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COUNTING ARITHMETIC FORMULAS

EDINAH K. GNANG, MAKSYM RADZIWI L L, AND CARLO SANNA

Abstract. An arithmetic formula is an expression involving only the constant
1, and the binary operations of addition and multiplication, with multiplication
by 1 not allowed. We obtain an asymptotic formula for the number of arithmetic
formulas evaluating to n as n goes to infinity, solving a conjecture of E. K. Gnang
and D. Zeilberger. We give also an asymptotic formula for the number of arithmetic
formulas evaluating to n and using exactly k multiplications. Finally we analyze
three specific encodings for producing arithmetic formulas. For almost all integers
n, we compare the lengths of the arithmetic formulas for n that each encoding
produces with the length of the shortest formula for n (which we estimate from
below). We briefly discuss the time-space tradeoff offered by each.

1. Introduction

1.1. Counting arithmetic formulas. An arithmetic formula is an expression in-
volving only the constant 1 and the binary operations of addition and multiplication,
with multiplication by 1 not allowed. For example, 4 has exactly 6 arithmetic for-
mulas,

1 + (1 + (1 + 1)), 1 + ((1 + 1) + 1), (1 + (1 + 1)) + 1,

((1 + 1) + 1) + 1, (1 + 1) + (1 + 1), (1 + 1)× (1 + 1)

A systematic study of arithmetic formulas was initiated by Patrick, Gnang and
Zeilberger [6] [11]. The number of arithmetic formulas evaluating to n using only
addition corresponds to the number of ways one can place a sequence of parenthe-
ses in the sum 1 + 1 + · · · + 1, containing n times the number 1. It is well known
that there is Cn−1 ways of doing this, where Cn is the Catalan number [14, Ch. 6,
Corollary 6.2.3],

Cm :=
1

m+ 1

(
2m

m

)
∼ 1√

π

4m

m3/2
as m→∞.
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2 E. GNANG, M. RADZIWI L L, AND C. SANNA

On the other hand, the number of arithmetic formulas for n using addition and
multiplication is more mysterious. It was conjectured by Gnang and Zeilberger [6]
that there is an asymptotic of the form c · ρn · n−3/2, with two constants c > 0 and
ρ > 4 (with ρ most likely a transcendental number). Our first result is a proof of
this conjecture. Let f(n) be the number of arithmetic formulas for n [8].

Theorem 1.1. There exists constants c > 0 and ρ > 4 such that

f(n) ∼ cρn

n3/2
,

as n→∞. In fact,

c = 0.145691854699979 . . .

ρ = 4.076561785276046 . . .

In addition our method gives an asymptotic expansion for f(n). We refer the
reader to the proof of Theorem 1.1 for more details. Theorem 1.1 is also motivated
by some relations with the factoring problem, see Section 1.2.

We obtain a completely explicit characterization of the constant ρ. It is determined
as ρ := 1/ξ where 0 < ξ < 1/4 is the smallest positive solution to the equation

F̃ (ξ) = 1/4, with

F̃ (z) := z +
∞∑
d=2

f(d)(F (zd)− zd) and F (z) :=
∞∑
n=1

f(n)zn.

The proof of Theorem 1.1 can be easily adapted to count the number of arithmetic
formulas in which also exponentiation is allowed (and such that 1 is never an ar-
gument of exponentiation). We call such formulas arithmetic exponential formulas.
An analogue of Theorem 1.1 holds for counting arithmetic exponential formulas but
with a larger ρ = 4.13073529514801 . . ..

The proof of Theorem 1.1 depends on generating functions and complex analysis.
A natural idea is to produce an elementary proof of Theorem 1.1 by first asking for
the number fk(n) of arithmetic formulas for n using only addition and exactly k
multiplication operations. This we achieve in the theorem below.

Theorem 1.2. For all integers k ≥ 0, we have

fk(n) ∼ σk

4
√
π k!

4nnk−3/2,

as n→ +∞, where

σ :=
∞∑
m=1

1

4m−1

∑
d |m

1<d<m

f0(d)f0(m/d).
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One would like to sum the above formula over all k, assuming sufficient uniformity,
and claim that ρ in Theorem 1.1 is equal to 4eσ. However ρ < 4eσ and therefore for
large k there occurs a significant break in the uniformity of Theorem 1.2. This is
expected since, for example, fk(n) = 0 for k > log n/ log 2.

