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Abstract

The design and certification process of aerospace
structures require advanced tools able to con-
duct detailed stress and strain analysis. Neverthe-
less, the complexity of modern aircraft structures
and the use of composite materials can severely
increase the computational costs of finite ele-
ment models. This work proposes a global/local
method that consists on a two-step algorithm (in
a ”weak” sense) for the description of accurate
stress fields in critical (local) regions of complex
aerospace composite structures.

1 Introduction

As well known in the engineering practise, the
numerical models of aircraft structures are built
by combining one-dimensional (1D) and two-
dimensional (2D) finite elements, which op-
portunely discretize mathematical domains of
stringers, panels, ribs, and other components.
Clearly, this discretization entails a rather simpli-
fication of the reality. In fact, structures may con-
tain regions where three-dimensional (3D) stress
fields occur. To accurately capture these local-
ized 3D stress fields, solid models or higher-order
theories are necessary. However, in order to make
the model more efficient, a global/local approach
can be eventually employed.

Three main approaches are available in the
literature to deal with a global/local analysis:
(1) refining the mesh or the shape functions in
correspondence with the critical domain [1, 2,

3, 4]; (2) formulating multiple-model methods,
in which different subregions of the structure
are analysed with different mathematical mod-
els [5, 6, 7, 8]; (3) employing methods based on
the static condensation also known to as “super-
elements methods” [9]. The present paper deals
with multiple-model methods. In this case, dif-
ferent subregions of the structure are modelled
with kinematically incompatible elements, the
compatibility of displacements and equilibrium
of stresses at the interface between dissimilar el-
ements have to be achieved. In the s-version of
the finite element method (FEM) [5, 10], for ex-
ample, the resolution in a certain subregion of
the structure is increased by superimposing ad-
ditional meshes of higher-order hierarchical ele-
ments. In [6], Shim at al. combined 1D and 2D
finite elements with 3D solid elements via mul-
tipoint constraint equations evaluated by equat-
ing the work done on either side of the dimen-
sional interface. In [7], the coupling of struc-
tural models with different dimensionality was
achieved by exploiting conditions derived from
the governing variational principle formulated at
the continuous level. Ben Dhia [11] proposed
the Arlequin method to couple different numer-
ical models. This method was adopted by Hu et
al. [12] for the linear analysis of sandwich beams
modelled via 1D and 2D finite elements.

Among the multiple-model methods there are
the so called “multi-steps methods”, in which
the solution within the critical region depends
on the analysis of the global structure only for
the boundary conditions. For istance, in the

1



E. CARRERA , A. PAGANI , G. HC SILVA

Global Model

(a) Local region highlighted (b) Global/local coupling

Fig. 1 : Schematic of proposed global/local analysis methodology.

global/local method proposed by Mao et al. [13],
a coarse mesh was used to analyse the entire
structure to obtain the nodal displacements which
were subsequently used as displacement bound-
ary conditions for the refined regions of interest.
According to Mao and his co-workers, the ap-
plication of the boundary conditions in the local
analysis introduces errors unavoidably. To min-
imize the effect of such errors, the local anal-
ysis generally requires a region which is larger
than the region where stresses are of concern.
As a further example, Ransom and Knight [14]
presented an innovative method for performing
a global/local stress analysis. This method em-
ploys spline interpolation functions which satisfy
the linear plate bending equation to determine
displacements and rotations from a global model,
which are used as boundary conditions for the lo-
cal model. The local analysis is done in a sec-
ond step and it is completely independent of the
global one.

