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ON THE GREATEST COMMON DIVISOR OF n
AND THE nTH FIBONACCI NUMBER

PAOLO LEONETTI AND CARLO SANNA

ABSTRACT. Let A be the set of all integers of the form ged(n, F,,), where n is a positive
integer and F),, denotes the nth Fibonacci number. We prove that # (AN [1,z]) >
z/logx for all x > 2, and that A has zero asymptotic density. Our proofs rely on a
recent result of Cubre and Rouse [Proc. Amer. Math. Soc. 142 (2014), 3771-3785]
which gives, for each positive integer n, an explicit formula for the density of primes p
such that n divides the rank of appearance of p, that is, the smallest positive integer
k such that p divides F.

1. INTRODUCTION

Let (F,)n>1 be the sequence of Fibonacci numbers, defined as usual by F} = F» =1
and Fp49 = Fpy1 + Fy, for all positive integers n. Moreover, let g be the arithmetic
function defined by g(n) := ged(n, F,,), for each positive integer n. The first values of g
are listed in OEIS A104714 [13].

The set B of fixed points of g, i.e., the set of positive integers n such that n divides F,,
has been studied by several authors. For instance, André-Jeannin [2] and Somer [1]
investigated the arithmetic properties of the elements of B. Furthermore, Luca and
Tron [8] proved that

1
#B(m) < xl_(2+0(1)) logloglogx/loglogx7 (1)

when z — 400, and Sanna [12] generalized their result to Lucas sequences. More gener-
ally, the study of the distribution of positive integers n dividing the nth term of a linear
recurrence has been studied by Alba Gonzélez, Luca, Pomerance, and Shparlinski [1],
while, Corvaja and Zannier [1], and Sanna [10] considered the distribution of positive
integers n such that the nth term of a linear recurrence divides the nth term of another
linear recurrence. Also, it follows from a result of Sanna [11] that the set g=*(1), i.e.,
the set of positive integers n such that n and F), are relatively prime, has a positive
asymptotic density.

Define A := {g(n) : n > 1}. Note that, in particular, B C A. The aim of this article
is to study the structural properties and the distribution of the elements of A. Note
that it is not immediately clear whether or not a given positive integer belongs to A.
To this aim, we provide in §2 an effective criterion which allows us to enumerate the
elements of A, in increasing order, as:

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, 37,
2010 Mathematics Subject Classification. Primary: 11B39. Secondary: 11A05, 11N25.

Key words and phrases. Fibonacci numbers, rank of appearance, greatest common divisor, natural
density.



2 PAoLO LEONETTI and CARLO SANNA

Our first result is a lower bound for the counting function of A.
Theorem 1.1. #A(x) > x/logz, for all x > 2.

It is worth noting that it follows at once from Theorem 1.1 and (1) that B has zero
asymptotic density relative to A (we omit the details):

Corollary 1.2. #B(z) = o(#A(x)), as © — +oo.
Our second result is that A has zero asymptotic density:
Theorem 1.3. #A(z) = o(x), as © — +o0.

It would be nice to have an effective upper bound for #.A(x) or, even better, to obtain
its asymptotic order of growth. We leave these as open questions for the interested
readers.

Notation. Throughout, we reserve the letters p and ¢ for prime numbers. Moreover,
given a set S of positive integers, we define S(z) := SN [1,z] for all x > 1. We employ
the Landau-Bachmann “Big Oh” and “little oh” notations O and o, as well as the
associated Vinogradov symbols < and >>. In particular, all the implied constants are
intended to be absolute, unless it is explicitly stated otherwise.

2. PRELIMINARIES

This section is devoted to some preliminary results needed in the later proofs. For
each positive integer n, let z(n) be rank of appearance of n in the sequence of Fibonacci
numbers, that is, z(n) is the smallest positive integer k such that n divides Fj. It is
well known that z(n) exists. All the statements in the next lemma are well known, and
we will use them implicitly without further mention.

Lemma 2.1. For all positive integer m,n and all prime numbers p, we have:

(i) Fy, | F,, whenever m | n.

(ii) m | Fy, if and only if z(m) | n.

(iii) z(m) | z(n) whenever m | n.

(iv) z(p) |p— (g), where (g) is a Legendre symbol.

For each positive integer n, define £(n) := lem(n, z(n)). The next lemma shows some
elementary properties of the functions g, ¢, z, and their relationship with A.

