
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance Optimization of Memory Intensive Applications on FPGA Accelerator / Arif, Arslan. - (2019 Feb 28), pp. 1-
101.

Original

Performance Optimization of Memory Intensive Applications on FPGA Accelerator

Publisher:

Published
DOI:10.6092/polito/porto/2727226

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2727226 since: 2019-03-06T15:22:50Z

Politecnico di Torino

Doctoral Dissertation
Doctoral Program in Electronics Enginering (31st cycle)

Performance Optimization of
Memory Intensive Applications on

FPGA Accelerator

Arslan Arif
* * * * * *

Supervisor
Prof. Luciano Lavagno, Supervisor

Doctoral Examination Committee:
Prof. Jordi Cortadella Fortuny, Referee, Universitat Politecnica de Catalunya, Spain
Prof. Frederic Petrot, Referee, Universite Grenoble Alpes, France
Prof. Paolo F. M. Ienne Lopez, Ecole Polytechnique Federale de Lausanne, Switzerland
Prof. Mihai T. Lazarescu, Politecnico di Torino, Italy
Prof. Alex Yokovlev, Newcastle University, England

Politecnico di Torino
February 28, 2019

This thesis is licensed under a Creative Commons License, Attribution - Noncommercial-
NoDerivative Works 4.0 International: see www.creativecommons.org. The text
may be reproduced for non-commercial purposes, provided that credit is given to
the original author.

I hereby declare that, the contents and organisation of this dissertation constitute
my own original work and does not compromise in any way the rights of third
parties, including those relating to the security of personal data.

. .
Arslan Arif

Turin, February 28, 2019

www.creativecommons.org

Summary

Hardware accelerators are a fundamental part of modern high performance com-
puting (HPC) systems due to their performance capabilities. The two most com-
monly used accelerators are GPUs and FPGAs. Despite the easier programmability
and better memory performance of GPUs, generally FPGAs perform equally well
for computationally challenging applications while dramatically reducing the energy
consumption. Furthermore, with the availability of high level synthesis (HLS), the
use of FPGAs has become easier. This makes them an excellent candidate for
modern HPC systems. This dissertation describes my research work done in the
field of electronic design automation with the major focus on optimizing memory
intensive applications modeled using high level language for FPGAs. This work
can be split into two parts, one dealing with manual memory optimization while
other advocates the use of automated algorithms to select and optimize the best
application-specific cache layout.

The first part covers the manual optimization of a realistic smart city appli-
cation. The application implements two image processing algorithms in OpenCL
language which computes velocity and density of vehicles on urban streets in real
time. Several different implementations of these memory hungry algorithms are
considered. The results show that using suitable optimizations and HLS optimiza-
tion directives, FPGAs can produce results with performance similar to a GPU
with an order of magnitude less energy consumption.

The second part of the dissertation starts by observing that custom data caches
implemented on FPGAs are only useful if their layout is in accordance to their
data access pattern. In this work, we present a tool, PEDAL (Pattern Evinced
Determination of Appropriate Layout), that can automatically tune the custom
data caches based on analyzing address traces. PEDAL uses artificial intelligence
algorithms to detect the pattern of each array and then design the optimal cache for
that pattern. The comparison of the results of PEDAL with the exhaustive search
of cache configurations and cache designed through a state-of-the-art algorithm
from the literature proves that it can produce better configurations in less time.

iii

Acknowledgements

First and foremost, I would like to thank Allah Almighty for all His blessings
bestowed upon me. Without His will, I would not have made it this far. It is His
blessing that I am able to complete my research project. It was He who provided
me enough courage and strength to take on this challenge, accomplish it and make
every hurdle easy for me.

I attribute myself lucky to have such a wise and kind supervisor and mentor,
Prof. Luciano Lavagno, who was available to me in every hour of consultation and
need. His expertise, patience, demeanor, and tolerance are some of the qualities for
which I am thankful to him. He made this task as easy for me as was possible. He
was always there to address my work-related as well as other general queries even
with his extremely busy schedule.

Besides, I would also like to thank all the faculty members and researchers
from the department of electronics and telecommunications (DET) at Politecnico
di Torino, especially Prof. Mihai Teodor Lazarescu, who supported me in many
ways during the course of my PhD. I would also like to take this opportunity
to acknowledge the support of my group mates (past and present) at the High-
level synthesis group at Polito, especially Liang Ma and Fahad bin Muslim. The
discussions with them have always been extremely rewarding and I learned a lot
from them.

My immense thankfulness goes for my family members including my parents,
siblings and others for their unconditional support and prayers. This goes without
saying that my wife Anum has a huge contribution in my degree.

Finally, I am extremely thankful to the higher education commission (HEC)
Pakistan for funding my doctorate at the Politecnico di Torino. This is a great
initiative by the government of Pakistan to create a pool of high quality researchers
who can ultimately contribute to the prosperity of the nation. I find myself more
equipped after my PhD to contribute to this goal.

v

I would like to dedicate
this thesis to my loving
parents

Contents

List of Tables ix

List of Figures x

1 Introduction 1
1.1 FPGA based heterogeneous computing system 2
1.2 Problem Statement . 3
1.3 Contributions . 4
1.4 Organization of the thesis . 5

2 Heterogeneous Systems 7
2.1 Heterogeneous System Architecture 7

2.1.1 Graphics Processing Units 8
2.1.2 Field Programmable Gate Arrays 9
2.1.3 ECOSCALE . 9

2.2 High Level Synthesis . 12
2.2.1 High-level synthesis based Design Space Exploration 13

2.3 Open Computing Language . 15

3 Smart City Application 17
3.1 Application . 18
3.2 Related Work . 20
3.3 Algorithms . 22

3.3.1 Background Subtraction . 22
3.3.2 Lucas Kanade Algorithm . 25
3.3.3 Implementation Model . 28

3.4 Constraints . 31
3.5 Optimizations . 31

3.5.1 Memory-related optimizations 31
3.5.2 Computational optimization 34

3.6 Implementations . 38
3.6.1 CPU . 39

viii

3.6.2 GPU . 39
3.6.3 FPGA . 40
3.6.4 Performance and energy comparison 45

4 Cache Architecture and Tuning 49
4.1 Related Work . 50
4.2 Architecture . 52

4.2.1 Direct-Mapped Cache . 54
4.2.2 Set-Associative Cache . 56

4.3 Memory Access Patterns . 58
4.3.1 Sequential access . 60
4.3.2 Overlapping access . 61
4.3.3 Non-unit stride . 62
4.3.4 Window / neighbour . 63
4.3.5 Random . 64

4.4 Cache Tuning using Heuristics . 64
4.4.1 Heuristics in Literature . 65
4.4.2 Experimental Results . 66

4.5 PEDAL . 69
4.5.1 Algorithm . 70
4.5.2 Pattern Recognition using Random Forest 73

4.6 Test case Implementations . 73
4.6.1 Face Detection . 74
4.6.2 Digit Recognition . 75
4.6.3 Spam Filter . 75
4.6.4 3D-Rendering . 76
4.6.5 Optical Flow I . 76
4.6.6 Optical Flow II . 77

5 Conclusions and Future Work 79
5.1 Conclusions . 79
5.2 Future Work . 80

Nomenclature 81

Bibliography 82

ix

List of Tables

3.1 Target FPGAs and boards . 41
3.2 Kernel Execution time and Resource Utilization for Basic Design . . 41
3.3 Kernel Execution time and Resource Utilization for Design with Line

Buffer . 43
3.4 Kernel Execution time and Resource Utilization for Design with cal-

culation reuse . 43
3.5 Kernel Execution time and Resource Utilization for Design with

piece-wise linear approximation . 44
3.6 Total Resource Utilization for Virtex 7 45
3.7 Total Resource Utilization for UltraScale+ (AWS-EC2) 46
3.8 Power Consumption per Frame for Background Subtraction 46
3.9 Power Consumption per Frame for Lucas Kanade Algorithm 47
4.1 Results for Face Detection algorithm 74
4.2 Results for Digit Recognition algorithm 75
4.3 Results for Spam Filtering algorithm 76
4.4 Results for 3D rendering algorithm 77
4.5 Results for Optical Flow algorithm 77
4.6 Results for Lucas Kanade algorithm 78

x

List of Figures

2.1 A Typical Heterogeneous System Architecture 8
2.2 FPGA Architecture . 10
2.3 Hierarchical partitioning (tasks, memory, communication) of an HPC

application in ECOSCALE platform [27] 11
2.4 Platform and Memory Model of OpenCL 15
3.1 Application Overview . 18
3.2 Camera view . 18
3.3 Video Frame vs Ground reality . 19
3.4 General Workflow of Image Analysis module 20
3.5 Sample Frame . 22
3.6 Output of the Background Subtraction Algorithm [64] 23
3.7 Output of Background Subtraction 25
3.8 Altera’s Implementation of Lucas Kanade Algorithm [52] 26
3.9 Lucas Kanade’s Disparity Map . 28
3.10 Output of Lucas Kanade Algorithm 28
3.11 Decentralized Model . 29
3.12 Centralized Model . 30
3.13 From decentralized to centralized architecture 30
3.14 Overview of parallelism in image processing Algorithms 32
3.15 Example for burst access of data from DRAM 33
3.16 Flowchart for KNP . 37
3.17 Difference between two outputs for Lucas Kanade Algorithm 38
3.18 Line Buffers for Lucas Kanade . 42
4.1 A comparison of hardware memories 50
4.2 Inline cache . 52
4.3 Design flow with caches . 53
4.4 Diagram of a two-way set-associative cache 57
4.5 Different types of memory access patterns 59
4.6 Execution Time for Sequential Memory accesses 60
4.7 Pareto-optimal configurations for sequential memory accesses 61
4.8 Execution Time for Overlapping Memory accesses 62
4.9 Pareto-Optimal configurations for Overlapping access 62

xi

4.10 Execution Time for Stride Memory accesses (Stride of 8 elements) . 63
4.11 Pareto-Optimal configurations for Stride access 64
4.12 Execution Time for Window Memory accesses 65
4.13 Pareto-Optimal configurations for 4x4 Window access 65
4.14 Heuristic for cache layout . 67
4.15 Results for applying heuristics to Different access patterns 68
4.16 Design flow of proposed method (PEDAL) 70
4.17 PEDAL Algorithm . 71

xii

Chapter 1

Introduction

In the modern day world, the level of automation in the industry is constantly
reaching new horizons. Both industry and the society at large are increasingly ex-
ploiting machine learning (ML), artificial intelligence (AI), Internet of Things (IoT)
and Big Data applications. This in turn will make high performance computing
the core of almost every industry. In order to yield this level of productivity, mod-
ern electronic devices are not only enhanced to perform multitasking, but are also
required to do it in real time. Moore’s law is reaching its end, mostly due to eco-
nomic reasons, because only a few companies can afford to pay the exponentially
increasing mask costs, and even increasing per-transistor costs. Thus the only ap-
proach to keep improving performance to the level required by the above mentioned
application, with a reasonable energy cost, is to move some of the software load to
dedicated heterogeneous architectures, where the heaviest parts are accelerated in
hardware.

The main purpose to employ heterogeneous systems is to obtain the required
performance for computationally expensive applications while achieving better en-
ergy efficiency [32], [46]. These systems generally consists of a multicore CPU
along with various kinds of (typically programmable) accelerators. General pur-
pose graphical processing units (GPGPUs) are traditionally used as accelerators as
they provide the highest performance, albeit with a staggering energy-per-operation
cost. The main issue with GPU based heterogeneous systems is that they are ineffi-
cient in terms of power consumption. In contrast to that, field programmable gate
arrays (FPGAs) provide considerable performance while only consuming a fraction
of energy as compared to GPUs. Hence, FPGAs are a strong competitor of GPUs
for modern high performance computing (HPC) systems.

Although the computational capabilities of FPGA-based heterogeneous systems
are very high, these systems require optimal data handling techniques in order
to be effective. The main challenge in optimizing these systems is handling the
memory bottleneck. This occurs when the data processing speed of the system
is greater than the speed at which memory is able to provide (or, less frequently,

1

1 – Introduction

store) data. This is due to the fact that traditional CPU caches, which gives the
programmer the illusion of a huge, yet very fast flat memory space, are not available
for the portion of the computation that is offloaded to the FPGA. Thus the designer
himself is responsible to optimize the HW memory architecture. The time required
to fetch data and make it available for processing should be (by Amdahl’s law)
comparable with the processing frequency to obtain optimal results. The amount
of data modern applications are dealing with ranges from hundreds of megabytes
to terabytes. Therefore, this data needs to be stored in larger memories (DRAM or
even Flash) which are slower to access. These memory accesses are costly not only in
terms of time but also in terms of power and energy consumption. Moreover, as we
discussed before, any delay in availability of data, also increases the computational
time.

Now we conclude from the above discussion that memory is the major bottle-
neck for HPC systems. There is no point in optimizing the computations without
optimizing the data as we cannot achieve high computational throughput if we do
not have the data to process. In this work we focus on a HW design methodology
which starts from a C/C++ specification, where the memory access model reflects
modern CPU architecture, and hence it is not typically suited for HW implemen-
tation. Hence the first thing that we need to optimize is memory accesses. The
work presented in this dissertation considers memory hungry and computationally
expensive applications as test cases and our results validate our hypothesis that
without optimizing the data transfer for on chip design, state-of-the-art high-level
synthesis tools fail to work. We have provided manual and automated solutions to
improve the availability of data for applications.

1.1 FPGA based heterogeneous computing sys-
tem

As discussed above, high performance computing requires sophisticated hard-
ware and software resources. The performance of a processor can no longer be
increased, since the early 2000’s, by simply increasing its clock frequency, due to
power reasons[9]. Moreover, traditional processor parallelism, in the form of super-
scalarity or hyper-threading, has also long reached its limits. Finally, multi-core
processors are very energy-ineffficient due to the fetch-decode-execute cycle and the
very general-purpose datapath and memory architecture that they offer. Therefore,
it is a general consensus that heterogeneous systems are needed to provide the re-
quired performance in this regard.

Modern computing devices should have the capability to process large amounts
of data. Extraction and categorization of vast amounts of data requires expensive
and sophisticated software. For example, in the field of image processing, process-
ing the live feed for even a single camera requires a dedicated central processing

2

1.2 – Problem Statement

unit (CPU) [28]. This need of more performance requires computer accelerators.
The most commonly used computer accelerator in this domain is the Graphical
Processing Unit (GPU). GPUs provide higher memory bandwidth, higher float-
ing point throughput and a more favorable architecture for data parallelism than
processors. Due to these properties, they are used in modern high performance
computing (HPC) systems as accelerators [74]. However, the main drawback of
HPC systems based on GPU accelerators is that they consume large amount of
power [25].

To overcome the power inefficiency of GPU-based HPC systems, modern field
programmable gate arrays (FPGAs) can be used. FPGA devices require less oper-
ating power and energy per operation while providing reasonable processing speed
as compared to GPUs [54]. When comparing them with multi-core CPUs, espe-
cially with regards to data center applications, it was observed that the performance
gap keeps widening between the two. In summary, FPGAs are known to be more
energy efficient than both CPUs and GPUs [69]. Moreover, FPGAs are well known
for their reconfigurability as well as their energy efficiency. Acknowledging these
capabilities, Microsoft, Baidu and Amazon now also use FPGAs as accelerators
rather than GPUs in their data centers [53].

FPGAs are, however, complex to program. Hardware description languages
(HDL) such as Verilog or VHDL are commonly used for this task. Most of the
modern applications are developed in high level languages and it requires a lot of
effort on the designer’s end to define corresponding modules. Moreover, designer
cannot explore many micro-architectural options using these low level languages
due to long design and verification cycles.

To counter the issue of programming in low level HDL languages, designers now
focus on high-level synthesis (HLS). HLS promises to generate register transfer
logic (RTL) directly from algorithms written in high level languages e.g C, C++,
OpenCL or SystemC. Moreover, HLS tools provide a number of directives to fa-
cilitate the designer in exploring different micro architectural solutions. Thus, we
can say that HLS provides the capability to program FPGAs through the use of
high-level languages, consequently reducing the design time debugging and analysis
[50, 23].

1.2 Problem Statement
The discussion above concluded that off chip memory accesses are expensive.

They are not only expensive in terms of execution time, but also in terms of power
and energy consumption. Moreover, if memory accesses are not optimized, then
even other operations cannot be scheduled for efficient execution.

For example, in the simple case of vector addition, the only operation is a sum
of two numbers. But if the data is stored in external DRAM, then it needs to

3

1 – Introduction

fetch the required elements from both the arrays, then it will perform addition and
after that it will write the result back to the global memory. This means that in
order to pipeline its computation with an Initiation Interval of 1 (i.e. starting a
new elementwise addition every clock cycle) the global memory interface needs to
support three operations (2 reads and 1 write) per clock cycle. This is very hard
to sustain, even with modern DDR3 and DDR4 interfaces, for more than one such
vector addition kernel on an FPGA (and a modern FPGA can support thousands
of such computations in parallel). This quickly leads to saturation of the memory
interface, and requires more efficient access techniques, that will be explored in this
thesis. Thus the overall performance of the code degrades. If, hypothetically, we
could make the whole data available on chip, then the operations in the work-items
can be executed more efficiently. However, data can be copied on chip beforehand
only for small applications, while for memory intensive applications involving image
processing or machine learning, this option is not always feasible. Therefore we need
to have a compromise between the two options to find the most optimal point.

In this thesis, the main focus is to improve the performance of a code which
is memory bound, i.e. which requires a large amount of data transfer between
external DRAM and silicon chip. The optimization can be application specific i.e.
manually annotating the source code for fetching the memory in an appropriate
way, or can be automatic, i.e. by using a tool to optimally implement this fetching
for the designer.

In the first portion of the thesis, we want to optimize a real time application
which is memory bound manually. The application implements two image process-
ing algorithms on live video streaming of high definition (HD) quality (1280x720)
at a rate of 25 frames per second. The main goal is to achieve real time video pro-
cessing which requires a data transfer of more than 1.5 gigabytes (GB) per frame
in unoptimized form.

The second part of the research considers the use of some plug and play application-
specific caches to make the life easier for designer. The main aim of this work is
to find an automated way to optimally choose the parameters for these caches, so
that they can be used for any application without virtually any designer’s effort.

1.3 Contributions
In this thesis, the focus of the research is to optimize memory bound applications

for FPGAs. As discussed in section 1.2, the work is divided into two major sec-
tions. One section deals with the manual optimization of highly memory bounded
application while the other section proposes a tool to find optimal cache layouts.
All of the work is done for FPGA applications written in high level languages, such
as C/C++ or OpenCL.

