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The gradient flow structure of the model introduced in [CG99] for the dynamics of screw
dislocations is investigated by means of a generalised minimising-movements scheme ap-
proach. The assumption of a finite number of available glide directions, together with the
“maximal dissipation criterion” that governs the equations of motion, results into solving a
differential inclusion rather than an ODE. This paper addresses how the model in [CG99]
is connected to a time-discrete evolution scheme which explicitly confines dislocations to
move at each time step along a single glide direction. It is proved that the time-continuous
model in [CG99] is the limit of these time-discrete minimising-movement schemes when
the time step converges to 0. The study presented here is a first step towards a generali-
sation of the setting in [AGS08, Chap. 2 and 3] that allows for dissipations which cannot
be described by a metric.

Key Words: Motion of dislocations, generalised gradient flows, minimising-movement scheme,
energy dissipation inequality.
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1 Introduction

This paper is devoted to the application of the minimising-movement framework ([AGS08,
Section 2.3]) to the model introduced in [CG99] for the evolution of a finite number of
screw dislocations, under the constraint that dislocation movement only occurs along a
finite set of glide directions. This constraint enforces that defects only move along the so-
called slip planes, which are determined by the crystallographic structure. The direction
followed by each dislocation is the one dictated by a maximal dissipation criterion: it is
the glide direction which is closest in direction to the Peach-Köhler force that acts on
the dislocation.

Yet, this confinement of the dislocation motion along glide directions is not captured by
the model in [CG99]. Indeed, this model allows for dislocation glide along more complex
paths: dislocations can switch from one direction to another one, or even move along
curved lines. These behaviours are called cross-slip and fine cross-slip, respectively, in
[CG99]. Roughly speaking, at the turning point in cross-slip the dislocation switches
direction from the most dissipative one to another one which becomes equally dissipative.
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This switch between one glide direction and another happens at a much faster time scale
in fine cross-slip, giving the dislocation a curved trajectory.

The aim in this paper is to understand how such curved trajectories emerge from
dislocation motion along glide directions. Our main question is:

How does the evolution model in [CG99] connect to a different model which confines
dislocations to move along glide directions only?

Our main contribution is to solve this question by proposing a time-discrete variational
model (i.e. a minimising-movement scheme) for the movement of dislocations, which
confines the motion of any dislocation at each time step to a single glide direction, and
by proving that the limiting equation, as the time step goes to zero, is given by the model
in [CG99]. Interestingly, the confinement of dislocations to move along glide directions
leads to a dissipation which cannot be described as the square of a distance (it will not
satisfy the triangle inequality). Therefore, the well-known convergence of minimising-
movement schemes (see e.g. [AGS08]) does not apply, and our result is a first step in
generalizing the convergence of minimising-movement schemes.

After a brief prologue on dislocations in Section 1.1, we introduce the model from
[CG99] in Section 1.2, and our modified setting in Section 1.3. We then provide an
intuitive example (see Example 1.1) to illustrate the dynamics of screw dislocations. In
Section 1.5 we describe and discuss Theorem 3.1, which is our main result that describes
the connection between our modified setting and [CG99].

1.1 Screw dislocations

Dislocations are line-defects on the atomic length-scale in the crystallographic structure
of the material. Typical metals contain many dislocations (for example, cold-rolled metal
has a dislocation density of 1015 m2 [HB01, p. 20], which translates into 1000 km of dis-
location line per cubic millimetre). Their collective motion results in plastic deformation
of the material on length-scales between 1 µm and 1 mm. Figure 1 shows two straight
segments of a dislocation line in a cubic crystallographic lattice. The result of dislocations
being line-defects is that they induce a stress in the material. Dislocations elsewhere in
the material may move as a consequence of the stress. This results in an intriguing and
complex system of interaction line-defects. For more details we refer to [HL82, HB01].

We study the evolution of a set of n straight and parallel dislocation lines of ’screw’-
type (see Figure 1) in a three-dimensional elastic material undergoing antiplane shear.
The body is modelled by an infinite cylinder Ω × R. Therefore, we characterise the
positions of the screw-dislocations by points in the cross-section Ω ⊂ R2. Following the
model proposed in [CG99], we assume that the n screw dislocations z1, . . . , zn ∈ Ω are
constrained to move along glide directions. The glide directions are determined by those
directions along which the atoms in the material are most densely packed. For instance,
for a cubic atomic lattice, there are four glide directions given by {±e1,±e2} ⊂ S1 (ei
being the standard basis vectors in R2), and for a body-centred cubic or face-centred
cubic lattice, there are six glide directions which span the triangular grid of equilateral
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Figure 1. Pictorial representation of edge (above) and screw (below) dislocations.
(Source: https://commons.wikimedia.org/wiki/File:Vector_de_Burgers.PNG. Im-
age by David Gabriel García Andrade.)

triangles. We consider a more general setting in which the set of N ∈ 2N glide directions
is given by

G := {g1, . . . ,gN} ⊂ S1, (1.1)

which satisfies the basic properties

g ∈ G ⇒ −g ∈ G, and spanG = R2. (1.2)

Under the maximal dissipation criterion described above, the velocity vector of any
smooth solution t 7→ Z(t) = (z1, . . . , zn)(t) is aligned along one of the glide directions
at each time t. It turns out that generically, solutions of this type may not exist; this
phenomenon is illustrated in Example 1.1 below, and the simulations in [BFLM15, Sec. 4]
confirm this observation. In order to obtain existence of solutions, one is forced to allow
the motion of dislocations along a direction different than any of the glide directions,
called fine cross-slip [CG99] (or ‘sliding motion’ as in the theory of discontinuous differ-
ential equations (see e.g. [dBBCK08])). Note that fine cross-slip seemingly contradicts the
model assumption that screw dislocations only move along glide directions. The varia-
tional evolution model that we propose here shows how fine cross-slip can be incorporated
in the equations of motion, as the limit of rapidly alternating directions.

