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Abstract

Adipose-derived stem cells (ASCs) are multipotent and immune-privileged mesenchymal

cells, making them ideal candidates for therapeutic purposes to manage tendon disorders.

Providing safe and regulated cell therapy products to patients requires adherence to good

manufacturing practices. To this aim we investigated the in vitro tenogenic differentiation

potential of ASCs using a chemically defined serum-free medium (SF) or a xenogenic-free

human pooled platelet lysate medium (hPL) suitable for cell therapy and both supplemented

with CTGF, TGFβ-3, BMP-12 and ascorbic acid (AA) soluble factors. Human ASCs were

isolated from 4 healthy donors and they were inducted to differentiate until 14 days in both

hPL and SF tenogenic media (hPL-TENO and SF-TENO). Cell viability and immunopheno-

type profile were analysed to evaluate mesenchymal stem cell (MSC) characteristics in both

xenogenic-free media. Moreover, the expression of stemness and tendon-related markers

upon cell differentiation by RT-PCR, protein staining and cytofluorimetric analysis were also

performed. Our results showed the two xenogenic-free media well support cell viability of

ASCs and maintain their MSC nature as demonstrated by their typical immunophenototype

profile and by the expression of NANOG, OCT4 and Ki67 genes. Moreover, both hPL-

TENO and SF-TENO expressed significant high levels of the tendon-related genes SCX,

COL1A1, COL3A1, COMP, MMP3 and MMP13 already at early time points in comparison

to the respective controls. Significant up-regulations in scleraxis, collagen and tenomodulin

proteins were also demonstrated at in both differentiated SF and hPL ASCs. In conclusion,

we demonstrated firstly the feasibility of both serum and xenogenic-free media tested to cul-

ture ASCs moving forward the GMP-compliant approaches for clinical scale expansion of

human MSCs needed for therapeutical application of stem cells. Moreover, a combination of

CTGF, BMP-12, TGFβ3 and AA factors strongly and rapidly induce human ASCs to differ-

entiate into tenocyte-like cells.
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Introduction

Tendons are ubiquitous, dense fibrous connective tissue made up primarily of collagenous

fibers, with the essential role of transmitting contractile forces from muscle to the bone making

movement of the body possible. Healing process in tendons occurs slowly and often leads to

the formation of a tissue with inferior mechanical properties and high risk of reinjure. Current

conservative and surgical treatments are still mainly symptomatic without providing a success-

ful long-term solution as well as complete strength and functional recovery of the restored ten-

don. The urgent need for an advanced therapeutic that addresses the underlying pathology by

improving clinical, mechanical, and radiologic outcomes is evident. However, although their

high social impact and clinical significance, tendon biology and related injury mechanisms are

currently poorly understood thus representing a limit to the therapeutic progress in this field

[1, 2].

Tendon tissue engineering and stem cell-based therapy have been recognized as promising

approaches to augment tendon repair by enhancing regeneration and restoring the functional-

ity and characteristics that more closely resembles the native uninjured tissue [3,4]. Stem cells

derived from adipose tissue (ASCs) represent the more abundant mesenchymal stem cell

(MSC) source harvested using minimally invasive techniques, and can be produced according

to current Good Manufacturing Practice (GMP) guidelines when not directly selected in the

operating theatre. Cultured ASCs exhibit differentiative potential toward several cell lineages,

as well as possess immunomodulatory properties, the ability to express anti-inflammatory

cytokines and to prolongate allotransplant survival [5–10]. These favorable regenerative and

paracrine abilities make ASCs currently under investigation for a high number of clinical ther-

apeutic applications even if compared to bone- and cartilage-related pathologies, the use of

MSCs in tendon related disorders has been investigated very little, so far [11–15]. Moreover,

several efforts have been made to trigger in vitro MSC tenogenic differentiation using different

types and concentrations of growth factors. However, there is still a limited consensus in litera-

ture about the best protocol and formulation to use also due to the scarce knowledge in tendon

biology and therefore of tendon-related markers [16–20]. Furthermore, cell-based therapies

must abide to the U.S. Food and Drug Administration (FDA) strict guidelines concerning the

use of xenoproducts to provide a safe and regulated cell therapy product to patients [21]. The

majority of studies were conducted using cultured ASCs in fetal bovine serum (FBS) that it tra-

ditionally employed to support cell growth and attachment. However, it is known that the use

of FBS can exert a factitious cell response as well as an immune reaction being associated with

pathogenic contamination and increase of immunogenicity of the cells [22, 23]. Studies con-

cerning the standardization of procedures and GMP protocols to make the clinical use of stem

cells possible with the development of safe-for-human-use materials have been addressed [23–

26]. Although the common alternatives of the use of FBS for clinical-scale MSC expansion are

human serum and platelet-derived products, the use of human serum may also include others

concerns about safety and lot-to-lot variability issues [25, 26]. Thus, an important scientific

and technological goal that must be achieved is the development of an ideal culture system

suitable for cellular therapy represented by xenogenic- and serum-free medium with a chemi-

cally defined composition. Based on these purposes, the aim of this study was to evaluate for

the first time the tenogenic differentiation potential of ASCs using a defined serum free

medium (SF) or a xenogenic-free medium supplemented with human platelet lysate (hPL).

The SF medium consisting of a blend of essential amino acids, inorganic salts, and other com-

ponents, along with an optimized mix of the recombinant human growth factors already

known to be essential for MSC expansion (PCT/EP2013/072738). The second medium here

used was a commercial hPL supplemented medium, obtained by pooling more than 300

Tenogenic differentiation of ASCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0212192 February 12, 2019 2 / 21

https://doi.org/10.1371/journal.pone.0212192


donors to contain the intrinsic donor variability. Cell morphology, immunophenotype, cell

viability and expression of proliferative (Ki67 and PCNA) and stem-cell (KLF4, OCT4 and

NANOG) markers were investigated in both hPL-ASCs and SF-ASCs. Therefore, ASCs were

TENO-induce using for the first time a cocktail of ascorbic acid and CTGF, TGFβ-3, BMP-12

supplementation for 1, 3, 7 and 14 days and the tenogenic differentiation evaluated by quanti-

fying the expression of the tendon-related markers scleraxis (SCX), tenomodulin (TNMD),

tenascin (TNC), cartilage oligomeric matrix protein (COMP), metalloproteinases (MMP3 and

MMP13), tissue inhibitor of metalloproteinase (TIMP-2) and the ability of cells to form ten-

don-like extracellular matrix. Finally, to better mimic the tendon tissue environment all cul-

tures were conducted in flask surfaces coated with collagen type I since this is the major

tendon ECM component.

