

POLITECNICO DI TORINO Repository ISTITUZIONALE

Update: On the synthesis of quantum Hall array resistance standards (2015 Metrologia 52 31)

<i>Original</i> Update: On the synthesis of quantum Hall array resistance standards (2015 Metrologia 52 31) / Ortolano, Massimo; Callegaro, Luca In: METROLOGIA ISSN 0026-1394 56:2(2019), p. 022101.
<i>Availability:</i> This version is available at: 11583/2726851 since: 2019-03-01T11:54:29Z <i>Publisher:</i> IOP
Published DOI:10.1088/1681-7575/ab065f
Terms of use: openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright iop

(Article begins on next page)

Update: On the synthesis of quantum Hall array resistance standards (2015 Metrologia 52 31)

Massimo Ortolano^{1,2} and Luca Callegaro²,

 ¹ Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
²INRIM - Istituto Nazionale di Ricerca Metrologica
Strada delle Cacce, 91 - 10135 Torino, Italy

E-mail: massimo.ortolano@polito.it

Abstract. This work provides an update, according to the revised SI, to table 1 of M. Ortolano et al., "On the synthesis of quantum Hall array resistance standards", *Metrologia*, 52, p. 31–39, 2015. The table reports fractions of the quantized Hall resistance approximating decadic values and the associated deviations. In several cases, the deviations have become smaller in the revised SI.

Submitted to: Metrologia

Quantum Hall array resistance standards (QHARS) are integrated circuits of interconnected quantum Hall elements. They are designed to provide a quantized resistance R approximating a nominal resistance value R_0 of practical interest, typically a decadic value (e.g., $10 \text{ k}\Omega$). R is a fraction $R = (p/q)R_{\text{H}}$ of the quantized Hall resistance R_{H} of the individual elements composing the QHARS, and p and q are integers. The quantized Hall resistance is a submultiple of the von Klitzing constant, $R_{\text{H}} = R_{\text{K}}/i$, i being a small integer (here we assume i = 2, as is usually the case).

In [1], we proposed an algorithm that, given the target resistance R_0 , allows to calculate the fractions p/q of interest, and to design the corresponding QHARS networks. Table 1 of [1] provides several examples of practical interest for the decadic values 100Ω , $1 k\Omega$, $10 k\Omega$, $100 k\Omega$ and $1 M\Omega$. The approximations reported in [1], and the corresponding deviations of R from R_0 , were calculated by assuming the conventional value of the von Klitzing constant $R_{\text{K-90}} = 25\,812.807\,\Omega$ [2, Appendix 1].

The redefinition of the International System of Units [3] fixes the value of the von Klitzing constant $R_{\rm K}$ according to the last CODATA 2017 recommendation [4, table 3], $R_{\rm K} = h/e^2 =$ 25812.8074593045 Ω (calculated to 15 significant figures, as given in [5]). This value relatively differs from $R_{\rm K-90}$ by 1.78 × 10⁻⁸.

The present work provides in table 1 below an update to table 1 of [1] according to the revised SI. A few sign errors in the original δ_{90} values have also been corrected. It is of interest that several approximations provide a lower relative error in the revised SI.

The Mathematica [6] notebook implementing the search of approximating fractions as described in [1] and employed to generate table 1 is available at https://github.com/ INRIMQuantumElectricalMetrology/SternBrocot.

References

- M. Ortolano, M. Abrate, and L. Callegaro, "On the synthesis of quantum Hall array resistance standards," *Metrologia*, vol. 52, p. 31, 2015. [Online]. Available: https://doi.org/10.1088/0026-1394/52/1/31
- [2] Bureau International des Poids et Mesures, "The International System of Units (SI)," 2006, 8th edition. [Online]. Available: www.bipm.org
- [3] —, "Draft of the 9th SI brochure," Feb. 2018. [Online]. Available: www.bipm.org

Table 1. Summary of the cases analyzed in [1]: $\rho_{0.90} = R_0/R_{\text{H}-90}$ is the target resistance value normalized to the Hall resistance $R_{\text{H}-90} = R_{\text{K}-90}/2$; $\rho_0 = R_0/R_{\text{H}}$ is the target resistance value normalized to the Hall resistance $R_{\text{H}} = R_{\text{K}}/2$, calculated with the revised value of R_{K} ; $\rho = p/q$ is a rational approximation for ρ_0 and $\rho_{0.90}$; $\delta_{90} = (\rho - \rho_{0.90})/\rho_{0.90}$ and $\delta = (\rho - \rho_0)/\rho_0$ are the relative errors of the approximation. Values are rounded at the 10^{-10} level. Table 1 of [1] reported δ_{90} .

ho	δ_{90}	δ
	$R_0 = 100 \Omega$	
47/6066	$+1.5900 imes 10^{-6}$	$+1.6078\times10^{-6}$
78/10067	$-5.235 imes10^{-7}$	$-5.057 imes10^{-7}$
125/16133	$+2.712 imes10^{-7}$	$+2.890 imes10^{-7}$
203/26200	-3.42×10^{-8}	$-1.64 imes10^{-8}$
	$R_0 = 1 \mathrm{k}\Omega$	
203/2620	-3.42×10^{-8}	-1.64×10^{-8}
235/3033	$+1.5900 imes 10^{-6}$	$+1.6078 imes 10^{-6}$
	$R_0 = 10 \mathrm{k}\Omega$	
203/262	-3.42×10^{-8}	-1.64×10^{-8}
	$R_0 = 100 \mathrm{k}\Omega$	
1015/131	-3.42×10^{-8}	-1.64×10^{-8}
	$R_0 = 1 \mathrm{M}\Omega$	
4029/52	-1.9288×10^{-6}	-1.9110×10^{-6}
6121/79	$+1.2130 imes 10^{-6}$	$+1.2307 imes 10^{-6}$
10150/131	-3.42×10^{-8}	$-1.64 imes10^{-8}$

- [4] D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood, and Z. Zhang, "The CODATA 2017 values of h, e, k, and N_A for the revision of the SI," *Metrologia*, vol. 55, p. L13, 2018. [Online]. Available: http://stacks.iop.org/0026-1394/55/i=1/a=L13
- [5] Consultative Committee for Electricity and Magnetism, "Mise en pratique for the definition of the ampere and other electric units in the SI," Dec. 2017, draft for Appendix 2 of the SI Brochure for the "Revised SI". [Online]. Available: www.bipm.org
- [6] Wolfram, "Mathematica 11." [Online]. Available: http: //www.wolfram.com/mathematica/