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Abstract: The effect of the incorporation of Er2O3-doped particles on the structural and luminescence
properties of phosphate glasses was investigated. A series of different Er2O3-doped TiO2, ZnO,
and ZrO2 microparticles was synthesized using soft chemistry and then added into various phosphate
glasses after the melting at a lower temperature than the melting temperature. The compositional,
morphological, and structural analyses of the particles-containing glasses were performed using
elemental mapping by field emission-scanning electron microscopy (FE-SEM) with energy dispersive
x-ray spectrometry (EDS) and x-ray diffraction (XRD). Additionally, the luminescence spectra and
the lifetime values were measured to study the influence of the particles incorporation on the
spectroscopic properties of the glasses. From the spectroscopic properties of the glasses with the
composition 50P2O5-40SrO-10Na2O, a large amount of the Er2O3-doped particles is thought to
dissolve during the glass melting. Conversely, the particles were found to survive in glasses with a
composition 90NaPO3-(10 − x)Na2O-xNaF (with x = 0 and 10 mol %) due to their lower processing
temperature, thus clearly showing that the direct doping method is a promising technique for the
development of new active glasses.

Keywords: phosphate glass; oxyfluoride phosphate glass; Er2O3-doped particles; direct particle
doping; Er3+ luminescence property

1. Introduction

Among rare-earth (RE) ions, erbium (Er3+) ions have been widely studied as dopants in different
host matrices due to their emission at around 1.5 µm, which makes them suitable for applications such
as fiber lasers and amplifiers for telecommunications [1]. Moreover, their up-conversion properties
enable them to convert the infrared (IR) radiation into red and green emissions. Thus, Er3+-doped

Materials 2019, 12, 129; doi:10.3390/ma12010129 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-0455-5700
https://orcid.org/0000-0003-3403-2150
https://orcid.org/0000-0002-6431-1655
https://orcid.org/0000-0002-5269-2390
https://orcid.org/0000-0002-6257-3600
https://orcid.org/0000-0002-1673-8996
http://www.mdpi.com/1996-1944/12/1/129?type=check_update&version=1
http://dx.doi.org/10.3390/ma12010129
http://www.mdpi.com/journal/materials


Materials 2019, 12, 129 2 of 12

materials show many other applications such as photovoltaics [2], display technologies [3], and medical
diagnostics [4].

Phosphate glasses are very well known for their suitable mechanical and chemical properties,
homogeneity, good thermal stability, and excellent optical properties [5–9]. As compared to silicate
glasses, they possess low glass transition (Tg) (400–700 ◦C) and crystallization (Tp) (800–1400 ◦C)
temperatures, which facilitate their processing and fabrication by melt-quenching technique [10,11].
Phosphate glasses also exhibit high RE ions solubility [12], leading to quenching phenomenon
occurring at very high concentrations of RE [9,13]. Due to their outstanding optical properties,
RE-doped phosphate glasses have recently become appealing for the engineering of photonic devices
for optical communications [14], laser sources, and optical amplifiers [9,13,15–17]. Moreover, due to
their low phonon energies and wide optical transmission window from Ultraviolet (UV) to mid-IR
regions, fluoride phosphate glasses are considered to be good glass candidates for Er3+ doping [18].

It is well known that the luminescence properties as well as the solubility of RE ions in glassy
hosts can be significantly impacted by parameters such as the mass, covalency or charge of the ligand
atoms [19]. The luminescence properties of Er3+-doped phosphate glasses with compositions in mol %
of (0.25 Er2O32013(0.5 P2O5 − 0.4 SrO − 0.1 Na2O)100−x − (TiO2/Al2O3/ZnO)x), with x = 0 and
1.5 mol %, were previously investigated and discussed as a function of the glass composition [20].
It was found that the Er3+ ions spectroscopic properties depended on the glass structure connectivity,
which changed the Er3+ ions solubility. The intensity of the emission at 1.5 µm could be increased if the
phosphate network is depolymerized. Recently, the impact of the nucleation and growth on the Er3+

spectroscopic properties of these glasses was reported in Reference [21]. Indeed, due to the crystalline
environment surrounding the RE ions, the RE-doped glass-ceramics have shown to combine glass
properties (large flexibility of composition and geometry) with some advantages of the RE-doped
single crystals (higher absorption, emission, and lifetimes) [22]. Upon heat treatment, the crystals
precipitated from the surface of the glasses and the composition of the crystals depended on the glass
composition. The crystals were found to be Er3+ free except in the glass with x = 0. With this study,
it was shown that the heat treatment does not necessarily lead to the bulk precipitation of Er3+-doped
crystals, which should increase the spectroscopic properties of the glass.