1.2 The model in [CG99]

Before defining the evolution model which confines dislocations to move along glide di-
rections only, we introduce the time-continuous model in [CG99] in more detail. Based
on [CG99, (1.10)], in [BFLM15] the following differential inclusion is posed to model the
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time-continuous dynamics of screw dislocations:

dzi
dt

(t) ∈ Fi(Z(t)), for all t ≥ 0, i = 1, . . . , n, (1.3)

where Z = (z1, . . . , zn)T ∈ Ωn denotes the positions of n screw dislocations in a pre-
scribed Lipschitz domain Ω ⊂ R2. Each dislocation is associated with a Burgers vector
bi, which describes the direction of lattice mismatch due to the presence of the dislo-
cation itself (see Figure 1). Due to the assumption of antiplane shear, in our case the
Burgers vectors are oriented along the e3-direction, so that they can be described by a
scalar quantity bi, which we call the Burgers modulus: bi = bie3. The quantities bi can
be positive (bi = 1) or negative (bi = −1) and their sign is responsible for the attraction
or repulsion of dislocations, as it can be seen in (1.4) below.

The set-valued function Fi(Z) projects the force fi(Z) on the i-th dislocation onto the
nearest glide direction. More precisely, we define the (nonlinear) multi-valued projection
operator PG : R2 → R2 by

PGξ :=
{

(g · ξ)g
∣∣∣g ∈ arg max

g̃∈G
g̃ · ξ

}
.

Then, Fi(Z) = coPGfi(Z), where co is the convex hull. The force fi(Z) = −∇ziE(Z) is
defined in [BM14, (4.4)], in which E takes the form

E(Z) := ϕ(Z) +

n∑
i=1

n∑
j=1
j 6=i

−bibj log |zi − zj |, (1.4)

where ϕ ∈ C∞(Ωn) (see [BM14, Lemma 5.1]) is bounded from above and satisfies ϕ(Z)→
−∞ as dist(zi, ∂Ω)→ 0 for any i ∈ N. The logarithmic interaction potential corresponds
to the Peach-Köhler force induced by screw dislocations, and ϕ describes the effect of
the traction-free boundary condition at ∂Ω. For our purposes it is enough to have E ∈
C1(Ωn \ S), where the set S of singular points is given by

Z ∈ S := ∂Ωn ∪
{
Z ∈ Ωn

∣∣∃ i 6= j : zi = zj
}
. (1.5)

In [BFLM15], local-in-time existence and uniqueness of solutions to (1.3) is proven for
suitable initial conditions. Here, a solution to (1.3) is defined to be an absolutely continu-
ous curve which satisfies (1.3) for a.e. t > 0. These solutions are equivalent to generalised
gradient flow solutions (see Section 2.3). The proof of well-posedness in [BFLM15] relies
on the theory for differential inclusions developed by Filippov [FA88].

Next we discuss the result in [ADLGP16] in the context of our main question above.
In [ADLGP16] a fully atomistic model is considered to describe the energy for a given
configuration Z as a function of the atom spacing ε. The dynamics are defined by imposing
a dissipation potential which is the square of a norm which is minimal in the glide
directions. The main results concern the derivation of the effective energy in the limit
ε → 0 (which is also done in [ADLGP14]), and the passage to the limit in the related
minimising-movement scheme as the time step converges to 0. When the dissipation is
chosen to be the square of the crystalline norm given by

‖x‖ := inf
{
α+ β

∣∣ there exist α, β ≥ 0 and g, g̃ ∈ G such that x = αg + βg̃
}
, (1.6)
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then the evolution (1.3) is obtained as a generalised gradient flow (see, e.g., [Mie16] or
Definition 2.1). While this result connects rigorously a detailed atomic description of the
dynamics of screw dislocations to the time-continuous evolution (1.3), it does not answer
our question above. Indeed, the dissipation in the atomic model is assumed to be derived
from a norm, by which dislocations are not confined to move along glide directions.

1.3 Evolution constrained along G

To confine screw dislocations to move along glide directions only, we impose a discrete-
in-time evolution model as a minimising-movement scheme. The special feature of this
scheme is that the related distance is replaced by a ‘quasi-distance’ D given by

d : R2 × R2 → [0,∞], d(x,y) :=

{
|x− y|, if x− y ∈ RG,
∞, otherwise,

(1.7)

D : (R2)n × (R2)n → [0,∞], D2(X,Y) :=

n∑
i=1

d2(xi,yi). (1.8)

Since d is only finite along glide directions, D violates the triangle inequality.
The minimising-movement scheme does not make sense for the energy E defined in

(1.4), because E is not bounded from below on the set S of singular points (1.5). For this
reason, we define a regularization of E as follows: for any ε > 0, we take Eε ∈ C∞((R2)n)

bounded from below, such that Eε = E on the closed set

Ωε :=
{
Z ∈ Ωn

∣∣ dist(Z, S) ≥ ε
}
.

By this choice, the gradient flow solutions of Eε coincide with those of E on the time
interval [0, Tε], where Tε is the first time at which a solution trajectory reaches ∂Ωε. We
comment further on this in Section 1.5.

To define the minimising-movement scheme, we take τ > 0 as the time step, T > 0 as
the end time, and Z0 ∈ Ωn as the initial condition. A discrete-in-time solution Zkτ ∈ Ωn

at the time points tk = kτ is defined by
Zk+1
τ ∈ arg min

X∈(R2)n
Φ
(
Zkτ ,X, τ

)
, k = 0, . . . , dT/τe − 1,

Z0
τ = Z0,

(1.9)

in which the functional Φ is given by

Φ
(
X,Y, τ

)
:=

D2(X,Y)

2τ
+ Eε(Y).

By the definition of D, dislocations are confined to move along one glide direction only
for each time step.

1.4 Illustration of screw dislocation motion

Example 1.1 illustrates the evolution defined by (1.3). More involved examples concerning
interacting dislocations are given in [BFLM15].
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Example 1.1 This example is based on [CG99, Figure 1]. We consider a single screw
dislocation in a medium Ω with glide directions given by G = {±e1,±e2} with ei the
standard unit vectors. We impose a continuous force field f : R2 → (0,∞)2. We choose f
such that the set {x ∈ R2 | f(x) is parallel to (e1 +e2)} equals the boundary of a bounded
domain F , in which f · e2 > f · e1, and outside of which f · e1 > f · e2. By (1.3), the
dislocation will move along e2 if it is inside F , and along e1 if it is outside R2. We
show trajectories of the dislocation for several initial conditions in Figure 2. We limit
our attention here to the direction of the movement and not to its speed.

A

B
e2

e1

Figure 2. Typical setting of Example 1.1, inspired by [CG99, Figure 1], along with a few
trajectories of the screw dislocation. The closed curve depicts the points x at which F (x)

is parallel to (e1 + e2).