The aforementioned works make use of math-
ematical artifices to couple global and detailed lo-
cal models and to force the energy consistency at
the interface of kinematically incompatible struc-
tural models. On the other hand, the present re-
search proposes a variable kinematic formalism
along with a global/local methodology that con-
sists of a two-step algorithm for the evaluation
of accurate stress fields of aerospace composite
structures. In the proposed method, the first step
is devoted to the static analysis of a global model
of the structure and it can be done by commer-

cial software tools (e.g. MSc-Nastran, Abaqus
CAE) using 1D/2D finite elements. After the crit-
ical region of interest is identified, the second
analysis step is performed by using higher-order
models, to obtain accurate stress fields and singu-
larities through the thickness of composite lami-
nates. The utilized refined theories in the detailed
analysis are implemented in the domain of the
Carrera Unified Formulation (CUF) [15, 16]. In
detail, CUF is employed to generate theories of
structures which make use of generic expansion
of the generalized displacements. In essence, the
governing equations are written in terms of fun-
damental nuclei, which are invariant of the ap-
proximation order. As a consequence, the solu-
tion accuracy can be tuned opportunely to ensure
a perfect balance between kinematic consistency
with global model and enhanced efficiency at lo-
cal level. In fact, equivalent-single-layer (ESL)
[17] to layer-wise (LW) [18] and component-
wise (CW) [19] models can be developed in the
domain of CUF. In this work, mainly LW mod-
els are employed for capturing 3D stress distribu-
tions at the ply level.

2 The proposed global/local approach

Generally, FEM modelling of composite aircraft
structures comports a simplification of the real-
ity. Although these models are affected by geo-
metrical inconsistency, because the employed 1D
and 2D elements may have incompatible kine-
matics and the use of fictitious links is usually
required, they can provide reliable solutions and
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accurate results at global scale. In other words,
these simplified models which are the rule in the
engineering practise, can give a good estimation
of the global structural behaviour in terms of dis-
placement mechanisms. Nevertheless, if accurate
stress distributions are needed, for example close
to open holes and free edges, detailed analyses
which usually employ 3D finite elements are nec-
essary.

In the present work, the detailed (local) anal-
ysis is performed by using 1D refined CUF mod-
els. According to CUF, a layer-wise (LW) dis-
placement field of the composite beam is written
as:

u(x,y,z) = Fτ(x,z)uk
τ(y) τ = 1,2, ...,M (1)

where y is the longitudinal direction of the re-
fined 1D model; (x,z) are the cross-section co-
ordinate; u(x,y,z) is the three-dimensional dis-
placement field; uk

τ(y) is the vector of generalized
displacements for the k-th layer; and Fτ(x,z) are
the expansion functions of the cross-sectional do-
main. The class and number of expansion func-
tions is arbitrary, being M the maximum number
of expansions, which is a user defined parameter.
Repeating indexes denote summation. LW mod-
els can be implemented by using Lagrange Ex-
pansions (LE). This beam theory, introduced by
Carrera and Petrolo [18], is based on the use of
interpolating Lagrange polynomials as expansion
functions Fτ of the cross-sectional coordinates. In
this manner, the cross-section of the composite
beam can be discretized with an arbitrary number
of Lagrangian domains, which are used to repre-
sent the surfaces of each layer.

If compared to 3D modelling, CUF has been
demonstrated to provide extremely accurate so-
lutions for composite with at least one order
of magnitude less of degrees of freedom, see
[20]. Moreover, thanks to its intrinsic vari-
able kinematics characteristics, CUF is the ideal
tool for global/local analysis as information from
global to local model can be transferred with
ease and with no accuracy loss. For representa-
tive purpose, Fig. 1 shows a typical global/local
analysis of a representative aircraft wing. In
the present context, given the solution from

Fig. 2 : Composite coupon test under uni-axial
tension.

the global model, the displacement variables at
the local interface are transferred to CUF LW
model by employing linear shape functions along
the mid-plane and Reissner-Mindlin kinematics
along the thickness direction. This procedure en-
sures the minimum information loss and the con-
sistency of the local solution.

3 Numerical results

3.1 Global/local free-edge analysis

The analysis of a composite coupon made of
G947/M18 carbon-epoxy as shown in Fig. 2 is
carried out. The laminate has four plies with
stack sequence [10◦/− 10◦]s and dimensions as
follows: length L = 200 mm, width w = 20 mm,
thickness t = 0.76 mm. The material character-
istics are given in Lagunegrand et al. [21]; these
are:

• E11 = 97.6 GPa, E22 = 8.0 GPa, E33 = 8.0
GPa

• ν12 = 0.37, ν13 = 0.37, ν23 = 0.50

• G12 = 3.1 GPa, G13 = 3.1 GPa, G23 = 2.7
GPa

The coupon is subjected to uniaxial tension (lon-
gitudinal strain is εyy = 0.001). The dimensions
of the local region are a = c = 4 mm, b = d =
16 mm. The global model is analyzed with
MSc-Nastran using CQUAD4 laminated plate el-
ements. On the other hand, the local region is an-
alyzed using higher-order CUF models with LW
capabilities.
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Fig. 3 : Interlaminar stress distribution at free edge.

