 (see Fig. 5.13). The honeycomb core
is made of aluminium with Young’s modulus E of 70 GPa, Poisson’s ratio ν of 0.33
and density ρ of 2.7 × 10−6kg/mm3. As discussed in the original paper on CUF
micromechanics [111], additional void elements (elastic air) are added to the RVE to
remain consistent with the micromechanical homogenization formulation. As depicted
in Fig. 5.14, the RVE is discretized using 286 L9 elements and 2 B4 elements amounting
to a total degrees of freedom of 25,389. Table 5.9 enlists the predicted elastic properties
of the honeycomb with comparison against results from the literature.
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Table 5.8 Geometrical properties of core for multiscale structural analysis of honeycomb
sandwich beam [45]

l1 l2 tc θ hc

(mm) (mm) (mm) (deg) (mm)
3.66 1.833 0.0635 60 20

Φ

2l2

tc

l1

(a) (b)

Fig. 5.13 Geometry of the honeycomb core: (a) Repeating core structure and (b)
geometrical parameters of RVE

Aluminium core

Air

+

L9 B4

(a) (b)

Fig. 5.14 Component-wise modeling of the honeycomb core RVE: (a) CUF beam model
of RVE and (b) Cross-section and beam discretization
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Table 5.9 Prediction of effective properties of honeycomb RVE for multiscale structural
analysis of honeycomb sandwich beam

CUF-Micro MSG2D [218] Catapano et al. [45] Burton et al. [29] Grediac [89]
E1
(MPa)

0.935 0.884 0.884 0.815 0.815

E2
(MPa)

0.969 0.918 0.918 0.815 0.815

E3
(MPa)

1814.8 1812.3 1812.3 1848.2 1848.2

G12
(MPa)

0.591 0.565 0.640 0.489 0.489

G23
(MPa)

263.8 262.6 262.9 260.6 260.6

G13 (MPa) 386.4 384.5 390.8
156.3 (LB)

397.1
434.3 (UB)

ν12 (-) 0.98 0.98 0.98 1.00 1.00
ν23 (-) 1.70×10-4 1.67×10-4 1.61×10-4 1.45×10-4 1.45×10-4

ν13 (-) 1.76×10-4 1.61×10-4 1.67×10-4 1.45×10-4 1.45×10-4

ρ
(kgmm-3)

7.02×10-8 6.99×10-8 6.99×10-8 7.12×10-8 -

LB: Lower bound, UB: Upper bound

A simply supported sandwich honeycomb beam of length 700mm is modeled. As
depicted in Fig. 5.15, a uniform pressue of 0.01MPa acts on the top surface of the
beam. As discussed earlier, gauss points belonging to composite face sheet is interfaced
with fiber-reinforced micro CUF RVE model using 20 L9 and 2 B4 elements (see Fig.
5.6). The honeycomb aluminum core gauss points are interfaced with the honeycomb
core RVE micro model. Table 5.10 enlists the three classes of multiscale models
used for the example. All the macro models are interfaced with the same micro
RVE configuration, details of which are furnished in Table 5.11. Numerical results
including maximum displacement and von-Mises stress σvm at mid-span, analysis time
and memory requirement for total storage of micro state solutions are listed in Table
5.12. Comparison between analysis time with and without local micro fields are also
tabulated. Local von-Mises stress field at point (50.0, 35.0, 16.9) in the core of sandwich
honeycomb beam is illustrated in Fig. 5.16.

Following observations are drawn:

1. Multiple 1D micro models are effectively interfaced with macro 1D models and
3D brick models. Maximum von-Mises stress observed at the midspan in the
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Fig. 5.15 Geometry and boundary conditions for multiscale modeling of honeycomb
sandwich using CUF multiscale framework

Table 5.10 Macro model information for analysis of honeycomb sandwich beam

Model Information DOF NGP
1D-1D CUF beam element (36L9-15B4)- 1L9 per layer for

composite and 2L9 per layer for core
19,734 16,200

3D-1D (Coarse) 12500 standard 3D brick element1 - Mesh seed along
the beam : 50 - One brick element per layer for com-
posite and 4 brick element for core

43,758 100,000

3D-1D (Refined) 20000 standard brick element1 - Mesh seed along the
beam: 80 - One brick element per layer for composite
and 4 brick element for core

69,498 160,000

DOF: Degrees of freedom. NGP: Number of gauss points. 1 Full integration (8 gauss points per
element)

Table 5.11 Macro model information for analysis of honeycomb sandwich beam

RVE Model Information DOF NGP
Composite face sheet CUF beam element (20L9-2B4) 1,869 1,440
Honeycomb core CUF beam element (1209-2B4) 25,389 20,596

Table 5.12 Numerical results for analysis of honeycomb sandwich beam under bending
load

Model Number Macro model Analysis time (s) Memory required
of Max disp Max σvm without with for all macro

CPUs (mm) (MPa) local fields local fields GPs [GB] 1

1D-1D 1 4.61 121.7 14.9 64.0 2.95
3D-1D (Coarse) 4 4.50 118.8 27.9 181.2 19.8
3D-1D (Refined) 4 4.56 120.5 44.0 287.0 31.6

DOF: Degrees of freedom. GP: Gauss point.
1 Required memory for all macro GP is calculated as 10 state variables (double precision real - 8
bytes) stored per each gauss point in the micro RVE multiplied by total number of macro GP. Micro
gauss points for elastic air in micro core RVE is not included.
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Fig. 5.16 Local von-Mises stress field σvm obtained at a point in core (50.0, 35.0, 16.9)
for analysis of honeycomb sandwich beam for different multiscale models

macro model for 1D-1D model is 4.61 MPa and coarse and refined configuration
of 3D-1D models are 118.8 MPa and 120.5 MPa respectively.

2. From Table 5.12, it can be seen that 1D-1D models utilizes 1 CPU to obtain the
results with and without local micro fields in 14.9s and 64.0s respectively, whereas
the analysis runtime for 3D-1D model (refined) for with and without micro fields
is 44.0s and 287.0s respectively by utilizing 4 CPUs. The stark difference can
be attributed to the fact that macro 3D require higher number of gauss points,
which in turn increases the time required for the analysis drastically.

3. Table 5.10 shows that 1D macro model requires 16,200 gauss points but 3D
macro models required 100,000 and 160,000 for coarse and refined configurations
respectively. The difference in required gauss point translates to large variation
in the memory required to store micro state solutions at all macro gauss points.
1D-1D models require only 2.95 GB to store all the micro solutions whereas
coarse and refined configuration of 3D-1D models require 19.8 GB and 31.6 GB
respectively (see Table 5.12).

4. Dehomogenization of the core at a given point by different multiscale models
exhibit similar von-Mises stress fields as shown in Fig. 5.16.

5.2.4 Non linear shear response of multi-layered composite

In order to validate the proposed concurrent multiscale framework for nonlinear analysis,
a multi-layered structure under pure shear loading condition is simulated. The problem
definition is based on the work of Tikarrouchine et al. [185]. The microscale is modeled
using a periodic stack of two composite layers with volume fraction of 0.5 each. As
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illustrated in Fig. 5.17(c), the first layer is modeled as an elastic material whereas the
second layer exhibits an elasto-plastic response with material parameters tabulated in
Table 5.13. Figure 5.18 depicts the plastic response of elasto-plastic phase, based on
the power-law hardening function.

Table 5.13 Material properties for two-layered composite RVE for multi-layered structure
under pure shear loading condition

Volume fraction Young’s modulus Poisson’ ratio Yield Stress
[-] [GPa] [-] [MPa]

Elastic phase 0.5 6.0 0.2 -
Elasto-plastic phase 0.5 2.0 0.3 10.0

The boundary conditions imposed on the macrostructure corresponds to a pure
shear loading case (see Fig. 5.17(a)). An additional node is constrained in the y
direction to mitigate rigid-body motion. The cuboidal macro structure is modeled
using 1 L9 element along the cross-section and 1 B4 element along the beam axis
as depicted in Fig. 5.17(b). The dimensions of the cube is taken as 1.0. Since the
boundary conditions imposed on the macro model yields pure shear loading (all strain
components except ϵ23 are zero), the overall response of the macro structure must be
identical to a micromechanical analysis of the RVE with an imposed non zero shear
strain ϵ23. The macro stress σ23 for the 1D-1D macro model is computed by dividing
the total reaction force along one of the faces by face area.
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Fig. 5.17 Model information of two-layered composite RVE for multi-layered structure
under pure shear loading condition: (a) Boundary conditions for macro model, (b)
Cross-section and beam modeling of macro model and (c) Cross-section and beam
modeling for micro model

The overall macro response is depicted in Fig. 5.19 along with results from CUF-
micromechanical analysis, semi-analytical solution as well as reference FE2 solution
from the work of Tikarrouchine et al. [185]. In order to assess the convergence behavior
of the framework, another set of analysis is carried out with a total strain of the 5% is



122 | A computationally-efficient nonlinear concurrent multiscale framework

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
 [-]

0

10

20

30

40

50

60

70
 [M

P
a]

Hardening law :  (
p
) = R

0
 + K 

p
n

R
0
 = 10 MPa; K = 60 MPa; n = 0.15

Fig. 5.18 Plastic response of the elasto-plastic phase for two-layered composite RVE
for multi-layered structure under pure shear loading condition

applied in one large increment. Similar to the study undertaken by Haj-Ali and Aboudi
in [92], this study aims at evaluating the robustness of the framework to handle severe
non-linearity. Figure 5.20 shows the convergence behavior of 1D-1D model versus the
CUF-micro model, where 1D-1D (Global) refers to the global convergence behavior of
the macro 1D model and 1D-1D (Local) refers to the convergence behavior exhibited
at the local micro model interfaced to one of the gauss point of macro model. Results
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Fig. 5.19 Comparison of overall macro response of two-layered composite RVE for
multi-layered structure under pure shear loading condition against semi analytical
solution and FE2 approach [185]
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Fig. 5.20 Comparison of convergence between 1D-1D model and CUF-micro model.
1D-1D (Global) refers to the global convergence behavior of the macro 1D model and
1D-1D (Local) refers to the convergence behavior exhibited at the local micro model
interfaced to one of the gauss point of macro model

suggest the following:

1. From Fig. 5.19 it is evident that the overall macro response for 1D-1D model
corresponds well with CUF-micromechanics and reference solutions.