In the first portion of the thesis, a realistic smart city application is optimized

4

1.4 – Organization of the thesis

for real time processing. The application processes incoming live video streams
from the cameras to get velocity and density information for traffic on roads. It
uses two image processing algorithms, Optical Flow and Background Subtraction
that are computationally as well as memory expensive. The challenge of their real
time implementation is met using GPUs and FPGAs, which were not feasible with-
out accelerators. A very large design space was explored for multi architectural
solutions and then the best solution, with respect to the end-user constraints (a
company providing smart city infrastructure) was selected. All of the optimization
done in this regard are explained in Chapter 3. These optimizations, although
are application specific, can also be utilized with other memory hungry applica-
tions. The comparison of both accelerators shows that FPGAs are more suitable
in terms of power and energy consumption than both CPUs and GPUs. High-level
synthesis (HLS) with manual code optimizations is used to get the desired FPGA
hardware and performance from GPU-optimized OpenCL code. Finally, the whole
application is verified using Amazon Web Service (AWS) machines with FPGAs
for functional verification and performance analysis. The final proposed design was
able to process live video feed from roads for detection of number of vehicles and
their speed.

The second part of the dissertation focuses on finding the application specific
custom data cache configuration automatically. It discusses the architecture of an
inline cache from the literature that reduces the programmer effort to optimize
global memory (DRAM) accesses for any out-of-the-box code. This cache archi-
tecture previously needed manual intervention to find the most appropriate layout
based on the application. This work first applies one of the best known general-
purpose heuristic cache sizing algorithms that was developed in the literature to
find the optimal cache configuration. The results of this algorithm are compared
with exhaustive search to adapt the cache to different memory access patterns. The
results show that this heuristics can result in very sub-optimal configurations in all
cases. Therefore, this work presents a tool to find the optimal cache configuration
for each array mapped to DRAM. Using PEDAL, the configuration to obtain the
best cache configuration for a specific application is automatically selected based
on data access pattern. The results are verified using different applications and
benchmarks. The cache architecture, layouts and data access patterns are dis-
cussed in detail in Chapter 4. It also discusses the tuning heuristic and algorithms
and compares the performance of both of them.

1.4 Organization of the thesis
This thesis presents a collection of the work done in the field of electronic design

automation (EDA) for FPGAs using high-level synthesis (HLS) with an emphasis
on designs with efficient off-chip memory accesses. The work is divided into two

5

1 – Introduction

major portions and their organization is as under:

• Chapter 2 discusses Heterogeneous Systems and their architectures. It also
explains their advantages and disadvantages. Moreover it also provides some
introduction about high level synthesis (HLS) and the OpenCL programming
platform.

• Chapter 3 discusses a video processing application which was co-designed in
cooperation with Acciona, a Spanish company providing smart city solutions,
in the context of an H2020 European project, and which was optimized by me
for FPGA implementation. This chapter discusses in detail two commonly
used video processing algorithms, their implementation and results generated
by them to help the traffic flow. This chapter also includes the optimization
carried out in order to achieve the required performance of 25 frames per
second.

• Chapter 4 explains the architecture for custom inline data caches designed
to be synthesized for FPGAs. It also discusses an automated algorithm that
tunes the cache to obtain the best layout for the application under consid-
eration. The effectiveness of the algorithm is tested against heuristics for
different applications and benchmarks.

• Chapter 5 concludes the work. It also states the possible work which can be
done in this field in future.

6

Chapter 2

Heterogeneous Systems

High-Performance Computing and data-intensive applications, such as Machine
Learning, Artificial Intelligence, and big data processing, are becoming more and
more common both in large data centers and on embedded platforms. Thus, while
the processing speed of, e.g., Neural Network training or database sorting, remains a
primary concern, energy consumption is quickly gaining importance. Homogeneous
hardware architectures, e.g., multi-core general purpose Xeon processors, no longer
meet the heaviest computation requirements especially from the point of view of
energy efficiency [33].

A heterogeneous system refers to a system comprising of several different pro-
cessors and cores. Such multi-core architectures offer high performance along with
better power efficiency by not only using additional processor cores but by using
specialized hardware called accelerators to handle certain computationally challeng-
ing portions of the applications. Thus, heterogeneous systems that cluster together
different types of processors and hardware, such as CPU-GPU or CPU-FPGA, are
able to achieve the best performance/cost/energy trade-offs for computationally-
intensive parallel algorithms [71].

2.1 Heterogeneous System Architecture
As discussed before, a single core processor cannot provide the required perfor-

mance for modern applications. Multicore processors have shown some promise in
this field. As the name suggest, multicore processors are a number of processors
packed in a single chip. They are able to show task and data level parallelism
using parallel programming libraries [74], i.e OpenMP or MPI. These multicore
processors still cannot beat the advantage we can obtain from system with hard-
ware accelerator support, neither in terms of performance, nor in terms of energy
efficiency.

Simple Xeon processor based systems are not as efficient as currently available

7

2 – Heterogeneous Systems

systems with accelerator support. A key point to keep in mind here is that these
accelerators do not operate in stand alone fashion but they rely on traditional
processors to manage them. CPUs are responsible to initiate the accelerators and
upload and download the data as required by them [14], [30]. This make the hetero-
geneous systems more powerful as they take benefit from computationally advanced
accelerators while the scheduling is done by multi-purpose central processing unit.

The accelerators used in such heterogeneous systems may be GPUs, FPGAs or
a combination of both. In the terminology of heterogeneous system architecture,
the multi-core processor is typically called a host while the hardware platforms
used to accelerate certain portions of the applications are called devices. A typical
heterogeneous system is shown in Fig. 2.1. The various important components of
such a heterogeneous system are described here briefly.

H
os

t

Processor

Memory

FP
G

A
 Infrastructure IP

Kernel Memories

G
PU

 Kernel
Compute

Unit
 PE

PE PE

PE

PCI Express

Figure 2.1: A Typical Heterogeneous System Architecture

2.1.1 Graphics Processing Units
As the name suggest, graphical processing units were originally designed to han-

dle the advancement in field of graphics. The interest for GPUs or GPGPUs (gen-
eral purpose graphical processing units) in the field of high performance computing
developed after 2007, when NVIDIA introduced parallel programming framework,
CUDA. CUDA (Compute Unified Device Architecture) is a parallel programming
framework, designed for programming GPU based heterogeneous systems.

GPUs mainly consists of several processing elements which execute the kernel
in parallel manner. These streaming processors are generally multicore and have

8

2.1 – Heterogeneous System Architecture

several components including ALUs (Arithmetic Logic Units), load/store units,
caches etc. They execute the kernel code in SIMD (Single Instruction Multiple
Data) fashion, which means that streaming microprocessors implement the same
set of instruction to different data. In GPUs more emphasis is on data operations
instead of data control and caching and hence their caches are smaller as compared
to CPUs. GPUs also have their own device memory of few gigabytes [14].

GPUs do not operate in stand alone fashion. They always act as co-processor
with CPUs, where CPU acts as a host and GPU acts as a device. Host is responsible
for enviroment setting and data management for the device and they are connected
through PCI-Express bus as shown in Fig. 2.1.

2.1.2 Field Programmable Gate Arrays
The primary use of FPGAs was to implement discrete logic. Currently, rec-

ognizing their abilities and potential, their application is expanded to a variety
of fields ranging from embedded systems to high performance computing systems
[14]. Modern FPGAs provide a great alternative to GPUs in the field of high per-
formance computing. The main issue with the GPUs is their energy inefficiency [25]
which makes the case for FPGAs even strong. FPGAs can provide same amount
of computational abilities while consuming a fraction of power. The application
specific architecture of FPGAs reduces the need of multiplexing which provides
great energy saving. Similarly hardwired control logic eliminates a lot of control
instructions and is also a major reason for energy efficiency of FPGAs.

Unlike GPUs the architecture of an FPGA is not fixed, but can be customized
according to the requirements of the application. A typical FPGA consists of
logic blocks, memory blocks and DSP slices each surrounded by programmable
interconnects as shown in Fig. 2.2. The interconnects among different logic and
memory blocks of FPGAs are programmable, which provide a lot of flexibility to
its architecture. Similarly, the I/O blocks are also not fixed and can be programmed
according to the application.

The flexible FPGA architecture where provide a lot of opportunities to the
designer on one end, it also posses some challenges for designers to optimally con-
figure the architecture. Therefore, designers need to have good knowledge of the
hardware and corresponding configurations in order to obtain good results. This
problem is however resolved by the use of HLS (section 2.2) and languages like
OpenCL (section 2.3).

2.1.3 ECOSCALE
Many HPC centers are operating around the globe. Some of them are imple-

mented using CPUs only while others have accelerator support in them as well.
Previously the trend was to use GPUs in data centers but currently acknowledging

9

2 – Heterogeneous Systems

Horizontal Channel

V
ertical C

hannel
C

on
fig

ur
ab

le
 L

og
ic

 B
lo

ck
s

I/O
 Pads Sw

itc
h

Bo
xe

s

Figure 2.2: FPGA Architecture

the capabilities of FPGA, some of the major data centers in world like Microsoft,
Amazon, Baidu are also using FPGAs rather than GPUs [53].

There are certain HPC servers that target to provide an energy-efficient ar-
chitecture by sharing numerous reconfigurable accelerators. In order to provide
a scalable approach, the architecture should be tailored to the needs of the HPC
applications as well to the characteristics of the hardware platform. ECOSCALE
(Energy-efficient heterogeneous COmputing at exaSCALE) is a project under the
H2020 European research framework. The main goal of this project is to provide
a hybrid MPI+OpenCL programming environment, a hierarchical architecture, a
runtime system and middleware, and a shared distributed reconfigurable FPGA
based acceleration [27].

ECOSCALE offers a hierarchical heterogeneous architecture with the purpose
of achieving exascale performance in an energy-efficient manner. It proposes to
adopt two key architectural features in order to achieve this goal: UNIMEM (Uni-
fied Memory) and UNILOGIC (Unified Logic). UNIMEM was first prpoosed by
the EUROSERVER project [26] and provides efficient uniform access, including
low-overhead ultra-scalable cache coherency, within each partition of a shared Par-
titioned Global Address Space (PGAS). UNILOGIC, which is first being proposed

10

2.1 – Heterogeneous System Architecture

 …

Logical Shared Memory

Memory

Memory

Memory

L0 Partition (PGAS)

Tn-2 Tn Tn-1

Logical Shared Memory

Memory

Memory

Memory

L0 Partition (PGAS)

T1 T3 T2

L0 Communication

(Shared address space)

to higher levels

Figure 2.3: Hierarchical partitioning (tasks, memory, communication) of an HPC
application in ECOSCALE platform [27]

by ECOSCALE, extends UNIMEM to offer shared partitioned re-configurable re-
sources on FPGAs. The proposed HPC design flow, supported by implementa-
tion tools and a run-time software layer, partitions the HPC application design
into several nodes. These nodes communicate through a hierarchical communi-
cation infrastructure as shown in Figure 2.3. Each Worker node (basically, an
HPC board) includes processing units, programmable logic, and memory. Within
a PGAS domain (several Worker nodes), this architecture offers shared partitioned
re-configurable resources and a shared partitioned global address space which can
be accessed through regular load and store instructions by both the processors and
the programmable logic. A key goal of this architecture is to be transparently
programmable with a high-level language like OpenCL.

ECOSCALE targets to provide an energy-efficient architecture by sharing nu-
merous reconfigurable accelerators. In order to provide a scalable approach, the
ECOSCALE architecture should be tailored to the needs of the HPC applications
as well to the characteristics of the hardware platform.

11

2 – Heterogeneous Systems

2.2 High Level Synthesis
The main hindrance in exploiting the potential of FPGAs was the tedious job of

coding them in hardware description languages. The use of FPGAs is now very con-
venient thanks to high level synthesis (HLS). Generation of quality register transfer
level (RTL) from high level specifications is a great achievement in electronic design
automation. Previously, HLS designs were considered inefficient, but after the re-
cent development in designing tools and availability of different synthesis directives,
it is gaining the interest of designers. It not only reduces the designer’s efforts but
also provides fast design cycles by minimizing the manual effort.

Designing a suitable hardware requires a number of steps to be followed in
specific order. Most of the hardware design projects start from an executable
model of high level language. This model is generally developed to verify the
behaviour of the task to be performed. This model is tuned and tested at different
stages to verify the correct functionality of the model. Once tested and verified,
then this model goes under a number of steps before it takes form of an actual
hardware implementation. The final architecture is then described in the form
RTL, generally written in VHDL or Verilog. There are certain drawbacks of this
process, including long design and verification cycles and manual nature of the
process. High level synthesis tools can automate this whole process into an error
free path from abstraction to RTL generation.

Some of the major advantages provided by high level synthesis are:

• Automates the whole process from abstract level design to RTL generation

• Accelerated design times

• Provides directives to explore the whole design space just by small modifica-
tions

• Debugging the algorithm is much easier and less time consuming

• Allows high level of portability between different platforms

• In most of the cases designers do not need to worry about detail architectures,
i.e. clocks, design hierarchy, processes etc.

• Modules once synthesized can be reused more effectively

The reduction in design efforts allows the designer to freely focus on their main
design functionality and care less about implementation details. These details are
automatically tuned by the tool according to the design specifications and hard-
ware selected. Another major advantage as stated above is the portability among
different platforms. This also means that designer can switch between the hardware
to choose the best according to his needs.

12

2.2 – High Level Synthesis

2.2.1 High-level synthesis based Design Space Exploration
Modern FPGAs, such as the Stratix from Altera and the Virtex, UltraScale

families from Xilinx, offer to the designer millions of Configurable Logic Blocks
(CLBs) and Flip-Flops, megabytes of on-chip the Block RAM (BRAMs), hun-
dreds of multiply-and-accumulate units (DSPs), and many other dedicated hard-
ware blocks, including ARM Cortex processors [80]. Moreover, very recent design
flows from both Altera/Intel and Xilinx promise software-like development for appli-
cations that are entirely written in a high-level language, like C, C++ or OpenCL,
and are then compiled and synthesized for heterogeneous CPU-FPGA platforms.
In particular, parallel languages that were originally developed to program GPUs,
can now be used to program heterogeneous platforms such as PCs with FPGA
boards, or Zynq platforms which include a multi-core CPU and a large FPGA [66].

However, the expected performance is typically not achieved by simply recompil-
ing, via High-Level Synthesis for an FPGA target, an algorithm that was originally
written for execution on a CPU or GPU. This is because the CPU or GPU architec-
tures are fixed, hence most compiler decisions are local and relatively simple, such
as intra-basic block scheduling or peephole optimizations. However, in an FPGA
the architecture is adapted to the application, rather than the application to the ar-
chitecture. While this can achieve much better optimization levels, it also implies
that many more high-level decisions must be made during synthesis. HLS tools are
able to automatically implement these decisions, but even their latest generations
need to be directed to do so by a human or by a (very time-consuming) Design
Space Exploration tool.

While the optimizations performed by a CPU or GPU compiler are considered
excellent when they speed up execution by a factor of 2, the following HLS tech-
niques can dramatically optimize the execution time of algorithms on FPGAs even
by orders of magnitude. Most of them apply to loops, which are a major source
of concurrency in high-level code and some languages, such as OpenCL, explic-
itly state that some loops can be arbitrarily parallelized, because iterations do not
depend on each other:

1. Loop pipelining starts new iterations of a source code loop before the previous
ones are completed. It is one of the best options for loop optimization in HLS,
since it usually boosts the performance at a very low cost [29, p. 61]. The
number of clock cycles between successive loop iteration starts (inverse of the
throughput) is also called the “Initiation Interval” of the pipeline (in the best
case, it can be one clock cycle). It is fully decoupled from the time it takes
to complete one iteration, the pipeline “latency”. Usually, memory or data
dependencies between successive iterations (“loop-carried dependencies”) are
the bottlenecks that increase the initiation interval. Several other synthesis
techniques, e.g., array partitioning or loop interchange [43], can be applied to
ameliorate this problem.

13

2 – Heterogeneous Systems

2. Loop unrolling creates multiple copies of the loop body to be executed fully in
parallel. In some cases it can achieve even more performance than by means
of pipelining, but typically at a huge resource (i.e., area) cost. A loop can be
fully or partially unrolled and in both cases the maximum performance can
be achieved only by means of array partitioning and may require arithmetic
evaluation restructuring (e.g., adder tree balancing) [29, p. 51]. In OpenCL
(similar to CUDA), the loop over work groups can be unrolled arbitrarily by
definition. Thus, like on a GPU, the performance on an FPGA can be in-
creased by instantiating multiple work groups until the computing or routing
resources, or its memory bandwidth are saturated [66, 49]

3. Exploiting on-chip memory. Most modern FPGAs integrate thousands of in-
dependent BRAMs on chip for a total of many MBs of storage. Accesses to
these memories are both much faster in terms of latency and much more par-
allelizable than those to off-chip memories [78]. Many algorithms, especially
the memory-intensive ones that are addressed in this article, achieve the best
acceleration only by moving frequently-accessed data that reside in off-chip
memories into on-chip BRAMs (or another kind of FPGA memory called
LUTRAMs). As mentioned above, on-chip memories that are not carefully
optimized by using partitioning directives can often become bottlenecks, be-
cause of the limited number of access ports that they offer. While on a GPU
the maximum number of concurrent accesses to independent addresses (and
the meaning of “independent”) is fixed by the GPU architect, on an FPGA
it must be carefully chosen by the designer, because more parallelism often
implies a higher cost. Memory partitioning or memory reshaping according
to user directives or to automated analysis of access patterns of a given algo-
rithm can dramatically increase the memory bandwidth and achieve a much
higher level of concurrency.

4. Optimizing global memory interfaces. Other methods to improve performance
include instantiating multiple DRAM access ports or increasing their bit
width.
On a GPU, the global memory interface subsystem receives memory read
or write requests from the threads or work items that are executing on its
compute units, and coalesces these requests whenever possible, in order to
match both the available memory word size and bus burst transfer capabil-
ities. For example, 16 accesses to adjacent properly aligned 32-bit integer
array elements can be grouped automatically at runtime into a single 512-bit
memory read, or to a burst of 4 128-bit memory reads, depending on the
DRAM interface width.
On an FPGA, these groupings must be performed manually and at compile
time, which requires a lot of design and tool usage expertise.

14

2.3 – Open Computing Language

2.3 Open Computing Language
Open Computing language or OpenCL is a parallel programming framework

based on C99 and C++11 which support parallel programming model. It is widely
used for programming heterogeneous and multicore platforms [34], [68]. As the
name suggests, it is an open source standard which is maintained by Khronos
Group.The main advantage offered by OpenCL is execution portability. It allows
to run the same design accross different platforms with few modifications.

Global Off-Chip Memory

Host Global
Memory

Global On-Chip Memory

Local Memory

 Private
Memory

Private
Memory

Work-Item Work-Item

Kernel

…

Local Memory

 Private
Memory

Private
Memory

Work-Item Work-Item
…

FPGA

SDRAM

PCIe

Host

Kernel

Figure 2.4: Platform and Memory Model of OpenCL

Some definitions/terminologies used by OpenCL model are shown in ifg. 2.4
and defined as under:

• Host: It is a (multi-core) processor, which is responsible for setting up the
environment and managing tasks on the device.

