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Summary

Hardware accelerators are a fundamental part of modern high performance com-
puting (HPC) systems due to their performance capabilities. The two most com-
monly used accelerators are GPUs and FPGAs. Despite the easier programmability
and better memory performance of GPUs, generally FPGAs perform equally well
for computationally challenging applications while dramatically reducing the energy
consumption. Furthermore, with the availability of high level synthesis (HLS), the
use of FPGAs has become easier. This makes them an excellent candidate for
modern HPC systems. This dissertation describes my research work done in the
field of electronic design automation with the major focus on optimizing memory
intensive applications modeled using high level language for FPGAs. This work
can be split into two parts, one dealing with manual memory optimization while
other advocates the use of automated algorithms to select and optimize the best
application-specific cache layout.

The first part covers the manual optimization of a realistic smart city appli-
cation. The application implements two image processing algorithms in OpenCL
language which computes velocity and density of vehicles on urban streets in real
time. Several different implementations of these memory hungry algorithms are
considered. The results show that using suitable optimizations and HLS optimiza-
tion directives, FPGAs can produce results with performance similar to a GPU
with an order of magnitude less energy consumption.

The second part of the dissertation starts by observing that custom data caches
implemented on FPGAs are only useful if their layout is in accordance to their
data access pattern. In this work, we present a tool, PEDAL (Pattern Evinced
Determination of Appropriate Layout), that can automatically tune the custom
data caches based on analyzing address traces. PEDAL uses artificial intelligence
algorithms to detect the pattern of each array and then design the optimal cache for
that pattern. The comparison of the results of PEDAL with the exhaustive search
of cache configurations and cache designed through a state-of-the-art algorithm
from the literature proves that it can produce better configurations in less time.
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Chapter 1

Introduction

In the modern day world, the level of automation in the industry is constantly
reaching new horizons. Both industry and the society at large are increasingly ex-
ploiting machine learning (ML), artificial intelligence (AI), Internet of Things (IoT)
and Big Data applications. This in turn will make high performance computing
the core of almost every industry. In order to yield this level of productivity, mod-
ern electronic devices are not only enhanced to perform multitasking, but are also
required to do it in real time. Moore’s law is reaching its end, mostly due to eco-
nomic reasons, because only a few companies can afford to pay the exponentially
increasing mask costs, and even increasing per-transistor costs. Thus the only ap-
proach to keep improving performance to the level required by the above mentioned
application, with a reasonable energy cost, is to move some of the software load to
dedicated heterogeneous architectures, where the heaviest parts are accelerated in
hardware.

The main purpose to employ heterogeneous systems is to obtain the required
performance for computationally expensive applications while achieving better en-
ergy efficiency [32], [46]. These systems generally consists of a multicore CPU
along with various kinds of (typically programmable) accelerators. General pur-
pose graphical processing units (GPGPUs) are traditionally used as accelerators as
they provide the highest performance, albeit with a staggering energy-per-operation
cost. The main issue with GPU based heterogeneous systems is that they are ineffi-
cient in terms of power consumption. In contrast to that, field programmable gate
arrays (FPGAs) provide considerable performance while only consuming a fraction
of energy as compared to GPUs. Hence, FPGAs are a strong competitor of GPUs
for modern high performance computing (HPC) systems.

Although the computational capabilities of FPGA-based heterogeneous systems
are very high, these systems require optimal data handling techniques in order
to be effective. The main challenge in optimizing these systems is handling the
memory bottleneck. This occurs when the data processing speed of the system
is greater than the speed at which memory is able to provide (or, less frequently,
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1 — Introduction

store) data. This is due to the fact that traditional CPU caches, which gives the
programmer the illusion of a huge, yet very fast flat memory space, are not available
for the portion of the computation that is offloaded to the FPGA. Thus the designer
himself is responsible to optimize the HW memory architecture. The time required
to fetch data and make it available for processing should be (by Amdahl’s law)
comparable with the processing frequency to obtain optimal results. The amount
of data modern applications are dealing with ranges from hundreds of megabytes
to terabytes. Therefore, this data needs to be stored in larger memories (DRAM or
even Flash) which are slower to access. These memory accesses are costly not only in
terms of time but also in terms of power and energy consumption. Moreover, as we
discussed before, any delay in availability of data, also increases the computational
time.

Now we conclude from the above discussion that memory is the major bottle-
neck for HPC systems. There is no point in optimizing the computations without
optimizing the data as we cannot achieve high computational throughput if we do
not have the data to process. In this work we focus on a HW design methodology
which starts from a C/C++ specification, where the memory access model reflects
modern CPU architecture, and hence it is not typically suited for HW implemen-
tation. Hence the first thing that we need to optimize is memory accesses. The
work presented in this dissertation considers memory hungry and computationally
expensive applications as test cases and our results validate our hypothesis that
without optimizing the data transfer for on chip design, state-of-the-art high-level
synthesis tools fail to work. We have provided manual and automated solutions to
improve the availability of data for applications.

1.1 FPGA based heterogeneous computing sys-
tem

As discussed above, high performance computing requires sophisticated hard-
ware and software resources. The performance of a processor can no longer be
increased, since the early 2000’s, by simply increasing its clock frequency, due to
power reasons[9]. Moreover, traditional processor parallelism, in the form of super-
scalarity or hyper-threading, has also long reached its limits. Finally, multi-core
processors are very energy-ineffficient due to the fetch-decode-execute cycle and the
very general-purpose datapath and memory architecture that they offer. Therefore,
it is a general consensus that heterogeneous systems are needed to provide the re-
quired performance in this regard.

Modern computing devices should have the capability to process large amounts
of data. Extraction and categorization of vast amounts of data requires expensive
and sophisticated software. For example, in the field of image processing, process-
ing the live feed for even a single camera requires a dedicated central processing

2



1.2 — Problem Statement

unit (CPU) [28]. This need of more performance requires computer accelerators.
The most commonly used computer accelerator in this domain is the Graphical
Processing Unit (GPU). GPUs provide higher memory bandwidth, higher float-
ing point throughput and a more favorable architecture for data parallelism than
processors. Due to these properties, they are used in modern high performance
computing (HPC) systems as accelerators [74]. However, the main drawback of
HPC systems based on GPU accelerators is that they consume large amount of
power [25].

To overcome the power inefficiency of GPU-based HPC systems, modern field
programmable gate arrays (FPGAs) can be used. FPGA devices require less oper-
ating power and energy per operation while providing reasonable processing speed
as compared to GPUs [54]. When comparing them with multi-core CPUs, espe-
cially with regards to data center applications, it was observed that the performance
gap keeps widening between the two. In summary, FPGAs are known to be more
energy efficient than both CPUs and GPUs [69]. Moreover, FPGAs are well known
for their reconfigurability as well as their energy efficiency. Acknowledging these
capabilities, Microsoft, Baidu and Amazon now also use FPGAs as accelerators
rather than GPUs in their data centers [53].

FPGAs are, however, complex to program. Hardware description languages
(HDL) such as Verilog or VHDL are commonly used for this task. Most of the
modern applications are developed in high level languages and it requires a lot of
effort on the designer’s end to define corresponding modules. Moreover, designer
cannot explore many micro-architectural options using these low level languages
due to long design and verification cycles.

To counter the issue of programming in low level HDL languages, designers now
focus on high-level synthesis (HLS). HLS promises to generate register transfer
logic (RTL) directly from algorithms written in high level languages e.g C, C++,
OpenCL or SystemC. Moreover, HLS tools provide a number of directives to fa-
cilitate the designer in exploring different micro architectural solutions. Thus, we
can say that HLS provides the capability to program FPGAs through the use of
high-level languages, consequently reducing the design time debugging and analysis
[50, 23].

