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THE DENSITY OF NUMBERS n HAVING A PRESCRIBED
G.C.D. WITH THE nTH FIBONACCI NUMBER

CARLO SANNA AND EMANUELE TRON

Abstract. For each positive integer k, let Ak be the set of all positive integers
n such that gcd(n, Fn) = k, where Fn denotes the nth Fibonacci number.

We prove that the asymptotic density of Ak exists and is equal to
∞∑
d=1

µ(d)

lcm(dk, z(dk))

where µ is the Möbius function and z(m) denotes the least positive integer n
such that m divides Fn. We also give an effective criterion to establish when
the asymptotic density of Ak is zero and we show that this is the case if and
only if Ak is empty.

1. Introduction

Let (un)n≥1 be a nondegenerate linear recurrence with integral values. The
arithmetic relations between un and n are a topic which has attracted the atten-
tion of several researchers, especially in recent years. For instance, the set of pos-
itive integers n such that un is divisible by n has been studied by Alba González,
Luca, Pomerance, and Shparlinski [1], under the mild hypothesis that the charac-
teristic polynomial of (un)n≥1 has only simple roots; and by André-Jeannin [2],
Luca and Tron [12], Somer [17], and Sanna [16], when (un)n≥1 is a Lucas se-
quence. A problem in a sense dual to this is that of understanding when n is
coprime to un. In this respect, Sanna [15, Theorem 1.1] recently proved the
following result.

Theorem 1.1. The set of positive integers n such that gcd(n, un) = 1 has a
positive asymptotic density, unless (un/n)n≥1 is a linear recurrence.

In this paper, we focus on the linear recurrence of Fibonacci numbers (Fn)n≥1,
defined as usual by F1 = F2 = 1 and Fn+2 = Fn+1 + Fn for all integers n ≥ 1.
For each positive integer k, define the set

Ak := {n ≥ 1 : gcd(n, Fn) = k}.
Leonetti and Sanna [11, Theorems 1.1 and 1.3] proved the following:

Theorem 1.2. If B := {k ≥ 1 : Ak 6= ∅} then its counting function satisfies

#B(x)� x

log x
,
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2 CARLO SANNA AND EMANUELE TRON

for all x ≥ 2. Furthermore, B has zero asymptotic density.

Let z(m) be the rank of appearance, or entry point, of a positive integerm in the
sequence of Fibonacci numbers, that is, the smallest positive integer n such that
m divides Fn. It is well known that z(m) exists. Set also `(m) := lcm(m, z(m)).

Our first result establishes the existence of the asymptotic density of Ak and
provides an effective criterion to check whether this asymptotic density is posi-
tive.

Theorem 1.3. For each positive integer k, the asymptotic density of Ak exists.
Moreover, d(Ak) > 0 if and only if Ak 6= ∅ if and only if k = gcd(`(k), F`(k)).

Our second result is an explicit formula for the asymptotic density of Ak.

Theorem 1.4. For each positive integer k, we have

d(Ak) =
∞∑
d=1

µ(d)

`(dk)
, (1)

where µ is the Möbius function.

Notation. Throughout, we reserve the letters p, q, r for prime numbers. For
a set of positive integers S , we put S (x) := S ∩ [1, x] for all x ≥ 1, and
we recall that the asymptotic density d(S ) of S is defined as the limit of
the ratio #S (x)/x, as x → +∞, whenever this exists. As usual, µ(n), ϕ(n),
ω(n), and τ(n), denote the Möbius function, the Euler’s totient function, the
number of distinct prime factors, and the number of divisors of a positive integer
n, respectively. We employ the Landau–Bachmann “Big Oh” and “little oh”
notations O and o, as well as the associated Vinogradov symbol �.

2. Preliminaries

The next lemma summarizes some basic properties of `, z, and the Fibonacci
numbers, which we will implicitly use later without further mention.

Lemma 2.1. For all positive integers m, n and all prime numbers p, we have:

(i) m | Fn if and only if z(m) | n.
(ii) z(lcm(m,n)) = z(`(m), `(n)).

(iii) z(p) | p−
(
p
5

)
, where

(
p
5

)
is a Legendre symbol.

(iv) νp(Fn) ≥ νp(n) whenever z(p) | n.
(v) m | gcd(n, Fn) if and only if `(m) | n.

(vi) `(lcm(m,n)) = lcm(`(m), `(n)).
(vii) `(p) = pz(p) for p 6= 5, while `(5) = 5.