Materials and methods

This study was reviewed and approved by the board of the Swiss Stem Cell Foundation.

ASC isolation and culture

Subcutaneous adipose tissue was collected from healthy human donors (n = 4) undergoing a

liposuction and ASCs isolated, expanded and characterized according to the standard operat-

ing procedures developed by SSCF and already GMP compliant. All donors signed an

informed consent declaration. Adipose tissue samples were collected, anonymized and sent to

our research biobank facility as approved by the Ethical Committee of the Canton Ticino,

Switzerland (CE 2961). The isolation of the stromal vascular fraction (SVF) was performed by

a protocol developed in our laboratories (Patent PCT/EP2012/069261). Briefly, 150 ml of adi-

pose tissue was washed twice with Dulbecco’s PBS (DPBS with Ca2+ and Mg2+, Gibco, Life

Technologies, Oregon, USA) in a 100 ml syringe (BBraun Medical AG, Melsungen, Germany)

and held vertically in a support stand for few minutes to spontaneously separate adipose tissue

and hydrophilic fluids. Aqueous phase was discarded, and adipose tissue was digested with

Liberase MNP-S (Roche Applied Science, Basel, Switzerland) at a final concentration of 0.28

Wünsch U/ml diluted in DPBS (with Ca2+ and Mg2+) and incubated at 37˚C for 45 minutes

under agitation. Enzymatic reaction was stopped by DPBS (without Ca2+ and Mg2+, Gibco,

Life Technologies, Oregon, USA) supplemented with 1% albumin (CSL Behring AG, Bern,

Switzerland) and strongly agitated to separate the hydrophilic phase from the hydrophobic

one. The lower layer, which contains the SVF cells, was carefully poured out into a conical 50

ml centrifuge tube (Falcon, Corning Science, México) and washed with 1% albumin solution

to increase cell yield. Finally, after filtration through a 100 μm and a 40 μm sieve (BD Falcon,

Basel, Switzerland), the SVF was centrifuged at 400 g at room temperature for 5 minutes and

cells were resuspended in 5% human albumin solution (CSL Behring AG, Switzerland). The

SVF was then analyzed for cell count and viability using an automated propidium iodide-

based cell counting device (Nucleocounter NC-100, Chemometec A/S, Denmark). For cryo-

preservation, SVF cells were centrifuged 5 minutes at 400 g, resuspended in an ice-cold

solution of 1% albumin solution, 5.5% ME2SO and 4.5% dextran-40 (Cryosure DEX-40,

WAK-Chemie Medical GmbH, Germany) in MEM alpha (PAA Laboratories, Austria) and

transferred into a 2 ml cryovial (Nalgene, Thermo Fisher Scientific, Waltham, USA). Cells

were frozen by means of a programmable freezer (Consartic GmbH, Germany) under the fol-

lowing conditions: from 4˚C to 0˚C in 6 minutes, then hold for 15 minutes at 0˚C. From 0˚C

to -2˚C in 9 minutes and then hold at -2˚C for 2 minutes. From -2˚C to -35˚C in 25.5 minutes

and finally, from -35˚C to -100˚C in 13 minutes. Cryovials were then transferred into liquid

nitrogen for long-term storage.
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Cell culture

After thawing, SVF cells were culture for cell expansion in flask (Nunc, Thermo Fisher Scien-

tific, USA) at 3x103 cells/cm2 as previously described [27]. The cell expansion medium con-

sisted of 5% pooled human platelet lysate (hPL, Stemulate, Cook Regentec, USA) in α MEM

medium without nucleosides with Glutamax (Fisher Scientific, USA) supplemented of 0.1 μg

Primocin (InvivoGen, USA). Fresh medium was supplied every 3 days. After approximately 7

days of culture, cells reached 80–90% confluence and the harvest was performed by TrypLE

Select (Gibco). Counting and assessing of cell viability was conducted with an image cytometer

based on fluorescence from the fluorescent dye, propidium iodide (PI) (Nucleocounter NC-

100, ChemoMetec A/S, Denmark). In addition to the total count of cells in the sample the

determination of viable cells is based on the “PI-exclusion” method. After 3 passages in culture

ASCs were plated on pre-coated collagen I culture flasks (Corning, USA) at 3x103 cells/cm2 of

density in low percentage of hPL medium (1% hPL, Stemulate, Cook Regentec) or in the

serum free medium (SF) patented by SSCF (PCT/EP2013/072738). A low percentage of hPL

supplementation was chosen accordingly to manufacture instructions in order to obtain com-

parable concentrations of growth factors and soluble molecules between the two media (data

not shown). The formulation of SF medium consists in Ham’s F12/IMDM (1:1) medium sup-

plemented with 0.1 μg/ml Primocin, 2 mM L-alanyl-L-glutamine, 50 μg/ml L ascorbic acid-

2-phosphate (Sigma Aldrich), 5 μg/ml human ITS supplement premix (BD Life Sciences),

250 μg/ml human Albumin 5% solution (CSL Behring AG), 50 ng/ml human thyroglobulin

(Millipore SAS, Calbiochem, USA), and 10 ng/ml of the growth factors b-FGF, PDGF-AB,

PDGF-BB, TGF-β1 (all from ProSpec-Tany TechnoGene Ltd, Israel). hPL-ASCs and SF-ASCs

were detached and then analyzed for cell count and viability as show before.

Tenogenic differentiation

Both hPL-ASC and SF-ASC populations at passage 4 were seeded at cell density of 3x103 cells/

cm2 in collagen I coated -well plate or culture flask (Corning, USA) and then induced to differ-

entiate towards tenogenic lineage by culturing in hPL (hPL-TENO) or SF (SF-TENO) medium

both supplemented with 50 μg/ml Ascorbic acid (AA; Sigma Aldrich), 50 ng/ml BMP-12, 100

ng/ml CTGF and 10 ng/ml TGF-β3 (all from PeptroTech, UK). Media were changed twice a

week. Cells cultured in hPL or SF medium without any further supplementation were used as

control (hPL-CTRL, SF-CTRL).

Immunophenotyping by flow cytometry

SVF characterization was performed as previously described [28]. Briefly, after SVF isolation,

5x105 cells were stained with the following monoclonal antibodies: CD146-PE, CD34-APC-

A750, CD45-KrO (Beckman Coulter, Switzerland), Syto 40 (Life Technologies, USA) to

exclude cellular debris and 7- amino-actinomycin D (7-AAD, Beckman Coulter) to assess cell

viability. After 20 minutes of incubation, erythrocytes were lysed using Versalyse lysing solu-

tion (Beckman Coulter) and, before acquisition, Flow-Count Fluorospheres (Beckman Coul-

ter) were added, to directly determine the absolute number of ASCs. ASCs were identified as

the CD45 and CD146 negative and CD34 positive fraction [28, 29].