If we consider two arithmetic formulas to be equivalent if one can be obtained
from the other through a repeated application of the commutative and associative
properties (hence, for example,

(1 + 1)× ((1 + 1) + 1), (1 + 1)× (1 + (1 + 1)), (1 + (1 + 1))× (1 + 1),

are all equivalent arithmetic formulas for 6) then the problem of counting arithmetic
formulas becomes much different. Precisely, Sanna [13] proved that the number of
inequivalent arithmetic formulas for n is exp(βn + O(

√
n)), where β := log(24)/24,

as n→ +∞.

1.2. Factoring. One motivation for our work comes from factoring. For a given
positive integer n one would like to understand the following graph Gn: The nodes
of the graph Gn correspond to the various arithmetic formulas for n and an edge is
placed between two nodes if one can pass from one formula to the other by using
only one operation of either associativity, distributivity or commutativity.

One can depict arithmetic formulas as full binary trees, so that the graph Gn

is a graph whose vertices correspond to certain special full binary trees. Various
arithmetic algorithms such as integer factoring algorithms can be depicted as walks
starting from some particular vertex of the graph Gn (say the one corresponding
to the recursive Horner encoding, see below for a definition of this encoding) and
terminating at a vertex associated with a formula encoding of n whose corresponding
tree is rooted at a multiplication node.

A vertex v of Gn corresponding to an arithmetic formula using only additions
has the largest possible degree in Gn, precisely deg(v) = f0(n) − 1. So in order
to understand the connectivity of the graph Gn we compare f0(n) − 1 to the order
of the graph Gn. The order of the graph Gn corresponds to the number f(n) of
representations of n using only 1’s and operation of addition and multiplication.
Therefore as an immediate consequence of Theorem 1.1 we obtain the following

Corollary 1.3. Let C = ρ/4 = 1.019140446319 . . .. Then, for some constant c > 0,
as n→∞,

max
v∈Gn

deg(v) ∼ c · |Gn|
Cn

.

Of particular interest in the graph Gn are formulas which are short because they
minimize the space needed for encoding n.
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1.3. Shortest encodings. We will discuss three special monotone formula encod-
ing schemes called the first canonical form or Goodstein encoding [7], the second
canonical form [6] and the Horner encoding. We will focus on arithmetic exponen-
tial formulas (that is, arithmetic formulas allowing exponentiation), because a lower
bound for the lengths of such formulas is also a lower bound for the length of the
shortest arithmetic formula with only addition and multiplication allowed.

The Goodstein encoding consists in writing the binary expansion of an integer
n =

∑
i 2

ai and recursively writing down the binary expansion for each integer ai
until we obtain a representation of n as formula involving only 2 and 1’s, the final
step will consist in replacing each 2 by 1 + 1 thereby obtaining a monotone formula
encoding of n which only uses additions (+) and exponentiations (∧) gates and has
input 1. For example the Goodstein encoding for the number 31 corresponds to

31 = (1 + 1)((1+1)(1+1)) +
(

(1 + 1)((1+1)+1) +
(

(1 + 1)(1+1) + ((1 + 1) + 1)
))

.

By contrast to the Goodstein encoding, the second canonical form of an integer
n is slightly more intricate. We start by writing down the prime factorization
n = pα1

1 · · · pαr
r and subsequently we express each prime as 1 + (pi − 1). Finally

we recursively apply this scheme to every (pi − 1) and every exponent αi. Thus we
obtain a monotone formula encoding for n which uses a combination of addition (+),
multiplication (×), and exponentiation gates (∧) and input restricted to 1. As an
example we express the second canonical form associated to 2430

2430 =
(

(1 + 1)× (1 + (1 + 1))(1+(1+1)(1+1))
)
×
(

1 + (1 + 1)(1+1)
)
.

In [6] it was observed that for most integers n the second canonical form is smaller
than the Goodstein encoding. Our next result provides some theoretical validation
for this empirical observations. Let Sshort (n) denote the length of the shortest mono-
tone formula encoding of n, let SFCF (n) and SSCF (n) denote respectively the size of
the first and second canonical form encoding of n. The special interest in formula
sizes stems from the connection between circuit complexity and integers encoding
schemes. Building on a sequence of constructions by Cheng [2] and Koiran [10],
Burgisser [1] showed that if the sequence of integers {n!}n∈N is hard to compute, then
any algebraic circuits for computing the permanent of a sequence {Mn ∈ Zn×n}n∈N
of matrices using addition (+) and multiplication (×) gates with input restricted to
{−1, 1}, must have superpolynomial size.
Also related results (for example, for circuits) have been obtained in [3] and [4]. We
refer the reader to the references there-in for further information on this topic.