2. It can be observed that the multiscale framework exhibits superior convergence,
even for severe nonlinear increment (see Fig. 5.20)

3. The robustness and capability of the framework has been successfully validated.

5.2.5 Unnotched laminates under uniaxial tension

O’Higgins et al. conducted experimental and numerical investigation on the effect of
transverse and shear non-linear response for off-axis glass fiber-reinforced composite
laminates under tension [147, 148]. Emergence of permanent strains in specimens
during cyclic loading revealed plastic like behavior of laminates. Authors also developed
a lamina level CDM based plasticity model for undertaking numerical analysis of off-
axis laminates under tension [148], which shall serve as a reference solution for the
following study. In this study, predictive capabilities of CUF multiscale framework
is exploited in analyzing off-axis laminated CFRP composite under uniaxial tension.
Inelastic deformation phenomena is captured through modeling plastic deformation in
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the matrix constituents at micro scale. Three different laminates sequences are studied,
namely [10]2s, [55]2s and [67.5]2s and material system under consideration is HTA-6376.

uapplied

y

x

z

(a) Boundary conditions

+

8L9 1B4

(b) 1D-1D macro model

Fig. 5.21 Macro model for off-axis laminates under uniaxial tension

Two classes of multiscale models are considered, namely:

(a) 1D-1D: Micro scale and macro scale models are modeled using CUF 1D elements
using 1B4 element with 1L9 element per layer (see Fig. 5.21a). Total number of
gauss points in the macro structure accounted to 288.

(b) 3D-3D: Analogous to traditional FE2 method, both scale are modeled using 2
linear 3D brick element per layer, similar to the modeling technique undertaken
by O’Higgins at al. for the coupon [148]. Total number of gauss points in the
macro structure amounted to 1152.

The thickness of each layer is taken as 0.125 mm. The boundary condition for the
macro structure is depicted in Fig. 5.21b. As depicted in Fig. 5.22, the microstructure

Carbon ber

Epoxy matrix

2 B4

+

20 L9

Fig. 5.22 Micro model for 1D-1D multiscale model for off-axis laminates under uniaxial
tension

of RVE is assumed to be square-packed. The micro model for 1D-1D model consists
of 20L9 element along the cross-section and 2B4 along the beam with total degrees
of freedom of 1869 (see Fig. 5.22). The mesh configuration for the micro model for
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Table 5.14 Elastic properties of micro RVE models for off-axis laminates under uniaxial
tension

E1 E2 G12 G23 ν12

(GPa) (GPa) (GPa) (GPa) (-)
HTA Fiber 223.0 23.0 32.0 7.0 0.28
MY750 matrix 4.3 4.3 1.7 1.7 0.27

3D-3D model was chosen based on a convergence study and details of the same can be
found in paper by Kaleel et al. [111]. The 3D model consists of 1656 brick elements
amounting to a total degrees of freedom of 5796. The model information for micro
scale models are furnished in Table 5.15 along with analysis time comparison with
and without macro tangent material matrix computation. The fiber is modeled as
transversely isotropic linear elastic material and von-Mises plasticity model is used to
model inelastic deformation in matrix constituents. The transverse and shear response
of the RVE is calibrated to experimental data available for [90] and [±45] coupons
[147]. Calibrated elastic material properties for the micro RVE models are tabulated
in Table 5.14. The hardening curve of matrix plasticity model is calibrated using a
four parameter model [110] and depicted in Fig. 5.23. Figure 5.24 depicts the overall
response of 1D-1D micro model and 3D-3D micro model under transverse and shear
response loading with comparison against experimental [147] and literature solutions
[148]. Accumulated plastic strain in calibrated RVE models at an applied shear strain
γ12 = 0.05 are depicted in Fig. 5.25.

The calibrated micro scale RVE models are interfaced with the macro models
for three different laminate systems. Figure 5.26 compares the tensile stress versus
strain for three laminate systems with comparison against experimental [147] and
CDM-plasticity model results [148]. It is important to emphasis that both the reference
results includes the final failure point whereas the current simulation is restricted to
only modeling the nonlinear behavior. The final failure point for both the reference
models are denoted with ” × ” in the Fig. 5.26. Table 5.16 enlists the total time taken
for the analysis as well as the memory usage for different multiscale models.

Following observations can be drawn:

1. It is evident from Fig. 5.24 that the micro mechanical calibration of the RVEs
leads to accurate representation of the shear response of the laminate. Calibrated
RVEs tends to exhibit reduced non-linear response under transverse loading
condition. Figure 5.25 shows that 1D micro model exhibit similar accumulated
inelastic strain field in comparison to 3D micro model under shear loading



126 | A computationally-efficient nonlinear concurrent multiscale framework

0 0.01 0.02 0.03 0.04 0.05
Plastic strain 

p
 [-]

0

30

60

90

120

150

S
tr

es
s 

 [M
P

a]
HTA-6376

Hardening curve equation
R(

p
) = R

0
+R  (1-  e p)(1-  e p)

Hardening curve parameter
 = -12.50,  = 0.40,  = -170 

R  = 120.0, R
0
 = 40.3

Fig. 5.23 Calibrated hardening curve used for micro RVE model for unnotched laminates
under uniaxial tension

Table 5.15 Micro model information for unnotched laminates under uniaxial tension

Micro model Information DOF NGP Analysis time per increment [s]
Without tangent With tangent

1D-1D CUF beam element -
20L9 cross section ele-
ments with 2 B4 beam
elements

1,869 1,440 0.45 2.90

3D-3D 1656 brick elements (2
elements per layer)

6,405 13,248 0.75 5.24

Table 5.16 Numerical results for off-axis laminates under uniaxial tension

Laminates [10]2s [55]2s [67.5]2s Average
Model 1D-1D 3D-3D 1D-1D 3D-3D 1D-1D 3D-3D 1D-1D 3D-3D

Total analysis time
(hh:mm)

0:47 2:32 0:50 2:12 0:39 2:20 0:46 2:22

Average memory
usage per core
(GB)

1.52 28.1 1.51 28.0 1.51 28.1 1.51 28.1
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Fig. 5.24 Comparison of of calibrated CUF-Micro and FE-Micro model against experi-
mental [147] and CDM-Plasticity model [148] for transverse and shear response of the
RVE
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Fig. 5.25 Accumulated inelastic strain in calibrated RVE at an applied shear strain
γ12 = 0.05
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Fig. 5.26 Comparison of multiscale model predictions against experimental data [147]
and CDM-Plasticity model [148] for off-axis laminates under uniaxial tension
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2. In comparison to experimental and reference results, both the multiscale captures
varying degree of nonlinearity exhibited by different laminates with acceptable
accuracy (see Fig. 5.26)

3. Table 5.15 shows that 3D-3D micro models requires twice the time to undertake a
single micro RVE analysis in comparison to 1D-1D model. The speed-up obtained
is carried over to the overall analysis time for the multiscale analysis with 1D-1D
models requires only 46 minutes whereas 3D-3D needs 2 hours and 22 minutes
on average (see Table 5.16).

4. Stark difference is observed in terms of memory usage between both the multiscale
model (see Table 5.16). The difference can be attributed to the large variation in
required number of gauss points in the micro scale for both models. 1D micro
RVE is modeled using 1,440 gauss points whereas 3D micro model requires 13,248
gauss points. On average, 1D-1D models are 18 times memory efficient than the
respective 3D-3D models.

5.2.6 Open-hole specimen under tension

A numerical case with an open-hole specimen exhibiting nonlinearity under tension is
undertaken to further exemplify the potential of the proposed multiscale framework. As
illustrated in Fig. 5.27, a quarter of the open-hole specimen is modeled with symmetric
boundary conditions. The specimen is subjected to a displacement loading of 0.5625
mm applied in 20 incremental steps. The dimensions of the specimen along with the
boundary conditions are depicted in Fig. 5.27. Three classes of multiscale models are
employed, namely:

(a) 1D-1D : The cross-section of macro model is modeled using 37 L9 elements with
each layer modeled with B2 beam elements.

(b) 3D-1D Coarse: The macro model is built using 792 3D brick elements. One
element is used to represent each layer.

(c) 3D-1D Refined: The mesh density is increased around the hole region, thereby
raising the total number of 3D brick element used to model the specimen to 1088.
One element is used to represent each layer.

It should be noted that all the multiscale model described above are interfaced with
the same CUF 1D beam micro model. The micro model consists of a fiber-reinforced
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composite system with an elasto-plastic matrix. Fiber is assumed to be linear isotropic
material with a Young’s modulus E = 414 GPa and Poisson’s ratio ν = 0.15 and has a
volume fraction of 0.6. The material properties of matrix are listed in Fig. 5.28 with
yield stress and post-yield hardening curve. The mesh configurations for the different
multiscale models are depicted in Figure 5.29. Due to high stress gradient within the
zone around the hole, material nonlinearity in the micro model is activated only in the
integrations points within this zone (shaded regions in Fig. 5.29).