For immunophenotypic characterization of cultured hPL-ASCs and SF-ASCs, 5×105 cells at

passage 4 were incubated with LIVE/DEAD fixable stain (Life Technologies) at room tempera-

ture in the dark for 30 minutes. Cells were then stained with control antibodies IgG1- FITC,

IgG3-PE, IgG1-PC5, IgG1-PC7, IgG1-APC, IgG1-APC-A750, IgG1-KrO (all from Beckman

Coulter) or with CD73-FITC, CD31-FITC (BD Biosciences, USA), CD105-PE, CD90-PC5,

CD13-PC7, CD44-APC-A750, CD45-KrO (Beckman Coulter). Before measurement, cells
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were resuspended in IOTest 3 Fixative Solution (Beckman Coulter). To evaluate tenomodulin

(TNMD) expression after 7 and 14 days of differentiation, 2.5x105 CTRL and TENO cells were

incubated with anti-human polyclonal tenomodulin antibody (ab203676, Abcam) for 1 hour

at 4˚C at the dark. After incubation, goat polyclonal antibody Alexa Fluor 488 (ab150077,

Abcam) and was used as secondary antibody. The false positive fluorescence emission by

death cells was excluded by DAPI viability dye (Beckman Coulter) staining. All flow cytometry

analyses were performed using a Navios 3-lasers/10-channels flow cytometer (Beckman Coul-

ter), and data were analyzed with Kaluza software (Beckman Coulter).

Cell viability

Undifferentiated and differentiated hPL-ASCs and SF-ASCs were harvest after 1, 7 and 14

days of culture and then cell counting and assessing of viable cells were performed with the

automated propidium iodide-based cell counting device (Nucleocounter NC-100, ChemoMe-

tec A/S). Moreover, cell viability was assessed in undifferentiated and differentiated hPL-ASCs

and SF-ASCs by Alamar Blue Assay (Thermo Fisher Scientific, USA) at 1, 4 and 7 days of cul-

ture [30]. At the day of the evaluation cells were incubated with Alamar Blue (1:10 diluition in

MEM) at 37˚C in the dark. Four hours later, supernatants were transferred to black-bottom

96-well plates and emitted fluorescence was read with a Wallac Victor II plate reader (Perkin

Elmer, Milan, Italy).

RNA isolation and reverse transcription

At 1, 3, 7 and 14 days of differentiation, total RNA was extracted using the RNeasy Mini Kit

(Qiagen, Hilden, Germany) according to manufacturer’s instruction. The concentration of

extracted RNA from each sample was determined by spectrophotometric analysis with a Jen-

way Genova spectrophotometer (Bibby Scientific Limited, United Kingdom). cDNA was syn-

thesized using Maxima H Minus First Strand cDNA Synthesis Kit (Thermo Scientific, USA)

with oligodT and random hexamer primers according to manufacturer’s instruction. After

reverse transcription, all cDNA samples were diluted to a final concentration of 5 ng/μl and

stored at -80˚C until use.

Quantitative real-time polymerase chain reaction

Quantitative real-time polymerase chain reaction (qPCR) analysis was performed by SYBR

Green technology. Reactions were set up for 10 ng of cDNA in a final volume of 20 μl in a

96-well plate (Bio-Rad, Hercules, USA) and processed in a CFX Connect Real Time PCR

Detection System (Bio-Rad, Hercules, USA). The PCR master mix used contained 1 x SsoAd-

vanced SYBR Green Supermix (Bio-Rad, Hercules, USA), 250 nM forward primer, 250 nM

reverse primer, up to 20 μl with nuclease-free water. Primers were designed by primer-BLAST

(NCBI, USA), within the sequences of a panel of genes (SCX, TNC, DCN, COMP, COL1A1,

COL3A1, MMP3, MMP13, TIMP2, KLF4, NANOG, Ki67, PCNA), on an exon-exon junction

in order to prevent genomic DNA amplification. To analyze the relative expression of different

genes, three housekeeping genes were chosen (GAPDH, GUSB and YWHAZ) and the geomet-

ric mean of their Ct values was calculated [31]. A sample without cDNA was used to verify the

absence of nucleic acid contaminations. A cDNA sample composed of a mix of various cell

extracts was run of every 96-well plate and was then used as calibrator (CAL) to which the

expression level of every gene was normalized. Thermocycler program consisted of an initial

hot start cycle at 95˚C for 30 seconds followed by 45 amplification cycles resulting in a dena-

turation step at 95˚C for 10 seconds and an annealing-extension phase at 60˚C for 30 seconds.

For melt-curve evaluation at the end of the analysis, the temperature was raised from 65˚C to
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95˚C at rate of 0.5˚C every 5 seconds. For all samples, reactions were performed in duplicate.

The Ct values were recorded with a threshold of 3000 relative fluorescence units and the rela-

tive gene expression, expressed as 2-ΔCt. Results are expressed as mean ± SD relative to CAL

expression. Primers used in this work are reported in Table 1.

Immunofluorescence staining

Expression of the transcription factor scleraxis was assessed by immunofluorescence staining

in both hPL and SF passage 4 ASCs cultured at 3x103 of cell density on 22mm pre-coated colla-

gen I German Glass coverslip (Corning) and induced toward tenogenic lineage as described

before. After 3 days of differentiation, cells were fixed with 4% paraformaldehyde in PBS. Cells

were washed 3 times in PBS, permeabilized with 0.5% Triton X-100 in PBS (PBST) and

blocked with BSA (Sigma Aldrich). Immunostaining was performed overnight at 4˚C using

Table 1. Primers used in this study.