Proof. Facts (i)–(iii) are well-known (see, e.g., [13]). Fact (iv) follows quickly
from the formulas for νp(Fn) given by Lengyel [10]. Finally, (v)–(vii) are easy
consequences of (i)–(iii) and the definition of `. �

Now we state an easy criterion to establish if Ak 6= ∅ [11, Lemma 2.2(iii)].

Lemma 2.2. Ak 6= ∅ if and only if k = gcd(`(k), F`(k)), for all integers k ≥ 1.
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If S is a set of positive integers, we define its set of nonmultiples as

N (S ) := {n ≥ 1 : s - n for all s ∈ S }.
Sets of nonmultiples, or more precisely their complement sets of multiples

M (S ) := {n ≥ 1 : s | n for some s ∈ S },
have been studied by several authors, we refer the reader to [7] for a systematic
treatment of this topic. We shall need only the following result.

Lemma 2.3. If S is a set of positive integers such that∑
s∈S

1

s
< +∞,

then N (S ) has an asymptotic density. Moreover, if 1 /∈ S then d(N (S )) > 0.

Proof. The part about the existence of d(N (S )) is due to Erdős [5], while the
second assertion follows easily from the inequality

d(N (S )) ≥
∏
s∈S

(
1− 1

s

)
proved by Heilbronn [8] and Rohrbach [14]. �

For any γ > 0, let us define

Qγ := {p : z(p) ≤ pγ}.
The following is a well-known lemma, which belongs to the folklore.

Lemma 2.4. For all x, γ > 0, we have #Qγ(x)� x2γ.

Proof. It is enough noting that

2#Qγ(x) ≤
∏

p∈Qγ(x)

p |
∏
n≤xγ

Fn ≤ 2
∑
n≤xγ n = 2O(x2γ),

where we employed the inequality Fn ≤ 2n, valid for all positive integers n. �

As usual, for x ≥ y ≥ 0 let Ψ(x, y) be the number of positive integers n ≤
x which are y-smooth, or y-friable, that is, they have no prime factor greater
than y. We need the following estimate for Ψ(x, y), which is a straightforward
consequence of [3, Corollary to Theorem 3.1].

Lemma 2.5. For x ≥ y > 1, we have

Ψ(x, y) = x exp(−(1 + o(1))u log u)

uniformly in the range y ≥ (log x)2 as long as u→ +∞, where

u :=
log x

log y
.

The next lemma is a bound regarding prime numbers in arithmetic progres-
sions [9, Lemma 6].
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Lemma 2.6. We have ∑
p≡a mod b
b≤p≤x

1

p
� log log x

ϕ(b)

uniformly for all x ≥ 3 and all relatively prime integers a and b with 0 < b ≤ x.

We conclude with a lemma about positive integers with many prime factors.

Lemma 2.7. For x, t ≥ 2, the number of positive integers n such that ω(n) ≥ t
is

O

(
x log x

2t

)
.

Proof. Call S the set of positive integers n such that ω(n) ≥ t. Then,

2t ·#S (x) ≤
∑

n∈S (x)

2ω(n) ≤
∑

n∈S (x)

τ(n) ≤
∑
n≤x

τ(n)� x log x,

where the last bound is well known [4, Theorem 4.9]. The claim follows. �

3. Proof of Theorem 1.3

We begin by showing that Ak is a scaled set of nonmultiples.

Lemma 3.1. For each positive integer k such that Ak 6= ∅, we have

Ak = {`(k)m : m ∈ N (Lk)} ,
where

Lk := {p : p | k} ∪ {`(kp)/`(k) : p - k}.

Proof. We know that n ∈ Ak implies `(k) | n, hence it is enough to prove that
`(k)m ∈ Ak, for some positive integer m, if and only if m ∈ N (Lk).

Clearly, `(k)m ∈ Ak for some positive integer m, if and only if

νp(gcd(`(k)m,F`(k)m)) = νp(k) (2)

for all prime numbers p.
Let p be a prime number dividing k. Then, for all positive integer m, we have

z(p) | `(k)m and consequently νp(F`(k)m) ≥ νp(`(k)m), so that

νp(gcd(`(k)m,F`(k)m)) = νp(`(k)m) = νp(`(k)) + νp(m). (3)

In particular, recalling that k = gcd(`(k), F`(k)) since Ak 6= ∅ and thanks to
Lemma 2.2, for m = 1 we get

νp(k) = νp(gcd(`(k), F`(k))) = νp(`(k)),

which together with (3) gives

νp(gcd(`(k)m,F`(k)m)) = νp(k) + νp(m). (4)