The interesting part of the dynamics is the behaviour of the dislocation at ∂F . On ∂F
the right-hand side of (1.3) is multi-valued. ∂F is called the ambiguity set. We distinguish
the following three types of ambiguity sets: sources (dotted line), cross-slip (thin line),
and fine cross-slip (thick line).
If the screw dislocation is at a cross-slip point (say at the left-lower part of Figure 2)

at t = t1, then it can move in any direction θe1 + (1 − θ)e2 for θ ∈ [0, 1]. Whichever
direction is chosen, at t = t1 + ∆t the dislocation is inside F for any ∆t > 0 small
enough, and hence it will move in direction e2 as soon as it enters F .
Following a similar reasoning, at a fine cross-slip point (say at the left-upper corner of

Figure 2), we conclude that a dislocation tends to move along a fine cross-slip set. If it
hits the end point A, it will move along direction e1.
Following a similar reasoning, we conclude that the initial-value problem may not have

a unique solution at a source point. The word ‘source’ should be understood here in the
sense that time paths will never cross it.

1.5 Result and comments

Our main result is Theorem 3.1. It answers our main question by showing compatibility
of the evolution constrained to glide directions with the evolution (1.3) that can cause
dislocations to move in any direction. In particular, it gives a precise meaning to fine
cross-slip in terms of oscillating choices for the preferred glide direction in consecutive
time steps as the time step size converges to 0.

More precisely, Theorem 3.1 states in what sense solutions to the minimising-movement
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scheme (1.9) converge to a solution of


dzi
dt

(t) ∈ coPG
(
−∇ziEε(Z(t))

)
, for all t ∈ (0, T ], i = 1, . . . , n,

zi(0) = z0
i ,

(1.10)

as the time step τ → 0. By the definition of the regularization Eε, any solution of (1.10)
satisfies (1.3) on the time interval [0, Tε], where Tε is chosen such that any solutions Z(t)

remains within the set Ωε. We notice that if we fix ε0 > 0, then Tε0 > 0; moreover, it
is easy to see that Tε is a non-increasing function of ε. Therefore, ε > 0 can be chosen
arbitrarily.

As a corollary of Theorem 3.1, we obtain existence of solutions to (1.3) up to the first
time at which either two dislocations annihilate, or when a dislocation leaves the domain
Ω. This generalises the local-in-time well-posedness result of [BFLM15]. Theorem 3.1 also
reveals how (1.3) can be written as a generalised gradient flow (see Section 2.3). This
gradient flow structure is also obtained in [ADLGP16, (4.10)].

Theorem 3.1 is proved for all energies E ∈ C1((R2)n)∩W 1,∞((R2)n). To the best of our
knowledge, Theorem 3.1 provides the first extension of the theory in [AGS08, Chapters 2
and 3] to dissipations which are not related to a distance. We wish to comment on further
possible generalizations:

• Theorem 3.1 extends to higher dimensions for the particle positions with little modi-
fications to the proof. We provide the details in Section 4.1.

• Our proof of Theorem 3.1 heavily relies on the regularity of the energy E. In view of
the discontinuities in the projection operator PG , it seems reasonable to require the
force field −∇E to be continuous for (1.3) to be well-posed. Hence, we do not aim to
weaken the regularity conditions on E.

• By our regularisation Eε of E in (1.4) we cannot describe the annihilation of dislocations
or the absorption of dislocations at ∂Ω. Since lim supε→0 Tε is typically finite, we expect
the limit ε→ 0 of the gradient flows of Eε after Tε to depend on the detailed behaviour
of Eε around the singular set S. Since this detailed behaviour is artificial and enforces
dislocations not to annihilate, the limit ε → 0 is not the right object to understand
the annihilation of dislocations. In Section 4.2 we describe a different approach to
capture annihilation, based on a modification of the minimising-movement scheme, by
discussing an open problem concerning the description of annihilation in a variational
framework.

The remainder of this paper is structured as follows. In Section 2.3 we define precisely
the minimising-movement scheme (MMS) and describe the evolution model (1.3) in a
variational framework by means of an energy dissipation inequality (EDI). Section 2.4
presents a priori estimates which are required for the proof of Theorem 3.1, which is
contained in Section 3. Section 4 concerns the extension and the open problem related
to Theorem 3.1 as mentioned above.
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2 Preliminaries

2.1 Notation

Here we list symbols and abbreviations that we use throughout this paper:

|x| Euclidean norm
‖ · ‖ crystalline norm in R2 with respect to G (1.6)
‖ · ‖∗ dual norm of ‖ · ‖ (2.3)
x // y x is parallel to y, i.e. x/|x| = y/|y|
co convex hull
d̂ metric induced by ‖ · ‖ (2.10)
d ‘quasi-distance’, which is only finite along g ∈ G (1.8)
D̂ extension of the norm d̂ to (R2)n (2.10)
D extension of the ‘quasi-distance’ d to (R2)n (1.8)
E specific energy functional for edge dislocations; E : Ωn → R (1.4)
E generic energy functional; E ∈ C1((R2)n) ∩W 1,∞((R2)n)

EDI energy-dissipation inequality (2.13)
Φ functional to be minimised in the D-MMS (2.5)
g, G glide direction in S1, and set of all glide directions (1.2)
Λg cone around g (2.1)
MMS minimising-movement scheme (2.4)
Z particle positions; Z = (z1, . . . , zn)T ∈ (R2)n

Zkτ solution to the D-MMS at the kth time step (2.4)
Zτ step function related to (Zkτ )k; Zτ : [0, T ]→ (R2)n (2.6)
ZΓ
τ De Giorgi interpolant; ZΓ

τ : [0, T ]→ (R2)n (2.8)

2.2 Glide directions

In this section we show several basic properties of the set of glide directions G defined
in (1.1) satisfying the basic properties (1.2). Figure 3 illustrates an example. As a con-
sequence of (1.2), the number of glide directions N ≥ 4 is even. As S1 has a cyclic
ordering, we assume g1, . . . ,gN to be ordered counter-clockwise, and we set for conve-
nience g0 := gN and gN+1 := g1. Then, we define the bisectors

g′i :=
gi + gi+1

|gi + gi+1|
∈ S1, i = 1, . . . , N.

We define Λgi as the cone spanned by the bisectors g′i−1,g
′
i surrounding gi, i.e.

