

POLITECNICO DI TORINO Repository ISTITUZIONALE

On the sum of digits of the factorial

Original On the sum of digits of the factorial / Sanna, Carlo. - In: JOURNAL OF NUMBER THEORY. - ISSN 0022-314X. -STAMPA. - 147(2015), pp. 836-841.

Availability: This version is available at: 11583/2722659 since: 2020-05-03T10:04:12Z

Publisher: Academic Press Incorporated

Published DOI:10.1016/j.jnt.2014.09.003

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

ON THE SUM OF DIGITS OF THE FACTORIAL

CARLO SANNA

ABSTRACT. Let $b \ge 2$ be an integer and denote by $s_b(m)$ the sum of the digits of the positive integer m when is written in base b. We prove that $s_b(n!) > C_b \log n \log \log \log n$ for each integer n > e, where C_b is a positive constant depending only on b. This improves of a factor $\log \log \log n$ a previous lower bound for $s_b(n!)$ given by Luca. We prove also the same inequality but with n! replaced by the least common multiple of $1, 2, \ldots, n$.

1. INTRODUCTION

Let $b \ge 2$ be an integer and denote by $s_b(m)$ the sum of the digits of the positive integer m when is written in base b. Lower bounds for $s_b(m)$ when m runs through the member of some special sequence of natural numbers (e.g., linear recurrence sequences [Ste80] [Luc00] and sequences with combinatorial meaning [LS10] [LS11] [KL12] [Luc12]) have been studied before.

In particular, Luca [Luc02] showed that the inequality

(1)
$$s_b(n!) > c_b \log n,$$

holds for all the positive integers n, where c_b is a positive constant, depending only on b. He also remarked that (1) remains true if one replaces n! by

$$\Lambda_n := \operatorname{lcm}(1, 2, \dots, n),$$

the least common multiple of 1, 2, ..., n. We recall that Λ_n has an important role in elementary proofs of the Chebyshev bounds $\pi(x) \simeq x/\log x$, for the prime counting function $\pi(x)$ [Nai82]. In this paper, we give a slight improvement of (1) by proving the following

Theorem 1.1. For each integer n > e, it results

$$s_b(n!), s_b(\Lambda_n) > C_b \log n \log \log \log n,$$

where C_b is a positive constant, depending only on b.

2. Preliminaries

In this section, we discuss a few preliminary results needed in our proof of Theorem 1.1. Let φ be the Euler's totient function. We prove an asymptotic formula for the maximum of the preimage of [1, x] through φ , as $x \to +\infty$. Although the cardinality of the set $\varphi^{-1}([1, x])$ is well studied [Bat72] [BS90] [BT98], in the literature we have found no results about $\max(\varphi^{-1}([1, x]))$ as our next lemma.

Lemma 2.1. For each $x \ge 1$, let m = m(x) be the greatest positive integer such that $\varphi(m) \le x$. Then $m \sim e^{\gamma} x \log \log x$, as $x \to +\infty$, where γ is the Euler-Mascheroni constant.

Proof. Since $\varphi(n) \leq n$ for each positive integer n, it results $m \geq \lfloor x \rfloor$. In particular, $m \to +\infty$ as $x \to +\infty$. Therefore, since the minimal order of $\varphi(n)$ is $e^{-\gamma}n/\log\log n$ (see [Ten95, Chapter I.5, Theorem 4]), we obtain

$$(e^{-\gamma} + o(1))\frac{m}{\log\log m} \le \varphi(m) \le x,$$

as $x \to +\infty$. Now $\varphi(n) \ge \sqrt{n}$ for each integer $n \ge 7$, thus $m \le x^2$ for $x \ge 7$. Hence,

$$m \le (e^{\gamma} + o(1)) x \log \log m \le (e^{\gamma} + o(1)) x \log \log(x^2) = (e^{\gamma} + o(1)) x \log \log x,$$

²⁰¹⁰ Mathematics Subject Classification. Primary: 11A63, 05A10. Secondary: 11A25. Key words and phrases. Sum of digits, base b representation, factorial.

as $x \to +\infty$.

