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ABSTRACT
The swarming of a bee colony is guided by a small group of scout
individuals, which are informed of the target destination (the new
nest). However, little is known on the underlyingmechanisms, i.e. on
how the information is passed within the population. In this respect,
we here present a discrete mathematical model to investigate these
aspects. In particular, each bee, represented by a material point, is
assigned its status within the colony and set to move according to
individual strategies and social interactions. More specifically, we
proposealternative assumptionson the flight synchronizationmech-
anism of uninformed individuals and on the characteristic dynamics
of the scout insects. Numerical realizations then point out the combi-
nations of behavioural hypotheses resulting in collective productive
movement. An analysis of the role of the scout bee percentage and
of the phenomenology of the swarm in domains with structural
elements is finally performed.
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1. Introduction

The wish of describing emerging collective dynamics of populations of interacting individ-
uals, such as birds, fishes, insects, and certain mammals, from individual behaviours has
increased in the last decades the multidisciplinary interest of various research communi-
ties, e.g. biologists, ecologists, sociologists, physicists, and applied mathematicians.

For instance, the coordinated behaviour of bee swarms represents an interesting prob-
lem to be studied. Such insect populations, which are typically composed by the old queen
and by 10,000–30,000 worker individuals, in fact, undergo a synchronized flight with the
specific purpose of reaching a new nest site [35]. All colonies are subject to this natural
phenomenon, and every year beekeepers have to deal with it in late spring and early sum-
mer. In this period, as the weather warms up and flowers begin to bloom, the colony is in
fact at the peak of its capacity and ready to produce a new hive.

In this respect, each bee swarm has to face two challenges: it first needs to identify a
suitable new location using a process of community site selection and then it has to move
towards the chosen destination. Entering in more details, when the migrating bees leave
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the original hive they first temporarily settle on a tree branch a few metres away from the
old nest. There, they cluster around the queen, and a small fraction of bees (called scouts)
starts exploring the surrounding area. These individuals inspect possible locations for the
new nest to assess their quality, in terms of volume, aspect, size, and height of entrance, and
presence of structures left by other bee colonies [35,39]. Then, they return to the rest of the
population and perform a waggle dance to broadcast information on the characteristics of
the explored sites. Nest proposals coming from the scout bees may be different but, after
some hours (sometimes days), an agreement is finally found.

The whole swarm finally takes off and compactly flies towards the chosen destina-
tion, following the guidance of the informed/scout individuals. In this respect, various
assumptions have been proposed to account for themigrationmechanisms underlying this
leader-follower system. First, it was hypothesized that the scout bees can pilot the cloud of
insects to the new home by producing the Nasonov pheromone. However, a subsequent
experimental study revealed that such a chemical substance is not really involved in the
flight guidance process, while it is crucial to help the uninformed/follower individuals to
find the entrance of the new nest [1].

A different family of possible explanations instead involves selected visual signals in the
transmission of informationwithin the swarm. Specifically, Lindauer in 1955 proposed that
the scout insects can transmit the direction ofmovement by flying through the swarm [31].
In particular, such informed bees are observed to streak at high speed from the back of the
swarm to its front. However, once they have reached the front of the cloud, their behaviour
is still unknown. In this respect, in [33,35], two possible dynamics are suggested: (i) they
may slowly fly back towards the rear edge of the swarm or (ii) they may stop and wait to
be passed by the rest of the groupmates. In both cases, the scout bees then start again to
streak towards the leading edge of the insect cloud and the process is iterated. The unin-
formed bees are in turn observed to align their flight towards the position of the new nest.
How the follower individuals acquire the information of the correct migration direction
under the scout guidance is debated as well. More specifically, each different hypothesis on
their flight synchronizationmechanism involves the alignment with a distinct set of group-
mates, composed, e.g. by faster individuals, or by closer individuals, or only by informed
individuals.

1.1. Objective and structure of the work

Our aim is to investigate the individual behaviour that is at the basis of bee swarming
towards a new nest. In this respect, we will reproduce the dynamics of a bee population
with a first-order microscopic discrete model that focuses on the flight phenomenology of
each component insect.