Λgi :=
{
αg′i−1 + βg′i

∣∣α, β > 0
}
⊂ R2. (2.1)

As a consequence,

Λg =
{
x ∈ R2

∣∣g is the unique maximizer of g̃ · x for all g̃ ∈ G
}
. (2.2)

The set G induces the crystalline norm ‖ ·‖ given by (1.6). The unit ball of ‖ ·‖ is given
by coG. The dual norm reads

‖x‖∗ := max
g∈G

g · x. (2.3)
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S1

g4 g1

g5

g2

g3

g6
g′4

‖ · ‖ = 1

Λg1

Figure 3. Example of a set glide directions G satisfying (1.2). The figure also depicts
several related objects such as: the bisector g′4, the cone Λg1 , and the unit sphere of the
crystalline norm ‖ · ‖.

2.3 MMS and EDI

We consider (R2)n as the state space equipped with the ‘quasi-distance’ D defined in
(1.8), and some E ∈ C1((R2)n) ∩W 1,∞((R2)n) as the energy functional. We note that
this class of energy functionals includes the energy Eε introduced in Section 1 as a regu-
larization of the energy E (1.4) which describes the system of screw dislocations.
MMS: For a time step τ > 0, an initial condition Z0 ∈ (R2)n, and a set G of N glide
directions satisfying (1.2), we consider the D-MMS given by

Zk+1
τ ∈ arg min

X∈(R2)n
Φ
(
Zkτ ,X, τ

)
, k = 0, . . . , dT/τe − 1,

Z0
τ = Z0,

(2.4)

in which the functional Φ is given by

Φ : (R2)n × (R2)n × (0,∞)→ (−∞,∞], Φ
(
X,Y, τ

)
:=

D2(X,Y)

2τ
+ E(Y). (2.5)

The only difference with (1.9) is that we use the more general energy functional E.
Existence of a solution (Zkτ )k to (2.4) is guaranteed by E being bounded from below and
lower-semicontinuous. Uniqueness does not hold in general.

For any solution (Zkτ )k to (2.4) we define two interpolation curves as mappings from
[0, T ] to (R2)n. The first one is the piecewise constant interpolant

Zτ (t) := Zkτ for t ∈
(
(k − 1)τ, kτ

]
. (2.6)

The second one is a De Giorgi interpolant ZΓ
τ (t), which is defined as follows. For any

t ∈ [0, T ], let

kτ := dt/τe − 1, and note that t ∈ (τkτ , τ(kτ + 1)]. (2.7)

Let δ := t− τkτ ∈ (0, τ ], and finally

ZΓ
τ (t) ∈ arg min

X∈(R2)n
Φ(Zkττ ,X, δ). (2.8)
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As δ ≤ τ , the following basic property (see the proof of [AGS08, Lemma 3.1.2]) holds

D
(
Zkττ ,Z

Γ
τ (t)

)
≤ D

(
Zkττ ,Zτ (t)

)
= D

(
Zkττ ,Z

kτ+1
τ

)
. (2.9)

The main challenge in passing to the limit τ → 0 in (2.6) is that D is not a metric. If
it were a metric, the techniques in [AGS08, Chapter 2 and 3] would apply directly. For
this reason, we consider the metric d̂ induced by the crystalline norm ‖ · ‖ on R2 defined
in (1.6). We further set

d̂(x,y) = ‖x− y‖, D̂2(X,Y) :=

n∑
i=1

d̂2(xi,yi), (2.10)

and note that d̂(x,x + αg) = d(x,x + αg) for all x ∈ R2, α ∈ R, and g ∈ G. We define
the D̂-MMS, Φ̂, and Ẑkτ analogously to (2.4)-(2.5) by replacing D with D̂.
It is straightforward to see that the following relation is satisfied

d̂(x,y) ≤ d(x,y) ∀x,y ∈ (R2)n.

EDI: Now we introduce the energy-dissipation inequality (EDI). To this aim, we first
show that (1.3) can be written as a (generalised) gradient flow (cf. [Mie16]).

Definition 2.1 (Generalised gradient flow) A triple (X ,E,R) is called a generalised gra-
dient flow if

• the state space X is a smooth manifold;
• the energy functional E : X → (−∞,∞] is smooth enough for the subdifferential

DE(x) ∈ T ∗xX to be well-defined for all x ∈ DomE;
• the dissipation potential R : TX → [0,∞] is convex, lower semicontinuous, and satis-
fies R(x, 0) = 0 for all x ∈ DomE.

The related evolution is given by

ẋ ∈ DξR∗
(
x,−DE(x)

)
, in X for a.e. t ∈ (0, T ), (2.11)

where R∗(x, ·) is the Legendre transform of R(x, ·), and Dξ denotes the subdifferential
with respect to the second argument of R∗.

We consider the generalised gradient flow given by the triple ((R2)n, E,Ψ), where Ψ

is defined by its Legendre transform

ψ∗ : R2 → [0,∞), ψ∗(ξ) :=
1

2
‖ξ‖2∗,

Ψ∗ : (R2)n → [0,∞), Ψ∗(ξ) :=

n∑
i=1

ψ∗(ξi).
(2.12)

With this choice, we obtain (1.3) as the evolution (2.11) of the triple ((R2)n, E,Ψ). This



Dynamics of screw dislocations 11

is easy to see after computing

D Ψ∗(ξ) = Dψ∗(ξ1)× . . .×Dψ∗(ξn) ⊂ (R2)n,

Dψ∗(ξ) =


0, if ξ = 0,{

(g · ξ)g
}
, if g ∈ G the unique maximizer of g · ξ,

co
{

(g′ · ξ)g′, (g′′ · ξ)g′′
}
, if

{
g′,g′′

}
= arg max

g∈G
g · ξ.

By the basic properties of the Legendre transform, we obtain

ψ(ẋ) =
1

2
‖ẋ‖2, Ψ(Ẋ) =

n∑
i=1

ψ(ẋi).

We remark that by the Euclidean structure of (R2)n, we can identify the tangent space
and its dual at any X ∈ (R2)n with (R2)n. On the other hand, we distinguish between the
notation for particle positions X, velocities Ẋ, and forces ξ, because these objects have
different interpretations. Likewise, we use the metric D̂ to measure the distance between
two particle configurations, ‖ · ‖ to measure velocities, and ‖ · ‖∗ to measure forces.