1.2 Problem Statement

The discussion above concluded that off chip memory accesses are expensive.
They are not only expensive in terms of execution time, but also in terms of power
and energy consumption. Moreover, if memory accesses are not optimized, then
even other operations cannot be scheduled for efficient execution.

For example, in the simple case of vector addition, the only operation is a sum
of two numbers. But if the data is stored in external DRAM, then it needs to

3
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fetch the required elements from both the arrays, then it will perform addition and
after that it will write the result back to the global memory. This means that in
order to pipeline its computation with an Initiation Interval of 1 (i.e. starting a
new elementwise addition every clock cycle) the global memory interface needs to
support three operations (2 reads and 1 write) per clock cycle. This is very hard
to sustain, even with modern DDR3 and DDR4 interfaces, for more than one such
vector addition kernel on an FPGA (and a modern FPGA can support thousands
of such computations in parallel). This quickly leads to saturation of the memory
interface, and requires more efficient access techniques, that will be explored in this
thesis. Thus the overall performance of the code degrades. If, hypothetically, we
could make the whole data available on chip, then the operations in the work-items
can be executed more efficiently. However, data can be copied on chip beforehand
only for small applications, while for memory intensive applications involving image
processing or machine learning, this option is not always feasible. Therefore we need
to have a compromise between the two options to find the most optimal point.

In this thesis, the main focus is to improve the performance of a code which
is memory bound, i.e. which requires a large amount of data transfer between
external DRAM and silicon chip. The optimization can be application specific i.e.
manually annotating the source code for fetching the memory in an appropriate
way, or can be automatic, i.e. by using a tool to optimally implement this fetching
for the designer.

In the first portion of the thesis, we want to optimize a real time application
which is memory bound manually. The application implements two image process-
ing algorithms on live video streaming of high definition (HD) quality (1280x720)
at a rate of 25 frames per second. The main goal is to achieve real time video pro-
cessing which requires a data transfer of more than 1.5 gigabytes (GB) per frame
in unoptimized form.

The second part of the research considers the use of some plug and play application-
specific caches to make the life easier for designer. The main aim of this work is
to find an automated way to optimally choose the parameters for these caches, so
that they can be used for any application without virtually any designer’s effort.

1.3 Contributions

In this thesis, the focus of the research is to optimize memory bound applications
for FPGAs. As discussed in section 1.2, the work is divided into two major sec-
tions. One section deals with the manual optimization of highly memory bounded
application while the other section proposes a tool to find optimal cache layouts.
All of the work is done for FPGA applications written in high level languages, such
as C/C++ or OpenCL.

In the first portion of the thesis, a realistic smart city application is optimized

4



1.4 — Organization of the thesis

for real time processing. The application processes incoming live video streams
from the cameras to get velocity and density information for traffic on roads. It
uses two image processing algorithms, Optical Flow and Background Subtraction
that are computationally as well as memory expensive. The challenge of their real
time implementation is met using GPUs and FPGAs, which were not feasible with-
out accelerators. A very large design space was explored for multi architectural
solutions and then the best solution, with respect to the end-user constraints (a
company providing smart city infrastructure) was selected. All of the optimization
done in this regard are explained in Chapter 3. These optimizations, although
are application specific, can also be utilized with other memory hungry applica-
tions. The comparison of both accelerators shows that FPGAs are more suitable
in terms of power and energy consumption than both CPUs and GPUs. High-level
synthesis (HLS) with manual code optimizations is used to get the desired FPGA
hardware and performance from GPU-optimized OpenCL code. Finally, the whole
application is verified using Amazon Web Service (AWS) machines with FPGAs
for functional verification and performance analysis. The final proposed design was
able to process live video feed from roads for detection of number of vehicles and
their speed.

The second part of the dissertation focuses on finding the application specific
custom data cache configuration automatically. It discusses the architecture of an
inline cache from the literature that reduces the programmer effort to optimize
global memory (DRAM) accesses for any out-of-the-box code. This cache archi-
tecture previously needed manual intervention to find the most appropriate layout
based on the application. This work first applies one of the best known general-
purpose heuristic cache sizing algorithms that was developed in the literature to
find the optimal cache configuration. The results of this algorithm are compared
with exhaustive search to adapt the cache to different memory access patterns. The
results show that this heuristics can result in very sub-optimal configurations in all
cases. Therefore, this work presents a tool to find the optimal cache configuration
for each array mapped to DRAM. Using PEDAL, the configuration to obtain the
best cache configuration for a specific application is automatically selected based
on data access pattern. The results are verified using different applications and
benchmarks. The cache architecture, layouts and data access patterns are dis-
cussed in detail in Chapter 4. It also discusses the tuning heuristic and algorithms
and compares the performance of both of them.

1.4 Organization of the thesis

This thesis presents a collection of the work done in the field of electronic design
automation (EDA) for FPGAs using high-level synthesis (HLS) with an emphasis
on designs with efficient off-chip memory accesses. The work is divided into two
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major portions and their organization is as under:

o Chapter 2 discusses Heterogeneous Systems and their architectures. It also
explains their advantages and disadvantages. Moreover it also provides some
introduction about high level synthesis (HLS) and the OpenCL programming
platform.

o Chapter 3 discusses a video processing application which was co-designed in
cooperation with Acciona, a Spanish company providing smart city solutions,
in the context of an H2020 European project, and which was optimized by me
for FPGA implementation. This chapter discusses in detail two commonly
used video processing algorithms, their implementation and results generated
by them to help the traffic flow. This chapter also includes the optimization
carried out in order to achieve the required performance of 25 frames per
second.

o Chapter 4 explains the architecture for custom inline data caches designed
to be synthesized for FPGAs. It also discusses an automated algorithm that
tunes the cache to obtain the best layout for the application under consid-
eration. The effectiveness of the algorithm is tested against heuristics for
different applications and benchmarks.

o Chapter 5 concludes the work. It also states the possible work which can be
done in this field in future.



Chapter 2

Heterogeneous Systems

High-Performance Computing and data-intensive applications, such as Machine
Learning, Artificial Intelligence, and big data processing, are becoming more and
more common both in large data centers and on embedded platforms. Thus, while
the processing speed of, e.g., Neural Network training or database sorting, remains a
primary concern, energy consumption is quickly gaining importance. Homogeneous
hardware architectures, e.g., multi-core general purpose Xeon processors, no longer
meet the heaviest computation requirements especially from the point of view of
energy efficiency [33].

A heterogeneous system refers to a system comprising of several different pro-
cessors and cores. Such multi-core architectures offer high performance along with
better power efficiency by not only using additional processor cores but by using
specialized hardware called accelerators to handle certain computationally challeng-
ing portions of the applications. Thus, heterogeneous systems that cluster together
different types of processors and hardware, such as CPU-GPU or CPU-FPGA, are
able to achieve the best performance/cost/energy trade-offs for computationally-
intensive parallel algorithms [71].

2.1 Heterogeneous System Architecture

As discussed before, a single core processor cannot provide the required perfor-
mance for modern applications. Multicore processors have shown some promise in
this field. As the name suggest, multicore processors are a number of processors
packed in a single chip. They are able to show task and data level parallelism
using parallel programming libraries [74], i.e OpenMP or MPI. These multicore
processors still cannot beat the advantage we can obtain from system with hard-
ware accelerator support, neither in terms of performance, nor in terms of energy
efficiency.