Theorem 1.4. For almost all positive integers n we have

Sshort (n) ≥ log n

log 4
.
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Precisely, given ε > 0, the number of integers n ≤ x such that

Sshort (n) ≤ (1− ε) log n

log 4

is O(x1−ε), as x→ +∞.

Theorem 1.5. Given ε > 0, for almost all positive integers n,

SFCF(n) ≥
(

1

4(log 2)2
− ε
)
· log n log log n.

Theorem 1.6. For all integers n ≥ 2, we have

SSCF (n) ≤ 6
log n

log 2
.

In conclusion, while the first canonical form is rapid it provides formulas of sub-
optimal length compared to the shortest formula. The second canonical form is more
computationally intensive but gives rise to shorter formulas, of quality comparable to
the shortest formula. The drawback is computational complexity, and this drawback
is alleviated by the Horner encoding, which is obtained from a recursive factoring
of the Goodstein encoding. We write below the recursive Horner encoding of the
integer 53376

53376 =
((

((1 + 1) + 1)(1 + 1)(1+1) + 1
)
(1 + 1)(1+1)(1+1)+1 + 1

)
(1 + 1)((1+1)+1)(1+1)+1

The properties of the recursive Horner encoding are similar to the second canonical
form. For example we obtain essentially the same results for SHor(n) as for SSCF(n).
We suspect however that the second canonical form gives on average slightly shorter
formulas than the Horner encoding. We think it is an interesting question but we
did not pursue it. Finally we note that one can efficiently recover recursive Horner
encodings from Goodstein encodings.

Notation. Hereafter, N denotes the set of positive integers and N0 := N∪{0}. We
use the Landau–Bachmann o and O symbols, as well as Vinogradov’s � notation,
with their usual meanings. We adopt the usual convention that empty sums and
empty products, e.g.

∑y
n=x and

∏y
n=x with x > y, have values 0 and 1, respectively.

Moreover, we employ the convention that a binomial coefficient
(
a
b

)
= 0 if a < b.

Finally, if g and h are two arithmetic functions, we write g ∗′ h for their proper
Dirichlet convolution (cf. [9, Ch. 2]), i.e., the function defined by

(g ∗′ h)(n) :=
∑
d |n

1<d<n

g(d)h(n/d), n ∈ N,

where the sum runs over all the proper divisors d of n.
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2. Preliminaries

First of all, we need a rigorous formal definition of what arithmetic formulas are.

Definition 2.1. Let n be a positive integer. An arithmetic formula A for n is an
N-valued {+,×}-labeled full binary tree such that:

(i). The value of the root is n.
(ii). The value of each leaf is 1.
(iii). All node except the leaf nodes are labelled with a + (additive node) or ×

(multiplicative node).
(iv). The value of each additive node is a + b, where a and b are the values of its

children.
(v). The value of each multiplicative node is ab, where a and b are the values of its

children.
(vi). If a and b are the values of the children of a multiplicative node, then a, b ≥ 2.

Similarly, an arithmetic exponential formula E for n is an N-valued {+,×,∧}-labeled
full binary tree that satisfies all the previous points, only with (iii) slightly modified
to

(iii’). All nodes except the leaf nodes are labelled with + (additive node), × (multi-
plicative node) or ∧ (exponential node).

and furthermore

(vii). The value of an exponential node is ab, where a and b are the values of its left
and right children, respectively.

(viii). If a and b are the values of the children of an exponential node, then a, b ≥ 2.

Finally, we say that a multiplicative node of A or E is primitive if it has no multi-
plicative ancestor.

Now we can also define the length of an arithmetic formula.

Definition 2.2. The size or length of an arithmetic formula (or an arithmetic expo-
nential formula) A is the number of nodes of A; equivalently, the number of symbols
1, +, × and ∧ needed to write A in the usual infix notation, or in Polish notation.
Note that parenthesis do not count.

We state below a frequently used immediate consequence of Stirling’s formula.