The evolution can be written equivalently as a force balance or as a power balance. An
overview of these descriptions is given in [Mie16]. By using that E ∈ C1((R2)n), [Mie16,
Theorem 3.3.1] provides a fourth equivalent description of (2.11), called the EDI. For
((R2)n, E,Ψ), the EDI reads

E(Z(T ))− E(Z(0)) +

ˆ T

0

Ψ
(
Ż(t)

)
+ Ψ∗

(
−∇E(Z(t))

)
dt ≤ 0. (2.13)

To define a solution concept for curves Z satisfying (2.13), we define the space of
absolutely continuous curves [AGS08, Def. 1.1.1]. For p ∈ [1,∞], we say that X ∈
ACp(0, T ; (R2)n) if there exists an f ∈ Lp(0, T ) such that∣∣X(s)−X(t)

∣∣
2
≤
ˆ t

s

f(r) dr, for all 0 < s ≤ t < T. (2.14)

By [AGS08, Rem. 1.1.3], we have for X ∈ ACp(0, T ; (R2)n) that its derivative is defined
almost everywhere.

Definition 2.2 (Solution to EDI) A curve Z : (0, T ) → (R2)n is a solution to the EDI
if Z ∈ AC2(0, T ; (R2)n) satisfies (2.13).

The EDI can also be written in terms of the right metric derivative of Z(t) and met-
ric slope of E(Z(t)) (for the precise definition and basic properties, see e.g. [AGS08,
Chapter 1]). For our purposes it suffices to define them, with respect to the metric D̂,
respectively as

|Z′|D̂(t) := lim
s↓t

D̂
(
Z(s),Z(t)

)
s− t

, and |∂E|D̂(Z) := lim sup
X→Z

E(Z)− E(X)

D̂(X,Z)
, (2.15)

where E ∈ C1((R2)n) allows us to write E(Z)−E(X) instead of the usual [E(Z)−E(X)]+.
The right metric derivative and the metric slope with respect to the ‘quasi-distance’ D
are defined analogously.
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Lemma 2.3 and Lemma 2.4 below contain the standard relation between Ψ and the
metric derivatives and slopes. Together they imply that the EDI (2.13) is equivalent to

E(Z(T ))− E(Z(0)) +
1

2

ˆ T

0

|Z′|2
D̂

(t) + |∂E|2
D̂

(Z(t)) dt ≤ 0. (2.16)

In addition, Lemma 2.4 guarantees equality of the slopes with respect to D and D̂.

2.4 Basic estimates

In the following two lemmas we prove the relation between the dissipation potential Ψ

and the metric derivatives and slopes related to D and D̂.

Lemma 2.3 (Relation between metric derivative and Ψ) For any Z ∈ AC2
(
[0, T ]; (R2)n

)
,

it holds
1

2
|Z′|2

D̂
(t) = Ψ

(
Ż(t)

)
, for a.e. t ∈ (0, T ).

Proof Since d̂ is induced by the norm ‖ · ‖, it holds for a.e. t ∈ (0, T ) that

|Z′|2
D̂

(t) = lim
s↓t

n∑
i=1

∥∥zi(s)− zi(t)
∥∥2

(s− t)2
=

n∑
i=1

∥∥żi(t)∥∥2
= 2Ψ

(
Ż(t)

)
.

Lemma 2.4 (Equality of slopes) For E ∈ C1((R2)n), it holds

1

2
|∂E|2D =

1

2
|∂E|2

D̂
= Ψ∗(∇E).

Proof The second equality is given by [AGS08, Corollary 1.4.5]. For the first equality,
we have |∂E|D ≤ |∂E|D̂ by the definition of D and D̂. For the opposite inequality, we
observe

|∂E|D(X) = lim sup
Y→X

∇E(X) · (X−Y) + o
(
|X−Y|2

)
D(X,Y)

. (2.17)

Next we are going to construct a particular sequence Yε → X as ε→ 0. Let

ḡi ∈ arg max
g∈G

[g · ∇iE(X)] , yεi := xi + ε [ḡi · ∇iE(X)] ḡi i = 1, . . . , n,

where ∇iE(X) := ∇xiE(X) ∈ R2. We note that, by definition of ‖ · ‖∗,

ḡi · ∇iE(X) = ‖∇iE(X)‖∗ =: ui.

Using the explicit sequence (Yε) in (2.17), we obtain that

|∂E|D(X) ≥ lim sup
ε→0

∑n
i=1

[
εuiḡi · ∇iE(X) + o(εui)

]
ε
(∑n

i=1 u
2
i

)1/2
= lim sup

ε→0

ε|u|22 + o
(
ε|u|2

)
ε|u|2

= |u|2 =
√

2Ψ∗(∇E(X)).
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Now we prove two estimates that are crucial for the proof of Theorem 3.1.

Lemma 2.5 (Estimate on single time step MMS) Given an energy E such that E ∈
C1((R2)n) ∩ W 1,∞((R2)n), there exists C > 0 such that for any τ > 0, X ∈ (R2)n

we have

D(X,Y) ≤ Cτ, and D̂(X, Ŷ) ≤ Cτ, (2.18)

where Y, Ŷ ∈ (R2)n are a minimisers of respectively Φ(X, ·, τ) and Φ̂(X, ·, τ).

Proof We have

E (X) ≥ inf
Z∈(R2)n

[
D2 (X,Z)

2τ
+ E(Z)

]
=
D2 (X,Y)

2τ
+ E (Y) ,

and, by Lipschitz continuity of E with respect to the Eulcidean metric (which is equivalent
to D̂), we obtain (2.18) from

D2 (X,Y)

2τ
≤ E (X)− E (Y) ≤ CD̂ (X,Y) ≤ CD (X,Y) .

Since the proof for D̂ is analogous, we omit it.

Lemma 2.6 (Bound on directional slope) Let E ∈ C1((R2)n) be bounded from below,
X ∈ (R2)n, τ > 0, and Y ∈ arg min Φ(X, ·, τ). Then

D(X,Y)

τ
≥ sup

{
lim

Yε→Y

E(Y)− E(Yε)

D(Y,Yε)

∣∣∣∣ (yεi − xi) // (yi − xi) for all i = 1, . . . , n

}
.