L = 38.1 mm W = 12.7 mm R=3.175 mm T = 0.5mm
Laminate sequence: [±45]s

δ

L

W
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T

Fig. 5.27 Geometry and boundary condition for open-hole specimen under tension
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Fig. 5.28 Material properties for inelastic matrix for the micro model of open-hole
specimen under tension
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(a) 1D Macro model: 37 L9 cross-section elements - 1 B2 beam element per layer

(b) 3D Coarse macro model: 1088 3D brick element

(c) 3D Refined macro model : 792 3D brick element

Fig. 5.29 Mesh configuration for various multiscale models for open-hole specimen
under tension (Non linear micro model is active only in shaded region)



132 | A computationally-efficient nonlinear concurrent multiscale framework

Figure 5.30 depicts the remote stress-strain response for different multiscale models.
Remote stress is computed by the dividing the reaction force at the applied displacement
end by its area whereas ratio of applied displacement to the length of the specimen is
taken as remote strain. Table 5.17 enlists the model information of different multiscale
models along with analysis time and memory requirements. The accumulated inelastic
strain for different multiscale models are compared in Fig. 5.31 including spatial
resolution of the equivalent inelastic strain at the micro scale. Figure 5.32 depicts
the von-Mises stress distribution within the matrix constituent of the micro RVE for
various multiscale models. As depicted in Fig. 5.33, the convergence behavior of
different multiscale model is studied by comparing the number of iterations required in
each loading increment.
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Fig. 5.30 Remote stress-strain curve for open-hole specimen under tension

Table 5.17 Numerical results for open-hole specimen under tension

Model Information DOF NGP Total analysis Memory
time [hh:mm:ss] usage [Gb]

1D-1D 37 L9 cross-section ele-
ment with 4 B2 beams

2,655 2,664 01:53:38 2.02

3D-1D Coarse 792 3D brick elements
with one element per layer

3,450 6,336 05:27:12 7.28

3D-1D Refined 1088 brick elements with
one element per layer.

4,650 8,704 08:24:37 8.75
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Fig. 5.31 Comparison of accumulated inelastic strain at multiple scales for various
multiscale models for open-hole specimen under tension at an applied displacement
loading of 0.5625 mm
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Fig. 5.32 Comparison of von-Mises stress resolution within matrix constituents of the
micro scale RVE for various multiscale models for open-hole specimen under tension at
an applied displacement loading of 0.5625 mm (Refer to Fig. 5.31 for location of micro
RVE)
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Fig. 5.33 Convergence behavior of different multiscale model for open-hole specimen
under tension
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Results suggests:

1. From Fig. 5.30 it can be stated that 1D-1D model and 3D-1D Refined exhibit
similar remote stress- strain response. Underdeveloped stress fields within the
3D-1D Coarse macro model leads to a reduced nonlinear response.

2. Contour plots for accumulated inelastic strain at both scales illustrates superior
capability of 1D-1D model to capture nonlinear behavior across scales (see Fig.
5.30). Figure 5.32 further emphasizes the capabilities of the framework by
comparing the von-Mises stress field at the micro scale.

3. It can be inferred from Table 5.17 that 1D-1D models exhibit multifold efficiency
in terms of analysis time.

4. Even though all multiscale models are interfaced with the same micro 1D model,
1D-1D model requires only 2,664 macro gauss points whereas 3D-1D Coarse and
3D-1D Refined models need 6,336 and 8,704 gauss points respectively. Therefore,
total memory requirement for 1D-1D models is confined to 2.02 Gb whereas
3D-1D Coarse and 3D-1D Refined models need 7.28 Gb and 8.75 Gb respectively.

5. Figure 5.33 shows that framework exhibits superior convergence behavior as full
tangent matrix is computed numerically for the macro model through perturbation
method. For the current analysis, the framework requires on average 3 iterations
per load increment.

5.3 Conclusion

A computationally-attractive concurrent multiscale framework for modeling linear and
non-linear behavior for hierarchical and multi-layered structures is presented. Built
within the scheme of Carrera Unified Formulation (CUF), the framework exploits
CUF models at macro scale to model the structural level components (e.g: open-hole
specimens, coupons etc) interfaced through concurrent modeling approach with an
efficient CUF-micromechanics toolbox. The latter can model different classes of RVE
with various architectures and material compositions with a reduced computational
cost with significant reductions of the overall computational overhead of the multiscale
analysis. Further efficiency stems from the adoption of a hybrid MPI-OpenMP based
parallelization strategy for numerical implementation. Nonlinearity is introduced at the
constituent level within the micro scale and the effect is scaled up to the macro structure
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through homogenization. A perturbation based numerical homogenization scheme is
utilized to obtain the macro tangent matrix, leading to a numerically robust framework.
The variable kinematic nature of the formulation permits balancing the efficiency versus
fidelity trade-off in a pragmatic manner. The numerical results suggests:

1. A multi-fold improvement of efficiency with respect to analysis time and memory
requirement as compared to traditional multiscale implementations based on 3D
FE, thereby addressing the scalability issues associated with multiscale modeling.

2. In comparison to reference literature and results from 3D FE, the accuracy of
the solutions obtained are high

3. Present methodology presents an elegant way of employing 1D formulation at
every scale independent of the geometric complexity or material heterogeneity,
thus reducing the computational overhead at multiple scales.



Part III

Interface and Impact modeling





Chapter 6

Efficient progressive delamination
analysis in composite structures

A novel numerical framework to simulate progressive delamination in laminated struc-
tures based on component-wise models is presented. Formulated within the Lagrange
polynomial based CUF models, Component-wise modeling approach permits modeling of
various components of a complex structure through 1D CUF models at reduced computa-
tional cost. A class of higher-order cohesive elements are integrated within the CUF-CW
framework to simulate interfacial cohesive mechanics between various components of the
structure. A bilinear constitutive law based on mixed-mode delamination propagation is
implemented. The approach makes use of the mixed-mode cohesive constitutive law and
a global dissipation energy-based arc -length method to trace complex equilibrium path
exhibited by delamination problem. The effectiveness and computational efficiency of
CUF-CW models are highlighted through benchmark composite delamination problems
and composite structures with multiple delamination fronts. 1

6.1 Cohesive zone modeling

Cohesive zone modeling technique is an effective and extensively applied numerical tool
for investigating fracture process in materials and structures [58, 150, 192, 210]. Based

1Parts of this chapter has been in published in the following journals:

1. Kaleel I., Carrera E., Petrolo M. (2019), "Novel structural models for the progressive delamina-
tion of laminated composites"

2. Kaleel I., Petrolo M., Carrera E., Waas A., (2019) "On the effectiveness of higher-order models
for physically non linear analysis", in “Advances in Predictive Models and Methodologies for
Numerically Efficient Linear and Nonlinear analysis of Composites”
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on the pioneering work by Dugdale [67] and Barenblatt [18], cohesive zone modeling
technique hypothesizes the existence of a narrow band of vanishing thickness ahead of a
crack tip. The narrow band is decomposed into two virtual surfaces (upper and lower)
across the crack tip with presence of resistive cohesive forces. The cohesive constitutive
law relates the cohesive traction to the separating distance between the surfaces. The
traction-separation relation defines the constitutive behavior of the fracture, which
imitates the non linear fracture process. The cohesive traction can attain a critical
value, then reduces to zero thereby creating new free surfaces.

Real crack Fictitious crack

 crack faces

�0

�u

Fig. 6.1 Boundary value problem for cohesive formulation

6.1.1 Boundary value problem

Consider a domain Ω with a crack zone Γc as shown in Fig. 6.2. Essential boundary
conditions are imposed along boundary Γu and prescribed tractions τi act along the
boundary Γn. The domain Ω is subdivided into two domain, Ω+ and Ω− along the
crack boundary Γc as depcited in Fig. 6.2. The equilibrium equations within the
domain Ω can be expressed as follows:

σij,j + ρbi = 0 in Ω (6.1a)

σijnj = ti in Γn (6.1b)

σijn
+
j = τ+

i = −τ−
i = −σijn

−
j n−

j in Γc (6.1c)
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Fig. 6.2 Boundary value problem for cohesive formulation

where σij is the stress field within the domain due to external loading τi, bi are the
body forces, ρ is the density of the material and τ+

i , τ−
i are the closing tractions acting

along the cohesive surface.

6.1.2 Kinematics of interfaces

The kinematics of the interface is established based on displacement jump across
the interface boundary [11, 13]. The displacement jump across the interface can be
expressed as:

[[ui]] = u+
i − u−

i (6.2)

where u+
i and u−

i denotes the displacement of the given point i on the upper (Ω+)
and lower surface (Ω−) of the interface. In a three-dimensional cartesian cooordinate
system, the deformed position of a point x±

i on the cohesive surface can be expressed
as:

x±
i = X±

i + u±
i (6.3)

where X±
i is the undeformed position of the point and u±

i is the displacement at the
given point. The tangential plane at a given point is spanned by two vectors vξi

and
vηi

, expressed as:
vξi

= x̄i,ξ vηi
= x̄i,η (6.4)

where x̄ is the mid-surface position. Therefore, the local normal and tangential
coordinate vector can be obtained as:

vn = vξ × vη∥vξ × vη∥−1 (6.5a)

vs = vξ ∥vξ∥−1 (6.5b)

vt = vn × vs (6.5c)
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The directional cosine forms an orthogonal rotation tensor Θi relating the local system
to global system. The displacement jump in local system is given by

∆i = Θi [[ui]] (6.6)

The rotation tensor Θi is populated using the components of vn, vs and vt.