In more details, our model will be based on the so-called first sociological principles
of swarming which state that the individuals forming a flying group are subject at least
to repulsive, attractive, and alignment stimuli. These assumptions have been previously
implemented in a number of approaches dealingwith the collective dynamics of swarms, as
commented in the conclusive section of this paper and reviewed by Carrillo and coworkers
in [9]. We have also employed such phenomenological rules in a previous work [2], that
has .d how a single leader bee is able to transmit the direction of movement to the rest
of the population. In particular, we have therein tested alternative alignment hypotheses,
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i.e. topological vs. metric. The former implies that each insect synchronizes its flight to
a given number of groupmates regardless of their effective distance; the latter implies that
each bee synchronizes its flight to all groupmates falling within a certain region. The results
presented in that work have then demonstrated a directionally efficient swarming can be
obtainedwith a sufficiently large (i.e. with radius equal to the overall extension of the insect
cloud) alignment region in the case of metric alignment or with a high enough (i.e. ≥ 13)
number of individuals taken into account by each bee in the case of topological alignment.
In spite of such interesting results, some aspects characterizing the collective dynamics of
bee clouds still remained unexplored, becoming indeed the main focus of this article.

In this respect, we will here first introduce anisotropy in insect behaviour by the
definition of a more realistic visual region, i.e. not completely round. Then, we will include
the experimentally observed bee differentiated behaviour within the population: we will
in fact, distinguish between scout individuals and follower insects and define for each
subgroup a specific phenomenology. In particular, we will test different combinations of
hypotheses relative (i) to the characteristic movement of the scout/informed bees (which
will be indeed described in more details with respect to our previous work, where a single
leader individual was set to constantly fly in a given direction) and (ii) to the alignment
mechanisms of the follower/uninformed individuals. In more details, each uninformed
bee will be assumed to synchronize its movement to a given set of groupmates not only
upon considerations on their mutual distance (as in our previous work) but also taking
into account their status and actual velocity.

Once the most reasonable assumptions resulting in a correct collective swarming of
the insect population is found out, our second objective will be then to demonstrate that
the obtained behavioural rules are sufficient to reproduce realistic migratory dynamics in
complex real-world scenarios, involving domains with structural elements and obstacles.

The rest of this paper is organized as follows. In Section 2, we will present the main
model components. More specifically, we will first explain the characteristic representa-
tion of the virtual bees and their possible status/role within the population; then, we will
write the equations of motion and introduce the relative velocity contributions. In particu-
lar, we will clarify the biological and experimental considerations each term is based on. In
Section 3, selected series of numerical realizations will analyse swarm dynamics under dif-
ferent combinations of the proposed behavioural hypotheses of the insect colony. A study
on the influence of the fraction of scout individuals on the swarming process will be per-
formed as well. After presenting in Section 3.2 the phenomenology of the bee cloud in
more realistic situations, we will review in Section 4 the results obtained in the article. In
the same conclusive part of the work, we will compare our approach with similar discrete
models dealing with bee dynamics presented in the literature and propose some possible
improvements and developments of the work. Finally, Appendix will provide a detailed
description of the parameter estimate employed in our theoretical framework.

2. Mathematical model

Bee characteristics and status transitions. A population of bees is modelled in the two-
dimensional bounded domain � ⊂ R

2, whose boundary is defined by ∂�. We are indeed
considering a planar section, parallel to the ground, of a typical bee swarm, see Figure 1(a).
We further assume that the new nest, i.e. the target destination of the insects, is constituted
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Figure 1. (a) The virtual population of bees is modelled in a two-dimensional domain � ⊂ R
2, i.e. we

are taking into account a planar section of a typical swarm. The aim of the insect population is to reach
a new nest, which is constituted by a subregion of the domain boundary, hereafter denoted by ∂�nest
(⊂ ∂�). The domain may represent a large open-space or it may account for environmental elements,
such as trees or buildings. (b) The bees within the swarm can have the following roles: U (‘uninformed’),
S (‘streaker’), or P (‘passive leader’). An uninformed bee does not change its status, i.e. it is not able to
become a scout. Status transitions instead occur within the set of informed insects. More specifically,
they are set to have a streaker role while flying towards the nest: in this respect, once reached the front
edge of the cloud, they are assigned a passive leader role and turn the direction of flight (in the case of
hypothesis L1) or stop waiting for the passage of the rest of the insect cloud (in the case of hypothesis
L2). Eventually, when a passive leader finds itself at the trailing edge of the swarm, it acquires again a
streaker status and move towards the target destination as well.