Simple Xeon processor based systems are not as efficient as currently available
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systems with accelerator support. A key point to keep in mind here is that these
accelerators do not operate in stand alone fashion but they rely on traditional
processors to manage them. CPUs are responsible to initiate the accelerators and
upload and download the data as required by them [14], [30]. This make the hetero-
geneous systems more powerful as they take benefit from computationally advanced
accelerators while the scheduling is done by multi-purpose central processing unit.

The accelerators used in such heterogeneous systems may be GPUs, FPGAs or
a combination of both. In the terminology of heterogeneous system architecture,
the multi-core processor is typically called a host while the hardware platforms
used to accelerate certain portions of the applications are called devices. A typical
heterogeneous system is shown in Fig. 2.1. The various important components of
such a heterogeneous system are described here briefly.

Processor
g |
Memory
I PCI Express I
Kernel Infrastructure IP
) <
% Compute PE PE E I I
Unit 23

PE PE Kernel Memories

Figure 2.1: A Typical Heterogeneous System Architecture

2.1.1 Graphics Processing Units

As the name suggest, graphical processing units were originally designed to han-
dle the advancement in field of graphics. The interest for GPUs or GPGPUs (gen-
eral purpose graphical processing units) in the field of high performance computing
developed after 2007, when NVIDIA introduced parallel programming framework,
CUDA. CUDA (Compute Unified Device Architecture) is a parallel programming
framework, designed for programming GPU based heterogeneous systems.

GPUs mainly consists of several processing elements which execute the kernel
in parallel manner. These streaming processors are generally multicore and have
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2.1 — Heterogeneous System Architecture

several components including ALUs (Arithmetic Logic Units), load/store units,
caches etc. They execute the kernel code in SIMD (Single Instruction Multiple
Data) fashion, which means that streaming microprocessors implement the same
set of instruction to different data. In GPUs more emphasis is on data operations
instead of data control and caching and hence their caches are smaller as compared
to CPUs. GPUs also have their own device memory of few gigabytes [14].

GPUs do not operate in stand alone fashion. They always act as co-processor
with CPUs, where CPU acts as a host and GPU acts as a device. Host is responsible
for enviroment setting and data management for the device and they are connected
through PCI-Express bus as shown in Fig. 2.1.

2.1.2 Field Programmable Gate Arrays

The primary use of FPGAs was to implement discrete logic. Currently, rec-
ognizing their abilities and potential, their application is expanded to a variety
of fields ranging from embedded systems to high performance computing systems
[14]. Modern FPGAs provide a great alternative to GPUs in the field of high per-
formance computing. The main issue with the GPUs is their energy inefficiency [25]
which makes the case for FPGAs even strong. FPGAs can provide same amount
of computational abilities while consuming a fraction of power. The application
specific architecture of FPGAs reduces the need of multiplexing which provides
great energy saving. Similarly hardwired control logic eliminates a lot of control
instructions and is also a major reason for energy efficiency of FPGAs.

Unlike GPUs the architecture of an FPGA is not fixed, but can be customized
according to the requirements of the application. A typical FPGA consists of
logic blocks, memory blocks and DSP slices each surrounded by programmable
interconnects as shown in Fig. 2.2. The interconnects among different logic and
memory blocks of FPGAs are programmable, which provide a lot of flexibility to
its architecture. Similarly, the I/O blocks are also not fixed and can be programmed
according to the application.

The flexible FPGA architecture where provide a lot of opportunities to the
designer on one end, it also posses some challenges for designers to optimally con-
figure the architecture. Therefore, designers need to have good knowledge of the
hardware and corresponding configurations in order to obtain good results. This
problem is however resolved by the use of HLS (section 2.2) and languages like
OpenCL (section 2.3).

2.1.3 ECOSCALE

Many HPC centers are operating around the globe. Some of them are imple-
mented using CPUs only while others have accelerator support in them as well.
Previously the trend was to use GPUs in data centers but currently acknowledging
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Figure 2.2: FPGA Architecture

the capabilities of FPGA, some of the major data centers in world like Microsoft,
Amazon, Baidu are also using FPGAs rather than GPUs [53].

There are certain HPC servers that target to provide an energy-efficient ar-
chitecture by sharing numerous reconfigurable accelerators. In order to provide
a scalable approach, the architecture should be tailored to the needs of the HPC
applications as well to the characteristics of the hardware platform. ECOSCALE
(Energy-efficient heterogeneous COmputing at exaSCALE) is a project under the
H2020 European research framework. The main goal of this project is to provide
a hybrid MPI+OpenCL programming environment, a hierarchical architecture, a
runtime system and middleware, and a shared distributed reconfigurable FPGA
based acceleration [27].

ECOSCALE offers a hierarchical heterogeneous architecture with the purpose
of achieving exascale performance in an energy-efficient manner. It proposes to
adopt two key architectural features in order to achieve this goal: UNIMEM (Uni-
fied Memory) and UNILOGIC (Unified Logic). UNIMEM was first prpoosed by
the EUROSERVER project [26] and provides efficient uniform access, including
low-overhead ultra-scalable cache coherency, within each partition of a shared Par-

titioned Global Address Space (PGAS). UNILOGIC, which is first being proposed
10
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Figure 2.3: Hierarchical partitioning (tasks, memory, communication) of an HPC
application in ECOSCALE platform [27]

by ECOSCALE, extends UNIMEM to offer shared partitioned re-configurable re-
sources on FPGAs. The proposed HPC design flow, supported by implementa-
tion tools and a run-time software layer, partitions the HPC application design
into several nodes. These nodes communicate through a hierarchical communi-
cation infrastructure as shown in Figure 2.3. Each Worker node (basically, an
HPC board) includes processing units, programmable logic, and memory. Within
a PGAS domain (several Worker nodes), this architecture offers shared partitioned
re-configurable resources and a shared partitioned global address space which can
be accessed through regular load and store instructions by both the processors and
the programmable logic. A key goal of this architecture is to be transparently
programmable with a high-level language like OpenCL.

ECOSCALE targets to provide an energy-efficient architecture by sharing nu-
merous reconfigurable accelerators. In order to provide a scalable approach, the
ECOSCALE architecture should be tailored to the needs of the HPC applications
as well to the characteristics of the hardware platform.

11
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2.2 High Level Synthesis

The main hindrance in exploiting the potential of FPGAs was the tedious job of
coding them in hardware description languages. The use of FPGAs is now very con-
venient thanks to high level synthesis (HLS). Generation of quality register transfer
level (RTL) from high level specifications is a great achievement in electronic design
automation. Previously, HLS designs were considered inefficient, but after the re-
cent development in designing tools and availability of different synthesis directives,
it is gaining the interest of designers. It not only reduces the designer’s efforts but
also provides fast design cycles by minimizing the manual effort.

Designing a suitable hardware requires a number of steps to be followed in
specific order. Most of the hardware design projects start from an executable
model of high level language. This model is generally developed to verify the
behaviour of the task to be performed. This model is tuned and tested at different
stages to verify the correct functionality of the model. Once tested and verified,
then this model goes under a number of steps before it takes form of an actual
hardware implementation. The final architecture is then described in the form
RTL, generally written in VHDL or Verilog. There are certain drawbacks of this
process, including long design and verification cycles and manual nature of the
process. High level synthesis tools can automate this whole process into an error
free path from abstraction to RTL generation.