6.1.3 Constitutive modeling of interfaces

Cohesive constitutive law relates the cohesive traction τi to the displacement jump ∆i

across the interface surface,which can be expressed as follows:

τi = τ(∆i) (6.7)

The thermodynamically consistent cohesive constitutive formulation is based on the
works of Simo and Ju for continuum damage models (CDM) [177] and extension of
the CDM model within the context of cohesive formulation by Turon et al. [190, 191].
The free energy for a unit interface surface can be expressed as follows:

Ψ(∆, d) = (1 − d)Ψ0(∆) − dΨ0(δ3i⟨−∆3⟩) (6.8)

where d is the scalar variable accounting for damage, δij is the Kronecker delta and Ψ0

is a convex function defined as follows:

Ψ0(∆) = 1
2∆iD

0
ij∆j ∀ {i, j = 1, 2, 3} (6.9)

where D0
ij is the undamaged stiffness tensor. The second term in Eqn. 6.8 accounts for

preventions of inter-penetration of adjacent cohesive surfaces after decohesion. The free
energy equation is differentiated to obtain the constitutive relation, which is expressed
as:

τi = dΨ
d∆i

= (1 − d)D0
ij∆j − dD0

ijδ3j⟨−∆3⟩ (6.10)

The undamaged stiffness tensor,D0
ij expressed in terms of scalar penalty stiffness K in

each direction:

D0
ij =


K11 0 0
0 K22 0
0 0 K33

 (6.11)
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Two classes of decohesion mechanism is considered in the current study, namely, (1)
Pure mode and (2) Mixed-mode. In case of Pure mode I, mode II or mode III loading
cases, delamination initiates when the inter-laminar traction attains the respective
inter-laminar strength (τ 0

3 , τ 0
1 , τ 0

2 ).

τi

τ 0
i

= 1 i = 1, 2, 3 (6.12)

The area under the traction-separation curve corresponds to their respective fracture
toughness (GIC , GIIC , GIIIC) as follows:

Mode I :
∫ δf

3

0
τ3dδ3 = GIC

Mode II :
∫ δf

1

0
τ1dδ1 = GIIC (6.13)

Mode III :
∫ δf

2

0
τ2dδ2 = GIIIC

As demonstrated by Cui et al. [54], non-interactive criteria can lead to poor delami-
nation onset prediction. Therefore, a mixed-mode loading is utilized that account for
coupling of different loading modes. Based on the quadratic criteria proposed by Ye
[212], mixed-mode delamination onset can be expressed as:

(
⟨τ3⟩
τ 0

3

)2

+
(

τ1

τ 0
1

)2

+
(

τ2

τ 0
2

)2

= 1 (6.14)

Since only tensile normal traction contributes to delamination onset, ⟨.⟩ operator is
used in Eqn. 6.14 which can be expressed as ⟨x⟩ = 1

2(x + |x|).

Damage Criteria

Based on the works of Simu et al.[177] and Turon [190, 191], the damage initiation
criteria is formulated in the displacement jump space:

f(λt, rt) = G(λt) − G(rt) ≤ 0 ∀ t ∈ R+ (6.15)

where t indicates the given instance of time, rt is the damage threshold at the given
instance t and λt is the equivalent displacement jump norm at the given instance t
expressed as:

λ =
√

⟨∆3⟩2 + ∆2
1 + ∆2

2 (6.16)
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The function G(·) in Eqn. 6.15 is a monotonic scalar function that define the evolution
of damage variables. The initiation condition is met when the displacement jump norm
λ exceeds the initial damage threshold r0, which is an input material property.

Damage Propagation

Analogous to rate equation introduced in [177], damage evolution of the variable d is
defined using the rate equation

ṙ = µ̇ (6.17)

where µ̇ is the damage consistency parameter used to define the loading/unloading
conditions based on Kuhn-Tucker relations:

µ̇ ≥ 0 ; f(λt, rt) ≤ 0 ; µ̇f(λt, rt) = 0 (6.18)

The rate equation for damage variable can be expressed as

ḋ = µ̇
∂f(λ, r)

∂λ
= µ̇

∂G(λ)
∂λ

(6.19)

By integrating the rate equations for internal variables, damage threshold rt and the
damage variable dt can be expressed as

rt = max

{
r0, max

s∈[0,t]
λs

}
; dt = G(rt) (6.20)

The scalar function G(·) determines the evolution of the damage variable based on
bilinear constitutive equation and can be defined as follows:

G(λ) = ∆f (λ − ∆0)
λ(∆f − ∆0) (6.21)

where ∆0 is the onset displacement jump equaling the initial damage threshold r0

and ∆f is the final displacement jump corresponding to full damage. Benzeggagh and
Kenane proposed a semi-empirical formulation to compute the critical energy release
rate for delamination under mixed-mode loading [25]:

Gc = Gc
I + (Gc

II − Gc
I)
(

Gc
I

GT

)η

, GT = GII

GI + GII

(6.22)
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Fig. 6.3 Mixed-mode cohesive constitutive law

Therefore the displacement jump criterion is defined as:

∆0 =
√

∆2
3 + (∆2

shear − ∆2
3)Bη (6.23)

B = Gshear

GT

, ∆shear =
√

∆2
I + ∆2

II , Gshear = GI + GII (6.24)

The tangent constitutive matrix is formulated by differentiation the traction-displacement
relation in Eqn. 6.7 [191]:

ṫ = Dtan
ij ∆̇j (6.25)

Dtan
ij =


{
Dij − K

[
1 + δ3j

<−∆j>

∆j

] [
1 + δ3j

<−∆i>
∆i

]
H∆i∆j, r < λ < ∆f

}
Dij, r > λ or ∆f < λ

where H is the scalar parameter defined as:

H = ∆f∆0

(∆f − ∆0)λ3 (6.26)



146 | Efficient progressive delamination analysis in composite structures

6.2 Cohesive models within Carrera Unified For-
mulation

The displacement field on the upper and lower face of the cohesive surface (6.2) can be
expressed:

u+ = Fτ Niu+
τi, u− = Fτ Niu−

τi, [[u]] = Fτ Ni (u+
τi − u−

τi) (6.27)

where u+ and u− are the displacement along the upper and lower edge of the CS element
respectively. As depicted in Fig. 6.4, three types of cohesive Lagrange cross-section
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Fig. 6.4 Cohesive Lagrange cross-section elements

elements are introduced with expansion function expressed as:

Linear: CS4:
u+ = F1u3 + F2u4

u− = F1u1 + F2u2

F1 = 1
2(1 − ξ)

F2 = 1
2(1 + ξ)

 ξ1 = −1
ξ2 = 1

Quadratic: CS6:

u+ = F1u4 + F2u5 + F3u6

u− = F1u1 + F2u2 + F3u3

F1 = 1
2ξ(1 − ξ)

F2 = −(1 − ξ)(1 + ξ)
F3 = 1

2ξ(1 + ξ)


ξ1 = −1
ξ2 = 0
ξ3 = 1

Cubic - CS8:

u+ = F1u5 + F2u6 + F3u7 + F4u8

u− = F1u1 + F2u2 + F3u3 + F4u4

F1 = − 9
16(ξ + 1

3)(ξ − 1
3)(ξ − 1)

F2 = 27
16(ξ − 1)(ξ − 1

3)(ξ + 1)
F3 = −27

16(ξ + 1)(ξ + 1
3)(ξ − 1)

F4 = 9
16(ξ + 1

3)(ξ − 1
3)(ξ + 1)



ξ1 = −1
ξ2 = −1/3
ξ3 = 1/3
ξ4 = 1

(6.28)
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By accounting for contributions due to cohesive matrix, the equilibrium equation (Eqn.
2.47) can be reformulated in terms of finite element matrices of a generic structural
theory:

kbulk
ijτsuτi + kcoh

ijτs[[uτi]] − pτi = 0 (6.29)

where kbulk
ijτs and kbulk

ijτs refers to fundamental nuclei of bulk and cohesive stiffness matrix
respectively and fundamental nuclei for the external loading is expressed as pτi. The
expression for kbulk

ijτs and pτi has already been discussed in Chapter 2. Based on Eqn.
6.29, the fundamental nuclei of cohesive force can be formulated as follows:

f+
cohτi

=
∫

Γc

Fτ Ni u+
τi t+dΓc f−

cohτi
=
∫

Γc

Fτ Ni u−
τi t−dΓc (6.30)

In order to formulate the fundamental nuclei of cohesive tangent nucleus, the rate form
of the cohesive constitutive law is recalled (Eqn 6.25):

ṫc = Q Dtan QT [[u̇]] = Q Dtan QT Fτ Ni (u+
τi − u−

τi) (6.31)

where Q is the orthogonal transformation matrix used for transformation between
local and global system for cohesive elements. The fundamental nuclei for the cohesive
tangent matrix is formulated by linearizion of cohesive force vector (Eqn. 6.30):

kcoh
ijτs =

∫
Γc

Fτ NiQ Dtan QT FsNjdΓc (6.32)

Integration of cohesive elements with standard Gauss Quadrature leads to responses
with spurious oscillations, especially when large stress gradients are present across a
cohesive element [174]. In this work, Newton-Cotes integration scheme is adopted for
integrating the FNs tangent stiffness matrix and internal force vector. The discrete
equation of the weak form can be expressed as:

f int + f coh − f ext = 0 (6.33)

where f int , f coh and f ext denotes the global vectors for internal, cohesive and external
force respectively.

6.3 Dissipation-based arc-length solver

On the basis of the pioneering work by Riks [169] and others [53, 166], arc-length based
numerical solution strategies are widely adopted to trace complex equilibrium path for
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structural analysis with limit points. The methodology introduces an additional loading
parameter as an unknown through constrain equation, thereby removing singularities
associated with tangent matrix at limit points. Therefore, the system of equations
read: f int(u) − λf ext

g(u, λ)

 = 0 (6.34)

where f int(u) includes contribution from bulk as well cohesive finite elements and g is the
constraint equation. The type of arc-length method depends on the kind of constraint
equation g employed. A comprehensive review on different arc-length strategies along
with their operation failure can be found in [31]. Even though traditional arc-length
methods perform well in solving elastic nonlinear problems, they run into convergence
issue in dealing with problems involving material instabilities, especially with the ones
with localized failures such as delamination [12, 57].