• Device: Device is the word that represents the hardware accelerator in the
system

• Kernel: It is the computationally expensive piece of code that is designed to
run on the device.

• Compute Unit (CU): An OpenCL device can implement multiple copies
of same design, called compute units.

15

2 – Heterogeneous Systems

• Work-items & work-groups: Concurrent implementations of kernel body
are termed as work-items and a collection of these work items is called work
groups. The designer can choose the size of work-items per work-group.

• Global Memory: It the shared memory between all the work-groups. It is
the slowest device memory to access and have the size order of a few gigabytes
(GB).

• Local Memory: This is a private memory of each work group, which means
it is shared by all the work items within that work-group. It is faster than
global memory.

• Private Memory: It the smallest, but fastest memory to access in the whole
model. It is the private memory of each work-item and generally use to store
some temporary variables.

It should be noted that memory management in OpenCL is done explicitly i.e.
by moving data from host memory to global memory to local memory and then
back. To ensure memory consistency and provide better synchronization within a
workgroup, if needed, OpenCL also provides the concept of barriers [81].

16

Chapter 3

Smart City Application

Cities are seeing massive urbanization worldwide, thus increasing the pressure
on infrastructure to sustain private and public transportation. Adding intelligence
to traditional traffic management and city planning strategies is essential to pre-
serve and even improve quality of life for citizens under this enormous increase of
population. Traffic causes increased delays, thus reducing the opportunity for city
dwellers to earn money by performing productive activities. It also poses health
hazards due to pollution and accidents. Several public and private entities (ranging
from public transportation providers, to city planners, to traffic light control, to
taxi and car sharing providers, to individual drivers) can profit from the widespread
availability of real-time information about traffic flows. Part of the work described
in this chapter has been previously published in "Performance and energy-efficient
implementation of a smart city application on FPGAs" [8].

This application can improve traffic-related problems in modern continuously
growing cities based on the information provided by the citizens and/or extracted
by monitoring their habits. Various methodologies and sensors can be used to
achieve this goal.

This application will provide cost-effective and scalable real time analysis of
traffic in cities that can then be harnessed by other smart city services and appli-
cations (e.g. intelligent traffic management tools) in order to reduce traffic-related
impacts on the quality of life of citizens. Videos obtained from cameras can pro-
vide reliable information about the traffic flow on roads. The basic idea, as shown
in Fig. 3.1. is that the cameras acquire the images, which are then processed us-
ing image-processing algorithms. After that, the data is stored in a database and
accessed on demand.

17

3 – Smart City Application

Figure 3.1: Application Overview

3.1 Application
The main goal of the application described in this work is to extract data from

video surveillance cameras and make it available to different services. The objective
is to provide real-time information which can be used to optimize, for example the
street lighting and traffic light systems installed in cities. The application will
analyze the images recorded by the cameras installed in cities and will apply a set
of algorithms in order to detect the presence of people and vehicles and to compute
the density of traffic at each specific location.

(a) Camera view of the road

α

β

d

(b) Road Parameters w.r.t camera

Figure 3.2: Camera view

For this purpose, cameras are installed on roads (Fig. 3.2a). Their parameters
like height from ground, angle of elevation etc. and road parameters like width, etc.

18

3.1 – Application

are already assumed to be available for processing, as shown in Fig. 3.2b, together
with other constants like the minimum value for detecting a change of speed.

Figure 3.3: Video Frame vs Ground reality

In most places, cameras cannot be positioned directly above a road. Most of the
times they will have a prospective view, as shown in Fig. 3.2a. So we need input
values to map the road with respect to the camera pixels. We need three types of
information.

1. Whether a pixel covers a road area

2. How much area each pixel covers

3. How much distance each pixel covers in the direction of the camera

The presence or absence of the road allows us to apply the algorithm only on the
part of the camera frame that we are interested in and hence save computational
resources. The area value is used to find the percentage of the road occupied by
moving objects. Finally the distance is used to compute the velocity of the vehicles.
All of them can be calculated from camera resolution, aperture, focal length and
height over the road. Another important thing to note here is that, as we move
away from the camera, the distance represented by one pixel increases. Therefore,
the distance value for each pixel is different. It is calculated once for each stationary
camera and then used repeatedly to save time and computational resources.

Fig. 3.4 shows the general work-flow of the image analysis module in detail.
Two configuration files containing road and camera parameters are used as inputs,

19

3 – Smart City Application

Figure 3.4: General Workflow of Image Analysis module

in addition to the image to be analyzed. This module can be instantiated, as many
times as needed, once for each descriptor that is desired, so that it is possible to
detect many kinds of objects at the same time.

3.2 Related Work
A lot of work has been carried out on smart cities in the last 20 years [2]. For

some reviewers smart cities are still confusing [4]. Definitions range from infor-
mation and communication technology (ICT) networks in city environments [3]; to
various ICT attributes in a city [7]. Some relate the term with indexes like the level
of education of citizens or in terms of financial security etc. [5] while others thinks
about it in terms of urban living labs [39]. All of these implications are alternative
schools of thought and most researchers point towards the complexity and scale of
the smart city domain [6].

The monitoring of roads for security and traffic management purposes is one of
the main topics in this domain. Modern smart cities measure the traffic so that
they can optimize the utilization of the roads and streets by taking actions which
can improve traffic flow. Video-based approaches have been researched to monitor
the flow of vehicles in order to obtain rich information about vehicles on roads
(speed, type of vehicle, plate number, color etc.) [15].

Vision-based traffic monitoring applications have seen many advances thanks
to several research projects that were aimed at improving them. In 1986, the
European automotive industry launched the PROMETHEUS European Research
Program [75]. It was a pioneer project which intended to improve traffic efficiency
and reduce road fatalities [72]. Later, the Defense Advanced Research Projects
Agency introduced the VSAM project to create an automated video understanding
technology which can be used in urban and battlefield surveillance applications of

20

3.2 – Related Work

the future [20]. Within this structural framework, a number of advanced surveil-
lance techniques were demonstrated in an end-to-end testbed system which included
tracking from moving and stationary camera platforms and real-time moving object
detection as well as multi-camera and active camera control tracking techniques.
The cooperative effort of these two pioneering projects remained active for about
two decades. As a result, new European frameworks evolved to cover a variety
of visual monitoring systems for road safety and intelligent transportation. In the
early 2000s, the ADVISOR project was implemented successfully to spot abnormal
user behaviors and develop a monitoring system for public transportation [47, 48,
24].

There are several methods which can extract and classify raw images of vehicles.
These methods are chiefly feature-based and require hand-coding for detection and
classification of specific features of each kind of vehicle. Tian et al. [70] and Buch et
al. [15] surveyed some of these methods. In the fields of intelligent transportation
systems and computer vision, intelligent visual surveillance plays a key role [84].
An important early task is foreground detection, which is also known as background
subtraction. Many applications such as object recognition, tracking, and anomaly
detection can be implemented based on foreground detection. [82] [73].

An application was proposed in the Artemis Arrowhead Project [36] that can
detect patterns of pedestrians and vehicles. According to the authors, based on this
information, the application can also extract a set of parameters such as the density
of vehicles and people, the average time during which the elements remain station-
ary, the trajectories followed by the objects, etc. Subsequently, these parameters
are offered as a service to external parties, such as public administrations or private
companies that are interested in using the data to optimize the efficiency of existing
systems (e.g., traffic control systems or streetlight management) or develop other
potential applications that can take advantage of them (e.g., tourism or security).

Many existing systems, which are concerned about privacy of the citizens, em-
ploy some sort of censorship so that human or AI users are not able to see and
inadvertently recognize any person in the camera footage. This can be done ei-
ther in the form of a superimposed black box, which blocks out the eyes or face
of the person, masking each person in each frame or blocking images of certain
places altogether [11, 51, 58, 59, 61, 65]. However, this approach cannot achieve
full privacy. Most of the time we do not require any sort of information related to
individuals while working with applications related to computer vision. Thus, the
developer should be aware of the information being collected either advertently or
inadvertently and of what are the real requirements for the application.[17]

21

3 – Smart City Application

3.3 Algorithms
To extract the required information from the video stream, two image processing

algorithms are applied. One is the background subtraction algorithm, while other is
Lucas Kanade Algorithm for optical flow. A sample frame from one of the cameras
is shown in fig 3.5. The image is split into two portions to separate the information
on two road recorded in one frame. These information is passed to the algorithm
in the configuration file for separate calculations.

Figure 3.5: Sample Frame

3.3.1 Background Subtraction
Algorithm 1 is based on a background subtraction and object tracking method.

One popular implementation was made available by Laurence Bender et al. as
part of the SCENE package [63], available in the Sourceforge repository (Fig. 3.6).
The algorithm performs motion detection principle by calculating the change in
corresponding pixel values with respect to the reference stationary background. The
portion of the road where movement is detected gives an idea about the amount of
traffic. Moreover, the algorithm also constantly updates the reference background
image (in case a moving object is now at rest).

Scene is an open source multiplatform computer vision framework that performs
background subtraction and object tracking using algorithms based on neural net-
works and fuzzy classification rules. It was mainly designed as a toolkit for the
rapid development of interactive art projects that explore dynamics of complex
environments (for example public spaces).

22

3.3 – Algorithms

Scene defines five different model implementations if OpenCL for background
subtraction. They are

• Simple Gaussian

• Fuzzy Gaussian

• Mixture of Gaussian

• Adaptive Self-Organizing Map (SOM)

• Fuzzy Adaptive Self-Organizing Map (SOM)

Figure 3.6: Output of the Background Subtraction Algorithm [64]

Our chosen algorithm takes four frames (images) as input, including the ref-
erence stationary background, the frame under the consideration, the preceding
frame and the succeeding frame. For each pixel, it performs a weighted difference
on the corresponding pixels of three consecutive frames. If this difference is zero,
it implies that there is no movement in the corresponding pixel, hence no update
is needed for the total moving area or the reference background. On the other
hand, non-zero values corresponds to some change in the consecutive video frames
around the pixel. The value can be a positive or a negative number according
to the direction of movement with respect to the camera. If the absolute of this
value is larger than the threshold set for movement detection and some change is
also detected in the current frame pixel w.r.t. the reference background, then the
global accumulator of the moving area is updated by adding the area of the road
occupied by the current pixel. If the weighted difference is less than the threshold

23

3 – Smart City Application

for N-1 frames, then the algorithm updates the reference background pixel with the
current pixel. N is the minimum number of frames required to declare the pixel to
be part of the stationary background. The value of N can be set according to the
application.

Algorithm 1 Background Subtraction algorithm
Require: Four grayscale images image−1 , image0 , image1 and imagebg & Count

array
Ensure: imageout, Updated imagebg and Count array & Total Area with Movement

1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: PIX = (j ∗WIDTH) + i
4: lat = 0
5: if PIX is on ROAD then
6: center ← PIX
7: left ← PIX − 10
8: right ← PIX + 10
9: lat ← Abs(sum of weighted difference of left, right and center pixels of

all three images)
10: end if
11: if (lat< threshold) & (Count[PIX] ≥ N) then
12: imagebg[center]← image0[center]
13: else
14: Count[PIX]++
15: end if
16: if ((image0[center] - imagebg[center]> Background threshold) & (lat>

threshold)) then
17: imageout[center]← image0[center]
18: Increment Area with Movement
19: else
20: imageout[center]← 0
21: end if
22: end for
23: end for

As described above, the algorithm needs three consecutive frames and a refer-
ence stationary background image to distinguish between moving and stationary
objects. After the computation of one set of frames, the next frame is fed to the
kernel and the oldest one is removed from the set. The result is shown in Figure

24

3.3 – Algorithms

3.7.
Here the static areas are detected as background and converted to black, while

pixels where movements have been detected are shown as gray-scale pixels of the
original frame. We also compute the portion of the road that is occupied by moving
objects. In this set of frames, it is equal to 11.2m2 on the side where traffic is coming
towards the camera, and it is 6.55m2 on the side where traffic is moving away from
the camera.

Figure 3.7: Output of Background Subtraction

3.3.2 Lucas Kanade Algorithm
Since the background subtraction module can only find the area occupied by

moving objects on the roads, another method is needed to measure the velocity of
vehicles, based on the Lucas Kanade algorithm for optical flow [42]. An implemen-
tation of the Lucas Kanade’s Optical Flow algorithm developed by Altera [52] in
OpenCL with a 52x52 window size is shown in Fig. 3.8.

A window size of NxN means that the optical flow for one pixels is computed
with respect to the neighboring N/2 pixels on each side of that pixel i.e. the pixel
under consideration is in the center of a matrix of pixels having (N+1) rows and
columns. For each pixel in the window, a partial derivative with respect to its
horizontal (Ix) and vertical (Iy) neighbors is computed. The size of the window is
a compromise between true negative and false positive change detection. Therefore
it should be chosen by an expert with respect to area covered by each pixel and
other parameters. In this paper we uses a 15x15 window.

A pyramidal implementation [12] is used to refine the optical flow calculation

25

3 – Smart City Application

and the iterative Lucas-Kanade Optical flow computation is used for the core cal-
culations. For each pixel, computed partial derivatives within the window and the
difference among the pixel values in the current and next frames are used to calcu-
late the velocity of each moving object (it is zero if the area covered by the pixel
is stationary). The magnitude is the speed of the object whereas the sign shows
whether it moves towards the camera or away from it.

Figure 3.8: Altera’s Implementation of Lucas Kanade Algorithm [52]

In our implementation of the Lucas-Kanade Algorithm (Algorithm 2), for each
set of calculations, we need two consecutive image frames and a set of input param-
eters depending on the road conditions and camera angles. Similar to Background
subtraction, each new frame replaces the older one. The optical flow is computed
for all the pixels of the image (in this case for a 1280x720 resolution). Two images
using 8 bits per pixel are compared with a window size of 15. Moreover, the ob-
tained values are mapped to a single color representing both relative velocity and
direction, as shown in figure 3.9. The graphical output from these images is shown
in Fig. 3.10. The stationary regions are represented by white pixels, while moving
objects are mapped to colors according to their speed and direction.

To calculate the average velocity of traffic with the Optical Flow algorithm one
needs to know the distance between the camera and the recorded objects. In order
to avoid expensive and complex solutions for a real time depth measurement, an
approximation for calculating the distance corresponding to each pixel of the image
is used based on static camera parameters, such as road plane inclination, camera
orientation and field of view. For the current frame as reference. The average
velocity coming towards the camera is about 118km/h while the velocity moving
away is -67km/h.

26

3.3 – Algorithms

Algorithm 2 Lucas-Kanade algorithm
Require: two frames of images image0 and image1 and other coefficients
Ensure: vopt

1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: G2×2 ← 0
4: b2×1 ← 0
5: for wj = −wy to wy do
6: for wi = −wx to wx do
7: center ← Pos(i + wi, j + wj)
8: left ← Pos(i + wi − 1, j + wj)
9: right ← Pos(i + wi + 1, j + wj)

10: up ← Pos(i + wi, j + wj − 1)
11: down ← Pos(i + wi, j + wj + 1)
12: im0

val ← image0[center]
13: im1

val ← image1[center]
14: δI ← d(im0

val, im1
val)

15: im0
left ← image0[left]

16: im0
right ← image0[right]

17: Ix ← (im0
right − im0

left)/2
18: im0

up ← image0[up]
19: im0

down ← image0[down]
20: Iy ← (im0

down − im0
up)/2

21: G← G + g2×2(Ix, Iy)
22: b← b + f2×1(δI, Ix, Iy)
23: end for
24: end for
25: G← inverse(G)
26: vopt[j][i]← G× b
27: end for
28: end for

We can also find the speed in any specific lane of the road, by dividing the
pictures in separate lanes instead of two parts as we did in Fig. 3.5. This can be
achieved, if required, by minor adjustments in the input configuration file.

27

3 – Smart City Application

Figure 3.9: Lucas Kanade’s Disparity Map

Figure 3.10: Output of Lucas Kanade Algorithm

3.3.3 Implementation Model
Two types of implementation are possible for this system on the basis of the

location of computational and storage units. One is decentralized, where each cam-
era has its own processing unit. The other is centralized, where all the processing
by a set of closely situated cameras is done on one single server.

28

3.3 – Algorithms

Decentralized Architecture

Figure 3.11: Decentralized Model

Fig. 3.11 represents the decentralized architecture version of the application.
Due to the high computational requirements , a dedicated CPU would be needed
for each camera installed in the monitored scenario. Once the image (which must
be processed in real time) is captured, the pre-processing unit associated to that
camera processes the signal for detecting the elements present in the image. Af-
terwards, it sends a picture with some meta-data to the central processing unit in
which all of the information is processed and stored to be offered to the customers
within a cloud architecture.

Centralized Architecture

On the other hand, Fig. 3.12 depicts an architecture in which one processing
unit is used by a number of cameras. The idea is to combine the processing unit with
the central database where all the data is offered to the customer. This means that
no camera has a dedicated processing unit attached, which dramatically increases
the amount of data to be processed centrally in real time.

After analyzing both options, the second alternative is considered more appro-
priate because of the costs of implementation, application software management,
maintenance costs to resolve hardware failures, improved safety etc. In Figure 3.13,
the scheme for the proposed solution is presented. A major factor for choosing a

29

3 – Smart City Application

Figure 3.12: Centralized Model

HPC

Figure 3.13: From decentralized to centralized architecture

centralized system would be the achievable energy efficiency by using latest genera-
tion FPGA devices, which are very power-efficient but too expensive to be deployed
in a decentralized architecture.

30

3.4 – Constraints

3.4 Constraints
However, the use of cameras poses some disadvantages. The first major draw-

back is the breach of privacy. Citizens usually feel uncomfortable and insecure when
their movements are being monitored and they tend to oppose any such system. To
overcome this disadvantage, the end users of our application are not given the raw
data. Rather they are provided with only the result of the processing of the images
recorded by the cameras. This ensures both the protection of personal information
and the value of data.

Note that, in our implementation of the application, the processed images or
data extracted from them contain no personal information, thus we can safely
say that we have achieved the objective of personal data integrity and we are not
forwarding any sort of personal or privileged information to any third party.

Another difficulty in the use of such systems is the huge effort required to
compute and process data by image analysis algorithms. For instance, cameras
should be deployed every 50 meters or so in order to obtain a density that can
provide complete information for a city. A big city with an urban area of 360km2

would require the use of about 100,000 active cameras. This can be supported only
by extreme parallel computing techniques.

This issue is resolved by the use of centralized architecture. Moreover the com-
putational power is provided by the ECOSCALE platform, whose architecture is
discussed in Chapter 2. Therefore, we can say that the application can be imple-
mented in real world.