Lemma 2.1. We have,

f0(n) = Cn−1 ∼
1

4
√
π

4n

n3/2
,

as n→ +∞.
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3. Proof of Theorem 1.1

We start with a couple of lemmas. For all integers n ≥ 2, we denote by f+(n),
respectively f×(n), the number of arithmetic formulas for n which root node is
additive, respectively multiplicative. We set also f+(1) := 1 and f×(1) := 0. Thus,
obviously, f(n) = f+(n) + f×(n), for all positive integers n. Moreover, the following
lemma can be easily proved.

Lemma 3.1. For all integers n ≥ 2, it results

f+(n) =
n−1∑
h=1

f(n− h)f(h)

and f×(n) = (f ∗′ f)(n).

The next lemma is a first upper bound on f(n) which we need to be sure that the
radius of convergence of F (z) is positive.

Lemma 3.2. We have f(n) < 8n, for each positive integer n.

Proof. Consider that an arithmetic formula for n, thought of as a full binary tree,
has at most n − 1 non-leaf nodes. For any nonnegative integer k there are exactly
Ck full binary trees with k non-leaf nodes. Given one of them, its non-leaf nodes can
be labeled (as additive or multiplicative) in 2k different ways. In conclusion, since
Ck ≤ 4k, we get

f(n) ≤
n−1∑
k=0

2kCk ≤
n−1∑
k=0

8k < 8n.

�

As for the analytic input into our proof we will need the following version of
“Darboux’s method”.

Lemma 3.3 (Darboux’s method). Let v(z) be analytic in some disk |z| ≤ 1 +η, and
suppose that in a neighborhood of z = 1 it has the expansion v(z) =

∑∞
j=0 vj(1− z)j.

Let β /∈ {0, 1, 2, . . .}. Then, the n-th coefficient of (1− z)βv(z) is equal to
m∑
j=0

vj

(
n− β − j − 1

n

)
+O(n−m−β−2).

Proof. See [15, Theorem 5.3.1]. �

We will also need the following classical result of Pringsheim.

Lemma 3.4. Let f(z) be a power series with finite radius of convergence R > 0. If
all of the coefficients of f(z) are nonnegative, then, z = R is a singular point.
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Proof. See [12, Chapter 8]. �

We will use the following immediate consequence of Lemma 3.4: if f(z), a power
series with nonnegative coefficients, has an analytic continuation to |z| < R + η, for
some η > 0, then the abscissa of the first singularity of f(z) on the axis x > 0 is
equal to the radius of convergence R. Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let R be the radius of convergence of the generating function
F (z). First of all R ≤ 1/4 since f(n) ≥ f0(n) and f0(n) > (4− ε)n for any ε > 0 and
all n large enough. On the other hand from Lemma 3.2 we know that R ≥ 1/8. For
each integer d ≥ 2, it results that F (zd)− zd has radius of convergence R1/d ≥ R1/2.
Hence, for any δ > 0 and |z| < R1/2 − δ we have |F (zd) − zd| �δ |z|2d and f(d) <

(1/R + ε)d for sufficiently large d. Therefore, the series F̃ (z) converges absolutely
for |z| < R1/2 and it is analytic in that region, note also that R1/2 > R. For |z| < R,
from Lemma 3.1 we obtain

∞∑
n=1

f+(n)zn = z +
∞∑
n=2

n−1∑
k=1

f(n− k)f(k)zn = z + F (z)2,

while
∞∑
n=1

f×(n)zn =
∞∑
n=1

∑
d |n

1<d<n

f(d)f(n/d)zn

=
∞∑
d=2

f(d)
∞∑
m=2

f(m)zdm =
∞∑
d=2

f(d)(F (zd)− zd).

Thus,

F (z) =
∞∑
n=1

f(n)zn =
∞∑
n=1

f+(n)zn +
∞∑
n=1

f×(n)zn = F (z)2 + F̃ (z),

so that

(1) F (z)2 − F (z) + F̃ (z) = 0.

Taking into account that F (0) = F̃ (0) = 0, we can solve the quadratic equation (1)
and get

(2) F (z) =
1−

√
1− 4F̃ (z)

2
, for |z| < R.