Therefore, a new route was developed in order to control the local environment of the RE
ions independently of the glass composition: the direct doping method [23]. With this technique,
the particle matrix allows high RE content in a high dispersion state, thus avoiding the quenching effect
independently of the glass composition [24]. Thus, innovative particles-containing glasses with specific
particle compositions and nanostructures can be achieved by adding RE-doped particles in the glass
batch after the melting process. Recently, up-conversion (UC) was obtained from phosphate glasses
which contain only 0.01 at % of Er3+ and 0.06 at % of Yb3+ by adding NaYF4:Er3+, Yb3+ nanoparticles
(NPs) in the glass after the melting [25]. However, as explained in Reference [26], the main challenge
with this novel route of preparing glasses is to balance the survival and dispersion of the particles in
the glasses. The particles should be thermally stable at the temperature they are added in the glass
melt to ensure their survival within the glass during the glass preparation.

Here, new Er3+-doped particles-containing phosphate glasses were prepared in order to fabricate
phosphate glasses with enhanced emission at 1.5 µm as compared to standard Er3+-doped phosphate
glasses. Oxyfluoride phosphate glass family was also considered due to its low processing
temperature. At first, the synthesis and characterization of different Er2O3-doped particles are
presented. The concentration of Er2O3 in the particles was kept high to ensure that luminescence
can be detected after embedding the particles into the glasses. The particles were prepared by the
sol-gel method. TiO2, ZnO, and ZrO2 were selected as crystalline hosts for the Er3+ ions due to
their high melting points and low phonon energies, which provide high thermal stability and high
luminescence properties [27–32]. Then, the technique of incorporation of the particles into phosphate
glasses with various compositions was addressed. Finally, a full characterization of the morphological
and luminescence properties of the different particles-containing glasses was reported.
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2. Materials and Methods

2.1. Particles Synthesis

The synthesis of the TiO2 particles doped with 14.3 mol % of Er2O3 was reported in Reference [33].
Specifically, 21.28 g of titanium(IV) butoxide reagent grade (97% Sigma–Aldrich, Saint Louis, MO,
USA) were dissolved in ethanol (100 mL) and then added dropwise into a mixture of deionized water
(2 mL), ethanol (>99.8% Sigma–Aldrich, Saint Louis, MO, USA), and 8.37 g of erbium (III) acetate
(>99.9% Sigma–Aldrich, Saint Louis, MO, USA). Once the addition was completed, the solution was
heated at a reflux temperature of 90 ◦C and left under reflux for 1 day. Finally, the precipitates were
collected by centrifugation, washed with ethanol for several times, and dried at 100 ◦C for 1 day.
The as-prepared sample was further annealed in air at 800 ◦C for 2 h.

The ZnO particles were synthesized following the process described in Reference [34].
The concentration of Er2O3 was 14.3 mol % as in the TiO2 particles. Then, 13.5 g of zinc acetate
dihydrate (Zn(CH3COO)2·2H2O)) (99.999% Sigma–Aldrich, Saint Louis, MO, USA) and 7.8 g of
erbium chloride hexahydrate (ErCl3 6H2O) (Sigma–Aldrich, Saint Louis, MO, USA, 99.9% purity)
were used as starting materials. The precursors were dissolved in ethanol (>99.8% Sigma–Aldrich,
Saint Louis, MO, USA)-deionized water (50–50% in volume) with polyvinylpyrrolidone (PVP K 30,
average Mw 40,000, Sigma–Aldrich, Saint Louis, MO, USA) as a surfactant and stirred for 30 min until
a clear solution was formed. Then, the sodium hydroxide 0.1 M (Fluka Massachusetts, MA, USA)
was added until reaching a pH of 9, which is optimal for nucleation. The solution was heated up to
90 ◦C and stirred for 4 h to get fine precipitation. The obtained precipitation was washed 4 times with
deionized water and centrifuged. The precipitation was collected and dried at 80 ◦C for 4 h. Finally,
the sample was calcined at 1000 ◦C for 2 h.