Lemma 2.2. For all positive integer m,n and all prime numbers p, we have:

(i) g(m) | g(n) whenever m | n.
(ii) n | g(m) if and only if £(n) | m.
(iii) n € A if and only if n = g(4(n)).
(iv) p | n whenever ¢(p) | £(n) and n € A.
(v) 4(p) = pz(p) whenever p # 5, and £(5) = 5.
(vi) pe A zfp # 3 and £(q) 1 z(p) for all prime numbers q.

Proof. Facts (i) and (ii) follow easily from the definitions of g and ¢ and the properties
of z. To prove (iii), note that n divides both £(n) and Fy, hence n | g(¢{(n)) for all
positive integers n. Conversely, if n € A, then n = g(m) for some positive integer
m. In particular, n | g(m) which is equivalent to £(n) | m by (ii). Therefore g(¢(n)) |
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g(m) = n, thanks to (i), and in conclusion g(¢(n)) = n. Fact (iv) follows at once from
(ii) and (iii).

A quick computation shows that £(5) = 5, while for all prime numbers p # 5 we have
ged(p, z(p)) = 1, since z(p) | p £ 1, so that £(p) = pz(p), and this proves (v).

Lastly, let us suppose that p # 3 is a prime number such that ¢(q) 1 z(p) for all
prime numbers ¢. In particular, p # 5 since £(5) = z(5) = 5, by (v). Also, the claim
(vi) is easily seen to hold for p = 2. Hence, let us suppose hereafter that p > 7.
Since z(p) | p £ 1, it easily follows that p || g(¢(p)). At this point, if ¢ | g(4(p)) for
some prime ¢ # p, then ¢(q) | ¢(p) = pz(p) thanks to (ii). But ¢(q) t z(p), hence
p | {(q) = lem(q, 2(q)) so that p | z(¢) < ¢+ 1. Similarly, ¢ | g(¢(p)) | £(p) implies
q | z(p) < p+ 1. Hence |[p— ¢q| < 1, which is impossible since p > 7. Therefore
q19((p)), with the consequence that p = g(¢(p)), i.e., p € A by (iii). This concludes
the proof of (vi). O

It is worth noting that Lemma 2.2(iii) provides an effective criterion to establish
whether a given positive integer belongs to A or not. This is how we evaluated the
elements of A listed in the introduction.

It follows from a result of Lagarias [0, 7], that the set of prime numbers p such that
z(p) is even has a relative density of 2/3 in the set of all prime numbers. Bruckman and
Anderson [3, Conjecture 3.1] conjectured, for each positive integer m, a formula for the

limit
<x:
Com) = Tim PRSTim[P)}
T—+00 x/logx
Their conjecture was proved by Cubre and Rouse [5, Theorem 2], who obtained the

following result.

Theorem 2.3. For each prime number q and each positive integer e, we have

. q2—e
C(q ) = q2 1
while for any positive integer m, we have
1 if10tm,
¢(m) = H ¢(¢°)- 42 if m=10mod 20,
¢°llm 3 if20|m.

Note that the arithmetic function ¢ is not multiplicative. However, the restriction of
¢ to the odd positive integers is multiplicative. This fact will be useful later.
Let ¢ be the Euler’s totient function. We need the following technical lemma.

Lemma 2.4. We have

oL !
1/4°

= ) —yY

for all y > 0.

Proof. For v > 0, put Q :={p: z(p) < p”}. Clearly,

9#Q(2) < H Pl H F, < 92 n<ar M < 20(1’27)7
pEQ~(x) n<z?
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from which it follows that O, (z) < 2.

Fix also ¢ € |0,1 —2v]. For the rest of this proof, all the implied constants may
depend on v and e. Since ¢(n) > n/loglogn for all positive integers n [15, Ch. 1.5,
Theorem 4], while, by Lemma 2.2(v), £(q) < ¢? for all prime numbers ¢, we have

1 loglog ¢(q) log log 7 L
DRI R DU R SM .