Since the coefficients of F (z) are all positive, by Lemma 3.4 we have that F (z) has
a singularity at z = R. As observed before, in the region |z| < R1/2 the function

F̃ (z) is analytic and R1/2 > R, thus providing an analytic continuation of F (z) to
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the larger region |z| < R1/2. From (2) we expect that the first singularity of F (z)

on the positive real axis occur at the point ξ at which we have F̃ (ξ) = 1/4. Such ξ

clearly exists because F̃ (x) > x, for x > 0, so that ξ < 1/4, while F̃ (z) is analytic
in |z| < 1/

√
8 ≤ R1/2. We notice also that the root ξ is simple, because F (x) is

increasing and analytic on the segment 0 ≤ x < 1/
√

8. Thus we can write,

(3) 1− 4F̃ (z) = (1− z/ξ)G(z)

for some G(z), analytic in |z| < 1/
√

8 and non-vanishing on 0 ≤ x < 1/
√

8. As
mentioned earlier, the formula

F (z) =
1−

√
(1− z/ξ)G(z)

2

provides an analytic continuation of F (z) to the larger disc |z| < 1/
√

8, since the
radius of convergence of F (z) satisfies R ≤ 1/4 < 1/

√
8. As an immediate application

of Lemma 3.4 the first singularity of F (z) on the positive real axis corresponds to
the radius of convergence R. Thus R = ξ. Before applying Lemma 3.3 we need to

say a few things about the location of the zeros of G(z). Since F̃ (z) has positive

and never vanishing coefficients, we have |F̃ (reiθ)| < F̃ (r) ≤ F̃ (R) for all θ 6= 0 and
r ≤ R. Using this we notice that for z 6= ξ, and |z| ≤ ξ,

|1− 4F̃ (z)| ≥ 1− 4|F̃ (z)| > 1− 4F̃ (ξ) = 0.

It follows that G(z) has no zeros in |z| ≤ ξ. By analyticity this implies that there
exists a neighborhood |z| ≤ ξ+η for some η > 0, where G(z) does not vanish, in par-

ticular
√
G(z) is well-defined and does not vanish there. Now, applying Lemma 3.3

to F (zξ), or rather more precisely applying Lemma 3.3 to −
√

(1− z)G(zξ)/2 (which
has radius of convergence equal to 1 and differs from F (z) only at the constant term)
we conclude that for any m ≥ 0, and n→∞,

(4) f(n)ξn = −
m∑
j=0

cj

(
n− j − 3/2

n

)
+O(n−m−5/2)

where the coefficients cj are obtained by writing√
G(zξ) =

∑
j≥0

cj(1− z)j

in a small neighborhood of z = 1. Since, as n→∞,(
n− j − 3/2

n

)
∼ aj
nj+3/2

with aj 6= 0, for any m ≥ 0 equation (4) gives us an asymptotic expansion for f(n).
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In particular, for m = 0, we obtain

f(n) =
cρn

n3/2
+O(ρnn−5/2),

as n→∞, where ρ := 1/ξ and

(5) c := −a0c0 = −a0
√
G(ξ) =

√
G(ξ)

2
√
π
,

this completes the proof. �

We computed the constant ρ = 1/ξ by first approximating the functions F (z) and

F̃ (z) by high degree polynomials, and then using fixed-point iteration to find the

smallest positive solution ξ to the equation F̃ (ξ) = 1/4. After, using (3) we found a
polynomial approximation for G(z) and then we computed the constant c from (5).

We performed the computation using Sage, the code can be found on [5, p. 24].

4. Proof of Theorem 1.2

We will in fact prove a result stronger than Theorem 1.2. However before stating
it, we introduce the concept of a k-trace.

Definition 4.1. Let k be a positive integer. A k-trace is triple (p, l, r) where p is a
positive integer and l, r ∈ Np

0 are tuples such that `1 + r1 + · · ·+ `p + rp + p = k. We
denote by Tk the set of all k-traces. We define also T0 := {(0, 0, 0)} so that (0, 0, 0)
can be thought of as the only 0-trace.

We are ready to state our asymptotic formula for fk(n).

Theorem 4.1. For all integers k ≥ 0, we have

fk(n) ∼ 1

4
√
π

4n

n3/2

∑
(p,l,r)∈Tk

np

p!

p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
,

as n→ +∞.

Observe that Theorem 1.2 follows immediately from Theorem 4.1, since for any
k ∈ N the only (p, l, r) ∈ Tk with p ≥ k is (k,0,0). The next definition connects
k-traces to arithmetic formulas.