Therefore, (2) holds if and only if p - m.
Now let p be a prime number not dividing k. Then (2) holds if and only if

p - gcd(`(k)m,F`(k)m),
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that is, `(p) - `(k)m, which in turn is equivalent to

`(kp)

`(k)
=

lcm(`(k), `(p))

`(k)
- m,

since p and k are relatively prime.
Summarizing, we have found that `(k)m ∈ Ak, for some positive integer m, if

and only if p - m for all prime numbers p dividing k, and `(kq)/`(k) - m for all
prime numbers q not dividing k, that is, m ∈ N (Lk). �

Now if k is a positive integer such that Ak = ∅ then, obviously, the asymptotic
density of Ak exists and is equal to zero. So we can assume Ak 6= ∅, which in
turn, by Lemma 2.2, implies that k = gcd(`(k), F`(k)).

Henceforth, the implied constants may depend on k. We have∑
n∈Lk

1

n
�
∑
p

1

`(kp)
≤
∑
p

1

`(p)
�
∑
p

1

pz(p)
. (5)

Fix any γ ∈ ]0, 1/2[. On the one hand,∑
p/∈Qγ

1

pz(p)
<
∑
p/∈Qγ

1

p1+γ
<
∑
n

1

n1+γ
< +∞. (6)

On the other hand, by partial summation and by Lemma 2.4,∑
p∈Qγ

1

pz(p)
<
∑
p∈Qγ

1

p
=

#Qγ(t)

t

∣∣∣∣+∞
t=2

+

∫ +∞

2

#Qγ(t)

t2
dt

�
∫ +∞

2

dt

t2−2γ
< +∞. (7)

Therefore, putting together (5), (6), and (7), we get∑
n∈Lk

1

n
< +∞,

while clearly 1 /∈ Lk. Hence, Lemma 2.3 tell us that N (Lk) has a positive
asymptotic density. Finally, by Lemma 3.1 we conclude that the asymptotic
density of Ak exists and it is positive.

Remark 3.2. We note that the convergence of the series∑
p

1

`(p)
(8)

also follows from the stronger, and independent, result of Corollary 4.3 in the
next section. However, since the proof of Corollary 4.3 is quite involved, we
preferred to give an easier proof of the convergence of (8) in this section.
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4. Proof of Theorem 1.4

For the sake of convenience, put

L(n) :=
∏
p |n

`(p)

for all positive integers n. We start with a lower bound for L(n).

Lemma 4.1. Pick δ > 0. Then there exists ε = ε(δ) > 0 such that, for all x > 1,
the inequality L(n) > n1+ε holds for all squarefree positive integers n ≤ x but

O

(
x

(log x)δ

)
exceptions.

Proof. Set α := max{2, 3δ} and y := (log x)α. Then, by Lemma 2.5, we have

Ψ(x, y) = x1−1/α+o(1),

as x→ +∞. Put γ = 1/3 and let S1 be the set of positive integers n such that
there exists p ∈ Qγ with p > y and p | n. We have

#S1(x) ≤
∑
p∈Qγ
p>y

x

p
= x

[
#Qγ(t)

t

∣∣∣∣+∞
t=y

+

∫ +∞

y

#Qγ(t)

t2
dt

]

� x

∫ +∞

y

dt

t2−2γ
� x

y1/3
≤ x

(log x)δ
.

For the rest of the proof, write n = mM where m is the y-smooth part of n
and, consequently, each prime factor of M is greater than y. Let S2 be the set
of positive integers n such that M ≤ n1/(2α). Suppose n ∈ S2(x). On the one
hand, since m is y-smooth, there are at most Ψ(x, y) = x1−1/α+o(1) choices for m.
On the other hand, M ≤ n1/(2α) ≤ x1/(2α), so obviously there are at most x1/(2α)

choices for M . It follows that

#S2(x) ≤ x1−1/α+o(1) · x1/(2α) = x1−1/(2α)+o(1) � x

(log x)δ
.

Now, if n is squarefree and does not belong to S1(x) nor S2(x), then

L(n) ≥ n
∏
p |n
p>y

z(p) > n
∏
p |n
p>y

pγ > nMγ > n1+γ/(2α) = n1+ε,

where ε := γ/(2α) > 0. �

Now we give a lower bound for `(n). The proof proceeds similarly to the one
of [6, Theorem 5] but with a few adjustments.

Lemma 4.2. Pick δ ≥ 1. Then there exists ε = ε(δ) > 0 such that, for all x > 1,
the inequality `(n) > n1+ε holds for all squarefree positive integers n ≤ x but

O

(
x

(log x)δ

)
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exceptions.