Remark 2.7 Lemma 2.6 follows directly from the proof of Lemma 3.1.3 from [AGS08].
We interpret the right-hand side of the inequality in Lemma 2.6 as a ‘directional slope’.
It is clear from the definition of the slope (2.15) that the directional slope is smaller than
or equal to the ‘standard’ slope |∂E|D(Y).
In fact, [AGS08, Lemma 3.1.3] states that if D were a metric (i.e. satisfies the triangle

inequality), then a stronger inequality than the one in Lemma 2.6 would hold, in which
the right-hand side is replaced by |∂E|D(Y). Such a stronger inequality is required in
[AGS08] to prove convergence of the MMS to the EDI.
Since D is not a metric, we cannot apply this stronger inequality. It is not hard to

construct an example in which |∂E|D(Y) is indeed larger than the ‘directional’ slope.
The bulk of our proof of the main result (Theorem 3.1) concerns an alternative argument
which side-steps the standard argument that relies on [AGS08, Lemma 3.1.3].

3 Convergence of the D-MMS to the EDI

We now prove the main result of the paper.

Theorem 3.1 Let T > 0 be an end time, Z0 ∈ (R2)n an initial condition, and E ∈
C1((R2)n) be an energy such that E and ∇E are bounded and uniformly continuous. For
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any time step τ > 0, let (Zkτ )k∈N be a solution to the D-MMS (2.4) and Zτ : [0, T ] →
(R2)n the corresponding step function defined in (2.6). Then, along a subsequence of
τ → 0, the curves Zτ (t) converge pointwise for all t ∈ [0, T ] to an absolutely continuous
curve Ẑ : [0, T ]→ (R2)n which satisfies the EDI (2.16).

Proof We split the proof in four steps. In Step 1 we use a refined version of Ascoli-
Arzelà to identify the limiting curve Z̃ ∈ AC2([0, T ]; (R2)n) for a subsequence of Zτ as
τ → 0. Step 2 is a consequence of Step 1, in which we precisely state in what sense the
interpolants Zτ and ZΓ

τ (2.8) converge. Step 3 is the main novelty of this paper, in which
we rely on Lemma 2.6 to provide an alternative argument to the standard one that relies
on [AGS08, Lemma 3.1.3]. The result of Step 3 allows us in Step 4 to pass to the limit
as τ → 0 to obtain that term in the EDI which is related to the slope |∂E|D̂.
Step 1: Compactness of the step functions Zτ .

We prove that Zτ converges point-wise in time along a subsequence to some

Z̃ ∈ AC2
(
[0, T ]; (R2)n

)
.

[AGS08, Proposition 3.3.1] guarantees the existence of Z̃ ∈ C
(
[0, T ]; (R2)n

)
provided

that there exists a symmetric function ω ∈ [0, T ]2 → [0,∞) satisfying

lim sup
τ→0

D̂
(
Zτ (s),Zτ (t)

)
≤ ω(s, t)

|s−t|→0−−−−−→ 0. (3.1)

We prove (3.1) by estimating D̂
(
Zτ (s),Zτ (t)

)
for arbitrary s, t ∈ [0, T ], where s ≤ t

without loss of generality. LetK = ds/τe and L = dt/τe, and note that s ∈ ((K−1)τ,Kτ ],
t ∈ ((L− 1)τ, Lτ ]. Then by the definition of Zτ (2.6), we have Zτ (s) = ZKτ and Zτ (t) =

ZLτ , and we estimate

D̂
(
Zτ (s),Zτ (t)

)
= D̂

(
ZKτ ,Z

L
τ

)
≤

L−1∑
k=K

D̂
(
Zkτ ,Z

k+1
τ

)
.

We continue the estimate by using Lemma 2.5 to obtain

D̂
(
Zτ (s),Zτ (t)

)
≤

L−1∑
k=K

Cτ = C(L−K)τ ≤ Cτ
(
dt/τe − ds/τe

)
≤ Cτ

(
t

τ
− s

τ
+ 1

)
= C(t− s) + Cτ, (3.2)

from which we conclude that (3.1) is satisfied for ω(s, t) = C|t − s|. In the sequel, we
proceed with the subsequence provided by [AGS08, Proposition 3.3.1] without changing
notation.

We prove that Z̃ is absolutely continuous by showing that (2.14) holds for some con-
stant function f . From Zτ (t)→ Z̃(t) for a.e. t ∈ (0, T ) and (3.2), we deduce that

D̂
(
Z̃(s), Z̃(t)

)
= lim
τ→0

D̂
(
Zτ (s),Zτ (t)

)
≤
ˆ t

s

C, for a.e. 0 < s < t < T. (3.3)

Since Z̃ is continuous, we conclude that (3.3) holds for all 0 ≤ s ≤ t ≤ T .
Step 2: Convergence of interpolants Zτ and ZΓ

τ (2.8).
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We fix t ∈ [0, T ], and let kτ = dt/τe − 1 as in (2.7). The compactness result in Step 1
implies directly that D̂(Zkτ+1

τ , Z̃(t))→ 0 pointwise in t as τ → 0. Then from Lemma 2.5
and (2.9) we also have

D̂
(
Zkττ , Z̃(t)

)
+ D̂

(
ZΓ
τ (t), Z̃(t)

) τ→0−−−→ 0.

As a result of this and ∇E being continuous, we have that ∇E evaluated at Zkττ , Zkτ+1
τ

and ZΓ
τ (t) converge to ∇E(Z̃(t)) as τ → 0.

Step 3: Convergence of directional derivative to slope.
We fix an arbitrary t ∈ [0, T ] and set kτ as in (2.7). Let

GΓ =
{
gΓ

1 , . . . ,g
Γ
n

}
∈ Gn be such that gΓ

i //
[
ZΓ
τ (t)−Zkττ

]
i
for all i = 1, . . . , n. (3.4)

We prove in this step that
n∑
i=1

[
gΓ
i · ∇iE(ZΓ

τ (t))
]2 τ→0−−−→ |∂E|2

D̂
(Z̃(t)). (3.5)

From the proof of Lemma 2.4 and the definition of Ψ∗ (2.12), it follows that (3.5) is
implied by the claim[

gΓ
i · ∇iE(ZΓ

τ (t))
]2 τ→0−−−→ max

g∈G

[
g · ∇iE(Z̃(t))

]2
, for all i = 1, . . . , n. (3.6)

For proving (3.6), we set ai := ∇iE(Z̃(t)) and gi as a minimiser of −g · ai. If ai = 0,
then (3.6) follows directly from Step 2.