Gutiérrez proposed a path-following constraint based on the energy release rate
for geometrically linear problems with damage mechanics based material instabilities
[91]. Since the constraint is based on the total energy dissipated, a global quantity,
no a priori selection of degrees of freedom is required, a requirement commonly found
in arc-length techniques for failure analysis [12, 57]. Based on the assumption that
unloading behavior remains elastic, the dissipation-based arc-length constraint equation
can be expressed as [91]:

g = 1
2fT

ext(λ0∆u − ∆λu0) − ∆τ (6.35)

where fT
ext is the global unit external force vector, ∆τ is the dissipation path parameter,

λ0 and u0 are the last converged load factor and displacement vector.

Implementation Aspects

At each Newton-Raphson iteration, the system of equation need to be solved is of the
form (Eqn. 6.34):

Ktan −fext

hT s

du
dλ

 =
φk

res

−gk

 ;
du

dλ

 =
∆u

∆λ

k+1

−

∆u
∆λ

k

(6.36)

where k refers to the previous iteration and ∆u and ∆λ is the displacement and
load increments respectively. It is evident from the Eqn. 6.36 that the banded structure
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of global consistent tangent matrix is deteriorated due to the presence of additional
data pertaining to constraint equations. Using the Sherman-Morrison formula, the
global consistent tangent (Eqn. 6.36) can be reformulated as [176, 198]:

du
dλ

 =
 dI

−gk

− 1
hT dII − s

 (hT dI + gk)dII

−hT dI − gk(1 + hT dII − s)

 (6.37)

where the vectors dI and dII are obtained by factorizing the same structural tangent
matrix Ktan:

Ktan dI = φres Ktan dII = −p (6.38)

Based on the constraint equation (Eqn. 6.35), the derivatives required for the construc-
tion of global consistent tangent matrix (Eqn. 6.37) reads [198]:

h = ∂g

∂u
= 1

2λ0pT , s = ∂g

∂λ
= −1

2pT u0 (6.39)

The amount of energy dissipated during a given load increment is always monotonically
increasing quantity. However, the solver can run into numerical issues at non-dissipative
regions (such as pure elastic loading) on the equilibrium path as the path parameter
can get close to machine precision. This is addressed through addition of a robust
switching algorithm by introduction of threshold values. The algorithm switches to
displacement/force controlled loading during non-dissipative regions and switches back
to dissipation-controlled when the energy threshold is met.

In addition, the path parameter ∆τ needs to be adjusted during the course of
computation to limit the number of steps required to minimum without any cut-backs.
The adjustment is achieved automatically by setting the optimal value of iterations
per increment kopt. The path parameter for a given increment i is set as [91]:

∆τ i = ∆τ i−1 kopt

ki−1 (6.40)

where ki−1 refers to the number of iterations required in the last converged load step.
In this work kopt is set as 6.

6.4 Numerical Results

Four sets of numerical results are discussed in this section. The first three sets
of numerical examples pertains to simulation of benchmark test including Double
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Cantilever Test with pure Mode I delamination propagation, End Notch Flexure test
with pure mode II delamination propagation and numerical modeling of mixed-mode
bending test with two different mode-mix ratios. The fourth numerical case deals with
simulation of composite specimen with multiple delamination fronts.

6.4.1 Double cantilever test

The numerical case intends to highlight the effectiveness of higher-order beam models
to accurately capture the equilibrium path for DCB test. The DCB problem exhibits
pure mode I fracture. The material properties for the DCB specimen is tabulated in
Table 6.1. As illustrated in Fig. 6.5, the length of the beam is 10 m with an initial
crack length of 2.5 m. Component-wise modeling approach adopted with two-cross
section configuration as depicted in Fig. 6.6. In order to compare different classes

Table 6.1 Material properties for double cantilever test

E1 E2/E3 G12 G23 ν12/ν13 GIC τ 1 K
(GPa) (GPa) (GPa) (GPa) (-) (Nmm-1) (MPa) (Nmm-3)
135.3 9.0 5.2 3.1 0.24 0.46 2.0 1.0×106

P+,u+

L = 10 m

w = 1.0 m 

t = 0.05 m 

Initial crack Cohesive elements

P-,u-

a0 = 2.5 m

Δ = u+- u-

Fig. 6.5 Geometry and loading for double cantilever test

of beam elements, two sets of beam element configurations are considered as listed
in Table 6.2. The first set consists 120 B2 (linear), 60 B3 (cubic) and 40 B4 (cubic)
beam elements with 4L9-2CS6 cross-section configuration. A finer mesh configuration
with 240 B2 (linear), 120 B3 (cubic) and 80 B4 (cubic) beam elements with 8L9-4CS6
cross-section configuration is considered as the second set. The configurations for the
beam in each set were chosen in such a way that the total degrees of freedom remained
the same. Energy-based arc length method with an initial lambda λ0 of 25 along with
unit force applied as P+ and P-. The analysis is terminated when the displacement u

reaches 0.055 m. The equilibrium path obtained using different beam configurations
are compared against analytical solution based beam theory proposed by Mi et al.
[128].
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4L9-2CS6 8L9-4CS6

Bulk element (L9)

Coheisve element (CS6)

Fig. 6.6 End notch flexure test: Cross-section mesh configuration

Table 6.2 Model information for DCB specimen test

Model Information DOF

4L9-2CS6 Cross-section is modeled using 4L9 bulk elements with 2 CS6 cohesive
elements (see Fig. 6.6). Beam configurations used to model are (a)
120 B2, (b) 60 B3 and (c) 40 B4

10,890

8L9-4CS6 Cross-section is modeled using 8L9 bulk elements (four per each layer)
with 4 CS6 cohesive elements (see Fig. 6.6). . Beam configurations
used to model are (a) 240 B2, (b) 120 B3 and (c) 80 B4

39,042

Figure 6.7 compares the equilibrium path for different classes of beam configuration
to the analytical solution. Mismatch in the initial stiffness of undamaged laminate
can be attributed to the fact the beam is not perfectly built-in and can rotate at the
delamination front. Three-dimensional contour plot for propagation of delamination
front at various load instances 8L9-4CS6 cross-section configuration with 80 B4 beam
elements are depicted in Fig. 6.8.

Following observations can be drawn:

1. It is evident from Fig. 6.7a that B2 elements tend to overestimate the response
whereas B3 elements show spurious oscillations for 4L9-2CS6 cross-section con-
figuration. Even though all the beam configuration amounts to same degrees of
freedom, cubic B4 beam configuration tends to capture the equilibrium quite
accurately, even in case of coarser configuration

2. Cubic beam element B4 tends to perform well for both coarse and finer mesh
configurations. In case of refined cross-section mesh (see Fig. 6.7b), B3 and B4
beam configurations compare well with the analytical solution.

6.4.2 End notch flexure test

End Notch Flexure (ENF) test are often adopted to characterize the mode II delami-
nation test method and it is employed as benchmark test to evaluate the accuracy and
performance of cohesive based implementation. The ENF specimen is modeled using
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Fig. 6.7 Double cantilever test: Comparison of equilibrium curves for different beam
elements with same mesh density for (a) 4L9-2CS6 cross-section configuration and (b)
8L9-4CS6 cross-section configuration

an isotropic material as analytical solution are valid only for isotropic material [128].
The material properties of the specimen is tabulated in Table 6.3. Figure 6.9 illustrates
the geometry and boundary conditions of the specimen. Additionally, inter-penetration
along the initial crack surface is prevented by placing contact elements along the initial
crack surface (see Fig. 6.9). Energy-based arc length method is utilized to solve the
numerical problem with an initial lambda λ0 of 50 with a unit force applied as P. The
analysis is terminated when the displacement u reaches 3.5 mm.

Table 6.3 Material properties for ENF specimen test

Bulk material Cohesive material
E ν τ1 K GIIC

(GPa) (-) (MPa) (Nmm-3) Nmm-1

150.0 0.25 80.0 106 1.45

Two classes of CUF models are developed, namely (a) 4L9-2CS6 and (b) 2L9-
3CS6 as shown in Fig. 6.10. In order to highlight the efficiency of the higher-order
component-wise models,two additional sets of model based on standard linear brick
elements are developed as tabulated in Table 6.4. The total degrees of freedom as
well as the total analysis time for different models are also enlisted in Table 6.4. The
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Fig. 6.8 Double cantilever test: Three-dimensional displacement contour plot for 8L9-
4CS6 with 80B4 model at displacement of (a) 7.2 mm, (a) 33.6 mm and (c) 52.0
mm

P,u

L = 100 mm

w = 10 mm 

t = 3 mm 

Initial crack (with contact)Cohesive elements

Fig. 6.9 Geometry and loading for end notch flexure test

4L9-2CS6 6L9-3CS6

Bulk element (L9)

Coheisve element (CS6)

Fig. 6.10 End notch flexure test: Cross-section mesh configuration
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Fig. 6.11 End notch flexure test: Comparison of equilibrium curves for (a) linear (B2)
and cubic (B4) beam elements using 8L9-4CS6 cross-section configuration and (b)
different cross-section configuration using 80 cubic (B4) beam elements
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Fig. 6.12 End notch flexure test: Comparison of the no. of iteration required per
increment for different models (Gray : Load controlled and Black: Energy-based arc
length)
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Table 6.4 Model information for ENF specimen test

Model Information DOF Analysis time [s]

4L9-2CS6 Cross-section is modeled using 4L9 bulk elements
with 2 CS6 cohesive elements (see Fig. 6.10). The
beam is modeled using 80 B4 elements

21,690 383

6L9-3CS6 Cross-section is modeled using 6L9 bulk elements
(three per each layer) with 3 CS6 cohesive ele-
ments (see Fig. 6.10). The beam is modeled
using 80 B4 elements

30,366 666

3DFEM - Coarse Linear brick element with a mesh density
of4x240x4 along with 4x240 cohesive elements
inserted between the layers. The mesh density is
equivalent to 4L9-2CS6 configuration amounting
to same degrees of freedom

21,690 420

3DFEM - Refined Linear brick element with a mesh density
of4x360x4 along with 4x360 cohesive elements
inserted between the layers.