Gene Name Sequence 5’-3’ Type Amplicon length (bp) Accession number

GAPDH 5:TTCGTCATGGGTGTGAACCA housekeeping 142 NM_002046.3

3:CTGTGGTCATGATGAGTCCTTCCA

GUSB 5:CTCATTTGGAATTTTGCCGAATTTTT housekeeping 81 NM_000181.3

3:CCGAGTGAAGATCCCCTTTTTA

YWHAZ 5:TGGCTCGAGAATACAGAGAG housekeeping 99 NM_001135699

3:GTGAAGCATTGGGGATCAAG

SCX 5: CAGCGGCACACGGCGAAC Tendon 163 BK000280

3: CGTTGCCCAGGTGCGAGATG

TNC 5:CCACAATGGCAGATCCTTCT Tendon 118 NM_002160

3: GTTAACGCCCTGACTGTGGT

DCN 5:CTCTGCTGTTGACAATGGCTCTCT Tendon 256 NM_001920

3:TGGATGGCTGTATCTCCCAGTACT

COMP 5:AGAAGTCCTATCGTTGGTTCC Tendon 104 NM_000095

3: CAAGACCACGTTGCTGTC

COL1A1 5:CCAGAAGAACTGGTACATCAGCAA Tendon 70 NM_000088.3

3: CGCCATACTCGAACTGGAATC

COL3A1 5:GGGAACATCCTCCTTCAACA Tendon 183 NM_000090.3

3:GCAGGGAACAACTTGATGGT

MMP3 5:CTGTTGATTCTGCTGTTGAG Tendon 126 NM_002422.4

3:AAGTCTCCATGTTCTCTAACTG

MMP13 5: AAGACTTCCCAGGAATTGGTGA Tendon 126 NM_002427.4

3: GGCATGACGCGAACAATACG

TIMP2 5: ATCTCATTGCAGGAAAGGCCG Tendon 103 NM_003255.4

3: AGGCTCTTCTTCTGGGTGGT

KLF4 5: AAGAGTTCCCATCTCAAGGCACA Stemness 90 NM_001314052.1

3: GGGCGAATTTCCATCCACAG

NANOG 5: CAACTGGCCGAAGAATAGCAATG Stemness 110 NM_001297698.1

3: TGGTTGCTCCAGGTTGAATTGTT

KI67 5: AGCAAGCACTTTGGAGAGCA Proliferation 89 NM_001145966.1

3: CATTGTCCTCAGCCTTCTTTGG

PCNA 5: GTAGTAAAGATGCCTTCTGGTG Proliferation 189 NM_002592.2

3: TCTCTATGGTAACAGCTTCCTC

Abbreviations: F, Forward Primer; R, Reverse Primer

https://doi.org/10.1371/journal.pone.0212192.t001

Tenogenic differentiation of ASCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0212192 February 12, 2019 6 / 21

https://doi.org/10.1371/journal.pone.0212192.t001
https://doi.org/10.1371/journal.pone.0212192


1:100 goat anti-human Scleraxis (sc-87425, Santa Cruz Biotechnology). Cells were washed 3

times in PBST, incubated for 1 hour at room temperature with 1:1000 Alexa Fluor 488 rabbit

anti-goat IgG (Invitrogen) and cell nuclei were counterstained with DAPI (BDBioscence).

Immunostained cells were observed and photographed under a fluorescence microscope

(Zeiss Axiophot).

Sirius red staining

After 7 days of differentiation the total collagen deposition was evaluated in CTRL and TENO

ASCs of both SF and HPL medium seeded in collagen I coated 24-well plate (Corning) at cell

density of 3x103 cells/cm2. Briefly each sample was fixed in Bouin’s solution (Bouin’s Fixative,

Electron Microscopy Sciences, USA) for 1 hour and collagen fibers stained with 0.1% Sirius

Red saturated in picric acid (Sigma). The collagen matrix deposition was finally visualized

under polarized light microscopy [32].

Statistical analysis

Data are expressed as means ± standard deviations. The normal distribution of values was

assessed by the Kolmogorov–Smirnov normality test. Statistical analyses were performed

using the Student’s t-test for data with a normal distribution and the Wilcoxon test for data

with a non-normal distribution (GraphPad Prism v7.00; GraphPad Software, USA).

Results

Human ASCs maintain the typical stem cell features in hPL and SF media

The average number of ASCs isolated from subcutaneous adipose tissue of 4 female donors

was 2.9 ± 1.5 x 105 ASCs per ml of raw adipose tissue. After cell expansion, ASCs cultured in

collagen type I coated flasks with hPL or SF media appeared viable and with the typical fibro-

blastic-like morphology as shows in Fig 1A. Moreover, in order to confirm the maintenance of

the MSC nature of cultured ASCs, immunophenotyping was performed in both hPL and SF

ASC populations according to the International Society for Cell Therapy (ISCT) standards [33,

34]. Both hPL-ASCs and SF-ASCs were negative (<5%) for the endothelial marker CD31 and

the hematopoietic antigen CD45 (Fig 1B and 1C). Concomitantly, more of the 95% of cells

were positive for the conventional mesenchymal surface antigens CD105, CD90 and CD73, as

well as the stromal markers CD13 and CD44 without any statistical significant differences

depending from the culture conditions (Fig 1B and 1C). After tenogenic induction, both

hPL-TENO and SF-TENO ASCs appear without signs of suffering and with more rounded

morphology and cytoplasmatic content in comparison to the respective undifferentiated con-

trol cells, hPL-CTRL and SF-CTRL, as shown in Fig 2A. Moreover, the different culture condi-

tions didn’t affect significantly the percentage of viable cells during the time of culture (Fig

2B). Interestingly, the cell viability associated with the metabolic activity of SF-CTRL was

higher of what observed in hPL-CTRL cells and resulted in increases of +105% (p<0.05) and

+169% (p<0.01) at 7 and 14 days, respectively (Fig 2C). Moreover, the tenogenic media

increased again the cell viability in both hPL-TENO (7d: +60%, p<0.01) and SF-TENO (7d:

+60%) in comparison to the respective CTRLs, without any significant differences related to

the SF media.

The expression of markers strictly associated with cell proliferation, Ki67 and proliferating

cell nuclear antigen (PCNA) and with the embryonic stem cell markers Kruppel-like factor 4

(KLF4), octamer-binding transcription factor 4 (OCT4) and NANOG, has been also evaluated

(Figs 3 and 4). The level of mRNA of Ki67 observed in SF-CTRL ASCs at day 1 was statistically
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significantly 2-fold increase higher in respect to the hPL-CTRL ASCs (p<0.01, Fig 3). For

what concerns the expression of PCNA, NANOG, OCT4 and KLF4 genes no significant differ-

ences were observed in both hPL-CTRL and SF-CTRL media at all time points (Fig 3). After

tenogenic induction, the expression of both Ki67 and PCNA were up-regulated already at

early time points in both hPL-TENO and SF-TENO with respect to the relative CTRLs. Never-

theless these differences are not statistically significant, probably due to the high inter-donor

variability (Fig 4A). In particular, differentiated ASCs in hPL media showed the highest levels

of Ki67 at 3 days with fold change increases versus CTRL of 6.5 ± 3.1 whilst, at the same time

point, the expression of PCNA was higher in TENO-SF ASCs with a fold change increases ver-

sus CTRL of 167.3 ± 287.9 (Fig 4B). Concerning the expression of stem cell markers, KLF4 lev-

els were significantly decreased at all time points with the minimum peak observed at 3 days,

in both hPL-TENO (3d: -0.94; p<0.05) and SF-TENO ASCs (3d: -0.87) with respect to the

respective CTRL cells and without any significant differences between the two xeno-free

medium cultures (Fig 4A and 4B). On the other hand, the expression of OCT4 and NANOG

was similar in TENO and CTRL cells and without any significant differences between hPL and

SF ASCs (Fig 4A and 4B).