Definition 4.2. Suppose that A is an arithmetic formulas for n with k multiplicative
nodes. If k = 0 then the trace of A is (0, 0, 0). If k ≥ 1, let N1, . . . , Np be the primitive
nodes of A, ordered from left to right (there is no ambiguity since no primitive node
is the ancestor of another primitive node). For i = 1, . . . , p, let `i, respectively ri, be
the number of multiplicative nodes in the left, respectively right, subtree of Ni. Then
the trace of A is the triple (p, l, r), with l = (`1, . . . , `p) and r = (r1, . . . , rp). Finally,
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for all k ∈ N0 and (p, l, r) ∈ Tk we denote by f(p,l,r)(n) the number of arithmetic
formulas for n with trace (p, l, r).

It is easy to see that Definition 4.1 and 4.2 are consistent to each other, i.e., if A
is an arithmetic formula with k multiplicative nodes then the trace of A is actually
a k-trace.

We give now a combinatorial formula for f(p,l,r) in terms of f0 and f`i , fri .

Lemma 4.2. For k ∈ N and (p, l, r) ∈ Tk, we have

f(p,l,r)(n) =
∑

n1+···+np+m=n+p

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni),

where the sum runs over all n1, . . . , np,m ∈ N such that n1 + · · ·+ np +m = n+ p.

Proof. The general arithmetic formula A evaluating to n and with trace (p, l, r) is
depicted in Fig. 1, where n1, . . . , np are all the primitive multiplicative nodes of A
(we identify the nodes with their values since there is no risk of confusion). Set
m := n − (n1 + · · · + np) + p. On the one hand, if we remove from A all the nodes
below n1, . . . , np we get a full binary tree with m leaves. There are exactly f0(m) such
trees (addition is associative) and the nodes n1, . . . , np can be attached to the leaves
of each of them in

(
m
p

)
different ways. On the other hand, any subtree of A with

root ai, respectively bi, is an arithmetic formula for ai, respectively bi, and there are
exactly f`i(ai), respectively fri(bi), such arithmetic formulas. Hence, since aibi = ni,
there are (f`i ∗′ fri)(ni) possible subtrees of ni. All these choices are independent so
the claim follows. �

n

n1

×
a1 b1

np

×
ap bp

Only additive nodes here...

· · ·

Figure 1. An arithmetic formula for n.

The next lemma is an easy upper bound on the proper Dirichlet convolution of
two arithmetic functions.

Lemma 4.3. Let g and h be arithmetic functions such that g(n), h(n) � 4nns for
n ∈ N, with C > 0 and s ∈ R. Then (g ∗′ h)(n)� 3n for n ∈ N.
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Proof. We have

(g ∗′ h)(n) =
∑
d |n

1<d<n

g(d)h(n/d)� ns
∑
d |n

1<d<n

4d+n/d � 2nns
∑
d |n

1<d<n

1

� 2nns+1 � 3n,

since d+ n/d ≤ 2 + n/2 for all proper divisors d of n. �

At this point, we have all the tools required to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed by strong induction on k. For k = 0, the claim
follows immediately from Lemma 2.1. Suppose k ≥ 1 and that the statement holds
for all nonnegative integers k′ < k. Then, as n → +∞, we have fl(n), fr(n) �
4nnk−3/2 for all nonnegative integers l, r < k and applying Lemma 4.3 we conclude
that (fl ∗′ fr)(n)� 3n. In particular, the series

∞∑
t=1

(fl ∗′ fr)(t)
4t−1

converges. Since Tk is finite and, since

fk(n) =
∑

(p,l,r)∈Tk

f(p,l,r)(n),

it suffices to prove that for all (p, l, r) ∈ Tk we have

(6) f(p,l,r)(n) ∼ 1

4
√
πp!

4nnp−3/2
p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
,

as n → +∞. Fix ε > 0 and N ∈ N. In light of Lemma 2.1 and since
(
m
p

)
∼ mp

p!
as

m→ +∞, there exists a positive integer nε,N > N such that

(
m

p

)
f0(m) ≥

(
1

4
√
πp!
− ε
)

4mnp−3/2,
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for all positive integers n ≥ nε,N and m ∈ [n − N + p, n]. Consequently, using
Lemma 4.2, we obtain

f(p,l,r)(n) ≥
∑

n1+···+np+m=n+p
n1+···+np≤N

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)

≥
(

1

4
√
πp!
− ε
)
np−3/2

∑
n1+···+np+m=n+p

n1+···+np≤N

4m
p∏
i=1

(f`i ∗′ fri)(ni)

≥
(

1

4
√
πp!
− ε
)

4nnp−3/2
∑

n1+···+np≤N

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

for n ≥ nε,N , so that

lim inf
n→∞

f(p,l,r)(n)

4nnp−3/2
≥
(

1

4
√
πp!
− ε
) ∑
n1+···+np≤N

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

.