Some of the major advantages provided by high level synthesis are:

o Automates the whole process from abstract level design to RTL generation
o Accelerated design times

o Provides directives to explore the whole design space just by small modifica-
tions

o Debugging the algorithm is much easier and less time consuming
o Allows high level of portability between different platforms

o In most of the cases designers do not need to worry about detail architectures,
i.e. clocks, design hierarchy, processes etc.

e Modules once synthesized can be reused more effectively

The reduction in design efforts allows the designer to freely focus on their main
design functionality and care less about implementation details. These details are
automatically tuned by the tool according to the design specifications and hard-
ware selected. Another major advantage as stated above is the portability among
different platforms. This also means that designer can switch between the hardware
to choose the best according to his needs.

12
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2.2.1 High-level synthesis based Design Space Exploration

Modern FPGAs, such as the Stratix from Altera and the Virtex, UltraScale
families from Xilinx, offer to the designer millions of Configurable Logic Blocks
(CLBs) and Flip-Flops, megabytes of on-chip the Block RAM (BRAMs), hun-
dreds of multiply-and-accumulate units (DSPs), and many other dedicated hard-
ware blocks, including ARM Cortex processors [80]. Moreover, very recent design
flows from both Altera/Intel and Xilinx promise software-like development for appli-
cations that are entirely written in a high-level language, like C, C++ or OpenCL,
and are then compiled and synthesized for heterogeneous CPU-FPGA platforms.
In particular, parallel languages that were originally developed to program GPUs,
can now be used to program heterogeneous platforms such as PCs with FPGA
boards, or Zynq platforms which include a multi-core CPU and a large FPGA [66].

However, the expected performance is typically not achieved by simply recompil-
ing, via High-Level Synthesis for an FPGA target, an algorithm that was originally
written for execution on a CPU or GPU. This is because the CPU or GPU architec-
tures are fixed, hence most compiler decisions are local and relatively simple, such
as intra-basic block scheduling or peephole optimizations. However, in an FPGA
the architecture is adapted to the application, rather than the application to the ar-
chitecture. While this can achieve much better optimization levels, it also implies
that many more high-level decisions must be made during synthesis. HLS tools are
able to automatically implement these decisions, but even their latest generations
need to be directed to do so by a human or by a (very time-consuming) Design
Space Exploration tool.

While the optimizations performed by a CPU or GPU compiler are considered
excellent when they speed up execution by a factor of 2, the following HLS tech-
niques can dramatically optimize the execution time of algorithms on FPGAs even
by orders of magnitude. Most of them apply to loops, which are a major source
of concurrency in high-level code and some languages, such as OpenCL, explic-
itly state that some loops can be arbitrarily parallelized, because iterations do not
depend on each other:

1. Loop pipelining starts new iterations of a source code loop before the previous
ones are completed. It is one of the best options for loop optimization in HLS,
since it usually boosts the performance at a very low cost [29, p. 61]. The
number of clock cycles between successive loop iteration starts (inverse of the
throughput) is also called the “Initiation Interval” of the pipeline (in the best
case, it can be one clock cycle). It is fully decoupled from the time it takes
to complete one iteration, the pipeline “latency”. Usually, memory or data
dependencies between successive iterations (“loop-carried dependencies”) are
the bottlenecks that increase the initiation interval. Several other synthesis
techniques, e.g., array partitioning or loop interchange [43], can be applied to
ameliorate this problem.

13
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2. Loop unrolling creates multiple copies of the loop body to be executed fully in
parallel. In some cases it can achieve even more performance than by means
of pipelining, but typically at a huge resource (i.e., area) cost. A loop can be
fully or partially unrolled and in both cases the maximum performance can
be achieved only by means of array partitioning and may require arithmetic
evaluation restructuring (e.g., adder tree balancing) [29, p. 51]. In OpenCL
(similar to CUDA), the loop over work groups can be unrolled arbitrarily by
definition. Thus, like on a GPU, the performance on an FPGA can be in-
creased by instantiating multiple work groups until the computing or routing
resources, or its memory bandwidth are saturated [66, 49]

3. Exploiting on-chip memory. Most modern FPGAs integrate thousands of in-
dependent BRAMS on chip for a total of many MBs of storage. Accesses to
these memories are both much faster in terms of latency and much more par-
allelizable than those to off-chip memories [78]. Many algorithms, especially
the memory-intensive ones that are addressed in this article, achieve the best
acceleration only by moving frequently-accessed data that reside in off-chip
memories into on-chip BRAMs (or another kind of FPGA memory called
LUTRAMSs). As mentioned above, on-chip memories that are not carefully
optimized by using partitioning directives can often become bottlenecks, be-
cause of the limited number of access ports that they offer. While on a GPU
the maximum number of concurrent accesses to independent addresses (and
the meaning of “independent”) is fixed by the GPU architect, on an FPGA
it must be carefully chosen by the designer, because more parallelism often
implies a higher cost. Memory partitioning or memory reshaping according
to user directives or to automated analysis of access patterns of a given algo-
rithm can dramatically increase the memory bandwidth and achieve a much
higher level of concurrency.

4. Optimizing global memory interfaces. Other methods to improve performance
include instantiating multiple DRAM access ports or increasing their bit

width.

On a GPU, the global memory interface subsystem receives memory read
or write requests from the threads or work items that are executing on its
compute units, and coalesces these requests whenever possible, in order to
match both the available memory word size and bus burst transfer capabil-
ities. For example, 16 accesses to adjacent properly aligned 32-bit integer
array elements can be grouped automatically at runtime into a single 512-bit
memory read, or to a burst of 4 128-bit memory reads, depending on the
DRAM interface width.

On an FPGA, these groupings must be performed manually and at compile
time, which requires a lot of design and tool usage expertise.

14



2.3 — Open Computing Language

2.3 Open Computing Language

Open Computing language or OpenCL is a parallel programming framework
based on C99 and C++11 which support parallel programming model. It is widely
used for programming heterogeneous and multicore platforms [34], [68]. As the
name suggests, it is an open source standard which is maintained by Khronos
Group.The main advantage offered by OpenCL is execution portability. It allows
to run the same design accross different platforms with few modifications.

Host Global SDRAM
Memory Global Off-Chip Memory
| |
Local Memory | Local Memory |
PCle Privat Privat Privat Privat
rivate rivate rivate rivate
HOSt R Memory ‘ Memory ‘ Memory ‘ Memory ‘
Work-Item | Work-Item | Work-Item | Work-Item |
Kernel | Kernel |
Global On-Chip Memory

Figure 2.4: Platform and Memory Model of OpenCL

Some definitions/terminologies used by OpenCL model are shown in ifg. 2.4
and defined as under:

o Host: It is a (multi-core) processor, which is responsible for setting up the
environment and managing tasks on the device.

o Device: Device is the word that represents the hardware accelerator in the

system

o Kernel: It is the computationally expensive piece of code that is designed to
run on the dewvice.

o Compute Unit (CU): An OpenCL device can implement multiple copies
of same design, called compute units.
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o Work-items & work-groups: Concurrent implementations of kernel body
are termed as work-items and a collection of these work items is called work
groups. The designer can choose the size of work-items per work-group.

e Global Memory: It the shared memory between all the work-groups. It is
the slowest device memory to access and have the size order of a few gigabytes

(GB).

o Local Memory: This is a private memory of each work group, which means
it is shared by all the work items within that work-group. It is faster than
global memory.

o Private Memory: It the smallest, but fastest memory to access in the whole
model. It is the private memory of each work-item and generally use to store
some temporary variables.