Fig 1. hPL-ASC and SF-ASC appearance and stem cell surface marker patterns of expression. (A) Representative micrographs of ASCs at passage 4 cultured in

serum free medium conditions (hPL-ASCs and SF-ASCs) as well as of ASCs cultured in standard laboratory condition (SC-ASCs) using MEM-alpha as growth medium

supplemented with 10% of FBS provided by Sigma Aldrich (optical microscopy: 10X; scale bar 200 μm). (B) Representative expression of the typical mesenchymal stem

cell surface markers (CD13, CD44, CD90, CD73 and CD105), of the endothelial marker CD31 and of the hematopoietic antigen CD45 for both populations at passage 4

(red: isotypic control, green: ASCs). (C) Quantification of the above depicted markers, pooled for all lines (n = 4).

https://doi.org/10.1371/journal.pone.0212192.g001
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Tenogenic induction in both SF-TENO and hPL-TENO up-regulated SCX,

COL1A1, COL3A1, COMP and MMPs tendon-related genes

ASCs were cultured on pre-coated collagen I culture flasks in hPL or SF media in the presence

of the selected soluble factors AA, BMP-12, CTGF and TGF-β3 to verify the efficacy in the

induction of tenogenic gene expression and to compare the two in vitro systems. Expression of

genes known to be involved in the process of tendon development and encoding for ECM pro-

teins were analyzed in all ASC cultures after 1, 3, 7 and 14 days of differentiation induction as

reported in Fig 5. The presence of the selected tenogenic soluble factors in both hPL and SF

cultures was able to induce the SCX expression, transcription factor a tendon- and ligament-

specific, already after 1 day of differentiation, with statistically significant increases of 2.7 and

5.3 times (p<0.05) respectively, in comparison to CTRL cells (Fig 5A). This significant up-reg-

ulation was also observed at following time points in both hPL- and SF-TENO ASCs with fold

increases of 6.4 and 3.5 at 3 days (p<0.01), of 10.0 and 1.7 at 7 days (p<0.05) and of 11.7 and

Fig 2. Morphological appearance and cell viability of hPL-ASCs and SF-ASCs during tenogenic induction. (A) Cell morphology of

CTRL and TENO hPL-ASCs and SF-ASCs at 3 days of differentiation is shown (optical microscopy 20x; scale bar 200 μm). (B) Percent

of viable CTRL and TENO hPL and SF-ASCs at 1, 3, 7 and 14 days (n = 3). Data were expressed as average ± standard deviation of

percentage of viable cells. (C) Cell viability of CTRL and TENO hPL and SF-ASCs at 1, 7 and 10 days of differentiation (n = 3). Data

were expressed as average ± standard deviation of arbitrary fluorescence units (AFU). � p<0.05, ��p<0.01 for TENO versus CTRL cells;

# p<0.05, ## p<0–01 for hPL-ASCs vs SF-ASCs.

https://doi.org/10.1371/journal.pone.0212192.g002
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1.6 at 14 days (p<0.05), respectively, in comparison with the CTRL cells. In particular, a time-

dependent SCX up-regulation was observed in hPL-TENO that at 14 days showed a 21-fold

change significantly higher than what observed in SF-TENO at the same time point (p<0.05)

(Fig 5B). Concerning the expression of TNC, typically considered a marker of tenogenic differ-

entiation, and DCN, a proteoglycan that stabilizes and aligns collagen type I and III fibrils in

tendons, only not significant increase was observed in both TENO media compared to the

CTRL (Fig 5A and 5B). On the other hand, the expression of collagen type I and III, encoding

for predominant ECM proteins in tendon tissue, were significantly up-regulated after culture

in tenogenic media in both hPL and SF conditions (Fig 6A and 6B). In particular, a time-

dependent up-regulation of COL1A1 and COL3A1 was observed in hPL-TENO with a maxi-

mum peak at 14 days and statistically significant (p<0.05) fold increases of 4.4 and 3.1 (Fig

6A). Again, SF-TENO showed higher increases of these markers already at day 1 (fold

increases of 1.9 and 1.8 for COL1A1 and COL3A1, respectively) compared to undifferentiated

cells. Then, the COL1A1 over-expression was maintained until 14 days when SF-TENO

showed a significant 1-fold increase (p<0.05) relative to CTRL cells. On the other hand, at the

same time point, COL3A1 levels resulted similar to what observed in CTRL cells. As shown in

Fig 6B, the different behavior in the COL1A1 expression observed in hPL-TENO in respect to

SF-TENO was statistically significant at 7 days of tenogenic induction (p<0.05). Tenogenic

induction in both xeno-free conditions was able to induce a strong time-dependent up-regula-

tion of the gene encoding for another ECM protein: the cartilage oligomeric matrix protein

(COMP). Indeed, starting from 1 day of differentiation, both hPL-TENO and SF-TENO

showed a 17.9 (p<0.05) and 24.0-fold increases, respectively, in comparison CTRL cells until

reaching at day 14 a 99.0 and 31.8 fold increases respectively (Fig 6A). Moreover, the fold

change increases observed at all time points in hPL-TENO seems to be higher with respect to

what observed in SF-TENO, even if this difference was not statistically significant (Fig 6B).

Finally, the expression of important regulators of ECM remodeling, the matrix metalloprotei-

nases MMP3 and MMP13 and the tissue inhibitor of metalloproteinase TIMP-2, was evaluated

in all ASC cultures and shown in Fig 7. After day 1 and 3 of differentiation hPL-TENO showed

a 2.1 and 4.4 fold increases, respectively, in respect to CTRL whilst SF-TENO showed fold

increases of 8.6 (p<0.05) and 27.6 (p<0.05) at day 7 and 14 in comparison to the respective

CTRL cells (Fig 7A). The different timing in the MMP3 expression induction between the two

TENO populations was also confirmed at 14 days by a statistical significant difference in

SF-TENO that showed higher fold change increases (p<0.05) with respect to what observed in

Fig 3. Gene expression of cell proliferation and embryonic stem cell markers in hPL-ASCs and SF-ASCs.

Evaluation of Ki67, PCNA, NANOG, OCT4, KLF4 gene expression determined by quantitative real-time PCR in

CTRL and TENO hPL and SF-ASCs at 1, 3, 7 and 14 days of culture (n = 4). Data were normalized against the

expression of the housekeeping GAPDH, GUSB and YWHAZ genes and expressed as relative to the calibrator (CAL).