Therefore, as ε→ 0 and N → +∞, we get

lim inf
n→∞

f(p,l,r)(n)

4nnp−3/2
≥ 1

4
√
πp!

∑
(n1,...,np)∈Np

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

(7)

=
1

4
√
πp!

p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

On the other hand, there exists mε ∈ N such that

(
m

p

)
f0(m) ≤

(
1

4
√
πp!

+ ε

)
4mmp−3/2,
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for all m ≥ mε. Thus,∑
n1+···+np+m=n+p

m≥mε

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)(8)

≤
(

1

4
√
πp!

+ ε

) ∑
n1+···+np+m=n+p

m≥mε

4mmp−3/2
p∏
i=1

(f`i ∗′ fri)(ni)

≤
(

1

4
√
πp!

+ ε

)
4nnp−3/2

∑
n1+···+np≤n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

≤
(

1

4
√
πp!

+ ε

)
4nnp−3/2

p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

We claim that

(9)
∑

n1+···+np>n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

= o(np−3/2),

as n → +∞. This is straightforward if p ≥ 2, since the left hand side of (9) is
bounded while np−3/2 → +∞. On the other hand if p = 1 then∑

n1>n+1−mε

(f`1 ∗′ fr1)(n1)

4n1−1
= O((3/4)n) = o(n−1/2),

as n→ +∞. Hence,∑
n1+···+np+m=n+p

m<mε

(
m

p

)
f0(m)

p∏
i=1

(f`i ∗′ fri)(ni)(10)

≤
(

max
m<mε

4−m
(
m

p

)
f0(m)

) ∑
n1+···+np+m=n+p

m<mε

4m
p∏
i=1

(f`i ∗′ fri)(ni)

� 4n
∑

n1+···+np>n+p−mε

p∏
i=1

(f`i ∗′ fri)(ni)
4ni−1

= o(4nnp−3/2)

as n→ +∞. Therefore, summing (8) and (10), and using Lemma 4.2, we obtain

lim sup
n→∞

f(p,l,r)(n)

4nnp−3/2
≤
(

1

4
√
πp!

+ ε

) p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.
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We conclude that as ε→ 0, we get

lim sup
n→∞

f(p,l,r)(n)

4nnp−3/2
≤ 1

4
√
πp!

p∏
i=1

(
∞∑
t=1

(f`i ∗′ fri)(t)
4t−1

)
.

Combining this with (7) give (6) concludes the proof.

5. Proof of Theorem 1.4

Set c := (1− ε)/ log 4 and for x > 0 define

E(x) := {n ≤ x : Sshort(n) < c log n}.
For each positive integer k, let `(k) be the number of exponential arithmetic formulas
of length k. Writing such formulas in Polish notation we see that `(k) ≤ 4k. In
fact, for each of the k symbols of the Polish notation we have at most 4 choices,
corresponding to addition, multiplication, exponentiation or 1. Furthermore, observe
that if An denote a shortest length arithmetic formula for n, then clearly Am 6= An
for all m 6= n. In conclusion,

|E(x)| ≤
∑

k<c log x

`(k) ≤
∑

k<c log x

4k = O(x1−ε),

which is our claim. �

6. Proof of Theorem 1.5

Throughout this section, given a positive integer n, we write

n =
∞∑
j=0

dj(n)2j, with dj(n) ∈ {0, 1},

for its binary expansion. In particular, we define

s2(n) := |{j ≥ 0 : dj(n) = 1}| =
∞∑
j=0

dj(n),

i.e., the number of nonzero binary digits of n. Furthermore, let lbx := log x/ log 2
be the binary logarithm of x.

Lemma 6.1. For fixed ε > 0, if

Sε(x) :=
{
n ≤ x : s2(n) ≤

(
1
2
− ε
)
lbx
}
,

then |Sε(x)| = o(x), as x→∞.



16 E. GNANG, M. RADZIWI L L, AND C. SANNA

Proof. Let N be the positive integer such that 2N−1 ≤ x < 2N . Moreover, let
X1, . . . , XN be a sequence of independent random variables with

P(Xi = 0) = P(Xi = 1) = 1
2
, for i = 1, . . . , N.