It should be noted that memory management in OpenCL is done explicitly i.e.
by moving data from host memory to global memory to local memory and then
back. To ensure memory consistency and provide better synchronization within a
workgroup, if needed, OpenCL also provides the concept of barriers [81].
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Chapter 3

Smart City Application

Cities are seeing massive urbanization worldwide, thus increasing the pressure
on infrastructure to sustain private and public transportation. Adding intelligence
to traditional traffic management and city planning strategies is essential to pre-
serve and even improve quality of life for citizens under this enormous increase of
population. Traffic causes increased delays, thus reducing the opportunity for city
dwellers to earn money by performing productive activities. It also poses health
hazards due to pollution and accidents. Several public and private entities (ranging
from public transportation providers, to city planners, to traffic light control, to
taxi and car sharing providers, to individual drivers) can profit from the widespread
availability of real-time information about traffic flows. Part of the work described
in this chapter has been previously published in "Performance and energy-efficient
implementation of a smart city application on FPGAs" [8].

This application can improve traffic-related problems in modern continuously
growing cities based on the information provided by the citizens and/or extracted
by monitoring their habits. Various methodologies and sensors can be used to
achieve this goal.

This application will provide cost-effective and scalable real time analysis of
traffic in cities that can then be harnessed by other smart city services and appli-
cations (e.g. intelligent traffic management tools) in order to reduce traffic-related
impacts on the quality of life of citizens. Videos obtained from cameras can pro-
vide reliable information about the traffic low on roads. The basic idea, as shown
in Fig. 3.1. is that the cameras acquire the images, which are then processed us-
ing image-processing algorithms. After that, the data is stored in a database and
accessed on demand.
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Figure 3.1: Application Overview

3.1 Application

The main goal of the application described in this work is to extract data from
video surveillance cameras and make it available to different services. The objective
is to provide real-time information which can be used to optimize, for example the
street lighting and traffic light systems installed in cities. The application will
analyze the images recorded by the cameras installed in cities and will apply a set
of algorithms in order to detect the presence of people and vehicles and to compute
the density of traffic at each specific location.

(a) Camera view of the road (b) Road Parameters w.r.t camera

Figure 3.2: Camera view

For this purpose, cameras are installed on roads (Fig. 3.2a). Their parameters
like height from ground, angle of elevation etc. and road parameters like width, etc.
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are already assumed to be available for processing, as shown in Fig. 3.2b, together
with other constants like the minimum value for detecting a change of speed.

Actual Road

N

covered by
one pixel

-~

Figure 3.3: Video Frame vs Ground reality

In most places, cameras cannot be positioned directly above a road. Most of the
times they will have a prospective view, as shown in Fig. 3.2a. So we need input
values to map the road with respect to the camera pixels. We need three types of
information.

1. Whether a pixel covers a road area
2. How much area each pixel covers
3. How much distance each pixel covers in the direction of the camera

The presence or absence of the road allows us to apply the algorithm only on the
part of the camera frame that we are interested in and hence save computational
resources. The area value is used to find the percentage of the road occupied by
moving objects. Finally the distance is used to compute the velocity of the vehicles.
All of them can be calculated from camera resolution, aperture, focal length and
height over the road. Another important thing to note here is that, as we move
away from the camera, the distance represented by one pixel increases. Therefore,
the distance value for each pixel is different. It is calculated once for each stationary
camera and then used repeatedly to save time and computational resources.

Fig. 3.4 shows the general work-flow of the image analysis module in detail.
Two configuration files containing road and camera parameters are used as inputs,
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Configuration File
00000
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00000 ‘ Analysis

Algorithm

Video Frame ‘
00000

Figure 3.4: General Workflow of Image Analysis module

in addition to the image to be analyzed. This module can be instantiated, as many
times as needed, once for each descriptor that is desired, so that it is possible to
detect many kinds of objects at the same time.

3.2 Related Work

A lot of work has been carried out on smart cities in the last 20 years [2]. For
some reviewers smart cities are still confusing [4]. Definitions range from infor-
mation and communication technology (ICT) networks in city environments [3]; to
various ICT attributes in a city [7]. Some relate the term with indexes like the level
of education of citizens or in terms of financial security etc. [5] while others thinks
about it in terms of urban living labs [39]. All of these implications are alternative
schools of thought and most researchers point towards the complexity and scale of
the smart city domain [6].

The monitoring of roads for security and traffic management purposes is one of
the main topics in this domain. Modern smart cities measure the traffic so that
they can optimize the utilization of the roads and streets by taking actions which
can improve traffic flow. Video-based approaches have been researched to monitor
the flow of vehicles in order to obtain rich information about vehicles on roads
(speed, type of vehicle, plate number, color etc.) [15].

Vision-based traffic monitoring applications have seen many advances thanks
to several research projects that were aimed at improving them. In 1986, the
European automotive industry launched the PROMETHEUS European Research
Program [75]. It was a pioneer project which intended to improve traffic efficiency
and reduce road fatalities [72]. Later, the Defense Advanced Research Projects
Agency introduced the VSAM project to create an automated video understanding
technology which can be used in urban and battlefield surveillance applications of
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the future [20]. Within this structural framework, a number of advanced surveil-
lance techniques were demonstrated in an end-to-end testbed system which included
tracking from moving and stationary camera platforms and real-time moving object
detection as well as multi-camera and active camera control tracking techniques.
The cooperative effort of these two pioneering projects remained active for about
two decades. As a result, new European frameworks evolved to cover a variety
of visual monitoring systems for road safety and intelligent transportation. In the
early 2000s, the ADVISOR project was implemented successfully to spot abnormal
user behaviors and develop a monitoring system for public transportation [47, 48,
24].

There are several methods which can extract and classify raw images of vehicles.
These methods are chiefly feature-based and require hand-coding for detection and
classification of specific features of each kind of vehicle. Tian et al. [70] and Buch et
al. [15] surveyed some of these methods. In the fields of intelligent transportation
systems and computer vision, intelligent visual surveillance plays a key role [84].
An important early task is foreground detection, which is also known as background
subtraction. Many applications such as object recognition, tracking, and anomaly
detection can be implemented based on foreground detection. [82] [73].

An application was proposed in the Artemis Arrowhead Project [36] that can
detect patterns of pedestrians and vehicles. According to the authors, based on this
information, the application can also extract a set of parameters such as the density
of vehicles and people, the average time during which the elements remain station-
ary, the trajectories followed by the objects, etc. Subsequently, these parameters
are offered as a service to external parties, such as public administrations or private
companies that are interested in using the data to optimize the efficiency of existing
systems (e.g., traffic control systems or streetlight management) or develop other
potential applications that can take advantage of them (e.g., tourism or security).

Many existing systems, which are concerned about privacy of the citizens, em-
ploy some sort of censorship so that human or Al users are not able to see and
inadvertently recognize any person in the camera footage. This can be done ei-
ther in the form of a superimposed black box, which blocks out the eyes or face
of the person, masking each person in each frame or blocking images of certain
places altogether [11, 51, 58, 59, 61, 65]. However, this approach cannot achieve
full privacy. Most of the time we do not require any sort of information related to
individuals while working with applications related to computer vision. Thus, the
developer should be aware of the information being collected either advertently or
inadvertently and of what are the real requirements for the application.[17]
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3.3 Algorithms

To extract the required information from the video stream, two image processing
algorithms are applied. One is the background subtraction algorithm, while other is
Lucas Kanade Algorithm for optical flow. A sample frame from one of the cameras
is shown in fig 3.5. The image is split into two portions to separate the information
on two road recorded in one frame. These information is passed to the algorithm
in the configuration file for separate calculations.