3.5 Optimizations
Most of the operations carried out in image processing are pixel-based, with

no or very few dependencies on other pixel output values. This provides a very
good basis for a parallel implementation of image processing algorithms that work
on each pixel either simultaneously or in a pipelined fashion (Fig. 3.14). In this
way we can reduce the frame processing time and hence we can achieve a real time
processing frequency, which is about 25fps for the target application.

Several optimization that we performed on the code to make it optimal for
FPGA design are explained below.

3.5.1 Memory-related optimizations
In the context of memory-related key issues and observations, it has to be stated

that the most important aspect that affects performance is the data I/O to and
from the host as well as the hardware accelerators. The highest I/O bandwidth
can be achieved by using streams and DMA controllers. This approach though

31

3 – Smart City Application

Figure 3.14: Overview of parallelism in image processing Algorithms

has one critical restriction, requiring that the data have to be stored in contiguous
memory space, which is not always possible. In this application, the kernels are
generated using OpenCL which only supports memory mapped interfaces. As a
result streams cannot be utilized. Hence, we require other methods and coding
examples that make the memory mapped interface as efficient as possible. In the
ideal scenario it can achieve comparable bandwidth to the streaming case, i.e. only
two times slower. These methods can be categorised as follows:

• Inferring memory bursts

• Utilizing the maximum bus width

• Eliminating unnecessary memory accesses

Inferring Memory Bursts

As mentioned above OpenCL kernels do not support streaming interfaces, they
support the AXIlite and AXI master interfaces. The AXImaster interface supports
memory bursts of up to 256 words on the Ultrascale+ FPGAs.

Subsequently, in order for the kernel to infer memory bursts, the code has to
be written in certain ways, which the tool can identify and produce the correct
interface that accesses the memory using bursts. The first way is the usage of a
function defined for this purpose async_work_group_copy() and the second is to
read the data into local or private memory, which is using BRAMs in the FPGA,

32

3.5 – Optimizations

inside a for loop. The async_work_group_copy() function is defined for OpenCL
language and transfer data between global and local (work group) memory only.
It cannot transfer data for private memory. The maximum burst size supported is
256 words per burst. The following code segment (Fig. 3.15) describes how bursts
can be inferred using a pipelined for loop.

Figure 3.15: Example for burst access of data from DRAM

Utilization of maximum Bus width

Another really important optimization is the utilization of the maximum bus
width. In our case that is 128bits which is restricted by the host HP ports that
are used for communication between the processing system and the programmable
logic. In order for the kernel to have a 128-bit data width, the arguments must use
vector data types, e.g. float4, int4 etc. This allows the most efficient utilization of
the PS-PL bandwidth as it utilizes the full width of the HP ports.

33

3 – Smart City Application

Eliminating Unnecessary Memory Accesses

The previous two subsections provide I/O optimization that are platform and
technology specific and always affect performance. Here, we present memory-
related optimization that is application specific and concern mainly the minimiza-
tion of the DDR memory accesses.

Based on the source code description of an algorithm, it is not possible for
the platform to recognize whether the application accesses the same data multiple
times from the DDR memory or not. Hence, depending on the application, it highly
recommended to increase the usage of temporary buffers (BRAMs) or temporary
registers, that store data inside the PL to be further processed, since this can
significantly improve the performance as it reduces DDR accesses. For example in
the case of image filter applications, line buffers can be used to store the lines or
pixels required for the filter. A 3x3 filter requires 9 memory accesses per result.
If the data are stored in line buffers the same operation requires only 1 memory
access as the data are already stored in BRAMs.

3.5.2 Computational optimization
In this subsection we provide a summary of source code optimization that were

implemented to generate an efficient hardware accelerator module that will eventu-
ally lead to a cost-effective application execution. These guidelines are principally
split into the following sections.

• Loop pipeling and unrolling

• Array partitioning

• Minimization of operations using temporary registers

• Division using constants

• Reusing the calculations

• Piecewise Linear approximation

Loop pipelining and unrolling

In sequential languages like C/C++, commands in loops are executed one after
the other i.e. each statement is executed in the next clock cycle than the previous
one (assuming the ideal case of one instruction per clock cycle). To introduce
parallelism, we have two options, either we can pipeline a loop or we can unroll it.

Unrolling means that we make copies of loop and execute the loop iterations in
parallel. These copies and parallelism is controlled by unrolling factor. Pipelining

34

3.5 – Optimizations

means that loop iterations overlap each other. This means that first instruction of
second loop iteration starts with the second instruction of first iteration.

Both of them have their advantages and disadvantages. It reduces the execution
time of the application with increase in resource utilization. Therefore, the designer
should be careful for choosing the optimal option. In our application, we pieplined
the inner most loop of the code in order to achieve parallelism without exploding
the resource utilization. Some smaller are also unrolled where resource utilization
was not too high.

In some of the cases these directives, although applied, were not able to achieve
the required Initiation Interval (II). Some of these reasons are addressed below
which were the cause of reduced performance. These issues were addressed in order
to achieve better performance.

Array partitioning

One of the major reason for not achieving the required pipeline performance is
the memory access bottleneck. If we need to fetch more than one memory location
from the same BRAM, than this process can reduce the parallelism due to limited
number of memory ports.

This issue can addressed by storing the same memory into different BRAMs or
FFs. So, data can be fetched from different memory locations simultaneously. The
partition can be complete, i.e. storing everything separately in registers. This can
be expensive and sometimes impossible to synthesis or place and route for the tool.
Other possible options are block and cyclic which are selected depending on the
access pattern of the data. Generally, cyclic partition is preferred for sequential
access while block partition for strided access.

Minimisation of operations by using temporary registers

The high level synthesis tool does not reuse results that have been already cal-
culated and stored in registers, whereas it uses new LUTs to create new hardware,
e.g. :
int k1 = a + b;
int k2 = a + b + c;

In this case, the tool will use resources to create k1, but for k2 will not use
the result stored in k1, but will use new resources to recalculate a+b. In order to
eliminate such unnecessary resource utilization the code should be changed to:
int k1 = a + b;
int k2 = k1 + c;

35

3 – Smart City Application

Division with constants transform to multiplication

One more optimization that can be used extensively is the avoidance of division
operations when the divisor is constant. Division is the most expensive mathemat-
ical operation with respect to resources. For that reason, every single division with
constant divisors should be replaced by a multiplication by inverting the divisor.
For instance
double k = a/b;
with b being constant, is transformed to :
double bmult= 1.0/b;
double k = a*bmult;.

Reusing the calculations

There are some calculations which are done within one work item, can be reused
in the succeeding work items (within the same work group). For example if we are
working with a sliding window over an image and performing convolution with a
fixed filter, then those computations can be reused in the next work item for the
overlapping elements of sliding window.

The flowchart in Fig. 3.16 explains the modification. Assuming a window size of
15x15, the left side shows the conventional way of performing all the computations
for a pixel within two nested loops with 15 iterations each. It requires 225 iterations
to compute the final value of each pixel and there is no reuse of the computed values.

The flow chart on the right hand side depicts a reuse-oriented modification. In
the first loop, each work item computes the values for the columns of the window
under consideration and stores them in a local buffer. The second loop uses those
values over all the columns in the window to compute the final value of the pixel.
In this way, not only we reduced the total number of iterations from 225 to 15,
but also we can reuse the values computed for 14 columns, which are needed in the
next sliding window. This optimization will also result in better pipelining of the
individual loops.

Piecewise Linear approximation

Trigonometric computations, especially involving floating point numbers, are
expensive on FPGAs. Sometimes it is possible to use a piecewise linear mapping
approximation instead of accurate trigonometric computations. In our case, the
piecewise linear approximations get a performance improvement of around 15x.

Our specific application requires generating an image from the output data,
mostly for debugging purposes. In this case, instead of using the tangent function to
map it using a colour coded disparity map, a piecewise linear approximation results
in acceptable results with remarkable increase in performance of the application.
The first code snippet in Fig. 3.17a one uses the inverse tangent function to map the

36

3.5 – Optimizations

Figure 3.16: Flowchart for KNP

image to a set of 55 different colour values, while the second one uses a piecewise
linear approximation to generate the image. There is not much of a difference
between two outputs as shown in Fig. 3.17b & Fig. 3.17c, especially when the goal

37

3 – Smart City Application

(a) Piecewise linear substitution for tangent function

(b) Using Piecewise linear approxima-
tion (c) Using trigonometric computation

Figure 3.17: Difference between two outputs for Lucas Kanade Algorithm

is just debug the algorithm. On the other hand it have a huge impact and cost
saving for running it on FPGAs.

3.6 Implementations
The application was first designed for CPU implemented to verify the functional

correctness. After that it was optimized for GPUs. Once it was verified and was able
to achieve the required performance, then it was optimized for FPGAs to achieve
better power and energy consumption. The CPU implementation was carried out
to get the best possible solution available.

38

3.6 – Implementations

3.6.1 CPU
As stated above, the CPU implementation was just to verify that the algorithms

producing the desired outputs. To verify the functionality, consecutive image frames
were applied as input and the corresponding outputs were verified with the ground
reality. Moreover, the execution time and energy consumption was noted for future
comparison with the results of accelerators.

The CPU that we are considering is an Intel Xeon E3-1241(v3) with a clock fre-
quency of 3.5GHz and maximum power consumption of 80 Watts. The background
subtraction algorithm takes 47.68 msec to process one frame while Lucas Kanade
algorithm takes 5925.78 msec per frame. This also confirms that CPU cannot be
used to perform real time video processing for this quality of images.

3.6.2 GPU
After the functional verification of the application, parallel implementation is

done with the help of GPUs. For GPU implementation, application was coded in
OpenCL language (explained in section 2.3). The purpose of this implementation
is to achieve the required throughput with minimum possible cost. In this imple-
mentation, we are considering an NVIDIA GeForce GTX960 GPU. It has 2GB of
global memory and bandwidth of 112 GB/s with a maximum power consumption
of 120 Watt.

The major optimization done for the implementation on GPU are enlisted.

Lucas Kanade Algorithm

• All variables, functions and operations of double precision have been changed
to float

• The pyramid array size has been reduced by half every level

• Alpha channel has been removed in all the functions

• ffmpeg and SDL libraries have been used instead of OpenCV to decode video
and generate image output

• A mask has been added to remove the pixels outside the road

• Non-blocking calls to clEnqueueWriteBuffer() have been used

Background Subtraction Algorithm

• All variables, functions and operations of double precision have been changed
to float

39

3 – Smart City Application

• Background calculation has been modified in order to not to be affected by
car light reflections and shadows

• Background adaptation to large light differences between frames due to cam-
era auto shutter

• A mask has been added to remove the pixels outside the road
The optimized GPU code was able to perform the required computations in

time for both the algorithms (separately). The GPU device time for background
subtraction algorithm is 28.16 msec per frame while for Lucas Kanade algorithm
it is 42.68 msec. The power comsumption and its comparision with other devices
is presented in section 3.6.4.

3.6.3 FPGA
After testing the basic functionality of the algorithms, we optimized them in

order to get the maximum efficiency with a minimum use of resources in the smallest
amount of computational time. Performance analysis was carried out using RTL
simulation on a virtual board including a Virtex 7 FPGA from Xilinx and then
on real hardware, using the Amazon Web Services (AWS) Elastic Compute Cloud
(Amazon EC2). The available resources on these boards are shown in Table 3.1.
Note that in order to complete RTL simulations (for Virtex 7) in a reasonable
amount of time, we used an image resolution of 1280x4 and we extrapolated the
simulation results to the real image size. On AWS, on the other hand, the complete
frame was used to verify the results. For high level synthesis, we used SDAccel
v2016.4, 2017.1 and 2017.4 from Xilinx.

Moreover, simulations were carried out for a single compute unit and then a
suitable number of compute units that could fit on the FPGA were used for each
algorithm. In contrast to a CPU or GPU, an FPGA does not have a fixed architec-
ture but the HLS tool generates a custom computation and memory architecture
from each application. The term “compute unit” (CU) refers to a specialized hard-
ware architecture (processing core) for a given application. The designer can use
multiple parallel CUs (within the available resources) to boost the performance of
each application.

Basic GPU optimized code

The first implementation is done on the code, which was optimized for GPU.
There were two main goals from this implementation.

• To find the areas where performance improvement is required.

• To compare the design efficiency and design to cost ratio with all the opti-
mization applied later.

40

3.6 – Implementations

Table 3.1: Target FPGAs and boards

Target Device
Name

ADM-PCIE-
7V3:1ddr:3.0

AWS-F1:4ddr-
xpr-2pr:4.0

FPGA Part
(Xilinx)

Virtex-7
XC7VX690T-2

Virtex
UltraScale+

xcvu9p-2-i
Clock Frequency 200MHz 250MHz

Memory
Bandwidth

9.6GB/s 11.25GB/s

BRAMs 2940 4320
URAMs - 960

DSPs 3600 6840
FFs 866400 2364480

LUTs 433200 1182240

The results of the implementation are shown in the table 3.2. We can see that the
GPU optimized version of code on FPGA is even worse than CPU. Therefore we
will apply the optimization to that to get the required 25 Hz performance for both
of the algorithms. The first major bottleneck identified in this version is the global
memory access.

Table 3.2: Kernel Execution time and Resource Utilization for Basic Design

Algorithm Time
(msec)

Resource Utilization

per
frame

BRAM DSP FF LUT

Background
Subtraction

7313.112 5 3 14447 35019

Lucas Kanade 44209.98 31 56 21367 37080

41

3 – Smart City Application

Introduction of line buffer

Lucas Kanade have 6 accesses to global memory in the inner most loop and
more than 1250 accesses by each work item to the global memory. Similarly in
case of Background subtraction, we have more than 15 memory accesses per work
item. This posses a huge latency in design as we discussed earlier these accesses are
expensive. This issue can be resolved by using burst transfers (explained in section
3.5.1). In this case we had to use a line buffer big enough to copy data required by
more than a single work item, mainly because of underlying two reasons:

• All of the accesses by each work item are not sequential, but are in window
pattern and for burst we need sequential accesses.

• There is a lot of data reuse among neighbouring work items as the data needed
by the algorithm is in the form of sliding window

Figure 3.18: Line Buffers for Lucas Kanade

Therefore, we used a line buffer that will burst read all the data required by the
work group into the buffer using async_work_group_copy() function. This results,
as shown in Table 3.3, in reduction of execution time by 5 times for Background
subtraction and more than 3 times for Lucas Kanade. The concept of line buffer is
further explained in figure 3.18. Here the “Line Buffer 1” is used for saving a copy
of global data. “Line Buffer 2” is used for calculation reuse and its explained later.

Using Temporary Buffers and Reusing the calculations

After minimizing the issue of global data transfer, next thing to optimize is
loops and arrays. Loops need to be pipelined or unrolled to achieve parallelism
while arrays need to be partitioned to facilitate that parallelism.

Moreover, there are certain computations which are done by each work item
over the same data, especially in the case of sliding windows. As explained above
in section 3.5, these calculations should be reused to increase the design throughput.
Similarly if the value of a certain memory is amended more than once in a single
work item, then it should be stored in temporary buffers until the final value is
determined and then written back.

42

3.6 – Implementations

Table 3.3: Kernel Execution time and Resource Utilization for Design with Line
Buffer

Algorithm Time
(msec)

Resource Utilization

per
frame

BRAM DSP FF LUT

Background
Subtraction

1467.108 22 5 10979 31700

Lucas Kanade 14883.87 122 51 18410 24613

Local buffers (within work groups) and temporary registers (within work items)
have been used for Lucas Kanade while for Background subtraction only temporary
registers are required. The performance increase of about 4 times for Lucas Kanade
while more than 14 times for background subtraction is achieved in this case as
shown in table 3.4.

Table 3.4: Kernel Execution time and Resource Utilization for Design with calcu-
lation reuse

Algorithm Time
(msec)

Resource Utilization

per
frame

BRAM DSP FF LUT

Background
Subtraction

103.81 24 5 9165 15978

Lucas Kanade 3751.2 182 52 51025 100777

Applying piece-wise linear approximation

In implementation of Lucas Kanade algorithm, there was a floating point trigono-
metric computation which was not only very expensive, but also causing a rise in

43

3 – Smart City Application

Initiation Interval (II) of the loop, as it requires more than one clock cycle to fin-
ish. As explain in section 3.5.2, we replaces it to get the better performance of the
design as the image was not the principle output of the algorithm. It provides us
with a performance increase of 18 times as shown in Table 3.5.

Table 3.5: Kernel Execution time and Resource Utilization for Design with piece-
wise linear approximation

Algorithm Time
(msec)

Resource Utilization

per
frame

BRAM DSP FF LUT

Lucas Kanade 207.313 178 175 35683 36072

Final Implementation

The best time that we achieved using Hardware emulation was 103 msec per
frame, hence not sufficient to achieve 25 fps. For this purpose we need to use at
least 3 parallel compute units, which multiplies all the resources by a factor of 3
as shown in Table 3.6. This still uses only about 12% of the resources of a Virtex
7 FPGA, which can thus processes frames from 5 cameras. The results obtained
from AWS EC2 board shows an increase in performance which was expected as
Ultrascale+ is a newer generation FPGA than Virtex 7.

In order to satisfy real-time requirements, we have to use 6 Compute Units
for the core calculations of the Lucas Kanade Algorithm. As we witnessed from
background subtraction as well, the results obtained from AWS EC2 for the Lucas
Kanade algorithm are very comparable to the hardware emulation results. In both
cases performance improved and the amount of available resources increase signif-
icantly on a Virtex Ultrascale+ with respect to the Virtex 7. Hence we were able
to feed the data from 4 cameras in real-time to the EC2 board.

One more thing, the accuracy of the application is a trade off with resources.
In certain conditions, if we want to process the video at 10 Hz instead of 25, we
can reduce the number of compute units and thus can save the resource. In this
way, each FPGA can cater 2.5 times more cameras. This kind of implementation
can be useful in areas with reduced traffic speed.

Summing up all the results discussed above, we achieved our goal of real time
calculation of the portion of the road that is used by traffic and of average vehic-
ular velocity. Moreover, Table 3.6 shows that we have not exceeded our resource

44

3.6 – Implementations

utilization limit, while performing the full processing of the data from one camera
on a relatively old Virtex 7 FPGA. The results of actual Hardware implementation
on the Amazon EC2 cloud platform are shown in Table 3.7.

Table 3.6: Total Resource Utilization for Virtex 7

Algorithm Compute
Units
(CU)

Total Resources Utilized

BRAM DSP FF LUT

Background
Subtraction

3 72 15 27495 47934

Lucas
Kanade

6 1068 1050 214098 216432

Total 9 1140 1065 241593 264366

Available - 2940 3600 866400 433200

%
Utilization

- 38.77% 29.58% 27.88% 61.02%

3.6.4 Performance and energy comparison
The final aspect to consider is what advantage we have achieved in terms of

power and energy consumption (per computation) with respect to GPUs and CPUs.
The power consumption for the FPGAs was estimated using the Xilinx Power
Estimator (XPE) tool while for the GPU it was measured using NVIDIA System
Management Interface (nvidia-smi).