32,490 893

(a)

(b)

(c)

Fig. 6.13 End notch flexure test: Stress σyy contour plot for 4L9-2CS6 model at (a) λ
= 30.08, (a) λ = 228.4 and (c) λ = 280.3
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equilibrium path obtained by the models are compared against analytical solution
developed by Mi et al. [128]. Figure 6.11a depicts the comparison of equilibrium curves
between 3D FEM models and 4L9-2CS6 beam model. The equilibrium curve for CW
models with different cross-section mesh configurations is depicted in Fig. 6.11b. Solver
performance and convergence behavior of 4L9-2CS6 beam model is compared against
3DFEM-Refined model in Fig. 6.12. The deformed configuration along with stress σyy

contour plot is depicted in Fig. 6.13 for 4L9-2CS6 CW model.
Following observations can be drawn:

1. It is evident from Fig. 6.11(b) that the CUF-CW models accurately captures the
equilibrium as compared to the analytical solution

2. Even though 3D FEM - Coarse and 4L9-2CS6 configurations amounts to the same
degrees of freedom, 3D FEM - Coarse exhibits a stiffer response in comparison to
analytical solution whereas 4L9-2CS6 model accurately captures the equilibrium
path.

3. Table 6.4 emphasizes the computational efficiency of CUF-CW models as com-
pared to 3D FEM. The 4L9-2CS6 configuration and 3DFEM - Refined produces
similar equilibirum path, but the former model requires only 383 s whereas the
latter takes 893s to complete the simulation. Superior convergence behavior of
the model is further highlighted in Fig. 6.12

6.4.3 Mixed-mode bending test

This section deals with numerical simulation of mixed-mode bending (MMB) test, a
widely adopted standardized testing method (ASTM-D5528) for characterizing mixed-
mode fracture toughness in laminated composites as the same experimental apparatus
can be used for any mixed-mode ratio [16]. Different mode ratios are obtained by
varying the loading arm length c with DCB and ENF test being the borderline of MMB
test capabilities. Based on the experimental and numerical investigation undertaken by
Camanho et al. [30], simulation of MMB test using CUF-CW framework is undertaken.
Figure 6.14 depicts the geometry and boundary conditions for MMB test based on
simplification of ASTM standards. A uni-directional AS4/PEEK carbon-reinforced
composite with fibers oriented along the beam direction is considered (see Table 6.5
for properties).

Two mode-mix ratios are considered: (a) 0.5 and (b) 0.8. Table 6.6 enlists the
geometric properties and applied loading conditions for different mode-mix ratios. As
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L = 102 mm

w = 25.4 mm 

t = 3 .02mm 

Initial crack (with contact)Cohesive elements

Pe,u
a0

Fig. 6.14 Geometry and loading for mixed-mode bending test

Table 6.5 Material properties for MMB test

E11 E22=E33 G12=G13 G23 ν12 =
ν13

GIC G1IIC τ3 τ2 K0

(GPa) (GPa) (GPa) (GPa) (-) (Nmm-1) (Nmm-1) (MPa) (MPa) (Nmm-3)
122.7 10.1 5.5 3.7 0.25 0.969 1.719 80 100 106

tabulated in Table 6.7, two classes of CUF model with varying mesh density is utilized
to model the problem in hand. Similar to the previous numerical case, additional
3D FEM models based on standard linear elements are developed for the sake of
comparison (see Table 6.7). In addition, inter-penetration between initial crack is
mitigated by placing contact elements along the crack surface. Based on the rigid body
motion assumption for loading arm, the load-point displacement u is computed as
[17, 30]:

u = 2c + L

L
um − 2c

L
ue (6.41)

where um and ue are displacement obtained at middle and end of the specimen (see Fig.
6.14). Energy-based arc length method is employed to solve the numerical problem
with an initial lambda λ0 of 10 and 25 for mode-mix ratio of 0.5 and 0.8 respectively.
The analysis is terminated when the load-point attains 6.5mm and 6.1mm for mode-mix
ratio of 0.5 and 0.8 respectively.

Table 6.6 Geometric properties and load values for different mode-mix ratio for MMB
test [17, 30]

GII/GT Gc a0 c Pm Pe

(Nmm-1) (mm) (mm) (N) (N)
0.5 1.131 34.1 44.4 1.87P 0.87P
0.8 1.376 31.4 28.4 1.56P 0.56P

Balzani and Wagner used a three-dimensional FE models mixed-mode delamination
using linear and exponential cohesive constitutive law[17]. Figure 6.15(a) compares
equilibrium curve obtained using 8L9-4CS6-60B4 model against experimental and
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Table 6.7 Model information for MMB test

Model Information DOF
8L9-4CS6-40B4 Cross-section is modeled using 8L9 continuum element (4 per each

layer) with 4 CS6 cohesive elements. The beam is modeled using 40
B4 elements.

19,602

8L9-4CS6-60B4 Cross-section is modeled using 8L9 continuum elemenet (4 per each
layer) with 4 CS6 cohesive elements. The beam is modeled using 60
B4 elements.

29,322

3D FEM - Coarse Linear brick element with mesh density of 8x120x4 with 8x120 linear
cohesive elements inserted between the layers. The mesh density
is equivalent to 8L9-4CS6-40B4 configuration amounting to same
degrees of freedom.

19,602

3D FEM - Refined Linear brick element with mesh density of 8x240x4 with 8x240 linear
cohesive elements inserted between the layers. The fem element
density is twice as 3D FEM coarse configuration.

39,042

numerical results of Camanho et al. and Balzani et al. for different mode-mix ratio
[17, 30]. Comparison of equilibrium curves for different CUF-CW model against
standard 3D FEM models are depicted in Fig. 6.15(b). Table 6.8 compares the
maximum load obtained by CUF-CW model using 8L9-4CS6-60B4 configuration
against experimental and numerical reference results. The analysis time along with
total number of increments and iterations required for all numerical models are enlisted
in Table 6.9.

Table 6.8 Comparison of maximum load obtained using 8L9-4CS6-60B4 model for
MMB test against experimental and literature

GII/GT Experimental [30] Camanho et al. [30] Balzani et al. [17] CUF-CW
Value Error Value Error Value Error

(N) (N) (%) (N) (%) (N) (%)
0.5 275.35 236.6 14.1 251.2 8.8 261.0 5.2
0.8 518.66 479.9 7.5 438.3 15.5 494.5 4.7

Results suggests:

1. Equilibrium curves for different mode-mix ratios depicted in Fig. 6.15 (a) illus-
trates that effectiveness of CUF-CW models for modeling MMB test

2. It is evident from Fig. 6.15(b) that even 3D FEM models produces slightly stiffer
response as compared CUF-CW model
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Fig. 6.15 Equilibrium curves for mixed-mode bending test: (a) Results from CUF-CW
model using 8L9-4CS6-60B4 is compared against experimental and numerical results
from the literature for different mode ratios [17, 30] (b) Comparison of different CUF-
CW models against 3D FEM models with varying mesh density for 0.8 mode-mix
ratio

Table 6.9 Numerical results for MMB test

Model Total number of
increments

Total number of
iterations

Analysis time [hh:mm]

8L9-4CS6-40B4 91 548 0:27
8L9-4CS6-60B4 93 603 0:45
3D FEM - Coarse 3001 2250 1:30
3D FEM - Refined 882 468 0:48
1 Maximum allowable increment is 300. Analysis terminated prematurely
2 Convergence issues. Analysis terminated prematurely
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3. Even though 8L9-4CS6-40B4 and 3D FEM - Coarse has similar size and exhibit
oscillations in the equilibrium curve, 3D FEM - Coarse prematurely terminates
due to convergence issues (see Table 6.9).

4. In comparison to experimental results, maximum load predictions by CUF-CW
models are within an average error limit of 5% as compared to reference numerical
results (see Table 6.8).

6.4.4 Multiple delamination of composite specimen

Robinson et al. investigated multiple mixed-mode delamination in a carbon-fiber
laminate through numerical as well experimental study [170]. As illustrated in Fig.
6.16, the problem consists of two initial cracks with the first crack placed along the
mid-plane on the left end of the specimen and the second initial crack is positioned two
plies below and right of the first initial crack. The problem has been widely studied in
literature as it exhibits complex equilibrium path, therefore serves as good benchmark
example [12, 145]. The material properties of the specimen is tabulated in Table

P+,u+

L = 180 mm

w = 20 mm 

Initial crack

Cohesive elements

Initial crack (with contact)

P-,u-

40 mm 20 mm 20 mm

 = u+- u-

12 plies (1.590 mm

10 plies (1.325 mm
 2 plies (0.265 mm

Fig. 6.16 Geometry and boundary condition for multiple delamination in composite
specimen test

6.10. Figure 6.17 illustrated the modeling technique adopted using CUF-CW approach.
Based on the position of initial crack, different cross-section configuration is allotted
to each set of beams. Node compatibility is maintained at the interfaces of different
set of beams (two-colored beam nodes in Fig. 6.17). As illustrated, CW modeling
of the beam makes meshing process effortless by assigning different cross-section to
individual beams whereas discretization and insertion of cohesive element within a
3D FEM model could be tedious and cumbersome process. To emphasis upon the
efficiency of the CW models, three additional models based on standard linear brick
elements with linear 3D cohesive elements with varying mesh density are developed
as tabulated in Table 6.11. Energy-based arc length method is employed to solve
the numerical problem with an initial lambda λ0 of 1 with a unit force applied as P
with a termination condition of δ equal to 24 mm. Alfano and Crisfield performed
the multiple delamination analysis using 2D standard FEM elements equipped with
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Table 6.10 Material properties for multiple delamination of composite specimen test
[145, 170]

E1 E2/E3 G12 ν12/ν13 GIC GIIC τ 3 τ 1 K
(GPa) (GPa) (GPa) (-) (Nmm-1) (Nmm-1) (MPa) (MPa) (Nmm-3)
115.0 8.5 4.5 0.29 0.33 0.8 8.0 3.3 2.5×105

Fig. 6.17 Modeling Multiple delamination of composite specimen using CUF-CW model

Table 6.11 Model information for multiple delamination of composite specimen test

Model Information DOF
12L9-4CS6 Cross-section is modeled using 12L9 elements with a com-

bination of 4CS6/8CS6 cohesive elements inserted between
the layers based on position of crack (see Fig. 6.17). The
beam is modeled using 77B4 elements.