Figure 3.5: Sample Frame

3.3.1 Background Subtraction

Algorithm 1 is based on a background subtraction and object tracking method.
One popular implementation was made available by Laurence Bender et al. as
part of the SCENE package [63], available in the Sourceforge repository (Fig. 3.6).
The algorithm performs motion detection principle by calculating the change in
corresponding pixel values with respect to the reference stationary background. The
portion of the road where movement is detected gives an idea about the amount of
traffic. Moreover, the algorithm also constantly updates the reference background
image (in case a moving object is now at rest).

Scene is an open source multiplatform computer vision framework that performs
background subtraction and object tracking using algorithms based on neural net-
works and fuzzy classification rules. It was mainly designed as a toolkit for the
rapid development of interactive art projects that explore dynamics of complex
environments (for example public spaces).
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Scene defines five different model implementations if OpenCL for background
subtraction. They are

o Simple Gaussian

o Fuzzy Gaussian

o Mixture of Gaussian

» Adaptive Self-Organizing Map (SOM)

o Fuzzy Adaptive Self-Organizing Map (SOM)

Figure 3.6: Output of the Background Subtraction Algorithm [64]

Our chosen algorithm takes four frames (images) as input, including the ref-
erence stationary background, the frame under the consideration, the preceding
frame and the succeeding frame. For each pixel, it performs a weighted difference
on the corresponding pixels of three consecutive frames. If this difference is zero,
it implies that there is no movement in the corresponding pixel, hence no update
is needed for the total moving area or the reference background. On the other
hand, non-zero values corresponds to some change in the consecutive video frames
around the pixel. The value can be a positive or a negative number according
to the direction of movement with respect to the camera. If the absolute of this
value is larger than the threshold set for movement detection and some change is
also detected in the current frame pixel w.r.t. the reference background, then the
global accumulator of the moving area is updated by adding the area of the road
occupied by the current pixel. If the weighted difference is less than the threshold
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for N-1 frames, then the algorithm updates the reference background pixel with the
current pixel. N is the minimum number of frames required to declare the pixel to
be part of the stationary background. The value of N can be set according to the
application.

Algorithm 1 Background Subtraction algorithm

Require: Four grayscale images image_, , image, , image; and image,, & Count
array

Ensure: image

Updated image,,, and Count array & Total Area with Movement

out?

1: for j =0to HEIGHT — 1 do

2: fori=0to WIDTH — 1 do

3 PIX = (j* WIDTH) +i

4: lat =0

5: if PIX is on ROAD then

6: center <— PIX

7 left < PIX — 10

8: right <— PIX + 10

9: lat <— Abs(sum of weighted difference of left, right and center pixels of

all three images)

10: end if

11: if (lat< threshold) & (Count[PIX] > N) then

12: imagey,|center| < imageg|center]

13: else

14: Count[PIX]++

15: end if

16: if ((imagey[center] - image,,[center|> Background threshold) & (lat>
threshold)) then

17: image,,,|center] <— imagey|center]

18: Increment Area with Movement

19: else

20: image,,.|center] < 0

21: end if

22:  end for

23: end for

As described above, the algorithm needs three consecutive frames and a refer-
ence stationary background image to distinguish between moving and stationary
objects. After the computation of one set of frames, the next frame is fed to the
kernel and the oldest one is removed from the set. The result is shown in Figure
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3.7.

Here the static areas are detected as background and converted to black, while
pixels where movements have been detected are shown as gray-scale pixels of the
original frame. We also compute the portion of the road that is occupied by moving
objects. In this set of frames, it is equal to 11.2m? on the side where traffic is coming
towards the camera, and it is 6.55m? on the side where traffic is moving away from
the camera.

Figure 3.7: Output of Background Subtraction

3.3.2 Lucas Kanade Algorithm

Since the background subtraction module can only find the area occupied by
moving objects on the roads, another method is needed to measure the velocity of
vehicles, based on the Lucas Kanade algorithm for optical flow [42]. An implemen-
tation of the Lucas Kanade’s Optical Flow algorithm developed by Altera [52] in
OpenCL with a 52x52 window size is shown in Fig. 3.8.

A window size of NxN means that the optical flow for one pixels is computed
with respect to the neighboring N/2 pixels on each side of that pixel i.e. the pixel
under consideration is in the center of a matrix of pixels having (N+1) rows and
columns. For each pixel in the window, a partial derivative with respect to its
horizontal (I,) and vertical (,) neighbors is computed. The size of the window is
a compromise between true negative and false positive change detection. Therefore
it should be chosen by an expert with respect to area covered by each pixel and
other parameters. In this paper we uses a 15x15 window.

A pyramidal implementation [12] is used to refine the optical flow calculation
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and the iterative Lucas-Kanade Optical flow computation is used for the core cal-
culations. For each pixel, computed partial derivatives within the window and the
difference among the pixel values in the current and next frames are used to calcu-
late the velocity of each moving object (it is zero if the area covered by the pixel
is stationary). The magnitude is the speed of the object whereas the sign shows
whether it moves towards the camera or away from it.

Figure 3.8: Altera’s Implementation of Lucas Kanade Algorithm [52]

In our implementation of the Lucas-Kanade Algorithm (Algorithm 2), for each
set of calculations, we need two consecutive image frames and a set of input param-
eters depending on the road conditions and camera angles. Similar to Background
subtraction, each new frame replaces the older one. The optical flow is computed
for all the pixels of the image (in this case for a 1280x720 resolution). Two images
using 8 bits per pixel are compared with a window size of 15. Moreover, the ob-
tained values are mapped to a single color representing both relative velocity and
direction, as shown in figure 3.9. The graphical output from these images is shown
in Fig. 3.10. The stationary regions are represented by white pixels, while moving
objects are mapped to colors according to their speed and direction.

To calculate the average velocity of traffic with the Optical Flow algorithm one
needs to know the distance between the camera and the recorded objects. In order
to avoid expensive and complex solutions for a real time depth measurement, an
approximation for calculating the distance corresponding to each pixel of the image
is used based on static camera parameters, such as road plane inclination, camera
orientation and field of view. For the current frame as reference. The average
velocity coming towards the camera is about 118km/h while the velocity moving
away is -67km,/h.

26



3.3 — Algorithms

Algorithm 2 Lucas-Kanade algorithm
Require: two frames of images image, and image; and other coefficients

Ensure: vy
1: for j =0to HEIGHT — 1 do
2: fori=0to WIDTH — 1 do

3: G2><2 +—0

4: b2><1 ~—0

5: for w; = —w, to w, do

6: for w; = —w, to w, do

7 center < Pos(i + w;, j + w,)
8: left < Pos(i +w; — 1,7 + wy)
9: right <— Pos(i +w; + 1, j + w,)
10: up < Pos(i +w;, j +w; — 1)
11: down < Pos(i + w;, j + w; + 1)
12: im?,, < image,|center]

13: iml,, < image,[center]

14: 61 < d(im®,,, iml, )

15: imiy, < imageg|left]

16: 1My < Tmageg[right]

17: IJU N (im?ight - im?eft)/z

18: z:mglp — z'm'ageo[up]

19: Myown < IMagey|down)|

20: Iy <= (1M ggm — 1My,) /2

21: G+ G+ ggxg(Ix, [y)

22: b b+ fox1(01,1,,1,)

23: end for

24: end for

25: G <« inverse(G)

26: Vopt[J][7] <= G x b

27:  end for

28: end for

We can also find the speed in any specific lane of the road, by dividing the
pictures in separate lanes instead of two parts as we did in Fig. 3.5. This can be
achieved, if required, by minor adjustments in the input configuration file.
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Moving away from camera

Figure 3.10: Output of Lucas Kanade Algorithm

3.3.3 Implementation Model

Two types of implementation are possible for this system on the basis of the
location of computational and storage units. One is decentralized, where each cam-
era has its own processing unit. The other is centralized, where all the processing
by a set of closely situated cameras is done on one single server.
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Decentralized Architecture
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Figure 3.11: Decentralized Model

Fig. 3.11 represents the decentralized architecture version of the application.
Due to the high computational requirements , a dedicated CPU would be needed
for each camera installed in the monitored scenario. Once the image (which must
be processed in real time) is captured, the pre-processing unit associated to that
camera processes the signal for detecting the elements present in the image. Af-
terwards, it sends a picture with some meta-data to the central processing unit in
which all of the information is processed and stored to be offered to the customers
within a cloud architecture.