The proposed analysis aims at demonstrating
the capability of the proposed approach to deal
with free-edge effect. It is a well-known prob-
lem affecting laminated composites, which com-
ports singular stress states that arise at the in-
terfaces between dissimilar layers in the vicin-
ity of geometrical or mechanical discontinuities
in the structure. Figure 3 (a) shows the distribu-
tion of the transverse shear stress (σyz) at the in-
terface −10◦/10◦ along axis x in the local region
(x = 0 is the free edge). Furthermore, Fig. 3 (b)
shows the through-the-thickness distribution of
the of the same stress component at the free-edge.
Whenever possible, the proposed results are com-
pared with those given by Lagunegrand et al. [21]
and Martin et al. [22]. It is evident that the pro-
vided methodology is able to deal with free-edge
effects and stress singularities in accordance with
reference from the literature.

3.2 Composite wing

Figure 4 (a) shows the global finite element
model of a composite wing of an ultra-light air-
craft. The main structure is made of two spars

and 7 ribs. The structure is full composite and is
subjected to 4g maximum manoeuvre loading.

The global analysis is performed by us-
ing NX-Nastran and the composite laminate is
approximated by using PCOMP and, mainly,
CQUAD4 plate finite elements. The local anal-
ysis, on the other hand, is performed by CUF and
aims at describing in detail the interlaminar stress
distribution within a small region of the main spar
cap, as highlighted in Fig. 4 (b). This local re-
gion is a sandwich composite laminate made of
45◦ - oriented carbon fabric (FAB), carbon uni-
directional (UNI), and PVC core. The laminate
is made of 25 plies and the material sequence
is [FAB5/UNI3/(FAB/UNI2)4/UNI/FAB2/PVC/FAB].
The main material characteristics are given in Ta-
ble 1.

Figure 5 shows the local region analysed. In
detail, Fig. 5 (a) shows the material sequence and
the relative transverse displacements are depicted
in Fig. 5 (b). The through-the-thickness distribu-
tions of the in-plane normal stress components as
well as important shear stresses along the cen-
ter of the local region are shown in Figs. 6 (a)
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(a) Global model (b) Local region at the spar cap

Fig. 4 : Global-local analysis of a composite wing.

Material type E1 [GPa] E2 [GPa] G12 = G1z = G2z [GPa] ν12 Thickness [mm]
Carbon fabric 77.2 77.2 2.21 0.25 0.2
Carbon unidir. 109. 8.00 2.21 0.25 0.6
PVC core 1.00 1.00 0.28 0.25 5.0

Table 1: Material properties.

(a) Material sequence

(b) Relative transverse displacements

Fig. 5 : Local region of the composite wing.

and (b), respectively. As expected, the important
contribution is the one related to bending along
the y-coordinate. In contrast, the transverse shear
stress is negligible.

4 Conclusions

This paper has discussed global/local analyses
of composite laminates for aerospace applica-
tions. The proposed method couples available
commercial finite element tools with advanced
theories based on the Carrera Unified Formula-
tion (CUF). Thanks to the variable-kinematics
features of CUF and its intrinsic scalable na-
ture, a two-step global/local analysis is straight-
forward. In fact, the global solution can be used
at the local interface to run a local investigation
with no information loss and without any kine-
matics incompatibility between classical 2D fi-
nite elements and refined theories. As a matter
of fact, the analysis of the free-edge stresses of
a composite coupon subjected to uni-axial ten-
sion and the global/local analysis of a compos-
ite wing have demonstrated that the proposed re-
fined approach allows to describe in a very de-
tailed manner the interlaminar stress distribution
in composite laminates.
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