56,376

3DFEM - Coarse Linear brick element is a mesh density of 8x230x6. The
mesh density is equivalent to that of 12L9-4CS6 configura-
tion, amounting to similar degrees of freedom

56,133

3DFEM - Medium Linear brick element is a mesh density of 8x458x6. Mesh
density along the beam is doubled as compared to the
3DFEM -Coarse configuration

111,537

3DFEM - Refined Linear brick element is a mesh density of 8x619x6. Mesh
density along the beam is three times as compared to the
3DFEM -Coarse configuration

150,660
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local arc-length and line search based numerical solver [12]. Nguyen and Nguyen-Xuan
developed a two-dimensional higher-order Bèzier elements along with energy-based arc
length method and efficiently solved the multiple delamination analysis of composite
specimen [145]. Figure 6.18a compares the equilibrium curve obtained using CUF-CW
model against the experimental and numerical results available from the literature
[12, 145, 170]. Equilibrium curves obtained from CUF-CW model is compared against
the results of 3D FEM models with varying mesh density in Fig. 6.18. Table 6.12
enlists the information pertaining to convergence behavior of various models along with
the total analysis time. Figure 6.19 depicts the equilbirum curve of CUF-CW model
along with deformation state at specific load instances. Contour plots for delaminated
zones in the top and bottom surfaces of the specimen at various instances are in Fig.
6.20.
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Fig. 6.18 Equilibrium curves for multiple delamination of composite specimen test: (a)
Comparison of CUF-CW model with experimental and literature results [12, 145, 170]
and (b) Comparison between CUF-CW model against 3D FEM results with varying
mesh density

The results suggests that

1. As verified via reference solutions, CUF accurately captures the complex equilib-
rium curve for multiple delaminations.
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Table 6.12 Numerical results for Multiple delamination of composite specimen test

Model Total number of
increment

Total number of
iterations

Analysis Time [hh:mm]

12L9-4CS6 229 897 1:47
3DFEM- Coarse 213 835 1:25
3DFEM - Medium 298 1173 4:44
3DFEM - Refined 300 1188 7:15
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Fig. 6.19 Equilibrium curve along with deformed states for CUF-CW model for multiple
delamination of composite specimen test

Top cohesive surface Bottom cohesive surface

(a)  = 2.9,  = 41.3

(b)  = 5.1,  = 23.4

(c)  = 9.6,  = 31.7
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Fig. 6.20 Contour plots of the delamination index - 0: intact, 1: fully delaminated - at
the top and bottom cohesive surfaces via CUF for multiple delaminations
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2. The refining process of 3D models converges to CUF. In particular, although the
size of the problem for 12L9-4CS6 and 3D FEM - Coarse configurations is similar,
the 3D FEM - Coarse model presents visible differences in the equilibrium path.

3. CUF models have multi-fold better efficiency in terms of analysis times than
standard 3D FEM.

4. The present formulation can capture the progressive delamination propagation
along multiple fronts.

5. From a modeling standpoint, the CUF modeling improves the meshing process
by assigning various cross-section configurations to individual beams whereas the
discretization and insertion of cohesive elements within a 3D FEM model may
lead to a cumbersome process due to the high number of FE elements.

6.5 Conclusion

The chapter extends the capabilities of 1D higher-order FE models for delamination
modeling to increase the computational efficiency. Cohesive modeling capabilities make
use of the CUF approach to exploit refined displacement field along the cross-section
and obtain complete and accurate 3D stress and displacement fields. The approach
makes use of the mixed-mode cohesive constitutive law and a global dissipation energy-
based arc -length method and verified via various numerical examples including the
double cantilever beam test, end-notch flexure test, mixed-mode bending test and
composite specimen with multiple delamination fronts. The analysis of the results
suggest that

• CUF tends to outperform standard 3D FEM with multi-fold efficiency in terms of
analysis times. Such an outcome stems from the lower amounts of DOF required
by CUF models.

• The absence of aspect ratio constraints in 1D models permits to enrich the
modeling capabilities only by adopting refined structural theories instead of
re-meshing.

• In the MMB test, CUF models provided significant improvements in terms of
prediction of peak loads if compared to other numerical tests and experimental
results.
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• The use of cohesive elements within CUF may lead to more efficiency in the
modeling as the elements are cross-section features and non-homogeneous 1D
elements and compatibilities are enforceable straightforwardly.





Chapter 7

Impact modeling in CUF

The chapter presents an application of CUF 1D models for undertaking impact modeling.
Formulation of boundary value problem and incorporation of contact modeling technique
within CUF is briefly explained. The work considers normal, frictionless contact based
on a node-to-node formulation and a penalty approach to enforce the constraints. Explicit
time integration scheme is utilized to undertake initial assessment of the capabilities of
CUF 1D models for impact simulation of elastic rods and wave propagation on impact
in rectangular blocks

7.1 Contact modeling within CUF

7.1.1 Contact Kinematics

Consider two distinct bodies Ωi, i = 1,2, as shown in Fig. 7.1. Two distinct points X1

and X2 initially on the boundary of the respective bodies, come into contact due to
the applied deformation ϕ. The position of the points Xi in the current configuration
is given by

xi = Xi + ui; i = 1, 2 (7.1)

where ui is the displacement of the reference point Xi. For the case of contact between
the two bodies, the two points are said to occupy the same physical space, and thus
x1 = x2.

Contact can be taken into consideration either through the application of geometric
constraints, or via the use of constitutive laws at the contact interface resulting in a
micromechanical approach [206]. In the current study, geometrical constraints have
been considered, where a non-penetration condition is used to prevent the penetration
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Fig. 7.1 Reference and current configuration of two distinct bodies coming into contact

of one body into the other. Such a condition is given in the form of a gap function gN

which is defined as
gN = (x2 − x1) · n1 ≥ 0 (7.2)

where n1 is the normal vector w.r.t Ω1. For the case of geometrically linear kinematics,
the gap function given in (Eq.7.2) can be written as

gN = [(X2 + u2) − (X1 + u1)] · n1 ≥ 0 (7.3)
= [(X2 − X1) + (u2 − u1)] · n1 ≥ 0 (7.4)

The above results in an alternate definition of the gap function as

gN = (u2 − u1) · n1 + ginit ≥ 0 (7.5)

where the initial gap between the two bodies, ginit, is defined as

ginit = (X2 − X1) · n1 (7.6)

In such an approach, the normal component of the stress field relates to the contact
pressure, and is obtained as a consequence of the contact constraint, i.e., it is not
computed directly via constitutive equations. The system is then in a state of contact
when the gap function gN = 0. The normal component of the stress tensor is then the
contact pressure pN , which is equal and opposite for the two bodies at the point of
contact. This leads to a set of Kuhn-Tucker type equations in the following form

gN ≥ 0, pN ≤ 0, gNpN = 0 (7.7)
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which in the context of constraint-based frictionless contact are termed as Hertz-
Signorini-Moreau conditions [206].

7.1.2 Weak form of the contact BVP

According to the principle of virtual work, the equilibrium equation for a static
structural problem is in the form given in (Eq. 2.16). This remains the same even
for the case of static contact problems, except for the addition of a contact term,
δLc, which signifies the variation of the work done due to contact. However, since
the contact term arises due to the non-penetration condition (Eq. 7.5) which is an
inequality, the resulting variational form is also an inequality, as shown below

δLint ≥ δLext + δLc (7.8)

This inequality introduces a nonlinearity to the problem, even when both material
and geometrical linearity are considered. Therefore cases involving contact constitute a
new class of nonlinear problems based on nonlinear boundary conditions. In the current
work, the nonlinear contact problem is implicitly solved using Newton’s method.
Furthermore, the penalty approach is considered for the treatment of the contact
constraint using a variational approach. Thus, the work due to contact takes the form

Lc = 1
2

∫
∂Ωc

ϵNg2
NdA (7.9)

where ∂Ωc is the contact surface, and ϵN is the penalty parameter for normal contact.
The virtual variation is then given by

δLc =
∫

∂Ωc

ϵNgNδgNdA (7.10)

Equation 7.10 is then discretized and solved numerically using a finite element
framework. The discretization and solution of the equations depend on the type of
contact considered at the interface, for instance surface-based or node-based contact.
The following section elaborates on the finite element formulation for the case of
node-based contact.

7.1.3 Node-to-Node contact

In the node-to-node formulation, the contact constraints are enforced at the nodal
level, for a given node pair. Such a contact treatment requires nodal compatibility
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at the contact interface i.e. matching meshes for the two bodies in contact. Such an
approach to contact is valid for the case of geometrical linear theory, where infinitesimal
deformations ensure that the nodes remain aligned in the deformed configuration. Based
on the penalty approach, the global equilibrium equation takes the following form

[K + Kp]u = F̄ (7.11)

where Kp is the penalty stiffness matrix, which enhances the structural stiffness matrix
K. The global penalty matrix is formed by the assembly of the penalty stiffness terms
for a given node pair i, which is given by

kp
i = ϵNnT

i ni (7.12)

where ni = {nx, ny, nz} is the unit normal vector between the node pair i, and ϵN is
the penalty parameter.