Proof. Clearly, we can suppose x sufficiently large.
Pick ε′ > 0 sufficiently small, depending on δ, and let S1 be the set of square-

free positive integers n such that L(n) ≤ n1+ε′ . Then, by Lemma 4.1, we have

#S1(x)� x

(log x)δ
.

Put y := (log x)δ+1 and let S2 be the set of squarefree positive integers n such
that p2 | L(n) for some prime number p > y. If n ∈ S2(x), then one of the
following three cases occurs:

(i) p2 | z(q) and q | n;
(ii) p | z(q) and pq | n;
(iii) p | z(q), p | z(r), and qr | n;

where p, q, r are prime numbers with p > y. The number of positive integers
n ≤ x such that case (iii) occurs is at most∑

p>y

∑
q,r≡±1 mod p

q,r≤x

x

qr
≤ x

∑
p>y

( ∑
q≡±1 mod p

q≤x

1

q

)2
� x (log log x)2

∑
p>y

1

p2

� x (log log x)2

y
� x

(log x)δ
,

where we used Lemma 2.6. Cases (i) and (ii) can be treated in essentially the
same way, so we obtain

#S2(x)� x

(log x)δ
.

Put C := (ε′ log 2)/8 and w := xC/ log y. Let R be the set of prime numbers p
such that the y-smooth part of p−

(
p
5

)
is greater than w. Also, let F be the set

of y-smooth positive integers in [w, x]. By Lemma 2.5 and a little computation,
we have

Ψ(t, y) ≤ t1−c

for all t ∈ [w, x], where c > 0 is a constant. Therefore,∑
k∈F

1

k
=

Ψ(t, y)

t

∣∣∣∣x
t=w

+

∫ x

w

Ψ(t, y)

t2
dt ≤ Ψ(x, y) +

∫ x

w

t−c−1 dt

� 1

xc
+

1

wc
� 1

(log x)δ+1
. (9)

Now let S3 be the set of positive integers n which have a prime factor in R. By
Lemma 2.6 and (9), we get

#S3(x) ≤
∑
p∈R

x

p
= x

∑
k∈F

∑
p≡±1 mod k

p≤x

1

p
� x log log x

∑
k∈F

1

ϕ(k)

� x (log log x)2
∑
k∈F

1

k
� x

(log x)δ
,
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where we also employed the inequality ϕ(k)� k/ log log k [4, Proposition 8.4].
Let S4 be the set of positive integers n such that ω(n) ≥ log y/ log 2. Then

Lemma 2.7 yields

#S4(x)� x log x

y
=

x

(log x)δ
.

Finally, pick a squarefree positive integer

n /∈ [1, x1/2] ∪
4⋃
i=1

Si

and write L(n) = mM , where m is y-smooth and all prime factors of M are
greater than y. Since n /∈ S2, we have that M is squarefree, which in turn
implies that M | `(n). Furthermore, by n /∈ S3 ∪S4 and since n is squarefree,

m ≤
∏
q |n
q≤y

q ·
∏
p |n

(
y-smooth part of p−

(
p
5

))
≤ yω(n) · wω(n)

< w2ω(n) < x2C/ log 2 < n4C/ log 2 = nε
′/2,

where we also used the fact that y < w for sufficiently large x. Therefore,

`(n) ≥M =
L(n)

m
>
n1+ε′

m
> n1+ε

since n /∈ S1, where ε := ε′/2 > 0, and the proof is complete. �

From Lemma 4.2 we obtain the following corollary.

Corollary 4.3. We have
∞∑
d=1

|µ(d)|
`(d)

< +∞.

Proof. Fix some δ > 1 and let ε be given by Lemma 4.2. Also, let E be the set
of squarefree positive integers d such that `(d) ≤ d1+ε. On the one hand,∑

d/∈E

|µ(d)|
`(d)

<

∞∑
d=1

1

d1+ε
< +∞.

On the other hand, by partial summation and by Lemma 4.2,∑
d∈E

|µ(d)|
`(d)

<
∞∑
d∈E

1

d
=

#E (t)

t

∣∣∣∣+∞
t=2

+

∫ +∞

2

#E (t)

t2
dt

�
∫ +∞

2

dt

t(log t)δ
< +∞.

The claim follows. �

Now we shall introduce a family of sets. For each positive integer k, let Bk be
the set of positive integers n such that:

(i) k | gcd(n, Fn);
(ii) if p | gcd(n, Fn) for some prime number p, then p | k.
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The essential part of the proof of Theorem 1.4 is the following formula for the
asymptotic density of Bk.