The main part of the proof of (3.6) for ai 6= 0 is to characterise GΓ. We recall from
(2.8) that

ZΓ
τ (t) ∈ arg min

X∈(R2)n

[
1

2δ
D2(Zkττ ,X) + E(X)

]
, (3.7)

where δ = t− τkτ ∈ (0, τ ]. Since D is only finite on RG, we can restrict the minimisation
over X = (x1, . . . ,xn)T to xi = zkτi,τ + αigi with αi ≥ 0 and gi ∈ G. Thanks to Lemma
2.5 we can assume that αi ≤ Cδ. At the same time, we expand E(X) in a Taylor series
around Zkττ . By these arguments, we rewrite the minimisation problem in (3.7) as

E(Zkττ ) +

n∑
i=1

min
gi∈G

min
αi≥0

[
1

2δ
α2
i + αigi · ∇iE(Zkττ ) + o(δ)

]
. (3.8)

We recall from (3.7) that gΓ
i is a minimiser of this minimisation problem. We characterise

this minimiser by solving (3.7) first under the assumption that o(δ) = 0. Minimising (3.8)
over αi ≥ 0 yields

E(Zkττ )− δ

2

n∑
i=1

(
min
gi∈G

gi · ∇iE(Zkττ )
)2

. (3.9)

We treat the minimisation within parentheses for each i = 1, . . . , n separately. For con-
venience we drop the index i in our notation whenever possible. We split characterizing
gΓ in two cases: (i) −g · a has a unique minimiser g, and (ii) −g · a has exactly two
minimiser g1 and g2.

In case (i), it holds that a is an element of the cone Λg (2.1). Hence, there exists an
r > 0 such that B(a, r) ⊂⊂ Λg. Then, by Step 2, it holds that ∇iE(Zkττ ) ∈ B(a, r) for
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all τ small enough. Hence, g is the unique minimiser of g · ∇iE(Zkττ ), and, furthermore,
there exists a constant c > 0 independent of τ such that(

min
g∈G\{g}

(g − g) · ∇iE(Zkττ )
)
≥ inf

ã∈B(a,r)

(
min

g∈G\{g}
(g − g) · ã

)
≥ c > 0.

Hence, the minimiser of g ·∇iE(Zkττ ) is stable under perturbations of the form o(1), and
thus gi minimises the term in square brackets in (3.8). Hence, gΓ

i = gi, from which we
conclude that (3.6) holds in case (i).

In case (ii), it holds that a is an element of the cone Λ spanned by g1 and g2. Therefore,
similar to case (i), there exists an r > 0 such that B(a, r) is contained withing this cone,
and ∇iE(Zkττ ) ∈ B(a, r) for all τ small enough. An analogous argument as used in case
(i) implies that g · ∇iE(Zkττ ) is minimised by g1 or g2, and, furthermore, there exists a
constant c > 0 independent of τ such that(

min
g∈G\{g1,g2}

(g − gj) · ∇iE(Zkττ )
)
≥ inf

ã∈B(a,r)

(
min

g∈G\{g1,g2}
(g − gj) · ã

)
≥ c > 0,

for j = 1, 2.

Hence, either g1 or g2 minimises the term in square brackets in (3.7). This implies
gΓ ∈ {g1,g2}, and (3.6) follows from the observation that

gj · ∇iE(ZΓ
τ (t))

τ→0−−−→ gj · a = min
g∈G

g · a, for j = 1, 2.

Step 4: Z̃ satisfies the EDI.
To simplify the proof, we assume that Zkτ and ZΓ

τ are uniquely defined by (2.4) and
(2.8). In the general case we should take into account the supremum and the infimum
of D2(ZΓ

τ (t),Zkττ ) over all possible instances of ZΓ
τ (t). For the details, we refer to the

analogous argument in [AGS08, Theorem 3.1.4].
Following the lines of [AGS08, Theorem 3.1.4], we obtain for a fixed time step τ > 0

that

D2
(
Zkτ ,Z

k+1
τ

)
2τ

+

ˆ τ(k+1)

τk

D2
(
ZΓ
τ (t),Zkτ

)
2(t− τk)2

dt = E(Zkτ )−E(Zk+1
τ ), for k = 0, . . . , dT/τe−1.

Summation over k results in
dT/τe−1∑
k=0

D2(Zkτ ,Z
k+1
τ )

2τ
+

ˆ dT/τeτ
0

D2
(
ZΓ
τ (t),Z

bt/τc
τ

)
2(t− bt/τc τ)2

dt = E(Z0)− E
(
ZdT/τeτ

)
. (3.10)

Next we show how to pass to the limit in the terms of (3.10) as τ → 0. We set
kτ (t) = dt/τe − 1 as in (2.7). By Step 2, the right-hand side of (3.10) converges to the
difference between the energy evaluated at Z̃(T ) and Z0. Regarding the first term in the
left-hand side of (3.10), we use the estimate [AGS08, (3.3.10)] to obtain that

lim inf
τ→0

τ

kτ (T )∑
k=0

D2(Zkτ ,Z
k+1
τ )

2τ2
= lim inf

τ→0

ˆ dT/τeτ
0

D2
(
Z
kτ (t)
τ ,Z

kτ (t)+1
τ

)
2τ2

dt

≥ lim inf
τ→0

ˆ dT/τeτ
0

D̂2
(
Z
kτ (t)
τ ,Z

kτ (t)+1
τ

)
2τ2

dt ≥ 1

2

ˆ T

0

∣∣Z̃′∣∣2
D̂

(t) dt.
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We prove the convergence of the second term in the left-hand side of (3.10) as follows.
We fix t ∈ [0, T ] and τ > 0. By the definition of ZΓ

τ in (2.8), Lemma 2.6 applies to

D
(
ZΓ
τ (t),Z

kτ (t)
τ

)
t− τkτ (t)

≥ sup

{
lim

Yε→Y

E(ZΓ
τ (t))− E(Yε)

D(ZΓ
τ (t),Yε)

∣∣∣∣[
Yε − Zkτ (t)

τ

]
i
//
[
ZΓ
τ (t)− Zkτ (t)

τ

]
i
for all i = 1, . . . , n

}
. (3.11)