Centralized Architecture

On the other hand, Fig. 3.12 depicts an architecture in which one processing
unit is used by a number of cameras. The idea is to combine the processing unit with
the central database where all the data is offered to the customer. This means that
no camera has a dedicated processing unit attached, which dramatically increases
the amount of data to be processed centrally in real time.

After analyzing both options, the second alternative is considered more appro-
priate because of the costs of implementation, application software management,
maintenance costs to resolve hardware failures, improved safety etc. In Figure 3.13,
the scheme for the proposed solution is presented. A major factor for choosing a
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Figure 3.13: From decentralized to centralized architecture

centralized system would be the achievable energy efficiency by using latest genera-
tion FPGA devices, which are very power-efficient but too expensive to be deployed
in a decentralized architecture.
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3.4 Constraints

However, the use of cameras poses some disadvantages. The first major draw-
back is the breach of privacy. Citizens usually feel uncomfortable and insecure when
their movements are being monitored and they tend to oppose any such system. To
overcome this disadvantage, the end users of our application are not given the raw
data. Rather they are provided with only the result of the processing of the images
recorded by the cameras. This ensures both the protection of personal information
and the value of data.

Note that, in our implementation of the application, the processed images or
data extracted from them contain no personal information, thus we can safely
say that we have achieved the objective of personal data integrity and we are not
forwarding any sort of personal or privileged information to any third party.

Another difficulty in the use of such systems is the huge effort required to
compute and process data by image analysis algorithms. For instance, cameras
should be deployed every 50 meters or so in order to obtain a density that can
provide complete information for a city. A big city with an urban area of 360km?
would require the use of about 100,000 active cameras. This can be supported only
by extreme parallel computing techniques.

This issue is resolved by the use of centralized architecture. Moreover the com-
putational power is provided by the ECOSCALE platform, whose architecture is
discussed in Chapter 2. Therefore, we can say that the application can be imple-
mented in real world.

3.5 Optimizations

Most of the operations carried out in image processing are pixel-based, with
no or very few dependencies on other pixel output values. This provides a very
good basis for a parallel implementation of image processing algorithms that work
on each pixel either simultaneously or in a pipelined fashion (Fig. 3.14). In this
way we can reduce the frame processing time and hence we can achieve a real time
processing frequency, which is about 25fps for the target application.

Several optimization that we performed on the code to make it optimal for
FPGA design are explained below.

3.5.1 Memory-related optimizations

In the context of memory-related key issues and observations, it has to be stated
that the most important aspect that affects performance is the data I/O to and
from the host as well as the hardware accelerators. The highest I/O bandwidth
can be achieved by using streams and DMA controllers. This approach though
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pixel 2
. Required

pixel n

Figure 3.14: Overview of parallelism in image processing Algorithms

has one critical restriction, requiring that the data have to be stored in contiguous
memory space, which is not always possible. In this application, the kernels are
generated using OpenCL which only supports memory mapped interfaces. As a
result streams cannot be utilized. Hence, we require other methods and coding
examples that make the memory mapped interface as efficient as possible. In the
ideal scenario it can achieve comparable bandwidth to the streaming case, i.e. only
two times slower. These methods can be categorised as follows:

o Inferring memory bursts
o Utilizing the maximum bus width

o Eliminating unnecessary memory accesses

Inferring Memory Bursts

As mentioned above OpenCL kernels do not support streaming interfaces, they
support the AXIlite and AXI master interfaces. The AXImaster interface supports
memory bursts of up to 256 words on the Ultrascale+ FPGAs.

Subsequently, in order for the kernel to infer memory bursts, the code has to
be written in certain ways, which the tool can identify and produce the correct
interface that accesses the memory using bursts. The first way is the usage of a
function defined for this purpose async_work__group copy() and the second is to
read the data into local or private memory, which is using BRAMs in the FPGA,
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inside a for loop. The async_work__group__copy() function is defined for OpenCL
language and transfer data between global and local (work group) memory only.
It cannot transfer data for private memory. The maximum burst size supported is
256 words per burst. The following code segment (Fig. 3.15) describes how bursts
can be inferred using a pipelined for loop.

//for loop

#define TMPSIZE 256

#define INPUTSIZE X

void foo(__global float input, _global float output) {
_ private float temp[TMPSIZE]

for (int j=0; j< INPUTSIZE/TMPSIZE; j++) {
for (int i=0; i< TMPSIZE; i++) {
#pragma HLS PIPELINE
templi] = input[i+ TMPSIZE*]];

Figure 3.15: Example for burst access of data from DRAM

Utilization of maximum Bus width

Another really important optimization is the utilization of the maximum bus
width. In our case that is 128bits which is restricted by the host HP ports that
are used for communication between the processing system and the programmable
logic. In order for the kernel to have a 128-bit data width, the arguments must use
vector data types, e.g. float4, int4 etc. This allows the most efficient utilization of
the PS-PL bandwidth as it utilizes the full width of the HP ports.
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Eliminating Unnecessary Memory Accesses

The previous two subsections provide 1/O optimization that are platform and
technology specific and always affect performance. Here, we present memory-
related optimization that is application specific and concern mainly the minimiza-
tion of the DDR memory accesses.

Based on the source code description of an algorithm, it is not possible for
the platform to recognize whether the application accesses the same data multiple
times from the DDR memory or not. Hence, depending on the application, it highly
recommended to increase the usage of temporary buffers (BRAMs) or temporary
registers, that store data inside the PL to be further processed, since this can
significantly improve the performance as it reduces DDR accesses. For example in
the case of image filter applications, line buffers can be used to store the lines or
pixels required for the filter. A 3x3 filter requires 9 memory accesses per result.
If the data are stored in line buffers the same operation requires only 1 memory
access as the data are already stored in BRAMs.

3.5.2 Computational optimization

In this subsection we provide a summary of source code optimization that were
implemented to generate an efficient hardware accelerator module that will eventu-
ally lead to a cost-effective application execution. These guidelines are principally
split into the following sections.

e Loop pipeling and unrolling

o Array partitioning

o Minimization of operations using temporary registers
» Division using constants

e Reusing the calculations

o Piecewise Linear approximation

Loop pipelining and unrolling

In sequential languages like C/C++, commands in loops are executed one after
the other i.e. each statement is executed in the next clock cycle than the previous
one (assuming the ideal case of one instruction per clock cycle). To introduce
parallelism, we have two options, either we can pipeline a loop or we can unroll it.

Unrolling means that we make copies of loop and execute the loop iterations in
parallel. These copies and parallelism is controlled by unrolling factor. Pipelining
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means that loop iterations overlap each other. This means that first instruction of
second loop iteration starts with the second instruction of first iteration.