As we can see from Table 3.8 and Table 3.9 the FPGA is much more energy
efficient as compared to both CPU and GPU. Moreover, the computation of Lucas
Kanade is not possible in real time using only a single CPU, as it takes around
6 seconds to process each frame. As we can see both, performance and energy
consumption, are much better than on a CPU and energy consumption is much
better than on a GPU.

45

3 – Smart City Application

Table 3.7: Total Resource Utilization for UltraScale+ (AWS-EC2)

Algorithm Compute
Units
(CU)

Total Resources Utilized

BRAM DSP FF LUT

Background
Subtraction

3 65 15 18723 17859

Lucas
Kanade

6 812 246 176970 168280

Total 13 877 261 195693 186139

Available - 4320 6840 2364480 1182240

%
Utilization

- 20.30% 3.81% 8.27% 15.74%

Table 3.8: Power Consumption per Frame for Background Subtraction

Parameters FPGA GPU CPU

Ultrascale+ Virtex 7

Device Time (msec) 27.80 34.6 28.16 47.68

Device Power (W) 4.55 2.760 26 10

Energy (mJ) 126.49 95.496 732.16 476.8

46

3.6 – Implementations

Table 3.9: Power Consumption per Frame for Lucas Kanade Algorithm

Parameters FPGA GPU CPU

Ultrascale+ Virtex 7

Device Time (msec) 37.31 36.34 42.68 5925.78

Device Power (W) 8.0 8.385 75 10

Energy (mJ) 298.48 304.7 3201 59257.8

47

48

Chapter 4

Cache Architecture and Tuning

The efficiency of any system is determined by the slowest element in that sys-
tem. Currently, the main bottleneck in efficiency of modern systems is memory.
The secondary or even primary memory in modern day systems are very slow as
compared to the processing speed these systems provide. Therefore, the need of a
fast memory accusation system is evident. That is where cache comes into play.
Bell et al. [10] defines cache as: “ A cache memory is a fast buffer memory between
the processor and the primary memory.” The cache is a temporary storage where
the data is stored for a short time and a copy of data is stored in the main memory.

The hardware caches are expensive, so typically they are of smaller size as
compared to primary and secondary memories. A comparison of different types
of hardware memories is shown in figure 4.1. Nevertheless, in computing, caches
have a lot of impact. The data needed for computing applications is mostly near to
the reference. There are two types of data locality. Temporal locality is when the
same data is re-requested in negligible time, and spatial locality, where the other
(requested) data is stored physically close to data that has already been requested.

Two main terminologies w.r.t cache functioning are cache hit and cache miss.
A cache hit means that the cache memory have the data which is required by the
program, while a cache miss occurs when it does not have it. In case of cache
hits, data is provided to the program from cache which is way faster than physical
memory or RAM, or recomputing the same calculation. This implies that cache hits
can improve the performance of a program significantly. Part of the work described
in this chapter has been previously published in "Acceleration by Inline Cache for
Memory-Intensive Algorithms on FPGA via High-Level Synthesis" [44].

Caches have been used for a long time in the domain of general-purpose CPUs.
However, in that case a single cache is used for all the data that the processor
accesses in the main memory (at most separate caches are used for code and data).
This means that access conflicts between different variables (or sections of arrays)
in the source code may limit the cache performance, unless sophisticated multi-way

49

4 – Cache Architecture and Tuning

Auxiliary Memory, Hard Drives, DVD,
CD-ROM, Tape, etc.

Dynamic RAM

Static RAM

Off Chip
Cache

On Chip
Memory

Faster B
ig

ge
r $$$

Magnetic Tap, Optical Disk

Magnetic Disk

Main Memory

Cache

SSD

Figure 4.1: A comparison of hardware memories

or even fully-associative architectures are used. Even in that case, the “hot cache”
phenomenon [21] hampers several common algorithms.

In [44] we specialize caches for HLS in several directions, which advocate the
use of a separate cache for each source array that is mapped to DRAM, to minimize
the conflicts and to enable the efficient use of direct-mapped caches

In this work, we present the design automation support for static or simulation-
based address sequence analysis to identify the best cache architecture for a given
application. In first part of this work, analysis is done by a heuristic algorithm
while later we also designed a tool, PEDAL(Pattern Evinced Determination of Ap-
propriate Layout). Using these techniques, we can accelerate the design of optimal
caches. In this chapter, first we explained the architecture of cache designed in [44]
and later we provide the analysis of different cache layouts and tools to find the
optimal configuration.

4.1 Related Work
Modern CPUs generally include up to three levels of cache in order to reduce

both data access time and energy. As the level increases, both latency and cache size
(hence access power and energy) increase. These caches implement different access,
replacement and coherency strategies to achieve the best average performance for all
kinds of algorithms. Research on improving general-purpose caches is abundant. To
cite just a few, Jouppi in [37] introduced an improvement to direct-mapped caches
using a small fully-associative cache, the so-called victim cache or miss cache. In
[57], Qureshi et al. presented a V-way (variable way) cache to reduce the miss
conflicts existing in traditional C-way (constant way) set-associative caches. The
set-balancing cache [62] and the adaptive hybrid cache [21] were introduced for
similar reasons, targeting unbalanced accesses to main memory. For multi-processor

50

4.1 – Related Work

systems, Matthew et al. [45] designed configurable L1 caches for the MicroBlaze soft
processor implemented on Xilinx FPGAs and achieved up to 41% speedup by using
a 32KiB 4-way cache with LRU replacement. In the same setting, Kalokerinos et
al. [38] presented an integrated network interface and cache controller, significantly
improving hardware utilization.

Latency of memory-intensive applications is particularly significant in FPGAs
due to off-chip memory bandwidth limitations. Many researchers addressed this
area by exploiting the highly configurable on-chip memory architecture. For exam-
ple, Cheng et al. [18] developed a trace analysis method to detect relations among all
memory accesses. Performance was greatly improved by caching independent data
in separate local memories. Adler et al. [1] used BRAMs as statically-managed
scratchpads rather than dynamically-managed caches, and described a manage-
ment system for different levels of local storage. Choi et al. [19] implemented a
multi-ported cache based on the so-called live-value table, aimed at a system ar-
chitecture where both the host processor and multiple accelerators are on the same
chip. In their approach, both the processor and the accelerators access the same
off-chip memory via a single custom multi-port cache, which of course may become
a performance bottleneck. Putnam et al. [56] provided a cache-based solution to
simultaneously increase performance and reduce power consumption, since exter-
nal DRAM accesses require much higher power than on-chip SRAM. In this design
methodology, the CHiMPS HLS tool first compiles the high-level code (written in
C) to an intermediate representation and then the caches are optimized according
to the memory access patterns. Similarly, Winterstein [77] also used the LLVM in-
termediate language to maximize the utilization of BRAMs to accelerate a specific
algorithm (tree reflection).

Our approach is inspired by some of these works, in particular to reduce access
conflicts by using a separate cache, possibly with a different architecture, for each
source code array mapped to external DRAM.

The second part in this work is to determine the optimal cache layout for each
array automatically. Much of the related work in this regard, emphasizes the design
of specialized buffers or caches to move data on and off the chip. There is not much
work on automatically tuning the layout of caches. Either the proposed caches are
not tuneable, or tuning must be done manually, which requires significant effort and
development time. Some work in this regard includes [76, 56, 77]. Putnam et al. [56]
first generated the intermediate representation files using the CHiMPS HLS tool,
whereas Winterstein et al. [77] used LLVM intermediate files to get the memory
access traces. We do not focus on memory access trace collection, but rather on
how to use these traces to optimize the cache architecture. Wingbermuehle et al.
[76] first synthesized the hardware kernels to estimate design resource occupation,
then used the remaining memory resources to copy data on chip.

51

4 – Cache Architecture and Tuning

4.2 Architecture

Figure 4.2: Inline cache

As shown in Figure 4.2, our caches are directly “inlined” in the algorithms to be
accelerated. In this way, the “golden” code that has been functionally verified by SW
emulation does not need to be changed for high-performance implementation. Only
the top-level module interface (which is typically much smaller and simpler than its
often intricate algorithmic code) requires some small changes, as illustrated below.
In the resulting RTL, the caches are directly synthesized as part of the kernel IP.

Since the HLS tools that we currently use for synthesis do not support classes
or templates in OpenCL kernel code, all our examples below are based on the C++
language. However, this is only to ease prototyping our flow. The same mechanism
could be implemented also in OpenCL by slightly modifying the OpenCL HLS
front-end.

As mentioned above, the design has to be modified only slightly in order to
insert the inline caches in the interface of the original kernel. Further changes to
the flow will be needed to analyze the array access patterns and to optimize the
cache architectures. Automation of these new steps is left to future work. In this
paper we perform this task by hand.

As shown in Figure 4.3, some analysis of the external memory access traces is

52

4.2 – Architecture

Figure 4.3: Design flow with caches

necessary to find the best cache parameters to maximize the reuse with an accept-
able area cost (we will describe this in more detail in section 4.3). Note that this
access analysis is needed only for arrays mapped to external (“global” in OpenCL
terminology) memory, and not for the local arrays or scalars. This only requires the
designers to make a few modification to the top-level function interface to replace
the original data types of the global array variables with a template cache data

53

4 – Cache Architecture and Tuning

type.
We propose and describe several kinds of inline caches, e.g., direct-mapped and

set associative, selected based on the memory-trace pattern of the applications to
be optimized. Remember that in our work a separate cache is implemented for
each array mapped to global memory. This means that performance is largely
independent of the global memory addresses at which each array is allocated, and
that there are no conflicts between different arrays.

4.2.1 Direct-Mapped Cache
As its name indicates, each element of each array in the external memory has

a corresponding fixed position in the cache, according to a fixed bit field of the
address. The line bits in the middle of the address determine to which line in
the cache it is mapped, while the word bits define the position within the cache
line. The tag bits are used to check whether a given address is contained in the
corresponding line of the cache (“cache hit”) or not (“cache miss”). In the latter
case, the cache fetches the correct data from external memory and updates the
corresponding cache line and tag.

Each cache line is read with a single AXI bus access, possibly using a burst
(depending on the line and data bus bit widths), and stored into the cache. The
write policy for the caches that we implemented is write-back, i.e., only the cache
is updated initially, while the external memory is updated only when the cache
needs to be flushed, either due to a write miss or due to the completion of the
accelerator execution. As mentioned above, in this work we assume an execution
model similar to that of OpenCL, in which global arrays cannot be read and written
at the same time by the same HW-accelerated function (kernel). This avoids all
kinds of coherency issues for our caches, and typically enables them to be read-only
or write-only. As usual, we keep valid and dirty bits for each cache line, to indicate
if it contains valid data from memory or data that needs to be written back to
memory.

In this research, the direct-mapped cache was designed in C++ by using a
template class. The template arguments, as mentioned above, define the type of
one element of the cache and of the corresponding off-chip memory global array,
the line size and the word size. The constructor initializes the base address of the
corresponding off-chip memory array (typically the value of a pointer argument of
the OpenCL kernel or C++ top-level function) and other variables, like the valid
and dirty bits. In HLS, the constructor is typically executed as part of the reset
sequence of the HW block. A C++ namespace is used to choose among a read-only,
write-only or read-write cache.

In the algorithmic code to be implemented via HLS, the external memory is usu-
ally accessed by using the operator[] or the operator* on a pointer passed from
the interface. Hence, we overloaded the operator[] for the cache type, for uses on

54

4.2 – Architecture

both the left hand side (write) and the right hand side (read) of an assignment1.
This allows us to change only the interface of the function to be synthesized, not
its code, thus dramatically reducing the design time and the likelihood of coding
errors.

The interface to external memory can be defined simply by instantiating the
cache type, with the appropriate template parameters, instead of every source array
that is mapped to off-chip DRAM. The constructor and destructor that we created
for the cache types take care of all the bookkeeping, from initializing the cache as
empty (resetting all valid and dirty bits), to flushing an output cache and printing
the statistics in a simulation context, when the accelerator completes its operation.

Note that since the cache access functions (for reading and writing) are inlined
into the high level kernel code, the synthesized kernel takes care of both execut-
ing the computation using the cached data, and reading/writing data from/to the
main memory in case of misses. As we mentioned above, this somewhat reduces
the achievable performance, but it dramatically simplifies the design flow and is
consistent with OpenCL philosophy, where the work items themselves take care of
moving the data from global to local memory.

In order to achieve the best performance, the data width of the AXI interfaces
that are used to transfer a line to and from external DRAM should have the same
size as a cache line, so that a read or write can be completed in one clock cycle
(plus global memory latency in case of reads, of course). If the line length is larger
than the global memory read size, then burst accesses will automatically be used
by our design. This is one of the key advantages that the designer gets for free by
using our caches.

Algorithm 3 and Algorithm 4 demonstrate how a cache reads or writes an ad-
dress of global memory. The pair of variables request and hit are used as perfor-
mance counters to enable cache parameter tuning also when an FPGA is used as
a rapid prototyping platform, and can be accessed via FPGA-provided debugging
mechanisms (e.g., via JTAG). The valid and dirty arrays have Boolean elements.
The tags array contain unsigned integers of the appropriate length. The array array
is used to store all the lines of data in the cache.

The two algorithms share a similar structure. Lines 1-4 handle cache hits. The
address is split into three pieces, namely tag, line and word, then the value (or
values, for the set-associative case) stored in tags is compared with the tag part
of the address. If it is a hit, the following operation is the read from (or write
to) array, on line 16. In both cases, the actual location of the data within the
line depends on the value of word. If it is not a hit, then a new read from the
external memory is necessary (after writing back the dirty line in case of a write or

1We managed to overload differently the read and write accesses to call a different cache access
function, by exploiting an inner class as an agent [83].

55

4 – Cache Architecture and Tuning

Algorithm 3 Read data from direct-mapped cache
Require: 32-bit addr and Cache with a pointer ptr_mem to external memory
Ensure: data = Cache[addr]

1: tag, line, word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid[line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty[line] then
7: location ← Cache.tags[line], line
8: ptr_mem[location]← Cache.array[line]
9: Cache.dirty[line]← false

10: end if
11: loc ← addr >> LINE_BITS
12: Cache.array[line]← ptr_mem[loc]
13: end if
14: Cache.tags[line]← tag
15: Cache.valid[line]← true
16: return data ← Cache.array[line].slice(word)

read/write cache).
In many algorithms, and in particular in the most massively parallel cases writ-

ten in languages such as OpenCl, the uses of each array argument of a kernel are
either read-only or write-only. Hence, we designed a special cache for these read-
only and write-only memory accesses in order to speed up the synthesis, reduce the
cost, and improve the performance. For instance, a read-only cache does not need
to check if a line is dirty. Algorithm 3 and Algorithm 4 show the get() and set()
functions for this case.

4.2.2 Set-Associative Cache
in some algorithms (e.g., sorting, FFT), data read by successive external memory

accesses are not located at contiguous addresses. In the worst case, accesses with the
same stride as the line size would cause the lowest performance, since all accesses
could become misses. For these applications, using a set-associative cache is the
easiest solution that does not require code changes.

Figure 4.4 shows an example of a 2-way set-associative cache. The data fetched
from main memory can be stored in any cache set. The replace policy that we are
using in our example code is Least Recent Used (LRU), but other algorithms can

56

4.2 – Architecture

Algorithm 4 Write data to direct-mapped cache
Require: 32-bit addr and data and Cache with a pointer ptr_mem to external

memory
Ensure: Cache[addr] = data

1: tag, line, word ← addr
2: request ← request + 1
3: if tag = Cache.tags[line] and Cache.valid[line] then
4: hit ← hit + 1
5: else
6: if Cache.dirty[line] then
7: location ← Cache.tags[line], line
8: ptr_mem[location]← Cache.array[line]
9: end if

10: loc ← addr >> LINE_BITS
11: Cache.array[line]← ptr_mem[loc]
12: end if
13: Cache.tags[line]← tag
14: Cache.valid[line]← true
15: Cache.dirty[line]← true
16: Cache.array[line].slice(word)← data

Figure 4.4: Diagram of a two-way set-associative cache

be implemented as well. In Figure 4.4, the LRU field records the last time when
a cache line has been read or written. In this research, we use as time stamp (i.e.,
LRU value) the request counter, which was also used for statistical purposes in
Algorithm 3 and Algorithm 4.

Designers should carefully choose the number of ways of a set-associative cache

57

4 – Cache Architecture and Tuning

when optimizing the performance, because a large number of ways causes higher
resource utilization. The adaptation of traditional cache simulators to our method-
ology, basically by having a separate cache for each kernel argument, is left to future
work.

Just like in the case of direct mapped caches, also for set-associative caches we
have three variants: read-only, write-only and read-write. In this work we did not
consider fully associative caches due to the high cost of the Content Addressable
Memory.

4.3 Memory Access Patterns
As discussed above, we focus on multi-dimensional array access patterns because

they are commonly used in our target application domain, namely image and video
processing, neural networks, and so on. Moreover, as we mentioned above, we
assume that:

1. These arrays are mapped to external DRAM,

2. The implementation has a dedicated cache for each concurrent process and
for each individual array,

3. When different processes, e.g., OpenCL kernels, access the same array, then
either the application guarantees that concurrent accesses occur in different
parts of the array, or the implementation ensures this (e.g., using ping-pong
buffers).

For these reasons, the discussion below will not consider interference among differ-
ent data structures, nor among different processes.

In this section we consider how an application process accesses a given array
and we analyze the various access patterns that we have observed in the literature.
Some of the most commonly used patterns, which are discussed more at length
below, are:

• sequential (or unit stride) within inner loop iterations,

• sequential within inner loop iterations with overlap among outer loop itera-
tions,

• sequential with non-unit stride,

• window or neighborhood-based,

• random.

58

4.3 – Memory Access Patterns

They are shown in Figure 4.5 and cover about 95% of the applications [35]. For
example, in matrix multiplication one array is accessed in row-major order (i.e.
sequential), while the other one is accessed in column-major order (i.e. with a
stride equal to row length).

Sequential Access

Non-Unit Strided Access

Random Access

Overlapping Access

Window/ Neighbor Access

Figure 4.5: Different types of memory access patterns

In a first part of our research, we created a large number of test cases covering
several variants of these patterns, and for each one we exhaustively searched for
the best cache architecture under various cache parameter choices, analyzing hit
rates and execution times. The results for exhaustive search are colour coded just
for better visualization. The scale of dark green to dark red depicts the increase in
execution time, among all the values of the table.