The ZrO2 particles were synthesized with 7 mol % of Er2O3 as in Reference [35]. More in detail,
28 mL of aqueous solution of 0.1 M erbium chloride hexahydrate (ErCl3·6H2O, 99.9%, Sigma Aldrich,
Saint Louis, MO, USA), and 1.83 mL of 0.1 M sodium bicarbonate (NaHCO3, 99.7%, Fluka) were added
to 50 mL of absolute ethanol (>99.8% Sigma Aldrich, Saint Louis, MO, USA) while stirring at 60 ◦C.
Then, 9.17 mL of zirconium (IV) butoxide solution ((Zr(OBu)4) 80 wt % in 1-butanol) (Sigma-Aldrich,
Saint Louis, MO, USA) was added and kept under stirring for 2 h. The obtained colloidal solution was
centrifuged and washed three times with ethanol (>99.8% Sigma–Aldrich, Saint Louis, MO, USA) at
9000 rpm for 30 min. Lastly, the final product was calcined at 1000 ◦C for 2 h.

2.2. Particles-Containing Glasses Preparation

The particles-containing glasses were prepared by incorporating the aforementioned particles
in the host glasses with compositions (in mol %): 50P2O5-40SrO-10Na2O, labeled as SrNaP glass,
and 90NaPO3-(10 − x)Na2O-xNaF with x = 0 and 10, labeled as NaPF0 and NaPF10, respectively.
The glasses were synthesized in a quartz crucible using Na6O18P6 (Alfa-Aesar, technical grade),
Na2CO3 (Sigma–Aldrich, >99.5%), Sr(PO3)2, and NaF (Sigma–Aldrich, 99.99%). Sr(PO3)2 precursor was
independently prepared using SrCO3 (Sigma-Aldrich, Saint Louis, MO, USA,≥99.9%), and (NH4)2HPO4

as raw materials heated up to 850 ◦C. Prior to the melting, the glass NaPF0 was heat treated at 400
◦C for 30 min to decompose Na2CO3 and evaporate CO2. Details on the direct doping process of the
NaPF0 and NaPF10 glasses and of the SrNaP glass can be found in References [26] and [36], respectively.
The particles (1.25 wt %) were incorporated in the SrNaP glass at 1000 ◦C after melting at 1050 ◦C for
20 min. After 5 min, the glasses were quenched. The NaPF0 and NaPF10 glasses were melted at 750 ◦C
for 5 min, then the particles were added at 550 ◦C and finally the glass melts were quenched after a 3 min
dwell time.

After quenching, all the melts were finally annealed at 40 ◦C below their respective Tg for 5 h
in order to release the residual stress. All the glasses were cut and optically polished or ground,
depending on the characterization technique.
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2.3. Characterization Techniques

The thermal stability of the particles was measured by thermogravimetric analysis (TGA) using a
Perkin Elmer TGS-2 instrument (PerkinElmer Inc., Waltham, MA, USA). The measurement was carried
out in a Pt crucible at a heating rate of 10 ◦C/min in a controlled atmosphere (N2 flow), featuring an
error of ± 3 ◦C. The sample was approximately 10 mg of grounded particles.

The composition and morphology of the particles were determined using a field emission scanning
electron microscope (FE-SEM, Zeiss Merlin 4248, Carl Zeiss, Oberkochen, Germany) equipped with
an Oxford Instruments X-ACT detector and energy dispersive spectroscopy systems (EDS) (Oxford
Instruments, Abingdon-on-Thames, UK). The composition and morphology of the particles-containing
glasses were determined using FE-SEM/EDS (Carl Zeiss Crossbeam 540 equipped with Oxford
Instruments X-MaxN 80 EDS detector) (Instruments, Abingdon-on-Thames, UK). The images were
taken at the surface of the glasses, previously cut and optically polished. The samples were coated
with a thin carbon layer before the EDS elemental mapping. The elemental mapping analysis of the
composition of the samples was performed by using the EDS within the accuracy of the measurement
(± 1.5 mol %).

The crystalline phases were identified using the X-ray diffraction (XRD) analyzer Philips X’pert
(Philips, Amsterdam, Netherlands) with Cu Kα X-ray radiation (λ = 1.5418 Å). Data were collected
from 2θ = 0 up to 60◦ with a step size of 0.003◦.