## p<0.01 for hPL-ASCs vs SF-ASCs.

https://doi.org/10.1371/journal.pone.0212192.g003
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hPL-TENO (Fig 7B). Moreover, a statistically significant over-expression of MMP13 gene was

observed starting from 3 days in both hPL-TENO and SF-TENO, in comparison to CTR cells

(p<0.05) (Fig 7A). Moreover, hPL-TENO showed higher fold change increases in the MMP13

levels respect to SF-TENO (Fig 7B). For what concern the TIMP2 marker, only hPL-TENO

seems to show a slight fold increases at 7 days (0.6) and 14 days (0.4), in comparison to CTRL

cells, even if these differences were not statistically significant (Fig 7A and 7B).

Tenogenic media induced expression of proteins scleraxis, collagen and

tenomodulin

After 3 days of TENO-induction both hPL-ASCs and SF-ASCs expressed scleraxis at protein

level as confirmed by immunofluorescence staining showed in Fig 8. A massive collagen

Fig 4. Gene expression of cell proliferation and embryonic stem cell markers after tenogenic differentiation. (A)

Effect of tenogenic induction on Ki67, PCNA, OCT4, KLF4 and NANOG gene expression in CTRL and TENO hPL

and SF-ASCs at 1, 3, 7 and 14 days of differentiation (n = 4). Data were normalized against the expression of the

housekeeping GAPDH, GUSB and YWHAZ genes and expressed as relative to the calibrator (CAL). � p<0.05 for

TENO vs CTRL cells. (B) Normalized values of hPL-TENO and SF-TENO to their CTRL. Data expressed as average

fold increase ± standard deviation compared with the respective CTRL cells (dashed line means equal).

https://doi.org/10.1371/journal.pone.0212192.g004
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matrix deposition was also detected at 7 days of differentiation in both hPL-TENO and

SF-TENO (Fig 8). Moreover, the protein expression of the tendon-related marker tenomodu-

lin (TNMD) was evaluated by FACS analysis in hPL-ASCs and SF-ASCs at 7 and 14 days of

differentiation (Fig 9). Interestingly a very low percentage of TNMD-positive cells were already

present at 7 days in both hPL-CTRL (6.0 ± 2.6%) and SF-CTRL (6.9 ± 2.9%) and they were

also observed in similar amount at 14 days. However, the culture with the tenogenic medium

was able to induced increases in tenomodulin expression similarly in both hPL-TENO and

SF-TENO populations. Indeed, at 7 and 14 days of differentiation, TNMD-positive hPL-TENO

cells were 18.0 ± 7.3% and 14.4 ± 13.1%, respectively, with an increase of +66.4% and +57.0%

respect to what observed in hPL-CTRL at the same time points. The same trend was observed

Fig 5. Gene expression of tendon-related markers after tenogenic differentiation. (A) Effect of tenogenic medium on SCX, TNC and DCN gene expression in hPL

and SF at 1, 3, 7 and 14 days of differentiation (n = 4). Data were normalized against the expression of the housekeeping GAPDH, GUSB and YWHAZ genes and

expressed as relative to the calibrator (CAL). � p<0.05, ��p<0.01 for TENO versus CTRL cells. (B) Effect of serum-free media between hPL-TENO and SF-TENO. Data

are expressed as average fold increase ± standard deviation compared with the respective CTRL cells (dashed line set at 1). # p<0.05 for hPL versus SF.

https://doi.org/10.1371/journal.pone.0212192.g005
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in SF-TENO that showed significant increases of +26% and +58% (p<0.05) in the expression

of tenomodulin at 7 and 14 days of differentiation, respectively, in comparison with SF-CTRL.

Discussion

Adipose tissue is one of the best and most convenient sources of MSC isolation due to its wide

availability as surgical waste material. For this reason, in recent years, several cell and tissue

banks have focused their activity on adipose tissue preservation and of its related ASCs popula-

tion [8]. Moreover, encouraging pre-clinical evidences showed that ASCs could improve ten-

don healing with a reduction in the inflammatory response and improving fiber arrangement

and tendon organization [34–36].

The main goal of the present study was to evaluate the tenogenic differentiation of ASCs in

xenogenic and/or serum-free medium conditions not only to clarify some of the events

implied in tendon regeneration but also to contribute in defining the best culture environment

for cell-based therapy approaches. Previous studies showed that ASCs cultured in SF medium,

differently than serum containing media, still maintain the multi-differentiation potential

toward adipogenic, osteogenic and chondrogenic lineages and surface marker expression pro-

file characteristic of MSCs [37, 38]. In agreement with these reports and with the minimal cri-

teria for defining multipotent MSCs, here we have demonstrated that ASCs plated in coated

collagen type I flasks and cultured in a unique xenogenic and serum-free culture medium (SF)

or in hPL supplemented medium maintained the peculiar features of progenitor cells includ-

ing the typical fibroblastic spindle-like morphology and the stem cell markers expression [33].

Indeed, both hPL-ASCs and SF-ASCs showed the specific MSC immunophenotype profile

and expressed the transcription factors which are essential for self-renewal maintenance and

Fig 6. Gene expression of tendon extracellular-related marker after tenogenic differentiation. (A) Effect of

tenogenic medium on COL1A1, COL3A1 and COMP gene expression in hPL and SF at 1, 3, 7 and 14 days of

differentiation (n = 4). Data were normalized against the expression of the housekeeping GAPDH, GUSB and

YWHAZ genes and expressed as relative to the calibrator (CAL). � p<0.05, ��p<0.01 for TENO vs CTRL cells; $

p<0.05 for differences between time-points. (B) Effect of serum-free media between hPL-TENO and SF-TENO. Data

are expressed as average fold increase ± standard deviation compared with the respective CTRL cells (dashed line set at

1). # p<0.05 for hPL versus SF.

https://doi.org/10.1371/journal.pone.0212192.g006
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pluripotency in embryonic stem cells such as KLF4, OCT4 and NANOG [33, 39]. Surprisingly,

cells cultured in SF-CTRL were characterized by higher metabolic activity and proliferation

ability in respect to hPL control cells. Gene expression of the widely used markers of cell prolif-

eration, Ki67 and proliferating cell nuclear antigen (PCNA, was also performed. We observed

in all samples an increased expression of these markers for 14 days even if cells cultured in SF

showed an increase of 2-fold (p<0.01) only at early time points compared with cells cultured

in hPL medium. Moreover, cells cultured in SF had the highest levels of metabolic activity in

respect to hPL-ASCs without significant differences between CTRL and TENO. Indeed, the

tenogenic medium was able to induce a marked increase of metabolic activity only in

hPL-ASCs in respect to hPL-CTRL. From these data we demonstrated first the feasibility of

our chemically defined SF medium to sustain ASCs growth in culture and to maintain their

MSCs characteristics in vitro and that our tenogenic medium not negatively affects ASCs via-

bility during the time of differentiation in vitro.