Note that, as discussed below, the best hit rate does not always result in the best
performance when considering high-level synthesis of hardware. This is because a
complex cache architecture (e.g., multi-way set-associative) may have a negative
impact in terms of clock cycle or throughput, and hence perform worse than a
simple one of comparable size. This means that some of the tenets of traditional
cache architecture explorations for processors (i.e. a higher hit rate is always better)
do not hold in our domain, which requires a new cache exploration methodology.

All results were generated using the Xilinx SDx Design Suite and implemented

59

4 – Cache Architecture and Tuning

on the FPGA included in the Amazon Web Services F1 instances, namely a Xilinx
Virtex Ultrascale+ with about 2.5M logic elements.

4.3.1 Sequential access
Sequential memory access is probably the most commonly used pattern, in which

each element is accessed once, right after the previous one in the array.
Although there is no data reuse, a cache can still improve performance over

direct DRAM access, because it enables burst memory accesses. HLS tools like
Vivado HLS attempt to generate burst accesses when they detect sequential memory
reads or writes, but they are not always able to infer it. The simple line fetching
loop inside the cache implementation, carefully crafted to fit tool requirements
for burst access implementation, would ensure the use of the very efficient burst
memory access mode.

Elements LINE SIZE (Bytes)
(log2n) 2 4 8 16 32 64 128

DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W

1 0.743303

2 0.743389 3.69254 0.742696

3 0.745078 1.48251 3.6911 0.741476 2.46052 0.738231

4 1.47952 1.48102 1.60332 0.743252 1.47944 2.46032 0.739427 1.84779 0.431077

5 1.48282 1.60526 1.60434 1.47686 1.47605 1.59986 0.741606 0.864281 1.84566 0.43364 1.53626 0.279505

6 1.48285 1.47956 2.95343 1.47812 1.60031 1.59924 0.861225 0.86402 0.986129 0.433284 0.554709 1.53757 0.276929 1.3828 0.205245

7 1.48168 1.60344 1.60328 1.47951 1.47756 1.725 0.864541 0.987961 0.983733 0.557074 0.554988 0.676309 0.278205 0.402538 1.3839 0.204098 1.30995 0.167499

8 1.60393 2.95553 1.4798 1.59929 1.59928 0.861645 0.862825 1.10899 0.556974 0.676726 0.676269 0.402156 0.40044 0.522877 0.203555 0.32647 1.31163 0.169552 1.27281

9 2.95627 1.59951 1.72304 0.864027 0.984213 0.984946 0.553618 0.556258 0.801523 0.400667 0.523638 0.522074 0.326986 0.331067 0.453522 0.168656 0.291584 1.27307

10 1.72575 0.984726 1.1081 0.55588 0.554102 0.677642 0.402075 0.400243 0.645931 0.326373 0.44973 0.451552 0.289431 0.289744 0.414557

11 1.10743 0.676023 0.677076 0.399621 0.4004 0.522008 0.327702 0.327626 0.575187 0.29214 0.413754 0.412388

12 0.800743 0.522564 0.522578 0.328639 0.330048 0.449097 0.290624 0.29222 0.536505

Figure 4.6: Execution Time for Sequential Memory accesses

An exhaustive cache layout search has been conducted on a sample code with
an array having sequential memory accesses. The dimension of array used in this
case is 256x144 with a datatype of 8 bit “unsigned char”. The results of exhaustive
search are shown in the table in fig 4.6. Our experimental results confirm that hit
rate and performance of sequential memory accesses uniformly increase with line
size. As can be seen in Figure 4.7a, increasing cache associativity at equal cache
size does not increase hit rate. Hit rate is directly correlated only with line size.

Note also that the best performance for our specific benchmark is achieved for

60

4.3 – Memory Access Patterns

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

M
is

s-
R

at
io

Cache Size (log2N) (Bytes)

DM

2 way

4 way

(a) Layout vs miss rate

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

all DM
2 way 4 way
no cache

(b) Layout vs execution time

Figure 4.7: Pareto-optimal configurations for sequential memory accesses

an intermediate cache size of 512 words (Fig 4.7b). This is somewhat counter-
intuitive and suggests that using the largest cache that fits on the chosen FPGA
chip may be sub-optimal. This is due to the fact that for large associative caches
Vivado HLS increases the Initiation Interval of the innermost loop, due to the cost
of cache lookup.

4.3.2 Overlapping access
As the name suggests, overlapping memory access means that some data used in

one iteration of an outer loop (e.g., one work item in OpenCL), where an inner loop
performs sequential access, are also used in its next iteration, along with some new
data. It is one of the most cache friendly access patterns, because it also provides a
significant amount of data reuse in addition to the already mentioned advantage of
burst transfer. An important factor in this case is the number of elements accessed
in the inner loop after which we have the reuse. In the best case, the cache is large
enough to hold all data accessed by the inner loop until the outer loop restarts, and
hence reuses them. Performance is degraded, however, when cached elements are
prematurely replaced by inner loop iterations that need to access more data than
cache capacity.

As we did in sequential access pattern, an exhaustive search was conducted for
overlapping access pattern as well. The test case have similar array dimension of
256x144 and three consecutive elements are accessed in each iteration of inner-most
loop. In this way we have an overlap of two words between two consecutive loop
iterations. The results are shown in fig. 4.8. Our experimental results confirm that,
like sequential, direct mapped cache having larger line size outperformed others.
We can also see that the results of two way cache are also very close to the optimal
ones in this case, especially with a cache size greater than or equal to 64 words.

61

4 – Cache Architecture and Tuning

Elements LINE SIZE (Bytes)
(log2n) 2 4 8 16 32 64 128

DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W

1 2.42037

2 1.60486 6.14801 1.93996

3 1.60494 3.07584 6.27486 1.60074 4.91757 1.15428

4 3.20161 3.20221 3.56833 1.59942 1.8471 5.04072 0.985059 4.30468 0.762285

5 3.19975 3.44656 3.567 1.97038 1.9718 2.33729 0.985729 1.2314 4.42653 0.677179 3.99586 0.641513

6 3.19872 3.19837 3.69017 1.9708 2.21627 2.33736 1.35508 1.35418 1.72192 0.677905 0.802843 3.99413 0.524067 3.84429 0.472171

7 3.19786 1.96879 1.96811 2.46009 1.35489 1.5985 1.72384 1.04538 0.923417 1.41392 0.524817 0.645845 3.84109 0.451709 3.76789 0.423344

8 1.96918 2.33599 1.35293 1.35249 1.96693 1.04684 1.16843 1.41462 0.892036 0.769858 1.26236 0.449397 0.573957 4.01345 0.41503 3.73169

9 1.35361 1.72131 1.04599 1.16832 1.65971 0.892666 1.01512 1.26247 0.818712 0.696878 1.18834 0.412818 0.535396 3.97763

10 1.04776 1.16835 1.41392 0.894172 1.01496 1.50502 0.820291 0.943709 1.18776 0.781847 0.660812 1.15175

11 0.892563 1.01342 1.25963 0.821875 0.94293 1.43383 0.783893 0.905611 1.1497

12 0.820881 0.94111 1.18742 0.78325 0.904784 1.39742

Figure 4.8: Execution Time for Overlapping Memory accesses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

M
is

s R
at

io

Cache Size (log2N) (Bytes)

All DM

2-Way 4-Way

(a) Layout vs Miss-Rate

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

DM 2 way
4 way no cache
All

(b) Layout vs Execution Time

Figure 4.9: Pareto-Optimal configurations for Overlapping access

4.3.3 Non-unit stride
Some applications access data in patterns which, while regularly spaced, are not

adjacent to each other. If stride length is of one row, then such a pattern can also
be called column linear. If the stride is small, then increasing cache line size results
in higher hit rate, as for sequential access. In case the stride is equal to or larger
than cache line size, then the cache does not help much. For smaller strides, it is
recommended that the product of associativity and number of cache lines be equal
to number of accesses done by the innermost loop.

For strided access, our exhaustive search included a stride of 8, 16 and 64
elements. Three different variants were tried just to verify the relationship between

62

4.3 – Memory Access Patterns

strided access and cache layout. We also conducted experiments among number
of accesses in the innermost loop. We have presented the exhaustive results of
experimentation for stride of 8 elements (fig. 4.10) as other were similar to that,
as can be seen from fig 4.11d.

As we can see in Figure 4.11, although the direct mapped cache performs poorly
(Figure 4.11a & 4.11b) until we have more elements in the cache than stride size,
the execution time (Figure 4.11c) of an N-way associative cache with the same total
size is either higher than or the same as the direct mapped cache. This phenomenon
occurs, as mentioned above, because a more complex architecture leads to a lower
throughput for the innermost (pipelined or unrolled) loop.

Elements LINE SIZE (Bytes)
(log2n) 2 4 8 16 32 64 128

DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W

1 1.64729

2 1.64709 7.35104 1.64605

3 2.0029 7.47547 1.64753 4.9045 1.64691

4 2.9559 3.12281 3.24586 1.47592 1.65588 5.02961 0.863251 3.68158 1.21153

5 2.95168 3.07729 3.20018 1.72473 1.72327 1.97001 0.860102 0.985346 3.1968 0.555804 2.767 0.954431

6 2.95558 2.95397 3.32198 1.72305 1.84738 1.96903 1.10678 1.10786 1.35345 0.553555 0.678209 2.76837 0.400493 2.61474 0.496451

7 2.95547 3.19997 1.72392 1.72115 2.09097 1.10615 1.35367 1.35543 0.800326 0.798538 1.04562 0.399093 0.524073 2.61247 0.326636 2.5395 0.378398

8 1.72572 1.84557 1.96973 1.10963 1.10685 1.47766 0.801476 0.92313 1.04514 0.645888 0.645945 0.893089 0.329395 0.449647 2.6641 0.292047 2.50332

9 1.10672 1.23008 1.35312 0.801336 0.921931 1.16701 0.647547 0.768946 0.89112 0.574723 0.572371 0.819495 0.291047 0.412419 2.62751

10 0.799707 0.921668 1.04474 0.6488 0.770462 1.01622 0.574027 0.697568 0.819875 0.536406 0.537389 0.781904

11 0.648564 0.768239 0.891377 0.575617 0.698174 0.94303 0.538304 0.658227 0.781371

12 0.572375 0.695628 0.81866 0.537578 0.658293 0.904401

Figure 4.10: Execution Time for Stride Memory accesses (Stride of 8 elements)

4.3.4 Window / neighbour
Most image processing algorithms work on a sliding window or neighboring

elements (e.g., a diamond-shaped neighborhood). This means that for each pixel
that is being considered, its surrounding pixels are also required for a computation.
Within each row, access is linear with overlap (as long as the window stride is not
larger than line size). On the other hand, it is also strided among rows. Hence,
since we do not want to flush previous row data, the number of cache lines should
be at least the number of rows.

The results of exhaustive search over an array size of 32x16 is shown in the
figure 4.12. The window of 4x4 was used for experimental purposes. Contradicting

63

4 – Cache Architecture and Tuning

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

M
is

s-
R

at
io

Cache Size (log2N) (Bytes)

DM 2 Way

4 Way All

(a) Layout vs miss rate (stride of 16 el-
ements)

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14

M
is

s R
at

io

Cache Size (log2N) (Bytes)

all DM
2 way 4 way
no cache

(b) Layout vs miss rate (stride of 8 ele-
ments)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

all DM
2 way 4 way
no cache

(c) Layout vs Execution Time (stride of
8 elements)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

stride64
stride16

(d) Execution Time for DM Cache for
different Strides

Figure 4.11: Pareto-Optimal configurations for Stride access

to other access patterns (Fig. 4.13), 4 way cache shows better performance not only
for hit rates, but also in terms of execution times. Still the simple bookkeeping of
direct mapped cache, despite of its bad hit ratio, also make it a good candidate.
One thing to note here is that since the array is small, so direct mapped cache is
performing well. In case of large arrays/real applications, direct mapped caches do
not perform very well in case of window access pattern.

4.3.5 Random
Although this pattern is not very common among our target applications, it

is used by some, such as sorting. Even though in this case we cannot draw any
general conclusions, caches still can help if there is at least some level of locality,
for example because the algorithm was optimized to work well on a CPU to exploit
its cache.

4.4 Cache Tuning using Heuristics
A basic and unguided approach for cache tuning would be to try all the possible

configurations for the cache. In this way we can get the miss rate and cost of each

64

4.4 – Cache Tuning using Heuristics

Elements LINE SIZE (Bytes)
(log2n) 2 4 8 16 32 64 128

DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W DM 2W 4W

1 0.178142

2 0.17411 0.886072 0.169572

3 0.168023 0.300666 0.833524 0.164161 0.673333 0.163028

4 0.303661 0.299676 0.275929 0.163089 0.296365 0.613458 0.156098 0.577696 0.155308

5 0.302595 0.350386 0.198558 0.301309 0.294296 0.145498 0.157814 0.292339 0.424993 0.154111 0.531924 0.395582

6 0.287292 0.294202 0.229934 0.286266 0.3334 0.143529 0.284403 0.290737 0.11697 0.150573 0.290277 0.331671 0.294962 0.33446 0.41534

7 0.091114 0.119055 0.117776 0.07569 0.07501 0.130321 0.06637 0.096921 0.094702 0.065154 0.062685 0.091297 0.034283 0.33356 0.281627 0.196051 0.345189 0.421091

8 0.117596 0.147507 0.077583 0.102886 0.103748 0.068699 0.068799 0.121342 0.063501 0.089578 0.089591 0.33235 0.061278 0.448664 0.034273 0.347744 0.280735 0.196505 0.344519

9 0.147008 0.103692 0.131074 0.067046 0.095772 0.095981 0.062048 0.063248 0.118496 0.333519 0.088618 0.087635 0.345285 0.059763 0.466586 0.032237 0.345875 0.277826

Figure 4.12: Execution Time for Window Memory accesses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

M
is

s-
R

at
io

Cache Size (log2N) (Bytes)

DM
2 way
4 way

(a) Layout vs Miss-Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

All DM

2-Way 4-Way

(b) Layout vs Execution Time

Figure 4.13: Pareto-Optimal configurations for 4x4 Window access

configuration in terms of resources and energy. With all this data we can choose the
best possible configuration for our application. The biggest problem with this issue
is time. The exhaustive search will take a lot of time as there could be many possible
configurations with different line sizes, number of lines and assosiativity. Therefore,
there should be a heuristic that should reduce these configurations among only the
most optimal ones.

4.4.1 Heuristics in Literature
Many heuristics are available in the literature for tuning different parameters

of cache. Here we present a heuristic, proposed by Gordon-Ross et al. in her book
chapter [31] as well as many publications. In their heuristic, the three parameter
they tuned are cache line size, cache size , assosiativity and way prediction. First

65

4 – Cache Architecture and Tuning

they did experiments to find out the order of impact by each parameter on efficiency
of cache. In this way they prioritize the one with high impact.

The heuristic they developed based on the importance of parameters is:

1. with a 2 Kbyte, direct-mapped cache with a 16 byte line size. Increase the
cache size to 4 Kbytes. If the increase in cache size causes a decrease in
energy consumption, increase the cache size to 8 Kbytes. Choose the cache
size with the best energy consumption.

2. For the best cache size determined in step 1, increase the line size from 16
bytes to 32 bytes. If the increase in line size causes a decrease in energy
consumption, increase the line size to 64 bytes. Choose the line size with the
best energy consumption.

3. For the best cache size determined in step 1 and the best line size determined
in step 2, increase the associativity to 2 ways. If the increase in associativity
causes a decrease in energy consumption, increase the associativity to 4 ways.
Choose the associativity with the best energy consumption.

4. If step (3) determined the best associativity to be greater than 1, determine if
enabling way prediction results in energy savings.

Their heuristic search on average, 5.8 configurations to find the most optimal
cache layout. They also claimed that this heuristic find the most optimal cache
configuration in all the cases.

In our case, as we discussed above, synthesizing a large cache with Vivado
HLS is sometimes not useful. Moreover this phenomena can also be seen from the
exhaustive search of different patterns shown above. Therefore, working with our
cache, we swap the first two steps in order to make it more useful.

In our implementation of the heuristic, algorithm starts with a 8 byte line size as
shown in figure 4.14. Initial line size of 8 bytes is chosen as this is the minimum size
suggested by the tool to infer burst transfer. After that algorithm increase it and
compare the performance with last configuration. We can keep on doing that until
there is a α% reduction in kernel execution time. The value of α can be defined by
the user. In our case we used α = 10. Once we do not get a performance increase
(PI) of α%, we looked for the number of lines and finally for the assosiativity. The
same rule is applied for these two factors as well. The results of the heuristics are
explained in section 4.4.2.

4.4.2 Experimental Results
In order to evaluate the effectiveness of the heuristic with our cache, we applied

the heuristic [31] to all the patterns described in section 4.3. The results of the

66

4.4 – Cache Tuning using Heuristics

Initial Configuration Performance

Increase line size by a factor of 2

Decrease line size by a factor of 2 and
increase number of lines by a factor of 2

Decrease number of lines by a factor of 2
and increase associativity by a factor of 2

Decrease associativity by a factor of 2

Final Configuration

PI > α

No

Yes

PI > α

No

Yes

PI > α

No

Yes

PI = Performance Increase
α = Threshold

Figure 4.14: Heuristic for cache layout

heuristics were compared with the Pareto-optimal points of the exhaustive search
for each of the patterns and are shown in fig. 4.15.

67

4 – Cache Architecture and Tuning

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

Pertro-Optimal
Heuristic
Final Selection

(a) Sequential access

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

Pertro-Optimal
Heuristic
Final Selection

(b) Stride access

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14

E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Cache Size (log2N) (Bytes)

Pertro-Optimal
Heuristic
Final Selection

(c) Overlap access

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10
E

xe
cu

tio
n

Ti
m

e
(m

se
c)

Cache Size (log2N) (Bytes)

Pertro-Optimal
Heuristic
Final Selection

(d) Window access

Figure 4.15: Results for applying heuristics to Different access patterns

Sequential access

In cases where array access pattern is sequential, results shown by heuristic
algorithm are very impressive as shown in fig. 4.15a. The heuristic algorithm was
able to find the most suitable layout in 7 configurations instead of around 140
configurations of the cache layout we explored in exhaustive search. Other than
that, the main positive aspect about this algorithm is that it was able to reach the
most appropriate or recommended layout in this case. One thing to note here is
that, this heuristic would have totally failed if we had started our exploration for
the line size of less than 8 words. This was another reason we started our heuristic
from this point.

Overlap access

As discussed above, overlapping access pattern is not only similar to sequential
access pattern, but also more cache friendly. They also show a linear performance
increase with increase in line size of the cache.

The results of heuristic (as shown in fig 4.15c) when applied to overlap access
pattern are also impressive and are able to find an optimal cache layout in 7 config-
urations. In this case, the results of heuristic algorithm are even more stable than
sequential access, as even if we start from a line size lower than 8 bytes, heuristic
will still be able to find a decent implementation.