The emission spectra in the 1400–1700 nm range were measured with a Jobin Yvon iHR320
spectrometer (Horiba Jobin Yvon SAS, Unterhaching, Germany) equipped with a Hamamatsu
P4631-02 detector (Hamamatsu Photonics K.K., Hamamatsu, Japan) and a filter (Thorlabs FEL 1500,
Thorlabs Inc., Newton, NJ, USA). Emission spectra were obtained at room temperature using an
excitation monochromatic source at 976 nm, emitted by a single-mode fiber pigtailed laser diode
(CM962UF76P-10R, Oclaro Inc., San Jose, CA, USA).

The fluorescence lifetime of Er3+:4I13/2 energy level was obtained by exciting the samples with a
fiber pigtailed laser diode operating at the wavelength of 976 nm, recording the signal using a digital
oscilloscope (Tektronix TDS350, Tektronic Inc., Beaverton, OR, USA) and fitting the decay traces by
single exponential. All lifetime measurements were collected by exciting the samples at their very
edge to minimize reabsorption. Estimated error of the measurement was ±0.2 ms. The detector used
for this measurement was a Thorlabs PDA10CS-EC (Thorlabs Inc., Newton, NJ, USA). The samples
used for the spectroscopic measurements were previously cut and optically polished.

3. Results and Discussion

Er2O3-doped TiO2, ZnO, and ZrO2 particles were synthesized using the sol-gel technique.
The morphology of the particles was assessed by FE-SEM analysis (see Figure 1).
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Figure 1. FE-SEM micrographs of Er2O3-doped TiO2 (a), ZnO (b), and ZrO2 (c) particles.

The Er3+-doped particles show agglomerates of nanoparticles with irregular shape. As can be
seen from Figure 1, the agglomerates are formed by small particles with a size of ~50–100 nm for the
TiO2, ~100–400 nm for the ZnO, and ~100–300 nm for the ZrO2 particles. Additionally, based on the
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EDS analysis, the composition of the particles was in agreement with the nominal one within the
accuracy of the measurement.

The XRD patterns of the Er3+-doped particles are presented in Figure 2.Materials 2018, xx, yy; doi: FOR PEER REVIEW  5 of 12 
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Figure 2. XRD patterns of the Er2O3-doped TiO2, ZnO, and ZrO2 particles, with the reference patterns
of the pyrochlore (P), rutile (R), hexagonal (H), Zn extra phase (*), and tetragonal (T) crystalline phases.

The XRD pattern of the Er2O3-doped TiO2 particles showed the presence of rutile phase (Inorganic
Crystal Structure Database (ICSD) file No. 00-021-1276) and also the pyrochlore phase (ICSD file No.
01-073-1647), which seems to be the major phase as reported in Reference [37] when adding Er2O3.
The XRD pattern of the Er2O3-doped ZnO particles revealed the presence of ZnO hexagonal wurtzite
phase (ICSD file No. 89-1397), together with an extra unidentified phase. Similar results were reported
by Rita John et al. [29], where the same unidentified phase was found in the XRD analysis of highly
Er2O3-doped ZnO particles. The ZrO2 tetragonal crystalline phase (ICSD file No. 66787) is present in
the Er2O3-doped ZrO2 sample, in agreement with References [38,39]. It should be pointed out that no
peaks related to Er2O3 were observed in the XRD measurements of all the samples.

Additionally, the fluorescence lifetime values of the Er3+:4I13/2 level upon 976 nm excitation of
the Er2O3-doped TiO2 and Zr2O particles were (0.1 ± 0.2) and (1.0 ± 0.2) ms, respectively. However,
in the case of the ZnO particles, the lifetime value could not be measured due to low IR emission from
the particles. The high concentration of Er2O3 in the particles is expected to lead to concentration
quenching resulting in a very short lifetime [9].

The thermal stability of the particles was assessed by TGA analysis (see Figure 3).
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Less than 1% of weight loss from all the investigated particles was detected when the temperature
increased to 1050 ◦C, thus indicating that the particles should not suffer any degradation when added
to the glass melt.

The SrNaP glasses were fabricated by incorporating the Er2O3-doped particles at 1000 ◦C after
the melting as in References [36,40]. The ZnO and ZrO2 particles-containing SrNaP glasses exhibited a
slight pink coloration, while TiO2 particles-containing glass displayed a purple color. Agglomerates of
particles were found in the glasses by naked eyes. No diffraction peaks of any crystalline phase were
found in the particles-containing glasses (data not shown), confirming that the number of particles in
the glasses was too small to be detected.