To the best of our knowledge, this is the first study that compares the tenogenic differentia-

tion potential of human ASCs in a unique xenogeneic and serum-free culture media supple-

mented with a mixture of ascorbic acid, BMP-12, CTGF and TGF-β3 because their already

know to exert a role in tendon development and repair. The tenogenic differentiation of

SF-ASCs and hPL-ASCs was here evaluated in the first instance by monitoring the expression

of a panel of genes related to tendon development pathway (e.g. SCX), tendon and extracellular

Fig 7. Gene expression of MMP3, MMP13 and TIMP2 after tenogenic differentiation. (A) Effect of tenogenic

medium on MMP3, MMP13 and TIMP2 gene expression in hPL and SF at 1, 3, 7 and 14 days of differentiation (n = 4).

Data were normalized against the expression of the housekeeping GAPDH, GUSB and YWHAZ genes and expressed

as relative to the calibrator (CAL). � p<0.05 for TENO vs CTRL cells; $ p<0.05 for differences between time-points.

(B) Effect of serum-free media between hPL-TENO and SF-TENO. Data expressed as average fold increase ± standard

deviation compared with the respective CTRL cells (dashed line set at 1). # p<0.05 for hPL versus SF.

https://doi.org/10.1371/journal.pone.0212192.g007
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matrix (ECM) related genes (e.g. DCN, TNC, COL1A1, COL3A1, COMP, the metalloprotei-

nase MMP-3 and MMP-13 and tissue inhibitor protein TIMP-2) and then by analyzing the

protein expression of scleraxis, collagen-matrix and tenomodulin.

The dry weight of normal tendons consists in ECM composed mainly of collagen type I and

III, and in minor percentage of elastin embedded in a proteoglycan-water matrix, proteogly-

cans, glycosaminoglycans and structural glycoproteins [40]. The cellular component is present

in very low percentage and consists in terminally differentiated cells named tenocytes that,

together with a small niche of tendon-derived stem cells, are responsible for maintaining ECM

homeostasis and collagen molecules synthesis [8, 41]. Moreover, matrix metalloproteinases

(MMPs) are important regulator of ECM remodeling and include secreted collagenases (i.e

MMP13) and stromelysins (i.e MMP-3) among others, whose enzymatic activity is balanced

Fig 8. Scleraxis expression and collagen matrix deposition after tenogenic differentiation. Upper four panels show

representative images of scleraxis expression (green) in CTRL and TENO cells at 3 days of differentiation (the nuclei

were stained with DAPI, blue) captured by fluorescence microscope (40x; scale bar 20 μm); four panels on the button

show representative images related to the collagen matrix deposition, stained by Sirius Red (10x; scale bar 100 μm),

that occurred after 7 days differentiation in hPL-ASCs and SF-ASCs.

https://doi.org/10.1371/journal.pone.0212192.g008
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by a family of tissue inhibitors, the tissue inhibitors of metalloproteinases (TIMPs) [1, 2]. The

ECM microenvironment is essential for stem cells maintenance as well as to normal tissue

development and maintenance. The connective tissue growth factor (CTGF) is a cysteine-rich

protein growth factor highly expressed at the early stage of tendon repair since their mRNA

expression was found to be increased in a chicken tendon injury model and the MSC treat-

ment with this GF promoted the collagen type I and tenascin-C expression [42, 43]. The TGF-

β signaling plays a major role as a potent scleraxis (SCX) tendon marker gene expression and

collagen production inducer during tendon formation also observed in in vitro differentiated

equine embryo-derived stem cell cultures [44–47]. Furthermore, the BMPs family, including

BMP-12, has been shown to induce formation of new connective tissue and to enhance tendon

repair in several tendon injury models [48–50]. The presence of BMP12 in the culture medium

of both canine and human ASCs effectively increased the SCX expression at both mRNA and

protein level [19, 8]. A stimulatory effect of CTGF and BMP12 has been suggested by Liu and

colleagues during tenocyte lineage differentiation markers through a direct physical interac-

tion of these GFs [51]. Other studies reported that, in combination with BMP-12 or CTGF

growth factor, ascorbic acid, an essential factor acting in the cross-linking catalysis of collagen

during collagen fibril formation in ECM during tendon development, was able to enhance the

expression of SCX and collagen type I and III on human ASCs and tendon stem/progenitor

cell (TSPCs) culture [17, 18, 52].

Our results demonstrated that the tenogenic medium induced significant positive increases

of gene expression of the transcription factor scleraxis already after 1 day as well as of the oth-

ers tendon-related markers COL1A1, COL3A1, COMP, MMP3 and MMP13 in both hPL-

ASCs and SF-ASCs. These data were also confirmed at protein level expression as revealed by

Fig 9. Tenomodulin expression on hPL-ASC and SF-ASC surfaces. Representative histograms of percentage of the subpopulation of hPL-ASCs and SF-ASCs positive

(green) and negative (red) for tenomodulin (TNMD) surface expression at 7 and 14 days of culture in CTRL and TENO medium. Data related to three ASC population

are expressed as mean ± standard deviation (n = 3). � p<0.05 for TENO versus CTRL cells.

https://doi.org/10.1371/journal.pone.0212192.g009
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immunofluorescence analysis of scleraxis and by total collagen production staining. However,

the differentiation of ASCs in hPL medium was more able to positively regulate the expression

of these tendon-related markers in comparison to what observed in SF-TENO. Since it is

know that during tendon development, scleraxis expression is associated with formation of

tendon/ligament primordium whereas tenomodulin expression increases markedly in parallel

with maturation of tendons and ligaments, we here have been also evaluated its expression on

ASC surface [53, 54]. Tenomodulin, is a type II transmembrane glycoprotein and its expres-

sion in mature tenocytes has been implicated in regulating their proliferation and matrix orga-

nization [55]. Recently, it has been also demonstrated that the overexpression of tenomodulin

in murine MSCs significantly enhanced cell proliferation, gene expressions of tendon-related

markers and promoted neotendon-like tissue formation in vivo indicating a positive regula-

tion of MSC tenogenic differentiation [56]. In according to this, analysing the tenomodulin

expression by cytofluorimetric analysis, we identify a 2-fold increase in percentage of TNMD-

positive cells in differentiated ASCs respect to control at 14 days. Only ASCs in hPL-TENO

medium showed a 3-fold increase of this marker already after 7 days of differentiation. Inter-

estingly, undifferentiated ASCs were positive for this marker in low percentage and without

differences depending on time of culture and type of serum free medium used. Another key