>y >y q>y >y

for all y > 0.
On the one hand, again by Lemma 2.2(v),

S <X amg il meeege O
1—¢ = 1+v— tl4y—e —*
q>y€ = e T et )yt Ty
a¢ 2y a2y

On the other hand, by partial summation,

S S X = T

o F(1-e) /+OO #H ()

ql € t2—¢
>y >y t=y Y
qEQw qGQw
+oo #Q ( ) +oo dt 1
i
< /y dt < /y $2—2v—¢ < ylfQ'yfs‘ (4)

The claim follows by putting together (2), (3), and (4), and by choosing v = 1/3 and
e=1/12. Il
Lastly, for all relatively prime integers a and m, define
m(z,m,a) = #{p <z :p=amodm}.
We need the following version of the Brun-Titchmarsh theorem [9, Theorem 2].
Theorem 2.5. If a and m are relatively prime integers and m > 0, then

2x
p(m)log(z/m)’

m(x,m,a) <
for all x > m.

3. PROOF OoF THEOREM 1.1

First, since 1 € A, it is enough to prove the claim only for all sufficiently large z. Let
y > 5 be a real number to be chosen later. Define the following sets of primes:

Pri={p:qtz(p), Vg €3y},
Py :={p:3q >y, q) | 2(p)},
P :=P1\ Po.
We have P C AU {3}. Indeed, since 3 | £(2) and ¢ | ¢(¢q) for each prime number

q, it follows easily that if p € P then ¢(q) 1 z(p) for all prime numbers ¢, which, by
Lemma 2.2(vi), implies that p € A or p = 3.
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Now we give a lower bound for #Pi(x). Let P, be the product of all prime numbers
in [3,y], and let u be the Mobius function. By using the inclusion-exclusion principle
and Theorem 2.3, we get that

#P1(z) : #{p <z :m|z(p)}
LE = tim ST ja(m) - =Y u(m)¢(m)

z—+o0 x/ log x/logx

m| Py

= ] a-<@)= ]I <1q2q_1>’

3<q<y 3<q<y

m|Py

where we also made use of the fact that the restriction of ¢ to the odd positive integers
is multiplicative.
As a consequence, for all sufficiently large = depending only on y, let say x > xo(y),

we have
1 1
#Pl(x)z2H<1_ 2q1),1x S,
5205y q® — ogx ogy logx

where the last inequality follows from Mertens’ third theorem [15, Ch. I.1, Theorem 11].
We also need an upper bound for #Ps(x). Since z(p) | p£ 1 for all primes p > 5, we
have

#Ps(x <Z#{p<x l(q }<Z (z,0(q (5)
>y >y
for all z > 0, where, for the sake of brevity, we put

m(z, l(q), £1) := w(x,4(q),—1) + 7(x,€(q),1).

On the one hand, by Theorem 2.5 and Lemma 2.4, we have

1 T
g WR U W S N T
/4
y<q<zl/2 q>y q log x Y log
On the other hand, by the trivial estimate for 7(z,¢(q), 1) and Lemma 2.4, we get
> Aty < Y s ¥ s < -
gy® o M) = S, e(la)

Therefore, putting together (5), (6), and (7), we find that

#Pa(r) < W : logz + ',

In conclusion, there exist two absolute constants c1,co > 0 such that

1
#A(x) > #P(x) > #P1(z) — #Pa(z) > (loc;y (34 - szf/gsx) ' 10;’ ®)

for all z > zo(y).
Finally, we can choose y to be sufficiently large so that

C C
! 2 50.

logy yl/4
Hence, from (8) it follows that #.A(z) > z/logz, for all sufficiently large x.
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4. PROOF OF THEOREM 1.3

Fix € > 0 and pick a prime number ¢ such that 1/g < €. Let P be the set of prime
numbers p such that ¢(q) | z(p). By Theorem 2.3, we know that P has a positive relative
density in the set of primes. As a consequence, we can pick a sufficiently large y > 0 so

that
1
11 <1 - ) <e.
p

PEP(y)

Let B be the set of positive integers without prime factors in P(y). We split A into two
subsets: A; := AN B and Ay := A\ A;. If n € Ay then n has a prime factor p such
that £(q) | z(p). Hence, £(q) | £(n) and, by Lemma 2.2(iv), we get that ¢ | n, so all the
elements of Ay are multiples of ¢g. In conclusion,

limsupwglimsup#%(x)—Himsup#Aj@g H (1—1>+1<2&7,

T—400 X T——400 xr T—4-00 p q
PEP(y)

and, by the arbitrariness of ¢, it follows that A has zero asymptotic density.
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