The morphology and the composition of the particles found at the surface of the glasses were
analyzed using FE-SEM/EDS analysis. The FE-SEM pictures and elemental mapping of Er2O3-doped
TiO2, ZnO, and ZrO2 particles found in the SrNaP glasses are shown in Figure 4a–c, respectively.
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Few microparticles with a size of ~100 µm were found in the Er2O3-doped TiO2

particles-containing glass matrix. The composition of the glass matrix and of the particles are in
accordance with the theoretical ones. The remaining TiO2 particles maintained their compositional
integrity in their center after the melting process, confirming the survival of some Er2O3-doped TiO2

particles in the glass. However, most of the Er2O3-doped TiO2 particles are suspected to degrade
during the glass preparation. Regarding the Er2O3-doped ZnO particles-containing glasses, a bright
area rich in Zn surrounds small particles with a size of ~15 µm. These particles contain mostly Er
and P, thus indicating that Zn3+ ions diffused from the particles into the glass matrix during the glass
preparation leading most probably to the precipitation of ErPO4 crystals (see Figure 4b). Therefore,
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the Er2O3-doped ZnO particles are also expected to degrade in the glass during its preparation, leading
to the diffusion of Zn and Er in the glass matrix which is in agreement with the pink coloration of
the glass itself. Figure 4c shows the mapping of the Er2O3-doped ZrO2 particles-containing glasses.
Particles with a size of ~50 µm were found. These particles also maintained their compositional
integrity in their center. However, contrary to the other particles, Sr-rich crystals were observed around
the particles as seen in Reference [36], confirming that crystals with specific composition such as ZrO2

and SrAl2O4 precipitated due to the decomposition of the particles.
The normalized emission spectra of the Er2O3-doped TiO2, ZnO, and ZrO2 particles and of their

corresponding particles-containing SrNaP glasses are reported in Figure 5.
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corresponding particles-containing SrNaP glasses.

The particles-containing glasses exhibit a different emission shape compared to that of the
particles alone, indicating that the neighboring ions arrangement around the Er3+ ions is different after
embedding the particles in the glasses. The emission spectra of the glasses are typical of the emission
band assigned to the Er3+transition from 4I13/2 to 4I15/2 in glass. Additionally, the investigated
glasses show similar emission in shape, indicating that the environment of Er3+ ions is similar
in the investigated glasses, as suspected from the Er3+:4I13/2 lifetime values measured at 976 nm
(~4.0 ± 0.2 ms) in the three investigated glasses. It should be pointed out that these lifetimes are longer
than the lifetime of the particles alone. Therefore, the absence of sharp peaks in the IR emission spectra
together with the long Er3+:4I13/2 lifetime values and the absence of up-conversion emission from the
glasses clearly suggest that a large number of particles suffered an important degradation during the
melting process. This experimental evidence is in agreement with the color of the glasses, as reported
in References [26,36,40]. Therefore, the Er3+ ions environment is expected to change from crystalline to
glassy when the particles are incorporated into the glasses increasing the bandwidth of the emission
band and the Er3+:4I13/2 lifetime.

In order to limit the degradation of the particles during the glass preparation, new glasses with a
lower melting temperature and with a composition of 90NaPO3-(10− x)Na2O-xNaF, with x = 0 (NaPF0)
and 10 (NaPF10) (in mol %), were investigated as an alternative host for the Er2O3-doped particles.
The optimization of the direct doping method can be found in Reference [25]; the Er2O3-doped
particles were added at 550 ◦C and the dwell time was 3 min. As opposed to the NaSrP glasses,
the Er2O3-doped TiO2- and ZnO-containing glasses exhibited a light pink coloration, whereas the
Er2O3-doped ZrO2-containing glasses were colorless. Some agglomerates could be observed in the
glasses with naked eye.

The normalized emission spectra of the NaPF0 and NaPF10 glasses are reported in Figure 6.
For the sake of comparison, the spectra of the particles alone are also shown.
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Figure 6. Normalized infrared emission spectra of the Er2O3-doped TiO2 (a) ZnO (b), and ZrO2 (c)
particles and of their corresponding particles-containing NaPF0 and NaPF10 glasses with 1.25 wt %
of particles.

Similarly to what previously reported for the NaSrP glasses, the spectra of the NaPF glasses were
also different compared to the spectra of the particles alone. However, one can also notice that the
shape of the emission depends on the glass composition: the emission band of the NaFP0 glasses
was similar to the emission bands presented in Figure 5, while the NaFP10 glasses exhibit different
emission bands depending on the particles. It should be pointed out the narrow bandwidth of the
emission band of the Er2O3-doped ZrO2 particles-containing NaPF glasses.

