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For a long time, clinical trials have been designed in a fairly standard way. In 1 

particular, in confirmatory randomized clinical trials (RCTs), widely considered the 2 

top of the evidence pyramid, each patient typically has a 1:1 chance of being 3 

allocated to the experimental or the control treatment. Such scheme involves a large 4 

number of patients, due to the often modest expected benefits (“effect size”), while 5 

the statistical  requirements to control misconclusions are quite rigid: the type I 6 

error rate of false positive findings is consensually fixed at 5% and that of type II 7 

error rate of false negative findings fixed at most at 20%. Indeed, the effect size is 8 

the factor of greatest impact on both sample size and power computations, which 9 

explain the failure of most RCTs in critical care medicine to demonstrate the desired 10 

effect size (10.1% on average), often largely above the observed one (1.4% on 11 

average, [1]). 12 

If RCT must be characterized ethically by the principle of equipoise, that is, of some 13 

genuine uncertainty over whether a treatment will be beneficial, then it has been 14 

argued that such negative and likely underpowered trials are unethical [1]: 15 

participants may be called to sacrifice their own best interests for the benefit of 16 

future patients. Lastly, RCTs are also faced with feasibility issues, when dealing with 17 

interventions that could not be easily controlled and quantified such as ICU 18 

admission and mechanical ventilatory support. 19 

For all these reasons, it has been claimed that effectiveness of clinical trials should 20 

be improved by adopting a more integrated model that increases flexibility and 21 

maximizes the use of accumulated knowledge. Novel tools include the smart use of 22 

supplementary evidence, adaptive designs, and Bayesian designs. 23 

Using supplementary evidence for precision medicine 24 

First, merging the strength of randomized clinical trials on homogeneous 25 

populations (carefully selected through inclusion/exclusion criteria) and 26 

observational studies could be promising.  In this regard, mixed randomized trials 27 

that allocate patients first to trial arm and then to treatment group have been 28 

proposed [2]. This solution seems to be mostly applicable to population-based 29 

screening or interventions that appear far from the ICU setting. 30 

In the ICU, the complexity of critical illness syndromes is a fundamental justification 31 

for the adoption of a personalized approach to research [3]. Thus, identifying more 32 

effectively the patients who will benefit from treatment, by refining critical illness 33 
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(pheno)types of patients, has been the motivation for innovative proposals of the 1 

so-called “precision medicine”. The change of paradigm has been mostly beneficial 2 

in the oncology setting, where widespread changes in clinical practice for diagnosis 3 

and treatment have been increasingly based on genomic features [4].  4 

To increase our knowledge on the population that should be targeted when 5 

designing a particular trial, Bioinformatics and Machine Learning have provided 6 

useful tools for the exploration of the huge amount of data derived from new 7 

genomic platforms, physiologic waveforms, RCTs and electronic medical records. 8 

This was exemplified since the early 2000s with the development of the MIMIC II 9 

(Multiparameter Intelligent Monitoring in Intensive Care) databases that contain 10 

physiologic signals and vital signs time series captured from ICU patients [5]. To 11 

take full advantage of these big data, prediction models should be validated 12 

rigorously given their potential to influence decision making [6]. 13 

In the light of what has been done in oncology, providing precise information about 14 

ICU phenotypes should lead to targeted treatments or interventions in pre-specified 15 

subpopulations. Pivotal clinical trials of such therapies will then naturally be based 16 

on innovative adaptive and/or Bayesian designs. 17 

Adaptive designs 18 

Adaptive designs can make clinical trials more flexible by utilising results 19 

accumulating in the trial to modify the trial course in accordance with pre-specified 20 

rules, aiming at improving the study power and reducing sample size and trial cost. 21 

First proposed in oncology to assess many treatments and biomarkers, they have 22 

raised many controversial discussions from the beginning [7], and are still 23 

underused [8] and surrounded by misconceptions [9]. Nevertheless, they appear to 24 

provide a possible blueprint for therapeutic development in the ICU. 25 

Many innovative adaptive designs have been proposed, including enrichment 26 

designs, marker-stratified designs, and marker strategy designs (umbrella trials, 27 

basket trials) (Table). Most of these designs aim at treating more patients with more 28 

effective treatments, or identifying efficacious drugs for specific subgroups of 29 

patients. Such “enrichment” adaptive designs give investigators the ability to study 30 

treatment approaches in multiple patient phenotypes within a single trial, while 31 

maintaining a reasonable overall sample size, based on their biomarker profiles 32 

including omics [10], and shortening the time for drug development. Conversely, 33 
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treatments found to be ineffective can be dropped from a study for selected patient 1 

subpopulations. 2 

Bayesian designs 3 

Bayesian statistics and adaptive designs go often hand in hand. For instance, taking 4 

multiple looks at the data is (statistically) not a problem, since in a Bayesian 5 

framework such operation does not have to be adjusted for in any special way. 6 

Thus, many adaptive designs have been proposed in this framework. They include 7 

Bayesian adaptive biomarker/enrichment designs or randomization-adaptive 8 

designs that update random allocation probabilities, so that more patients are 9 

allocated to the most promising strategy as evidence accumulate [11]. 10 

Bayesian designs can compare multiple active treatment strategies in real-world 11 

settings by allowing for the evaluation of more than one new agent at the same time 12 

and by dropping/adding arms when a sufficient level of evidence is reached [12]. 13 

Such a Multi-Arm Multi-Stage (MAMS) design has been proposed in sepsis-like 14 

patients [13]. 15 

Conclusions   16 

Adaptive and Bayesian designs are a methodologically sound way to improve clinical 17 

trials in critical care but they add significant complexity [14]. First, outcomes should 18 

be available soon enough to permit adaptation of the trial design. Furthermore, 19 

design is impacted by the accumulated data. This requires statisticians to be 20 

engaged both in the planning phase and in the conduct phase of the trial, which 21 

may delay its large use in ICU as observed in other settings [15]. However, 22 

multidisciplinary collaborations and team science including experts from Genetics, 23 

Bioinformatics and Statistics appear a key to the success of these new design 24 

strategies in ICU. 25 
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Table: Schematization of proposed biomarker-based adaptive designs  1 
 2 
 Enrichment or targeted designs 
Denomination Basket trial Umbrella 

trial 
Platform trials Biomarker-

based 
Bayesian 
adaptive trial 

Main setting Single 
treatment, 
single 
biomarker, 
different 
subsets of 
patients 

One subset 
of patients, 
different 
biomarkers, 
Different 
drugs  

Multiple 
biomarkers 
and multiple 
drugs 
 

Response-
adaptive 
randomization  

Enrollment All the 
subsets are 
enrolled  

One drug for 
one 
biomarker 
 
(separate 
enrichment 
design for 
each 
biomarker) 

Randomization 
between strata 
(allocation 
probabilities 
modified to 
favor 
assignment of 
drugs with 
higher within-
stratum 
response rate)   

Modified 
allocation 
probabilities 
within each of 
biomarker-
based 
treatment 

Advantages Access to 
targeted 
agents for 
patients in 
various 
subsets 
 

Conclusions 
specific to 
the patient 
subset 
 

More patients 
allocated to 
the best 
treatment 

Incorporate 
external 
information, 
and report 
based on 
probabilities 
on effect size  

Drawbacks Rely on the 
assumption 
that profiling 
based on 
biomarker is 
enough 

Feasibility, 
notably for 
rare diseases 
(poor accrual 
and slow trial 
progress) 

Increased 
samples and 
heterogeneity 

Larger 
complexity 
and the 
involvement 
of statisticians 
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