Then, for each nonnegative integer k ≤ N ,

|{n < 2N : s2(n) = k}| = 2N ·P(X1 + · · ·+XN = k).

By the weak law of large numbers,

P

(∣∣∣X1 + · · ·+XN

N
− 1

2

∣∣∣ > ε

)
→ 0

as N →∞. Therefore,

|Sε(x)| ≤
∣∣{n < 2N : s2(n) ≤

(
1
2
− ε
)
N
}∣∣ = o(2N) = o(x),

as x→∞, since 2N ≤ 2x. �

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Fix ε > 0 and let δ ∈ ]0, ε] be arbitrary. According to
Lemma 6.1, for x sufficiently large we have |Sε(x)| < δx and also |Sε(lbx)| < δ lbx.
Let Tε(x) := [1, x] \ Sε(x), so that |Tε(x)| > (1 − δ)x. It is easily seen that
SFCF(n) ≥ s2(n) for all positive integers n. Hence, for each n ∈ Tε(x) we have

SFCF(n) ≥
∑
j≤lbx
dj(n)=1

SFCF(j) ≥
∑
j≤lbx
dj(n)=1

s2(j) ≥
∑
j≤lbx
dj(n)=1
j /∈Sε(lbx)

s2(j)

> (1
2
− ε) · lb lbx

∑
j≤lbx
dj(n)=1
j /∈Sε(lbx)

1

> (1
2
− ε)(1

2
− ε− δ) lbx lb lbx

≥ (1
2
− 2ε)2 lbn lb lbn.

In conclusion, for any δ ∈ ]0, ε] we have that for sufficiently large x,

(11) SFCF (n) ≥
(

1

2
− 2ε

)2

· lbn lb lbn >

(
1

2
− 2ε

)2
1

(log 2)2
· log n log log n,

holds for at least (1 − δ)x positive integers n ≤ x. Therefore, (11) holds for almost
all positive integers, and our claim follows. �
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7. Proof of Theorem 1.6

Fix a positive integer n. In the second canonical form of n, we replace any occur-
rence of (1+1) by the symbol 2. For example, after this process the second canonical

form of 51 becomes (1+2)(1+222). Now let t(n) be the number of 2’s in this formula
for n. Then, upon ignoring every addition, and by repeatedly using the inequality
2y ≥ 2 · y, it follows that n ≥ 2t(n). To continue the example,

51 = (1 + 2)(1 + 222) ≥ 2 · 222 ≥ 2 · 22·2 ≥ 2 · (2 · (2 · 2)).

Hence t(n) ≤ log n/ log 2 and to prove Theorem 1.6 it is sufficient to show that
SSCF(n) ≤ 6t(n) − 1 for each integer n ≥ 2. We proceed by strong induction on n.
For n = 2 and n = 3 the claim is true, hence assume n ≥ 4 and that the inequality
holds for all integers in [2, n− 1]. If n is a prime number then we have three cases:

(i). n = 1 + (1 + 1) ·m, with m an odd integer such that 2 ≤ m < n.
(ii). n = 1 + (1 + 1)s, with s ≥ 2 an integer.

(iii). n = 1 + (1 + 1)s ·m, with m and s integers such that m is odd, 2 ≤ m < n and
s ≥ 2.

We do only case (iii), the others are similar. It results t(n) = 1 + t(s) + t(m), so by
inductive hypothesis

SSCF(n) = 7 + SSCF(s) + SSCF(m) ≤ 7 + (6t(s)− 1) + (6t(m)− 1) = 6t(n)− 1.

If n is composite, let n = p1 · · · pkqb11 · · · qbhh be its prime factorization, with bi ≥ 2.
We have

t(n) =
k∑
i=1

t(pi) +
h∑
j=1

(t(qj) + t(bj)).

Since 2 ≤ pi, qj, bj < n for all i = 1, . . . , k and j = 1, . . . , h, by inductive hypothesis
we obtain

SSCF(n) = k + 2h− 1 +
k∑
i=1

SSCF(pi) +
h∑
j=1

(SSCF(qj) + SSCF(bj))

≤ 6
k∑
i=1

t(pi) + 6
h∑
j=1

(t(qj) + t(bj))− 1

= 6t(n)− 1,

hence the proof is complete.
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