In contrast with the SrNaP glasses, the NaPF glasses, except for the TiO2-containing NaPF0 glass,
exhibit up-conversion emission confirming the survival of the particles. However, as observed for the
emission at around 1.5 µm, the shape of the visible emission is modified after adding the particles into
the glass (see Figure 7), thus confirming that the site of the Er3+ ions in the particles is changed after
embedding the particles into the glass. According to Reference [26], the change in the Er3+ site can be
related to the partial decomposition of the particles during the glass preparation.

Materials 2018, xx, yy; doi: FOR PEER REVIEW  8 of 12 

 

Similarly to what previously reported for the NaSrP glasses, the spectra of the NaPF glasses were 
also different compared to the spectra of the particles alone. However, one can also notice that the 
shape of the emission depends on the glass composition: the emission band of the NaFP0 glasses was 
similar to the emission bands presented in Figure 5, while the NaFP10 glasses exhibit different 
emission bands depending on the particles. It should be pointed out the narrow bandwidth of the 
emission band of the Er2O3-doped ZrO2 particles-containing NaPF glasses. 

In contrast with the SrNaP glasses, the NaPF glasses, except for the TiO2-containing NaPF0 glass, 
exhibit up-conversion emission confirming the survival of the particles. However, as observed for 
the emission at around 1.5 µm, the shape of the visible emission is modified after adding the particles 
into the glass (see Figure 7), thus confirming that the site of the Er3+ ions in the particles is changed 
after embedding the particles into the glass. According to Reference [26], the change in the Er3+ site 
can be related to the partial decomposition of the particles during the glass preparation. 

 

Figure 7. Normalized up-conversion emission spectra of the Er2O3-doped TiO2 (a), ZnO (b), and ZrO2 
(c) particles and of the corresponding particles-containing NaPF0 and NaPF10 glasses with 1.25 wt % 
of particles. 

The Er3+:4I13/2 lifetime values of the NaPF0 and NaPF10 glasses are listed in Table 1. 

Table 1. Er3+:4I13/2 lifetime values of the Er2O3-doped TiO2, ZnO and ZrO2 particles and of the particles-
containing NaPF0 and NaPF10 glasses. 

Sample code 
Er3+:4I13/2 Lifetime ±0.2 ms 

Particles Alone 
Particles-Containing Glasses 

NaPF0 NaPF10 
Er2O3-doped TiO2 particles 0.1 2.3 0.7 
Er2O3-doped ZnO particles n.a. 1.4 1.3 
Er2O3-doped ZrO2 particles 1.0 1.6 1.4 

Compared to the NaSrP glasses, the NaPF glasses exhibit shorter Er3+:4I13/2 lifetimes. These 
lifetimes are, however, longer than those of the particles alone. They are also longer than the lifetime 
of an Er3+-doped NaPF10 glass prepared using a standard melting process with Er2O3 doping level 
similar to that considered for the particles-containing glasses (Er3+:4I13/2 lifetime equal to (0.6 ± 0.2) 
ms). Therefore, the local environment of the Er3+ ions is expected to be modified after embedding the 
particles into the glasses. It does not correspond to the local environment of Er3+ ions in an amorphous 
matrix, confirming the survival of the Er3+-doped particles into the glasses. Additionally, the Er3+:4I13/2 
lifetime depends on the glass composition: independently of the particles, the Er3+:4I13/2 lifetimes of 
the NaPF10 glasses are the shortest, thus suggesting that the particles are less degraded in the NaPF10 
glass than in the NaPF0 one. Similar results were reported in Reference [25]. 

As performed for the NaSrP glasses, FE-SEM/EDS analysis was used to check the morphology 
and the composition of the particles. In all the glasses, the composition of the glass matrices was 
found to be in agreement with the theoretical one within the accuracy of the measurement (±1.5 mol 
%). No crystals around the particles were observed in the glasses, confirming that the crystals 
formation depends on the glass matrix host (see Figure 8). 

Figure 7. Normalized up-conversion emission spectra of the Er2O3-doped TiO2 (a), ZnO (b),
and ZrO2 (c) particles and of the corresponding particles-containing NaPF0 and NaPF10 glasses with
1.25 wt % of particles.

The Er3+:4I13/2 lifetime values of the NaPF0 and NaPF10 glasses are listed in Table 1.