We set GΓ as in (3.4), and note that gΓ
i //[ZΓ

τ (t)−Z
kτ (t)
τ ]i. Hence, we can bound the supre-

mum in (3.11) from below by chosing Yε := GΓ
ε + ZΓ

τ (t), where GΓ
ε := (ε1g

Γ
1 , . . . , εngΓ

n)

for some ε = (ε1, . . . , εn)→ 0. This yields

D
(
ZΓ
τ (t),Z

kτ (t)
τ

)
t− τkτ (t)

≥ lim sup
ε→0

E(ZΓ
τ (t))− E(ZΓ

τ (t) + GΓ
ε )

|ε|2

= lim sup
ε→0

1

|ε|2

( n∑
i=1

εig
Γ
i · ∇iE(ZΓ

τ (t)) + o(|ε|2)

)
:= lim sup

ε→0

ε · u
|ε|2

= |u|2,

where u :=
(
gΓ

1 · ∇1E(ZΓ
τ (t)), . . . ,gΓ

n · ∇nE(ZΓ
τ (t))

)
. In Step 3 we prove that |u|22 →

|∂E|2
D̂

(Z̃(t)) as τ → 0. Hence, by applying Fatou’s Lemma, we obtain

lim inf
τ→0

1

2

ˆ T

0

D2
(
ZΓ
τ (t),Z

bt/τc
τ

)
(t− bt/τc τ)2

dt ≥ 1

2

ˆ T

0

|∂E|2
D̂

(
Z̃(t)

)
dt.

Combining the results above, we obtain after passing to the limit τ → 0 in (3.10)

1

2

ˆ T

0

|Z̃′|2
D̂

(t) dt+
1

2

ˆ T

0

|∂E|2
D̂

(
Z̃(t)

)
dt ≤ E(Z0)− E(Z̃(T )),

from which we conclude by Lemma 2.3 and Lemma 2.4 that Z̃ satisfies the EDI.

4 Generalisations of Theorem 3.1

Here we discuss in more detail two of the three remarks on Theorem 3.1 that are men-
tioned in Section 1.5.

4.1 Extension to higher dimensions

Theorem 3.1 can be generalised to higher dimensions for the particle positions. Although
this generalisation finds no direct application to dislocation configurations, our setting
captures a wide range of particle systems where the movement of particles is restricted
to a discrete set of directions.

We show this by considering n particles with positions zi ∈ Rd with d ≥ 2. Since the
setting is analogous to the two-dimensional scenario, we keep the same notation, and
only mention the important differences. One such difference is the set of glide directions
given by

G := {g1, . . . ,gN} ⊂ Sd−1,
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which satisfies the two properties

g ∈ G ⇒ −g ∈ G, and spanG = Rd.

The related crystalline norm reads

‖x‖ := min

{ N∑
k=1

αk

∣∣∣∣αk ≥ 0 such that
N∑
k=1

αkxk = x

}
. (4.1)

Next we show that the dual norm can be characterised by

‖x‖∗ := max
y∈Rd\{0}

x · y
‖y‖

= max
g∈G

g · x. (4.2)

Since the maximum is taken over a smaller space in the right-hand side of (4.2), it
suffices to prove that it is larger than or equal to the left-hand side. To this aim, let y be
a maximiser of the left-hand side, and let αk ≥ 0 as in (4.1). We conclude by estimating

‖x‖∗ =
x · y
‖y‖

=

( N∑
k=1

αk

)−1 N∑
k=1

αkgk · x ≤ max
g∈G

g · x.

In terms of the crystalline norm and its dual we define the distances D and D̂ and the
related Ψ and Ψ∗ analogously to the two-dimensional setting. With these objects, the
MMS (2.4) and EDI (2.13) are defined analogously.

It is readily checked that the basic estimates in Section 2.4 and most steps in the
proof of Theorem 3.1 hold in the d-dimensional case by analogous arguments. The only
part where the extension to d requires a modification is for the characterisation of the
minimiser of the term within parenthesis in (3.9) in Step 3 in the proof of Theorem 3.1.
The remainder of this section describes this modification.

First, we define the cone Λg as an extension of (2.1) by

Λg :=

{
x ∈ Rd

∣∣∣∣g · x > max
g̃∈G\{g}

g̃ · x
}
. (4.3)

We remark that {Λg ∩ Sd−1}g∈G describes the Voronoi tessellation of Sd−1 with respect
to G.

With (4.3) it is easy to see that the characterisation of the minimiser in (3.9) can be
done with an analogous argument when a ∈ Λg for some g ∈ G. If a /∈ ∪g∈GΛg, then∣∣∣ arg max

g∈G
g · a

∣∣∣ ≥ 2,

while in the two-dimensional scenario the left-hand side equals 2. In any case, the argu-
ment in Step 3 also holds when more than 2 glide directions are considered.

4.2 Annihilation of dislocations in a variational framework

With Theorem 3.1 we proved that the time-continuous model in [CG99] can be obtained
as the limit of the time-discrete D-MMS schemes when the time step converges to 0. We
would like to address an open problem regarding annihilation of dislocations.

By regularizing the energy to prevent the minimising-movement scheme in (1.9) to
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jump in the first time step to a state in which the energy equals −∞, we remove the pos-
sibility for dislocations to annihilate or to be absorbed at ∂Ω. This regularization of the
energy is therefore artificial. Indeed, the evolution defined by (1.3) can easily be modified
to allow for annihilation; whenever two dislocations annihilate (or one dislocation leaves
the domain Ω), the evolution can be restarted by removing the annihilated dislocations
from the equation, and taking the current positions of the other dislocations as the new
initial condition. This raises the following question: is it possible to modify the MMS to
describe such dynamics which allow for annihilation in a variational framework?

In [ADLGP14] the minimum in (1.9) is taken over a τ -independent neighbourhood
N of Zkτ . With this strategy, the energy does not need to be regularized, but the MMS
breaks down whenever the difference between any pair of opposite dislocations is in N .

One idea to make this approach work, is to make N dependent on τ , such that it
shrinks to a singleton as τ → 0, but at a slower rate than τ (e.g.,

√
τ).

The main challenge is to treat the time step in which annihilation takes place. From the
procedure above, it seems reasonable to restart the MMS with a new energy (consisting
of fewer dislocations) while keeping fixed the positions of the dislocations which were
not annihilated. We expect that passing to the limit τ → 0, if possible, requires serious
modifications to the argument in [AGS08, Chapter 2 and 3].
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