68

4.5 – PEDAL

Stride access

In designs, where access pattern from the global memory is strided, heuristic is
effective in some cases while fails in the other. For example, in case of stride of 8
elements, we can see that (fig. 4.15b) the heuristic is able to find a decent layout
in 8 configurations. This is true for all the strides less than or equal to 8 bytes.

The problem arises if the stride size is greater than 8 bytes, than we will not
have a decrease in execution time until the line size of the cache is greater than
the stride (fig. 4.11d). Therefore, this heuristic will not be able to find a beneficial
cache configuration for the design. This problem can be resolved by changing the
initial point of reference to a greater line size according to the size of strided access,
but it is not trivial for the heuristic to determine and require manual modification.
Therefore, we can say that, in case of strided access, the success of heuristic is
subject to manual intervention.

Window or Neighbour access

As we have witnessed from the results of stride access pattern, if there is no im-
provement for some cache configurations, the heuristic algorithm cease to function.
This is the reason why the heuristic failed for window access pattern. The heuris-
tic algorithm looked for 4 configurations, but since there was not a considerable
decrease in execution time for the kernel, the cache is not configured optimally.

Therefore, we can say that heuristic algorithm is easy to develop but cannot
guarantee decent results in every case.

4.5 PEDAL
As discussed above, if the cache architecture is not choosen properly, then a

good performance to cost ratio cannot be achieved. Moreover, finding a decent
layout using heuristic algorithms is not trivial mainly for the two reasons:

1. They do not guarantee a decent configuration every time

2. They require the results of a few hardware emulations or Implementations
which are time consuming

In this regard, we present a technique called ‘PEDAL’ (Pattern Evinced Deter-
mination of Appropriate Layout) to customize data caches. It provides the designer
with a Pareto-optimal cache architecture, using a simulation-based array access
pattern analysis. We focus mostly on array address analysis, because they are the
most common large data structures used in the kind of applications targeted by
this work. Since these applications feature static addressing patterns and limited

69

4 – Cache Architecture and Tuning

runtime decision making, both simulation and polyhedral analysis techniques can
be used. Here we focus on the former and leave the latter to future work.

Figure 4.16 shows the design flow. First of all, an annotated simulation collects
the trace of all array accesses. Then we use machine learning algorithms to analyze
and classify the access patterns and size and number of accesses per work item for
each array, to finally suggest the optimal layout for its dedicated cache.

C/C++ Code Configure Cache

Evaluate

HLS

Hit Rate

Array Access
Data

Machine
Learning

Algorithm

Cache Layout

PEDAL

Figure 4.16: Design flow of proposed method (PEDAL)

PEDAL saves significant design effort and speeds up considerably memory op-
timization. It can be applied to any out-of-the-box or partially optimized C++ or
OpenCL code, and to any embedded cache architecture. It can run in fully auto-
mated mode or provide the designer with Pareto-optimal options to choose from,
and does not require any RTL design knowledge.

4.5.1 Algorithm
As described in fig 4.17, the first step by PEDAL is to extract the data access

pattern for each global array automatically and then based on trained AI algo-
rithm, it detects the pattern of data accessed by that array. For this purpose the
source code of the kernel is annotated using partools [40] to get the access pattern,
whenever a read or write operation is performed on the array. The indices of the

70

4.5 – PEDAL

array accessed are dumped into a file which is then later used as a test set to detect
the pattern.

Main Design File

Dump array access of
each global array

Apply Random Forest

Recognized Pattern via
Voting

Cache Layout

Type of Access
(R, W, R/W)

Number of Access per
WI

(Inner most loop)
… Multiple Sets

Figure 4.17: PEDAL Algorithm

Partools [40] is a tool set for C code, which looks for the dependencies in the
code and not only give the performance estimation, but also advice for its parallel
implementation. In this work, we used the C annotator build under partools for
annotating C code. The annotator is build using OCaml which is based on Common
Intermediate Language (CIL). After that we defined our own library to get the array
traces from annotated C code.

The array access patterns are fed to trained machine learning algorithms. In
our case the best results are achieved using Random forest algorithm which is
explained in section 4.5.2. We used Weka software for implementing Random Forest
algorithm. Weka is a collection of machine learning algorithms for data mining
tasks. It contains tools for data preparation, classification, regression, clustering,
association rules mining, and visualization. Weka is open source software issued
under the GNU General Public License [79].

Here one important aspect of voting is implemented. The test is performed on
at least 5 different samples extracted from the array access. This is necessary for
two reasons:

• to make it error prone

71

4 – Cache Architecture and Tuning

• sometimes access pattern is not same for different loop iterations

so the samples are extracted from different access and then voted to get the best
option.

The second piece of information required from the access pattern is the number
of access in one iteration of the loop over work-items. This is also dumped in a file
which is later used for the correct cache configuration. These files also contain the
information about the types of accesses, whether only read, only write or mixture
of the two. This information is needed to define a more optimal cache.

Based on the access pattern of array detected by Weka, number of accesses in
one loop and type of accesses, PEDAL list a couple of Pareto optimal options and
recommend the best one to be adopted in this scenario. Recommendations are
based on the experimentation done in the section 4.3. Thus this script will provide
you the best cache configuration for all the global arrays in the code automatically.
The basic selection algorithm works as follows:

1. If the order of access is sequential, with no reuse, then the cache should have
max line size. Only one line is enough and there is no advantage of having
any assosiativity. The number of access in the inner most loop does not have
much of an effect in this regard

2. If the order of access is sequential but it also reuses the previous data, i.e.
overlap but no stride, then the line size should be maximum again but should
have at least two lines.

3. If we have strided access without any reuse of data, then two factors are
important, stride size and number of accesses in inner most loop. Here the
Pareto optimal points have the number of access as product of assositivity
and number of lines. Line size is also dependent on stride size.

4. If we have an overlapped strided access than the same rule as previous apply,
just with the addition of line size being maximum possible this time.

5. For window access, it is essentially a combination of 1 and 3 (2 and 3 in
case of sliding window). Here all the access in one row are sequential with or
without overlap, while accesses between columns are strided. Here assositivity
is necessary to avoid any conflict of mapping between different rows.

The suitable cache configurations are applied to the kernel file and the perfor-
mance is evaluated.

72

4.6 – Test case Implementations

4.5.2 Pattern Recognition using Random Forest
As stated in the section above, the basis of PEDAL is recognition of array

patterns. Pattern recognition using Machine learning algorithms is not a new field.
It has diverse applications from speech recognition to image recognition. Also there
are a lot of applications in the field of Electronic Design Automation (EDA) for
pattern recognition.

Random Forest is a flexible, easy to use machine learning algorithm that pro-
duces, even without hyper-parameter tuning, a great result most of the time. It is
also one of the most used algorithms, because its simplicity and the fact that it can
be used for both classification and regression tasks.

Random Forest was proposed by Breiman [13] and defined as:

A random forest is a classifier consisting of a collection of tree-structured
classifiers h(x, k), k = 1,... where the k are independent identically
distributed random vectors and each tree casts a unit vote for the most
popular class at input x.

Random Forest is a supervised learning algorithm. It builds a “forest” of Deci-
sion Trees. These trees are trained using “bagging” method. The bagging method
is a combination of learning models which will increases the accuracy of overall
result. Even better, random forests, during node splitting, looks for the best fea-
ture in a subset of features instead for the most important feature. To sum it up,
Random forest algorithm is a collection of decision trees which are merged together
for a more accurate and stable result.

Since it a combination of decision trees, hyperparameters for random forest are
same as a decision tree or a bagging classifier. So, if we use random forest algorithm,
we do not need to integrate a decision tree with a bagging classifier. Random Forest
also have the capability to deal with Regression tasks.

In our application, we used a training set of 400000 samples (in groups of 200
samples per set). These sets are from different patterns explained in section 4.3.
The samples train the network to detect the incoming test case among them. More-
over, all the samples in the training sets are normalized to 1024. It makes the sets
independent of size of the array under consideration, as we are interested in the
pattern of accesses.

4.6 Test case Implementations
To verify the results of PEDAL, we implemented that on 5 applications of

Rosetta benchmark suite [85], one of our previous work on Lucas Kanade [8]. The
five applications from Rosetta benchmark are Face Detection, 3D-Rendering, Op-
tical Flow, Spam Filter and Digit recognition. They are not only computationally
expensive but also are hungry for memory.

73

4 – Cache Architecture and Tuning

4.6.1 Face Detection
The face detection application used in Rosetta benchmark is adopted from [67].

The algorithm detects faces in a given picture. In their implementation, the input
image size is 320x240 and is in gray scale. The output from the algorithm is the
position and size of human faces detected in the image. Targeted throughput in
this case is 30 frames per second so that it can be used with live video stream.
To optimize the data transfer, in their implementation, they saved all the images
on chip before processing. Similarly, all the results are written back to memory in
form of bursts after finishing the computational part of the algorithm.

For the main computational file, the input is images with a bitwidth of 8 bit
per pixel. There are four 32 bit integer outputs, namely x coordinate, y coordinate,
width of face and height of face. All of the access in this case are sequential.

Following the PEDAL suggestion to use direct mapped caches, we used a direct
mapped read cache with 32 lines of 512 bits each and a direct mapped write cache
with 8 lines of 1024 bits each. Table 4.1 shows approximately the same execution
time as the manually optimized implementation and more than 3.5x improvement
over the unoptimized implementation of the code. Resource utilization of the cache
is higher for a couple of reasons (that also effects the other results in this section):

• BRAM usage increases because we use wide lines to fully exploit DRAM
interface bitwidth, and wide arrays are implemented by Vivado HLS using
a large number of BRAMs [22]. In the future, we will explore the trade-
off between BRAM usage and speed of loading a line from DRAM (which
currently requires one clock cycle on the FPGA).

• LUT and FF usage increases due to cache logic, mostly the tag array which
is read in parallel and hence must be fully partitioned into a register file.

Table 4.1: Results for Face Detection algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 83.7 42 79 49322 54222

Manually optimized 21.5 92 72 48217 54206

Cache 23.2 131 82 112857 157126

74

4.6 – Test case Implementations

4.6.2 Digit Recognition
This benchmark from Rosetta suite work for the recognition of handwritten

digits. It works on the principle of K-nearestneighbor (KNN) algorithm. In their
implementation they used a subset of MNIST database [41]. They used 18000
training samples and 2000 test samples for their implementation. All the test and
training cases are evenly split among all digits (0 to 9). For optimization purposes,
they downsampled the image to 14x14 and represented each pixel using one bit. In
this way they saved the whole image in 196 bit unsigned integer. Moreover, they
also use burst read and write mode in order to store the information on chip.

For top level function, two input arguments are test and training set which are
packed into 256 bit words and the output is the 8-bit integer as the decision of the
algorithm. Both reading and writing in the algorithm is sequential.

In this case we also used direct mapped caches for input and output parameters.
The best cache brings as many input data as possible on chip (i.e. 16384 training
samples out of 20000), by using 8192 cache lines for the training data. The results
in Table 4.2 show a performance improvement of two orders of magnitude with
respect to the unoptimised version, but 6x worse than the manual implementation.

Table 4.2: Results for Digit Recognition algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 8669.6 2 2 22570 28100

Manually optimized 11.1 207 0 39971 33853

Cache (8162 lines) 65.2 284 0 152759 171889

4.6.3 Spam Filter
Spam filter benchmark in Rosetta suite is an implementation adopted from [60].

It uses stochastic gradient descent (SGD) to train a logistic regression (LR) model
for spam email classification. The data set they used for training and testing of
algorithm have 5000 emails, from which they used 4500 for training and 500 for
testing. The representation of each email in the dataset is done as 1024 dimensional
vector. These vectors have relative word frequencies in the format of 16 bit fixed
point numbers. They used 5 epoches for training their network.

The manual optimization in terms of memory in this benchmark is again packing
up the inputs and outputs in larger bitwidth words. The other optimization they

75

4 – Cache Architecture and Tuning

applied is that they copied all the required weights on chip using burst transfer.
Similarly outputs were also writen back in form of bursts.

We used caches with 16 lines of 512 bits each for all three arrays. The results
shown in Table 4.3 achieve 27x better performance than the unoptimized version,
but 4x worse than the manual one.

Table 4.3: Results for Spam Filtering algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 2920.5 4 7 2280 3858

Manually optimized 25.1 90 224 7207 17434

Cache 105.5 65 224 57366 68470

4.6.4 3D-Rendering
This benchmark in Rosetta is taken from [55]. As the name suggests, the

algorithm of 3D-Rendering take 3D triangular mesh models as input and provide
2D images as output. So basically, it takes vertices of 3D triangles and projects
them on 2D images. The colors to the pixels are assigned according to altitude of
triangle. In the Rosetta implementation of algorithm, the image size is 256x256
and all the pixels are 8-bit integers. The dataset used by Rosetta have 3192 triangle
coordinates and they set a target of 30 fps throughput.

The kernel file have two arguments, an input which have the coordinates of
triangles and the other is output. In Rosetta implementation, to optimize the data
transfer, they packed the 8-bit input and output into 32 bits each.

We used two direct mapped caches with 2 lines of 512 bits for input data and 1
line of 512 bits for output data. In this case, we improved both the execution time 4x
with respect to the unoptimized version and also outperformed by 25% the manually
optimized implementation, as shown in Table 4.4. The same considerations as above
apply for resource usage.

4.6.5 Optical Flow I
The Optical flow benchmark is an implementation of Lucas-Kanade Algorithm

[42]. As explained in Chapter 3, this algorithm is used to calculate the displacement
of the moving objects between consecutive image frames. This algorithm have a lot

76

4.6 – Test case Implementations

Table 4.4: Results for 3D rendering algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 13.0 36 11 16865 21857

Manually optimized 4.4 36 11 6763 7916

Cache 3.3 51 11 18574 29551

of applications in different image/video processing tools. In Rosetta implementa-
tion, they are using MPI Sintel dataset [16] with an image resolution of 436x1024.
The target throughput is 30 frames per second.

The kernel file have two arguments. The input arguments contain the image
frames and the output have the calculated velocity in x and y direction. To optimize
the memory transfers, they have packed the pixels of five frames together in large
bitwidth datatype, i.e. first 8 bit pixel of all 5 frames are packed to form a datawidth
of 40bits. They used a datawidth of 64 bits and rest of the bits are initialized to
zero. Similarly, for output, two floats have packed into 64 bit wide datatype.

Our implementation uses two caches with 4 lines of 512 bits, both for input and
output. As shown in Table 4.5, in this case we achieved 2x better performance than
the unoptimized version, but 2x worse than the manual design.

Table 4.5: Results for Optical Flow algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 163.9 54 473 35473 64481

Manually optimized 42.0 55 484 38094 63483

Cache 86.6 98 473 45405 77271

4.6.6 Optical Flow II
The second implementation of Lucas Kanade Algorithm is adopted from the

work done in Chapter 3 of this thesis for smart city application. Since in our
implementation [8], we did not do any pre-conditioning of data, so the access pattern

77

4 – Cache Architecture and Tuning

is not sequential in our case. Therefore we used this case to verify the functionality
of PEDAL in case of non sequential accesses.

This implementation takes two images as input, in addition to some camera and
road coefficients. The accesses for images is window based while for coefficients is
sequential. These characteristics were used for designing of the cache parameters.
We implemented the code with no memory optimization using cache. Since the ac-
cess pattern of the first frame is window-based, following PEDAL recommendation
we used a 2-way associative cache with 16 lines per way. We used a 512-bit word
(to access 15 8-bit elements from each row of the window). The second input frame
uses strided access, so we implemented a direct mapped cache with 32 lines for it.
For the sequential output we used a cache with 2 lines of 512 bits.

Note that in this case the cache overhead in terms of BRAM is smaller than in
the optimized one, because a smaller associative cache contains all the data needed
by the window access pattern, albeit with a lower performance.

Table 4.6: Results for Lucas Kanade algorithm

Implementation Execution Time Resource Utilization

(msec) BRAM DSP LUT FF

Unoptimized 44210.0 31 56 37080 21367

Optimized 14883.87 122 51 24613 18410

Cache 17274.8 63 21 49773 67614

78

Chapter 5

Conclusions and Future Work

5.1 Conclusions
This thesis discusses several issues that appear during the optimization of mem-

ory intensive applications on FPGAs using high level synthesis. The activities are
carried out as a part of doctoral studies in electronic design automation. To be
more specific, this dissertation is a combination of two activities, one performing
the optimizations manually on a specific application, while the other automates this
aspect and selects the best layout for custom data caches to be used on FPGAs.
The choice of FPGAs (over GPUs) is because of their high performance capabilities
while consuming just a fraction of power. The only nuisance in the use of FPGAs is
programming them in VHDL or Verilog, which now can be countered by using high
level synthesis. High Level Synthesis provides an excellent platform for designers
to exploit the capabilities of FPGAs without the long design times entailed by the
use of Hardware Description Languages.

The first task is regarding the manual optimization of two memory intensive
image processing algorithms embedded in a real life application. The application
is proposed and developed in the context of smart city and provides the velocity
and density of the vehicles on road in real time from the video stream captured by
a camera. This information can be used by different stake holders such as public
transportation, taxis and city planners. Real-time benefits of this data include less
time spent on roads and can help to reduce pollution where in long run this data can
be used for better planning of city and road infrastructure. The main optimization
required in this application were related to the availability of data for algorithms
from DRAM. Use of appropriate line buffers for each array mapped to external
DRAM were used according to their data access pattern. The final implementation
shows that computational optimizations do not achieve the required performance
without carefully designing a custom memory architecture.

The second part of the research is regarding the use of custom data caches

79

5 – Conclusions and Future Work

for memory intensive algorithms. In this work, we focus on automating applica-
tion profiling in order to select the best cache architecture for each DRAM array.
We developed an algorithm to optimize inline caches that are synthesized from a
C++ model onto an FPGA and have the opportunity to be tuned according to the
memory access patterns. Caches are good substitutes for manually designed special-
ized on-chip buffers, but their architecture and parameters are usually application-
specific. In particular, associative caches should be used very carefully, only when
the access patterns require them, because even though they improve hit rate, they
have a negative impact on the Initiation Interval or the clock cycle, i.e. on the
throughput. Hence, caches must be architected and sized based on address trace
analysis to get good performance benefits with reasonable resource costs. Firstly,
we tuned the caches using heuristics algorithms. The heuristics can provide good
estimation in certain cases while totally failing in others. Therefore our experi-
mental results show that use of heuristics require manual intervention as automatic
heuristic tuning cannot guarantee a good result every time. Thus, we developed a
tool to find the most appropriate layout for the cache. As name suggests, PEDAL
(Pattern Evinced Determination of Appropriate Layout), is based on memory ac-
cess pattern identification for each DRAM-mapped application array. The use of
PEDAL on benchmark applications shows that we can obtain performance results
close to manual optimizations without virtually any designer effort.