Table 1. Er3+:4I13/2 lifetime values of the Er2O3-doped TiO2, ZnO and ZrO2 particles and of the
particles-containing NaPF0 and NaPF10 glasses.

Sample Code

Er3+:4I13/2 Lifetime ±0.2 ms

Particles Alone
Particles-Containing Glasses

NaPF0 NaPF10

Er2O3-doped TiO2 particles 0.1 2.3 0.7
Er2O3-doped ZnO particles n.a. 1.4 1.3
Er2O3-doped ZrO2 particles 1.0 1.6 1.4

Compared to the NaSrP glasses, the NaPF glasses exhibit shorter Er3+:4I13/2 lifetimes.
These lifetimes are, however, longer than those of the particles alone. They are also longer than
the lifetime of an Er3+-doped NaPF10 glass prepared using a standard melting process with Er2O3
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doping level similar to that considered for the particles-containing glasses (Er3+:4I13/2 lifetime equal
to (0.6 ± 0.2) ms). Therefore, the local environment of the Er3+ ions is expected to be modified after
embedding the particles into the glasses. It does not correspond to the local environment of Er3+

ions in an amorphous matrix, confirming the survival of the Er3+-doped particles into the glasses.
Additionally, the Er3+:4I13/2 lifetime depends on the glass composition: independently of the particles,
the Er3+:4I13/2 lifetimes of the NaPF10 glasses are the shortest, thus suggesting that the particles are less
degraded in the NaPF10 glass than in the NaPF0 one. Similar results were reported in Reference [25].

As performed for the NaSrP glasses, FE-SEM/EDS analysis was used to check the morphology
and the composition of the particles. In all the glasses, the composition of the glass matrices was found
to be in agreement with the theoretical one within the accuracy of the measurement (±1.5 mol %).
No crystals around the particles were observed in the glasses, confirming that the crystals formation
depends on the glass matrix host (see Figure 8).Materials 2018, xx, yy; doi: FOR PEER REVIEW  9 of 12 
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ZnO (b), and ZrO2 (c) particles-containing NaPF10 glasses. The direction of the scan starts at the circle
of the white line (corresponding to 0 µm).

Very few TiO2 particles were found in the NaPF0 glass, while a large amount of them could be
observed in the NaPF10 glass. These particles, as well as the ZnO and ZrO2 ones, maintained their
compositional integrity in their center in both glasses (see Figure 8), thus confirming the survival of
the Er2O3-doped particles in the glasses as suspected from their spectroscopic properties. However,
~5 mol % of TiO2 and ZnO were detected in the glass matrix ~5 µm close to the particles, whereas
a lower amount of ZrO2 (<3 mol %) was detected around the particles (~1 µm) in the glass matrix.
Therefore, as suspected from the color, the shape of the IR and Visible emissions and the Er3+:4I13/2
lifetimes of the particles-containing glasses, the TiO2 and ZrO2 particles are suspected to degrade the
most and the least in the NaPF glasses, respectively, as confirmed by FE-SEM/EDS analysis.
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4. Conclusions

Particles-containing glasses were fabricated using the direct doping method, which consisted of
the incorporation of Er2O3-doped TiO2, ZnO, and ZrO2 particles into the glasses after their melting.
Although the particles were found to be thermally stable up to 1050 ◦C, when added at 1000 ◦C
into the glass with composition 50P2O5-40SrO-10Na2O (in mol %), very few ones are suspected to
survive, as evidenced by the color (pink or purple depending on the composition of the particles),
the FE-SEM/EDS analysis, the broad emission band centered at around 1.5 µm, the absence of the
up-conversion and the long Er3+:4I13/2 lifetime of the particles-containing glasses. By lowering
the melting temperature and so the doping temperature to 550 ◦C, it was possible to limit the
decomposition of the particles into the glass melt as evidenced by the color of the glasses (light
pink or even colorless depending on the particles composition). Particles-containing glasses within
the 90NaPO3-(10 − x)Na2O-xNaF system exhibiting up-conversion were successfully synthesized.
From the narrow emission band centered at around 1.5 µm and the Er3+:4I13/2 lifetime values of the
particles-containing glasses, the particles, especially the ZrO2 ones, are expected to survive in the
NaPF10 glass, thus confirming that the direct doping technique can be profitably employed to fabricate
novel varieties of glasses with controlled local environment of the Er3+ ions when located in crystals.
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