Lemma 4.4. For all positive integers k, the asymptotic density of Bk exists and

d(Bk) =
∑

(d,k)=1

µ(d)

`(dk)
, (10)

where the series is absolutely convergent.

Proof. For all positive integers n and d, let us define

%(n, d) :=

{
1 if d | Fn,
0 if d - Fn.

Note that % is multiplicative in its second argument, that is,

%(n, de) = %(n, d)%(n, e)

for all relatively prime positive integers d and e, and all positive integers n.
It is easy to see that n ∈ Bk if and only if `(k) | n and %(n, p) = 0 for all

prime numbers p dividing n but not dividing k. Therefore,

#Bk(x) =
∑
n≤x
`(k) |n

∏
p |n
p - k

(1− %(n, p)) =
∑
n≤x
`(k) |n

∑
d |n

(d,k)=1

µ(d)%(n, d)

=
∑
d≤x

(d,k)=1

µ(d)
∑
m≤x/d
`(k) | dm

%(dm, d), (11)

for all x > 0. Moreover, given a positive integer d which is relatively prime with
k, we have that %(dm, d) = 1 and `(k) | dm if and only if lcm(z(d), `(k)) | dm,
which in turn is equivalent to m being divisible by

lcm(d, lcm(z(d), `(k)))

d
=

lcm(`(d), `(k))

d
=
`(dk)

d
,

since d and k are relatively prime. Hence,∑
m≤x/d
`(k) | dm

%(dm, d) =
∑
m≤x/d

`(dk)/d |m

1 =

⌊
x

`(dk)

⌋
,

for all x > 0, which together with (11) implies that

#Bk(x) =
∑
d≤x

(d,k)=1

µ(d)

⌊
x

`(dk)

⌋
= x

∑
d≤x

(d,k)=1

µ(d)

`(dk)
−R(x), (12)

for all x > 0, where

R(x) :=
∑
d≤x

(d,k)=1

µ(d)

{
x

`(dk)

}
.
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Now, thanks to Corollary 4.3, we have∑
(d,k)=1

|µ(d)|
`(dk)

≤
∞∑
d=1

|µ(d)|
`(d)

< +∞,

hence the series in (10) is absolutely convergent.
It remains only to prove that R(x) = o(x) as x → +∞, and then the desired

result follows from (12). We have

|R(x)| ≤
∑
d≤x

|µ(d)|
{

x

`(dk)

}
= O

(
x1/2

)
+

∑
x1/2≤d≤x

|µ(d)|
{

x

`(dk)

}

≤ O
(
x1/2

)
+ x

∑
d≥x1/2

|µ(d)|
`(d)

= o(x),

as x → +∞, since `(dk) ≥ `(d) and, by Corollary 4.3, the last series is the
tail of a convergent series and hence converges to 0 as x → +∞. The proof is
complete. �

At this point, by the definition of Bk and by the inclusion-exclusion principle,
it follows easily that

#Ak(x) =
∑
d | k

µ(d) #Bdk(x),

for all x > 0. Hence, by Lemma 4.4, we get

d(Ak) =
∑
d | k

µ(d)d(Bdk) =
∑
d | k

µ(d)
∑

(e,dk)=1

µ(e)

`(dek)

=
∑
d | k

∑
(e,k)=1

µ(de)

`(dek)
=
∞∑
f=1

µ(f)

`(fk)
, (13)

since every squarefree positive integer f can be written in a unique way as f = de,
where d and e are squarefree positive integers such that d | k and gcd(e, k) = 1.
Also note that the rearrangement of the series in (13) is justified by absolute
convergence. The proof of Theorem 1.4 is complete.

Remark 4.5. As a consequence of Theorem 1.4, note that if Ak = ∅ (or equiva-
lently if k = gcd(`(k), F`(k)), by Lemma 2.2) then the series in (1) evaluates to
0, which is not obvious a priori.
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5. P. Erdős, On the density of the abundant numbers, J. London Math. Soc. 9 (1934), no. 4,
278.

6. J. B. Friedlander, C. Pomerance, and I. E. Shparlinski, Period of the power generator and
small values of Carmichael’s function, Math. Comp. 70 (2001), no. 236, 1591–1605.

7. R. R. Hall, Sets of multiples, Cambridge Tracts in Mathematics, vol. 118, Cambridge
University Press, Cambridge, 1996.

8. H. A. Heilbronn, On an inequality in the elementary theory of numbers, Proc. Cambridge
Philos. Soc. 33 (1937), 207–209.
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