Both of them have their advantages and disadvantages. It reduces the execution
time of the application with increase in resource utilization. Therefore, the designer
should be careful for choosing the optimal option. In our application, we pieplined
the inner most loop of the code in order to achieve parallelism without exploding
the resource utilization. Some smaller are also unrolled where resource utilization
was not too high.

In some of the cases these directives, although applied, were not able to achieve
the required Initiation Interval (II). Some of these reasons are addressed below
which were the cause of reduced performance. These issues were addressed in order
to achieve better performance.

Array partitioning

One of the major reason for not achieving the required pipeline performance is
the memory access bottleneck. If we need to fetch more than one memory location
from the same BRAM, than this process can reduce the parallelism due to limited
number of memory ports.

This issue can addressed by storing the same memory into different BRAMs or
FFs. So, data can be fetched from different memory locations simultaneously. The
partition can be complete, i.e. storing everything separately in registers. This can
be expensive and sometimes impossible to synthesis or place and route for the tool.
Other possible options are block and cyclic which are selected depending on the
access pattern of the data. Generally, cyclic partition is preferred for sequential
access while block partition for strided access.

Minimisation of operations by using temporary registers

The high level synthesis tool does not reuse results that have been already cal-
culated and stored in registers, whereas it uses new LUTSs to create new hardware,
e.g. :
int k1l = a + b;
int k2 =a + b + c;

In this case, the tool will use resources to create k1, but for k2 will not use
the result stored in k1, but will use new resources to recalculate a+b. In order to
eliminate such unnecessary resource utilization the code should be changed to:
int k1l = a + b;
int k2 = k1 + c;
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Division with constants transform to multiplication

One more optimization that can be used extensively is the avoidance of division
operations when the divisor is constant. Division is the most expensive mathemat-
ical operation with respect to resources. For that reason, every single division with
constant divisors should be replaced by a multiplication by inverting the divisor.
For instance
double k = a/b;
with b being constant, is transformed to :
double bmult= 1.0/b;
double k = a*bmult;.

Reusing the calculations

There are some calculations which are done within one work item, can be reused
in the succeeding work items (within the same work group). For example if we are
working with a sliding window over an image and performing convolution with a
fixed filter, then those computations can be reused in the next work item for the
overlapping elements of sliding window.

The flowchart in Fig. 3.16 explains the modification. Assuming a window size of
15x15, the left side shows the conventional way of performing all the computations
for a pixel within two nested loops with 15 iterations each. It requires 225 iterations
to compute the final value of each pixel and there is no reuse of the computed values.

The flow chart on the right hand side depicts a reuse-oriented modification. In
the first loop, each work item computes the values for the columns of the window
under consideration and stores them in a local buffer. The second loop uses those
values over all the columns in the window to compute the final value of the pixel.
In this way, not only we reduced the total number of iterations from 225 to 15,
but also we can reuse the values computed for 14 columns, which are needed in the
next sliding window. This optimization will also result in better pipelining of the
individual loops.

Piecewise Linear approximation

Trigonometric computations, especially involving floating point numbers, are
expensive on FPGAs. Sometimes it is possible to use a piecewise linear mapping
approximation instead of accurate trigonometric computations. In our case, the
piecewise linear approximations get a performance improvement of around 15x.

Our specific application requires generating an image from the output data,
mostly for debugging purposes. In this case, instead of using the tangent function to
map it using a colour coded disparity map, a piecewise linear approximation results
in acceptable results with remarkable increase in performance of the application.
The first code snippet in Fig. 3.17a one uses the inverse tangent function to map the
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Figure 3.16: Flowchart for KNP

image to a set of 55 different colour values, while the second one uses a piecewise
linear approximation to generate the image. There is not much of a difference
between two outputs as shown in Fig. 3.17b & Fig. 3.17c, especially when the goal
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float rad = sqrt(fx * fx + fy * fy); #def!ne VMIN (-1.0f)
float a = atan2(-fy, -fx) / (float)M PI; #define VMAX (1.0f)
float fk = (a + 1.0f) / 2.0f * (1 ncols - 1); #define coef a (@.5f*(VMIN+VMAX))
int k@ = (int)fk; #define coef b (510.0f/(VMAX-VMIN))
uchar limit uchar(float x)
colS col;
col.s@ = *(1_colorwheel + k@ * 3 + 0); if (x<255.1f)
col.sl = *{1_colorwheel + ko * 3 + 1)
col.s2 = *(1 colorwheel + k@ * 3 + 2); if (x=0) return (uchar) x;
if (rad = 1) rad = 1; // max at 1 else return (uchar) 6;
pix[@] = (255 - rad * (255 - col.s@)); }
pix[1] = (col.sl = 255 - rad * (255 - col.sl)); else return (uchar) 255;
pix[2] = (255 - rad * (255 - col.s2)); }
jt

Generates a color as a function of v: if v<vmed, assign red,
fif v>vmed assign green

At the middle color=white

wf

void assigncolor white(float v,uchar color[3])

{
color{@]=1limit_uchar(255-fabs(v-coef_a)*coef _b);
color[1]l=limit_uchar((v-VMIN)*coef b);
color[2]=limit_uchar((VMAX-v)*coef b);

(a) Piecewise linear substitution for tangent function
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Figure 3.17: Difference between two outputs for Lucas Kanade Algorithm

is just debug the algorithm. On the other hand it have a huge impact and cost
saving for running it on FPGAs.

3.6 Implementations

The application was first designed for CPU implemented to verify the functional
correctness. After that it was optimized for GPUs. Once it was verified and was able
to achieve the required performance, then it was optimized for FPGAs to achieve
better power and energy consumption. The CPU implementation was carried out
to get the best possible solution available.
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3.6.1 CPU

As stated above, the CPU implementation was just to verify that the algorithms
producing the desired outputs. To verify the functionality, consecutive image frames
were applied as input and the corresponding outputs were verified with the ground
reality. Moreover, the execution time and energy consumption was noted for future
comparison with the results of accelerators.

The CPU that we are considering is an Intel Xeon E3-1241(v3) with a clock fre-
quency of 3.5GHz and maximum power consumption of 80 Watts. The background
subtraction algorithm takes 47.68 msec to process one frame while Lucas Kanade
algorithm takes 5925.78 msec per frame. This also confirms that CPU cannot be
used to perform real time video processing for this quality of images.

3.6.2 GPU

After the functional verification of the application, parallel implementation is
done with the help of GPUs. For GPU implementation, application was coded in
OpenCL language (explained in section 2.3). The purpose of this implementation
is to achieve the required throughput with minimum possible cost. In this imple-
mentation, we are considering an NVIDIA GeForce GTX960 GPU. It has 2GB of
global memory and bandwidth of 112 GB/s with a maximum power consumption
of 120 Watt.

The major optimization done for the implementation on GPU are enlisted.

Lucas Kanade Algorithm

o All variables, functions and operations of double precision have been changed
to float

o The pyramid array size has been reduced by half every level
e Alpha channel has been removed in all the functions

o ffmpeg and SDL libraries have been used instead of OpenCV to decode video
and generate image output

e A mask has been added to remove the pixels outside the road

« Non-blocking calls to clEnqueue Write Buffer() have been used

Background Subtraction Algorithm

o All variables, functions and operations of double precision have been changed
to float
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» Background calculation has been modified in order to not to be affected by
car light reflections and shadows

« Background adaptation to large light differences between frames due to cam-
era auto shutter

e A mask has been added to remove the pixels outside the road

The optimized GPU code was able to perform the required computations in
time for both the algorithms (separately). The GPU device time for background
subtraction algori