Therefore, the bottom line is that memory intensive tasks can be performed
optimally on FPGAs provided that the memory access are optimized manually
or automatically. The computational capabilities and energy efficiency of FPGAs
make them an excellent choice for computational as well as memory intensive tasks.

5.2 Future Work
As a future work, we would like to add more functionality to the PEDAL tool.

On one hand, we will work to implement an automated verification process for the
suggested layout, instead of verifying it manually. This feature will also help us
to add all the verified test patterns into the training set for continuous learning.
Secondly, we would also like to improve the use of the cache, by using information
extracted by PEDAL. Since the tool knows the access pattern, and these patterns
are fixed for the typical applications considered in this thesis, it can also help the
cache in its internal bookkeeping activities. For example, it may be possible to
optimize some accesses by knowing that they are always "hits", e.g. in the case of
windows or unit strides, and hence increase the cache efficiency.

80

Nomenclature

Acronyms / Abbreviations

ALU Arithmetic and Logic Unit

CLB Configurable Logic Block

CPU Central Processing Unit

DSE Design Space Exploration

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High-Level Synthesis

HPC High Performance Computing

OpenCL Open Computing Language

SoC System On Chip

81

Bibliography

[1] Michael Adler et al. “Leap scratchpads: automatic memory and cache man-
agement for reconfigurable logic”. In: Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays. ACM. 2011,
pp. 25–28.

[2] M Tolga Akçura and S Burcu Avci. “How to make global cities: Informa-
tion communication technologies and macro-level variables”. In: Technological
Forecasting and Social Change 89 (2014), pp. 68–79.

[3] Sam Allwinkle and Peter Cruickshank. “Creating smart-er cities: An overview”.
In: Journal of urban technology 18.2 (2011), pp. 1–16.

[4] J Anderson et al. Getting Smart about Smart Cities: understanding the market
opportunity in the cities of tomorrow. 2012.

[5] Leo G Anthopoulos and Ioannis A Tsoukalas. “The implementation model
of a Digital City. The case study of the Digital City of Trikala, Greece: e-
Trikala”. In: Journal of e-Government 2.2 (2006), pp. 91–109.

[6] Leonidas G Anthopoulos. “Understanding the smart city domain: A litera-
ture review”. In: Transforming city governments for successful smart cities.
Springer, 2015, pp. 9–21.

[7] Leonidas Anthopoulos and Panos Fitsilis. “Using Classification and Roadmap-
ping techniques for Smart City viability’s realization.” In: Electronic Journal
of e-Government 11.2 (2013).

[8] Arslan Arif et al. “Performance and energy-efficient implementation of a
smart city application on FPGAs”. In: Journal of Real-Time Image Process-
ing (2018), pp. 1–15.

[9] Blaise Barney et al. “Introduction to parallel computing”. In: Lawrence Liv-
ermore National Laboratory 6.13 (2010), p. 10.

[10] James Bell, David Casasent, and C Gordon Bell. “An investigation of alterna-
tive cache organizations”. In: IEEE Transactions on Computers 100.4 (1974),
pp. 346–351.

82

BIBLIOGRAPHY

[11] Martin Blažević, Karla Brkić, and Tomislav Hrkać. “Towards Reversible De-
Identification in Video Sequences Using 3D Avatars and Steganography”. In:
arXiv preprint arXiv:1510.04861 (2015).

[12] Jean-Yves Bouguet. “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm”. In: Intel Corporation 5.1-10
(2001), p. 4.

[13] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
[14] Andre R Brodtkorb et al. “State-of-the-art in heterogeneous computing”. In:

Scientific Programming 18.1 (2010), pp. 1–33.
[15] Norbert Buch, Sergio A Velastin, and James Orwell. “A review of computer

vision techniques for the analysis of urban traffic”. In: IEEE Transactions on
Intelligent Transportation Systems 12.3 (2011), pp. 920–939.

[16] Daniel J Butler et al. “A naturalistic open source movie for optical flow
evaluation”. In: European Conference on Computer Vision. Springer. 2012,
pp. 611–625.

[17] Andrew Tzer-Yeu Chen et al. “Trusting the Computer in Computer Vision: A
Privacy-Affirming Framework”. In: Computer Vision and Pattern Recognition
Workshops (CVPRW), 2017 IEEE Conference on. IEEE. 2017, pp. 1360–
1367.

[18] Shaoyi Cheng et al. “Exploiting memory-level parallelism in reconfigurable ac-
celerators”. In: Field-Programmable Custom Computing Machines (FCCM),
2012 IEEE 20th Annual International Symposium on. IEEE. 2012, pp. 157–
160.

[19] Jongsok Choi et al. “Impact of cache architecture and interface on perfor-
mance and area of FPGA-based processor/parallel-accelerator systems”. In:
Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th
Annual International Symposium on. IEEE. 2012, pp. 17–24.

[20] Robert T Collins et al. “A system for video surveillance and monitoring”. In:
VSAM final report (2000), pp. 1–68.

[21] Jason Cong et al. “An energy-efficient adaptive hybrid cache”. In: Proceedings
of the 17th IEEE/ACM international symposium on Low-power electronics
and design. IEEE Press. 2011, pp. 67–72.

[22] Jason Cong et al. “Bandwidth optimization through on-chip memory re-
structuring for hls”. In: Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE. IEEE. 2017, pp. 1–6.

[23] Philippe Coussy et al. “An introduction to high-level synthesis”. In: IEEE
Design & Test of Computers 26.4 (2009), pp. 8–17.

83

BIBLIOGRAPHY

[24] Sokemi Rene Emmanuel Datondji et al. “A survey of vision-based traffic mon-
itoring of road intersections”. In: IEEE transactions on intelligent transporta-
tion systems 17.10 (2016), pp. 2681–2698.

[25] Christian De Schryver et al. “An energy efficient FPGA accelerator for monte
carlo option pricing with the heston model”. In: Reconfigurable Computing
and FPGAs (ReConFig), 2011 International Conference on. IEEE. 2011,
pp. 468–474.

[26] Yves Durand et al. “Euroserver: Energy efficient node for european micro-
servers”. In: Digital System Design (DSD), 2014 17th Euromicro Conference
on. IEEE. 2014, pp. 206–213.

[27] ECOSCALE Project. http://www.ecoscale.eu/project-description.
html. (Accessed on 01/11/2018).

[28] Juan Isaac Engel, Juan Martin, and Raquel Barco. “A Low-Complexity Vision-
Based System for Real-Time Traffic Monitoring”. In: IEEE Transactions on
Intelligent Transportation Systems 18.5 (2017), pp. 1279–1288.

[29] Michael Fingeroff. High-level synthesis: blue book. Xlibris Corporation, 2010.
[30] Benedict Gaster et al. Heterogeneous Computing with OpenCL: Revised OpenCL

1. Newnes, 2012.
[31] Ann Gordon-Ross et al. “Tuning caches to applications for low-energy embed-

ded systems”. In: Ultra Low-Power Electronics and Design. Springer, 2004,
pp. 103–122.

[32] Mark Horowitz. “1.1 Computing’s energy problem (and what we can do about
it)”. In: 2014 IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC). IEEE. 2014, pp. 10–14. doi: 10.1109/ISSCC.
2014.6757323. url: http://dx.doi.org/10.1109/ISSCC.2014.6757323.

[33] Mark Horowitz. “1.1 computing’s energy problem (and what we can do about
it)”. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014 IEEE International. IEEE. 2014, pp. 10–14.

[34] Lee Howes and Aaftab Munshi. The OpenCL Specification. 2015.
[35] Byunghyun Jang et al. “Exploiting memory access patterns to improve mem-

ory performance in data-parallel architectures”. In: IEEE Transactions on
Parallel and Distributed Systems 22.1 (2011), pp. 105–118.

[36] Jani Jokinen, Tero Latvala, and José L Martinez Lastra. “Integrating smart
city services using Arrowhead framework”. In: Industrial Electronics Society,
IECON 2016-42nd Annual Conference of the IEEE. IEEE. 2016, pp. 5568–
5573.

84

http://www.ecoscale.eu/project-description.html
http://www.ecoscale.eu/project-description.html
https://doi.org/10.1109/ISSCC.2014.6757323
https://doi.org/10.1109/ISSCC.2014.6757323
http://dx.doi.org/10.1109/ISSCC.2014.6757323

BIBLIOGRAPHY

[37] Norman P Jouppi. “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers”. In: Computer
Architecture, 1990. Proceedings., 17th Annual International Symposium on.
IEEE. 1990, pp. 364–373.

[38] George Kalokerinos et al. “FPGA implementation of a configurable cache/scratchpad
memory with virtualized user-level RDMA capability”. In: Systems, Architec-
tures, Modeling, and Simulation, 2009. SAMOS’09. International Symposium
on. IEEE. 2009, pp. 149–156.

[39] Nicos Komninos. Intelligent cities: innovation, knowledge systems, and digital
spaces. Taylor & Francis, 2002.

[40] Mihai T Lazarescu et al. “Energy-aware parallelization flow and toolset for
C code”. In: Proceedings of the 17th International Workshop on Software and
Compilers for Embedded Systems. ACM. 2014, pp. 79–88.

[41] Yann LeCun. “The MNIST database of handwritten digits”. In: http://yann.
lecun. com/exdb/mnist/ (1998).

[42] Bruce D Lucas, Takeo Kanade, et al. “An iterative image registration tech-
nique with an application to stereo vision”. In: (1981).

[43] Liang Ma, Fahad Bin Muslim, and Luciano Lavagno. “High Performance
and Low Power Monte Carlo Methods to Option Pricing Models via High
Level Design and Synthesis”. In: European Modelling Symposium EMS2016
(EMS2016). Pisa, Italy, Nov. 2016.

[44] Liang Ma et al. “Acceleration by Inline Cache for Memory-Intensive Al-
gorithms on FPGA via High-Level Synthesis”. In: IEEE Access 5 (2017),
pp. 18953–18974.

[45] Eric Matthews, Nicholas C. Doyle, and Lesley Shannon. “Design Space Ex-
ploration of L1 Data Caches for FPGA-Based Multiprocessor Systems”. In:
Proceedings of the 2015 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. FPGA ’15. Monterey, California, USA: ACM,
2015, pp. 156–159. isbn: 978-1-4503-3315-3. doi: 10.1145/2684746.2689083.
url: http://doi.acm.org/10.1145/2684746.2689083.

[46] Iakovos Mavroidis et al. “ECOSCALE: Reconfigurable computing and run-
time system for future exascale systems”. In: 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE. 2016, pp. 696–701.

[47] Brendan Tran Morris and Mohan Manubhai Trivedi. “A survey of vision-
based trajectory learning and analysis for surveillance”. In: IEEE transactions
on circuits and systems for video technology 18.8 (2008), pp. 1114–1127.

[48] Brendan Tran Morris and Mohan Manubhai Trivedi. “Understanding vehic-
ular traffic behavior from video: a survey of unsupervised approaches”. In:
Journal of Electronic Imaging 22.4 (2013), pp. 041113–041113.

85

https://doi.org/10.1145/2684746.2689083
http://doi.acm.org/10.1145/2684746.2689083

BIBLIOGRAPHY

[49] F. B. Muslim et al. “Efficient FPGA Implementation of OpenCL High-Performance
Computing Applications via High-Level Synthesis”. In: IEEE Access 5 (2017),
pp. 2747–2762. issn: 2169-3536. doi: 10.1109/ACCESS.2017.2671881.

[50] Fahad Bin Muslim et al. “Efficient FPGA Implementation of OpenCL High-
Performance Computing Applications via High-Level Synthesis”. In: IEEE
Access 5 (2017), pp. 2747–2762.

[51] Elaine M Newton, Latanya Sweeney, and Bradley Malin. “Preserving privacy
by de-identifying face images”. In: IEEE transactions on Knowledge and Data
Engineering 17.2 (2005), pp. 232–243.

[52] Optical Flow Design Example. https://www.altera.com/support/support-
resources/design-examples/design-software/opencl/optical-flow.
html. (Accessed on 01/10/2018).

[53] Jian Ouyang et al. “SDA: Software-defined accelerator for large-scale DNN
systems”. In: Hot Chips 26 Symposium (HCS), 2014 IEEE. IEEE. 2014, pp. 1–
23.

[54] Kalin Ovtcharov et al. “Accelerating deep convolutional neural networks using
specialized hardware”. In: Microsoft Research Whitepaper 2.11 (2015).

[55] Juan Pineda. “A parallel algorithm for polygon rasterization”. In: ACM SIG-
GRAPH Computer Graphics. Vol. 22. 4. ACM. 1988, pp. 17–20.

[56] Andrew Putnam et al. “Performance and power of cache-based reconfigurable
computing”. In: ACM SIGARCH Computer Architecture News. Vol. 37. 3.
ACM. 2009, pp. 395–405.

[57] Moinuddin K Qureshi, David Thompson, and Yale N Patt. “The V-Way
cache: demand-based associativity via global replacement”. In: Computer Ar-
chitecture, 2005. ISCA’05. Proceedings. 32nd International Symposium on.
IEEE. 2005, pp. 544–555.

[58] Hatem A Rashwan et al. “Understanding trust in privacy-aware video surveil-
lance systems”. In: International Journal of Information Security 15.3 (2016),
pp. 225–234.

[59] Nisarg Raval et al. “Markit: Privacy markers for protecting visual secrets”.
In: Proceedings of the 2014 ACM International Joint Conference on Pervasive
and Ubiquitous Computing: Adjunct Publication. ACM. 2014, pp. 1289–1295.

[60] Christian Robert. Machine learning, a probabilistic perspective. 2014.
[61] Franziska Roesner et al. “World-driven access control for continuous sens-

ing”. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security. ACM. 2014, pp. 1169–1181.

86

https://doi.org/10.1109/ACCESS.2017.2671881
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html

BIBLIOGRAPHY

[62] Dyer Rolán, Basilio B Fraguela, and Ramón Doallo. “Adaptive line placement
with the set balancing cache”. In: Microarchitecture, 2009. MICRO-42. 42nd
Annual IEEE/ACM International Symposium on. IEEE. 2009, pp. 529–540.

[63] Scene 1.0 - Background subtraction and object tracking with TUIO. http:
//scene.sourceforge.net/. (Accessed on 12/24/2018).

[64] Scene 1.0 - Background subtraction and object tracking with TUIO. http:
//scene.sourceforge.net/. (Accessed on 01/11/2018).

[65] Jeremy Schiff et al. “Respectful cameras: Detecting visual markers in real-time
to address privacy concerns”. In: Protecting Privacy in Video Surveillance.
Springer, 2009, pp. 65–89.

[66] SDAccel Environment Optimization Guide. English. Version v2016.3. Xilinx
Inc. 93 pp.

[67] Nitish Kumar Srivastava et al. “Accelerating Face Detection on Programmable
SoC Using C-Based Synthesis”. In: Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM. 2017,
pp. 195–200.

[68] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel pro-
gramming standard for heterogeneous computing systems”. In: Computing in
science & engineering 12.1-3 (2010), pp. 66–73. doi: 10.1109/MCSE.2010.69.
url: http://dx.doi.org/10.1109/MCSE.2010.69.

[69] Prasanna Sundararajan. “High performance computing using FPGAs”. In:
Xilinx White Paper: FPGAs (2010), pp. 1–15.

[70] Bin Tian et al. “Hierarchical and networked vehicle surveillance in ITS: a sur-
vey”. In: IEEE transactions on intelligent transportation systems 16.2 (2015),
pp. 557–580.

[71] Haluk Topcuoglu, Salim Hariri, and Min-you Wu. “Performance-effective and
low-complexity task scheduling for heterogeneous computing”. In: IEEE trans-
actions on parallel and distributed systems 13.3 (2002), pp. 260–274.

[72] Berthold Ulmer. “VITA-an autonomous road vehicle (ARV) for collision avoid-
ance in traffic”. In: Intelligent Vehicles’ 92 Symposium., Proceedings of the.
IEEE. 1992, pp. 36–41.

[73] Kunfeng Wang et al. “A multi-view learning approach to foreground detec-
tion for traffic surveillance applications”. In: IEEE Transactions on Vehicular
Technology 65.6 (2016), pp. 4144–4158.

[74] Rick Weber et al. “Comparing hardware accelerators in scientific applications:
A case study”. In: IEEE Transactions on Parallel and Distributed Systems
22.1 (2011), pp. 58–68.

87

http://scene.sourceforge.net/
http://scene.sourceforge.net/
http://scene.sourceforge.net/
http://scene.sourceforge.net/
https://doi.org/10.1109/MCSE.2010.69
http://dx.doi.org/10.1109/MCSE.2010.69

BIBLIOGRAPHY

[75] M Williams. “The prometheus programme”. In: Towards Safer Road Transport-
Engineering Solutions, IEE Colloquium on. IET. 1992, pp. 4–1.

[76] Joseph G Wingbermuehle, Ron K Cytron, and Roger D Chamberlain. “Su-
peroptimized memory subsystems for streaming applications”. In: Proceedings
of the 2015 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM. 2015, pp. 126–135.

[77] Felix Winterstein et al. “Custom-sized caches in application-specific memory
hierarchies”. In: Field Programmable Technology (FPT), 2015 International
Conference on. IEEE. 2015, pp. 144–151.

[78] Felix Winterstein et al. “MATCHUP: memory abstractions for heap manip-
ulating programs”. In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM. 2015, pp. 136–145.

[79] Ian H Witten et al. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2016.

[80] Ding Xie, Jimmei Lai, and Jiarong Tong. “A high utilization rate routing
algorithm for modern FPGA”. In: Solid-State and Integrated-Circuit Tech-
nology, 2008. ICSICT 2008. 9th International Conference on. IEEE. 2008,
pp. 2333–2336.

[81] Xilinx. SDAccel Development Environment User Guide. English. Version v2015.1.
Xilinx. 95 pp.

[82] Alper Yilmaz, Omar Javed, and Mubarak Shah. “Object tracking: A survey”.
In: Acm computing surveys (CSUR) 38.4 (2006), p. 13.

[83] Yu. Overload the Brackets Operator to Perform Complex Operations. Nov.
2014. url: https://argcv.com/articles/3228.c.

[84] Junping Zhang et al. “Data-driven intelligent transportation systems: A sur-
vey”. In: IEEE Transactions on Intelligent Transportation Systems 12.4 (2011),
pp. 1624–1639.

[85] Yuan Zhou et al. “Rosetta: A Realistic High-Level Synthesis Benchmark Suite
for Software-Programmable FPGAs”. In: Int’l Symp. on Field-Programmable
Gate Arrays (FPGA) (Feb. 2018).

88

https://argcv.com/articles/3228.c

This Ph.D. thesis has been typeset
by means of the TEX-system facil-
ities. The typesetting engine was
pdfLATEX. The document class was
toptesi, by Claudio Beccari, with
option tipotesi=scudo. This class
is available in every up-to-date and
complete TEX-system installation.