On the other hand, let $p_1 < p_2 < \cdots$ be the sequence of all the (natural) prime numbers and let $a_1 < a_2 < \cdots$ be the sequence of all the 3-smooth numbers, i.e., the natural numbers of the form $2^a 3^b$, for some integers $a, b \ge 0$. Moreover, let s = s(x) be the greatest positive integer such that

$$(p_1-1)\cdots(p_s-1)\leq\sqrt{x},$$

and let t = t(x) be the greatest positive integer such that

$$a_t(p_1-1)\cdots(p_s-1) \le x.$$

Note that $s, t \to +\infty$ as $x \to +\infty$. Now we have (see [Ten95, Chapter I.1, Theorem 4])

$$\sqrt{x} < (p_1 - 1) \cdots (p_{s+1} - 1) < p_1 \cdots p_{s+1} \le 4^{p_{s+1}}$$

hence

(2)
$$p_s > \frac{1}{2}p_{s+1} > \frac{1}{4\log 4}\log x$$

from Bertrand's postulate. Put $m' := a_t p_1 \cdots p_s$, so that for $s \ge 2$ we get

$$\varphi(m') = a_t(p_1 - 1) \cdots (p_s - 1) \le x,$$

and thus $m \ge m'$. By a result of Pólya [Pól18], $a_t/a_{t+1} \to 1$ as $t \to +\infty$. Therefore, from our hypothesis on s and t, Mertens' formula [Ten95, Chapter I.1, Theorem 11] and (2) it follows that

$$m \ge m' = \frac{a_t}{a_{t+1}} \cdot a_{t+1} \prod_{i=1}^s (p_i - 1) \cdot \prod_{i=1}^s \left(1 - \frac{1}{p_i}\right)^{-1} > (1 + o(1)) \cdot x \cdot \frac{\log p_s}{e^{-\gamma} + o(1)} > (e^{\gamma} + o(1)) x \log \log x,$$

as $x \to +\infty$.

Actually, we do not make use of Lemma 2.1. We need more control on the factorization of a "large" positive integer m such that $\varphi(m) \leq x$, even at the cost of having only a lower bound for m and not an asymptotic formula.

Lemma 2.2. For each $x \ge 1$ there exists a positive integer m = m(x) such that: $\varphi(m) \le x$; $m = 2^t Q$, where t is a nonnegative integer and Q is an odd squarefree number; and

$$m \ge \left(\frac{1}{2}e^{\gamma} + o(1)\right) x \log \log x,$$

as $x \to +\infty$.

Proof. The proof proceeds as the second part of the proof of Lemma 2.1, but with $a_k := 2^{k-1}$ for each positive integer k. So instead of $a_t/a_{t+1} \to 1$, as $t \to +\infty$, we have $a_t/a_{t+1} = 1/2$ for each t. We leave the remaining details to the reader.

To study Λ_n is useful to consider the positive integers as a poset ordered by the divisibility relation |. Thus, obviously, Λ_n is a monotone nondecreasing function, i.e., $\Lambda_m \mid \Lambda_n$ for each positive integers $m \leq n$. The next lemma says that Λ_n is also super-multiplicative.

Lemma 2.3. We have $\Lambda_m \Lambda_n \mid \Lambda_{mn}$, for any positive integers m and n.

Proof. It is an easy exercise to prove that

$$\Lambda_n = \prod_{p \le n} p^{\lfloor \log_p n \rfloor},$$

for each positive integer n, where p runs over all the prime numbers not exceeding n. Therefore, the claim follows since

$$\lfloor \log_p m \rfloor + \lfloor \log_p n \rfloor \leq \lfloor \log_p m + \log_p n \rfloor = \lfloor \log_p m n \rfloor,$$

for each prime number p.

We recall some basic facts about cyclotomic polynomials. For each positive integer n, the n-th cyclotomic polynomial $\Phi_n(x)$ is defined by

$$\Phi_n(x) := \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} \left(x - e^{2\pi i k/n} \right).$$

It results that $\Phi_n(x)$ is a polynomial with integer coefficients and that it is irreducible over the rationals, with degree $\varphi(n)$. We have the polynomial identity

$$x^n - 1 = \prod_{d \mid n} \Phi_d(x),$$

where d runs over all the positive divisors of n. Moreover, it holds $\Phi_n(a) \leq (a+1)^{\varphi(n)}$, for all $a \geq 0$. The next lemma regards when $\Phi_m(a)$ and $\Phi_n(a)$ are not coprime.

Lemma 2.4. Suppose that $gcd(\Phi_m(a), \Phi_n(a)) > 1$ for some integers $m, n, a \ge 1$. Then m/n is a prime power, i.e., $m/n = p^k$ for a prime number p and an integer k.

Proof. See [Ge08, Theorem 7].

Finally, we state an useful lower bound for the sum of digits of the multiples of $b^m - 1$.

Lemma 2.5. For each positive integers m and q it results $s_b((b^m - 1)q) \ge m$.

Proof. See [BD12, Lemma 1].