The contact pressure at the contact region takes the form of a nodal force for the
case of node-based contact. Such a nodal contact force Fc

i for the node pair i is a
consequence of enforcing the contact constraint gN between the nodes, and can be
written from (Eq. 7.10) as

Fc
i = ϵNgNn (7.13)

The contact force term is an addition to the external force vector, and the sum
represents the right hand side of (Eq. 7.11), such that

F̄ = Fc + Fext (7.14)

Equation 7.11 can then be solved incrementally using Newton’s method.

7.2 Numerical results

7.2.1 Impact between two rods

The current numerical example provides an assessment of contact-impact using CUF.
Two rods are considered, with one impacting the other, as shown in Fig. 7.2. The
problem definition is based on [105]. Both rods consist of an isotropic material with
Young’s modulus E = 100, and a Poisson’s ratio ν = 0.3. The problem is analyzed
using CUF-Explicit, and reference 3D solutions are obtained using ABAQUS - Explicit
modules. Two solutions are generated using ABAQUS: (a) ABQ1, modeled with the
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same mesh configuration and degrees of freedom as used in the CUF-Explicit analysis,
and (2) ABQ - Ref, with a refined mesh to provide a reference solution. A time period
T = [0, 1.0] has been considered, and a time step value ∆t = 5.0 · 10−4 has been
considered in all the numerical approaches. Numerical damping via the Bulk Viscosity
Method (BVM) has been toggled off in the current analysis.

Fig. 7.2 Schematic representation of impact between two rods

The results of the various numerical analyses are as follows – the time history of
the axial deflection uy of the fixed rod, at the point [0.5, 0.5, 20] i.e. the center of the
contact region on the impacted end, is plotted in Fig. 7.3a. The time history of the
axial stress σyy, at the same point, is given in Fig. 7.3b. The propagation of the axial
stress σyy along the length of fixed rod has been plotted in Fig. 7.4 for various points
of time during the analysis.
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Fig. 7.3 Time history of (a) Axial deflection uy and (b) Axial stress σyy at the free end
of the first rod during the time period of the analysis
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Fig. 7.4 Propagation of axial stress σyy at various points of time during the analysis.

Fig. 7.5 Schematic representation of a rectangular block under impact
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7.2.2 Impact of a rectangular block

The current example deals with the impact of a rectangular block. The geometry of
the structure is shown in Fig. 7.5. A thickness of 0.1 units has been considered for
both blocks, and an initial gap g = 0.001 exists between the block and the impactor.
Both bodies consist of an isotropic material with a Young’s modulus E = 100, and
Poisson’s ratio ν = 0.3. As before, the analysis is performed with CUF - Explicit, and
reference 3D results are obtained using ABAQUS - Explicit. A time period T = [0,0.5]
has been considered, and the time step ∆t = 1.0 · 10−4 is used for all the analyses.

The results of the various analyses have been plotted in the following. Figure 7.6a
shows the time history of the vertical displacement uz at the point [10.0,10.0, 0.1]. The
time history of the transverse stress component σzz at the same point has been plotted
in Fig. 7.6b. The propagation of the σzz component through the z-axis of the block, at
specific points of time, has been plotted in Fig. 7.7.
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Fig. 7.6 Time history of (a) Transverse deflection uz and (b) Transverse stress σzz at
the point [10.0,10.0, 0.1] of the block

7.3 Conclusion

The chapter incorporates the capabilities of contact kinematics within CUF to undertake
impact modeling. A normal, frictionless contact based on a node-to-node formulation
is implemented along with a penalty approach to enforce the constraints. Initial
numerical assessment on impact simulation of elastic rods and wave propagation
on impact in rectangular blocks provide accurate resolution of displacement and
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Fig. 7.7 Propagation of transverse stress σzz though the block at various points of time
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stress fields in comparison to benchamrk 3D FE simulations. Current ongoing work
includes implementation of surface-based contact algorithms into CUF framework and
integration of damage modeling constitutive modeling within the analysis to undertake
impact modeling in composites.





Chapter 8

Summary and Outlook

The dissertation focused on the development of computationally-efficient, high-fidelity
numerical tools for modeling various aspects of progressive failure in composite struc-
tures across scales. The framework is built within the scheme of Carrera Unified
Formulation (CUF), a hierarchical scheme that provides computationally efficient struc-
tural models through variable kinematic definitions. The capability of one-dimensional
to provide accurate 3D displacement and stress fields at a highly reduced computa-
tional cost is extended to a diverse set of nonlinear problem pertaining to composite
structures. A class of tools is presented that can undertake various aspects virtual
testing of composite across different stages of test pyramid including micromechanical
progressive failure analysis, nonlinear multiscale modeling, delamination modeling and
impact analysis.

Part I dealt with the formulation of one-dimensional CUF models for physically non-
linear simulations. Chapter 2 focussed on the formulation of 1D CUF models and
emphasized on the importance of accurate resolution of fields as they serve as a
prerequisite to accurate physically nonlinear simulations. The inability of standard
modeling approaches such as the use of 3D linear FEM, to capture stresses highlights
the importance of non-traditional higher-order models for high-fidelity analysis in
composites. Chapter 3 highlighted the effectiveness of 1D CUF models to undertake
physically nonlinear simulation using elasto-plastic models. Prohibitive computational
cost associated with iterative nonlinear solutions can be mitigated by using proposed
higher-order models. The effect on kinematic enrichment on the overall accuracy and
computational efficiency is highlighted.
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In Part II, a novel micromechanical and multiscale platform built within the scheme
of CUF models are introduced. Chapter 4 presents a micromechanics platform to
undertake nonlinear simulation of different classes of RVE architectures. Pre-peak
nonlinearity within the matrix constituent is modeled using the von-Mises plasticity
model and continuum damage based crack band model is employed to model progres-
sive failure analysis. The predicted failure modes using CUF-CW corresponds well
with the analogous FEM 3D model and observations made in the experiments. On
average, CUF models were able to produce solutions in the range of 3D FE models
with a three-fold decrease in terms of analysis time and ten-fold reduction in the
memory requirement. A computationally efficient concurrent multiscale platform to
undertake linear and nonlinear analysis is presented Chapter 5. The framework exploits
CUF models at macroscale to model the structural level components (e.g: open-hole
specimens, coupons etc) interfaced through concurrent modeling approach with an
efficient CUF-micromechanics toolbox. A multi-fold improvement of efficiency with
respect to analysis time and memory requirement as compared to traditional multiscale
implementations based on 3D FE, thereby addressing the scalability issues associated
with multiscale modeling. The variable kinematic nature of the formulation permits
balancing the efficiency versus fidelity trade-off in a pragmatic manner.

Part III presented interfacial and impact modeling capabilities built within the CUF
framework. The capabilities of the CUF model to undertake progressive delamination
problems is discussed in Chapter 6. The approach makes use of the mixed-mode
cohesive constitutive law and a global dissipation energy-based arc -length method for
iterative solution. CUF tends to outperform standard 3D FEM with multi-fold effi-
ciency in terms of analysis times. Chapter 7 presents an application of CUF 1D models
for impact modeling in composites. Initial numerical assessment further emphasized on
the applicability as well as efficiency of CUF 1D models to undertake impact problems.

A combination of above-mentioned tools is employed to obtain accurate overall struc-
tural response in the nonlinear regime at multiple scales i.e, macro-scale structural
components to the material constituent level at micro-scale in a computationally
efficient manner. Following sets of conclusion can be drawn:

1. The effectiveness of refined CUF 1D models in undertaking different structural
nonlinear analysis is successfully demonstrated.

2. Detection of 3D fields is fundamental in capturing local effects such as damage
initiation and delamination onset.
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3. Hierarchical characteristics along with computational efficiency of the 1D CUF
models is demonstrated with a class of nonlinear problems

4. The absence of aspect ratio constraints in 1D models permits to enrich the
modeling capabilities only by adopting refined structural theories instead of
re-meshing.

5. CUF tends to outperform standard 3D FEM with multi-fold efficiency regarding
the analysis times as well as memory requirements for a class of nonlinear
problems.

6. Within the class of fully-numerical methods, CUF micromechanics tool demon-
strates excellent computational efficiency without any drop in accuracy. For
micromechanical progressive failure analysis, the predicted failure modes using
CUF-CW correspond well with the analogous FEM 3D model and observations
made in the experiments.

7. In addition to computational efficiency, the ease of modeling the structure using
1D CUF model by assigning different cross-section to individual beams is also
highlighted for delamination problem.

8. The capability of using the same 1D formulation at every scale independently of
the complexity of the material system and geometry makes the present method-
ology appealing as a way to reduce the computational overhead of multiscale
frameworks

Future Work

The applicability of CUF 1D models for modeling composite across multiple scales have
been successfully demonstrated. In general, application of proposed methodologies for
industry-relevant as well computationally intensive simulations is proposed. Specifically,
following set of activities are slated for future work:

1. Extension of progressive failure crack band to account of compressive and shear
driven damage propagation at micro scales

2. Integration of multiple nonlinear phenomena into a single analysis such as non-
linear micromechanical analysis accounting for pre-peak nonlinearity, post-peak
damage progression along with fiber-matrix debonding with cohesive elements
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3. Inclusion of geometrically nonlinear formulation into the framework along with
material nonlinearity to model relevant computationally intensive problems such
as micromechanical fiber kinking under compression and post-buckling analysis
of large scale structures along with skin-stringer debonding

4. Extension of multiscale framework to different kinds of material nonlinearity
(fracture and damage modeling) at the microscale and interfacing of CUF-CW
micromechanics modules to commercial software packages such as ABAQUS
through UMAT implementations

5. Undertaking high-fidelity impact simulation of composite using CUF-1D models
accounting different level of material nonlinearity across multiple scales
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