ECM component is representing by COMP since it is able to enhance the kinetics of collagen

fibrillogenesis and is correlated with healthy tendon healing in vivo [57, 58]; thus the up-regu-

lation of COMP observed only in the TENO group is potentially of clinical relevance and bene-

fit. Concerning the expression of genes TNC and DCN, typically ECM protein in tendon,

slight increases were observed in TENO ASCs populations. In a previous study on human

ASCs, Goncalves et colleagues showed high expression of tenascin C and decorin only after 21

days in culture with EGF and bFGF supplemented media [59]. These results could suggest that

14 days of differentiation is not sufficient to elicit a strong expression of these markers that

could also be driven by other GFs not included in ours tenogenic media. On the other hand,

interestingly, we observed that the gene expression of other ECM components such as the

matrix remodeling proteins MMP-3 and MMP-13 was higher in differentiated cells of both

ASC group whilst any mRNA levels of these markers was observed in the respective CTRL

cells. The balance between the MMPs and their inhibitors, the TIMPs, determines the compo-

sition of the ECM and thereby helps to control tendon generation and function. It is known

that MMP-3 activity can degrade a broad range of target endopeptides as well as activate other

MMPs, while MMP-13 is specific for collagens. However, TIMP-2 is a nonspecific inhibitor of

various MMPs and we found no significant changes in the gene expression levels after teno-

genic induction in both ASC groups. These findings suggest that GFs used here play a role in

both normal turnover and maintenance of the tendon like cells and in the connective tissue

degradation process associated with tendon healing.

Altogether, these data confirm that the combination of AA, TGF-β3, BMP-12 and CTGF

efficiently drive the tenogenic differentiation of ASCs suggesting their profound role in tendon

development and repair process. Moreover, although both hPL and Sf medium well sustain

cell growth in vitro, hPL medium seems to be more performing to address ASC differentiation

toward tendon in respect to SF medium as relieved by the highest levels of tendon-related

marker expression observed. Beside these observations, some explanations about the statistical

significant differences observed comparing the two differentiation media (SF-TENO versus

hPL-TENO), could be caused by differences in doses of growth factors due to the not strictly

chemically defined and standardized nature of hPL medium together with a certain intrinsic

lot-to-lot variability. One limitation of this study is caused by the high inter-donor variability

that often represents a critical point when dealing with primary cells as well as the isolation

and extensive culture in vitro of ASCs using SF medium. Moreover, since tendon is a
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mechano-responsive tissue, suitable markers could be also further investigated in hPL-TENO

and SF-TENO in both static and dynamic in vitro conditions to better explain the ASCs role in

tendon healing processes as well as the use of tissue-engineered three-dimensional scaffolds

for the tremendous capacity to closely mimic in vivo cellular environments.

Conclusion

Cell-based therapies using ASCs with their multiple properties are constantly increasing to

manage numerous orthopedic problems including tendon injuries. For the cell therapies

development, safety, efficacy, reproducibility and quality are highly prioritized. With a clini-

cal-grade medium formulation, the safety and quality of the transplanted stem cells may be sig-

nificantly enhanced. Furthermore a fully defined serum free formulation is a step closer to the

development and approval of clinical cell-therapy applications. The GMP compliant approach

used in this study, is based on the development of xenogenic and serum-free medium supple-

mented with a combination of growth factors able to induce the tenogenic differentiation of

ASCs in vitro. We demonstrated that our chemically defined SF medium can be used to main-

tain viability and MSC features of ASCs in culture until their implantation in vivo. Moreover,

the supplementation with AA, TGF-β3, BMP-12 and CTGF soluble factors induce ASCs to

express a tenocyte-like phenotype providing insights of the earliest events of tendon develop-

ment and suggesting possible GMP-compliant approaches needed for cell-therapy application.
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59. Gonçalves AI, Rodrigues MT, Lee SJ, Atala A, Yoo JJ, Reis RL. Understanding the role of growth fac-

tors in modulating stem cell tenogenesis. PLoS One.2013 Dec 30; 8(12):e83734. https://doi.org/10.

1371/journal.pone.0083734 PMID: 24386267

Tenogenic differentiation of ASCs

PLOS ONE | https://doi.org/10.1371/journal.pone.0212192 February 12, 2019 21 / 21

https://doi.org/10.1038/nm1630
http://www.ncbi.nlm.nih.gov/pubmed/17828274
https://doi.org/10.1016/j.jhsa.2008.07.003
http://www.ncbi.nlm.nih.gov/pubmed/19084187
https://doi.org/10.1242/dev.027342
https://doi.org/10.1242/dev.027342
http://www.ncbi.nlm.nih.gov/pubmed/19304887
http://www.ncbi.nlm.nih.gov/pubmed/12132085
http://www.ncbi.nlm.nih.gov/pubmed/20203417
https://doi.org/10.1002/jor.21400
http://www.ncbi.nlm.nih.gov/pubmed/21437969
https://doi.org/10.1172/JCI119537
http://www.ncbi.nlm.nih.gov/pubmed/9218508
https://doi.org/10.1016/S0736-0266(01)00042-0
http://www.ncbi.nlm.nih.gov/pubmed/11781024
https://doi.org/10.1016/S0736-0266(03)00010-X
http://www.ncbi.nlm.nih.gov/pubmed/12798060
https://doi.org/10.1159/000373994
http://www.ncbi.nlm.nih.gov/pubmed/25833297
https://doi.org/10.1016/j.biomaterials.2011.11.066
http://www.ncbi.nlm.nih.gov/pubmed/22177622
https://doi.org/10.1016/j.ydbio.2006.06.036
https://doi.org/10.1016/j.ydbio.2006.06.036
http://www.ncbi.nlm.nih.gov/pubmed/16876153
http://www.ncbi.nlm.nih.gov/pubmed/11585810
https://doi.org/10.1038/cddis.2017.510
http://www.ncbi.nlm.nih.gov/pubmed/29022912
https://doi.org/10.1002/term.2150
http://www.ncbi.nlm.nih.gov/pubmed/27098985
https://doi.org/10.1074/jbc.M705735200
http://www.ncbi.nlm.nih.gov/pubmed/17716974
https://doi.org/10.3109/03008207.2012.734879
http://www.ncbi.nlm.nih.gov/pubmed/23020676
https://doi.org/10.1371/journal.pone.0083734
https://doi.org/10.1371/journal.pone.0083734
http://www.ncbi.nlm.nih.gov/pubmed/24386267
https://doi.org/10.1371/journal.pone.0212192