3. Proof of Theorem 1.1

Without loss of generality, we can assume n sufficiently large. Put $x := \frac{1}{8} \log_{b+1} n \ge 1$. Thanks to Lemma 2.2, we know that there exists a positive integer m such that $\varphi(m) \le x$ and

(3)
$$m > \frac{1}{3}e^{\gamma}x\log\log x > C_b\log n\log\log\log n$$

where $C_b > 0$ is a constant depending only on b. Precisely, we can assume that $m = 2^t Q$, where t is a nonnegative integer and Q is an odd squarefree number. Fix a nonnegative integer $j \leq t$. For each positive divisor d of Q, we have $\varphi(2^{t-j}d) \mid \varphi(m/2^j)$ and so, a fortiori, $\varphi(2^{t-j}d) \leq \varphi(m/2^j)$. Therefore,

(4)
$$\Phi_{2^{t-j}d}(b) \le (b+1)^{\varphi(2^{t-j}d)} \le (b+1)^{\varphi(m/2^j)} \le (b+1)^{\varphi(m)/2^{j-1}} \le n^{1/2^{j+2}}$$

Let μ be the Möbius function. Now from (4) and Lemma 2.4 we have that the $\Phi_{2^{t-j}d}(b)$'s, where d runs over the positive divisors of Q such that $\mu(d) = 1$, are pairwise coprime and not exceeding $n^{1/2^{j+2}}$, thus

(5)
$$\prod_{\substack{d \mid Q \\ \mu(d) = 1}} \Phi_{2^{t-j}d}(b) = \operatorname{lcm} \{ \Phi_{2^{t-j}d}(b) : d \mid Q, \ \mu(d) = 1 \} \mid \Lambda_{\lfloor n^{1/2^{j+2}} \rfloor}.$$

Similarly, the same result holds for the divisors d such that $\mu(d) = -1$. Clearly, we have

$$b^{m} - 1 = \prod_{d \mid m} \Phi_{d}(b) = \prod_{\substack{0 \le j \le t \\ r \in \{-1, +1\}}} \prod_{\substack{d \mid Q \\ \mu(d) = r}} \Phi_{2^{t-j}d}(b).$$

Moreover,

$$\left(\prod_{0 \le j \le t} \lfloor n^{1/2^{j+2}} \rfloor\right)^2 \le \prod_{0 \le j \le t} n^{1/2^{j+1}} \le n.$$

As a consequence, from (5) and Lemma 2.3, we obtain

$$b^m - 1 \mid \left(\prod_{0 \le j \le t} \Lambda_{\lfloor n^{1/2^{j+2}} \rfloor}\right)^2 \mid \Lambda_n.$$

Thus $b^m - 1 | \Lambda_n$ and also $b^m - 1 | n!$, since obviously $\Lambda_n | n!$. In conclusion, from Lemma 2.5 and (3), we get

$$s_b(\Lambda_n), s_b(n!) \ge m > C_b \log n \log \log \log n$$
,

which is our claim, this completes the proof.

Acknowledgements. The author thanks Paul Pollack (University of Georgia) for a suggestion that has lead to the exact asymptotic formula of Lemma 2.1.

References

- [Bat72] P. Bateman, The distribution of values of the Euler function, Acta Arith. 21 (1972), 329-345.
- [BD12] A. Balog and C. Dartyge, On the sum of the digits of multiples, Moscow J. Comb. Number Theory 2 (2012), 3–15.
- [BS90] M. Balazard and A. Smati, Elementary proof of a theorem of Bateman, Progr. Math. 85 (1990), 41–46.
- [BT98] M. Balazard and G. Tenenbaum, Sur la répartition des valeurs de la fonction d'Euler, Compos. Math. 110 (1998), 239–250.
- [Ge08] Y. Ge, Elementary properties of cyclotomic polynomials, Mathematical Reflections 2 (2008).
- [KL12] A. Knopfmacher and F. Luca, Digit sums of binomial sums, J. Number Theory 132 (2012), 324–331.
- [LS10] F. Luca and I. E. Shparlinski, On the g-ary expansions of Apéry, Motzkin, Schröder and other combinatorial numbers, Ann. Comb. 14 (2010), 507–524.
- [LS11] _____, On the g-ary expansions of middle binomial coefficients and Catalan numbers, Rocky Mountain J. Math. 41 (2011), 1291–1301.
- [Luc00] F. Luca, Distinct digits in base b expansions of linear recurrence sequences, Quaest. Math. 23 (2000), 389–404.
- [Luc02] _____, The number of non-zero digits of n!, Canad. Math. Bull. 45 (2002), 115–118.
- [Luc12] _____, On the number of nonzero digits of the partition function, Arch. Math. 98 (2012), 235–240.
- [Nai82] M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), 126–129.
- [Pól18] G. Pólya, Zur arithmetischen untersuchung der polynome, Math. Z. 1 (1918), 143–148.
- [Ste80] C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72.
- [Ten95] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge Studies in Advanced Mathematics, vol. 46, Cambridge University Press, Cambridge, 1995.

UNIVERSITÀ DEGLI STUDI DI TORINO, DEPARTMENT OF MATHEMATICS, TURIN, ITALY *E-mail address*: carlo.sanna.dev@gmail.com