by a subregion of the domain boundary, hereafter denoted by ∂�nest (⊂ ∂�), refer again
to Figure 1(a). Each insect i = 1, . . . ,N, being N the total number of individuals, is an
autonomous discrete agent, represented by a material point with concentrated mass. In
particular, the generic ith bee is uniquely defined by the following set of variables:

(xi(t), vi(t), gi(t), si(t)) ∈ R
2 × R

2 × S21 × S , (1)

where S21 is the unit circle. The vectors xi(t), vi(t), and gi(t) denote individual position,
velocity, and gazing direction, respectively, whereas si(t) is a status variable which defines
the role that the insect of interest has within the swarm. In this respect, according to the
biological considerations presented in the previous section, for each bee i, si falls in the set

S = {U (‘uninformed′); S (‘streaker′); P (‘passiveleader′)}. (2)

More specifically, scout individuals are set to have a streaker role when flying in the direc-
tion of the nest. Otherwise, they are defined as passive leaders. In this respect, we now
introduce possible insect status transitions, which are summarized in panel (b) of Figure 1.
Of course, an uninformed bee can not become informed, so it can not change its sta-
tus and will just follows the rest of the swarm. Status switches instead occur within the
set of scout insects. In particular, let us first define for any point of the domain x ∈ �

the signed distance function lnest(x) : � → R+ ∪ {0}, which is evaluated by solving the
two-dimensional eikonal equation:

|∇lnest(x)| = 1 ∀ x ∈ � (3)
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with boundary conditions

lnest(x) = 0, ∀ x ∈ ∂�nest;

∂ lnest(x)
∂n

= 0, ∀ x ∈ ∂� \ ∂�nest, (4)

where n is the unit vector locally normal to the domain boundary. It is useful to underline
that, in other words, lnest(x) measures the length of the minimal path between any x ∈ �

and any point belonging to ∂�nest. Coherently with the previous experimental consider-
ations, a streaker bee, say i, becomes a passive leader when it finds itself at the extreme
frontal edge of the population, i.e. if, in mathematical terms,

lnest(xi(t)) < min
k=1,...,N;k
=i
xk(t)∈�vis

i (t)

{lnest(xk(t))},

being �vis
i the visual region of individual i (see below). On the opposite, a passive leader,

say again i, switches back to a streaker status if it finds itself at the trailing edge of the group
of insects, i.e. if

lnest(xi(t)) > max
k=1,...,N;k
=i
xk(t)∈�vis

i (t)

{lnest(xk(t))}.

As most animal species, bees typically move and behave influenced by visual signals, cap-
tured by their large visual field, that covers almost the entire surrounding space. For the
ith insect (regardless of its status), we indeed denote by the unit vector gi(t) ∈ S21 (being S

2
1

the unit 2-D ball) its actual gazing direction and by

�vis
i (t) =

{
y ∈ � : |y − xi(t)| ≤ dvis,

y − xi(t)
|y − xi(t)| · gi(t) ≥ cos θvis

}
(5)

its visual region, being dvis and θvis the visual extension and the half visual angle, respec-
tively (see Figure 2).For sake of simplicity, we hereafter assume that the gaze of each bee is
constantly aligned to its velocity, i.e.

gi(t) = vi(t)
|vi(t)| , for i = 1, . . . ,N. (6)

However, individual gazing direction may also evolve slightly independently from the
direction of flight: therefore, a proper evolution equation for gi may be included as well, as
done for instance in [13].

Bee dynamics. The collective movement of the swarm is described by a set of first-
order ordinary differential equations (ODEs), which derives from a generic second-order
model under the assumption of overdamped force-velocity response, which is a consistent
hypothesis for living entities (e.g. cells, animals, humans, see the comments in [16,21,34]).
In this respect, the ith bee, with i = 1, . . . ,N, moves according to

dxi(t)
dt

= min {vmax, |vi(t)|} vi(t)
|vi(t)| , (7)

where a control on its actual speed is done to avoid unrealistically high values, that may
result also from plausible rules of movement. In this respect, vmax denotes the maximal
admissible bee speed.
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Figure 2. For each generic insect i, we define a visual region�vis
i (t). It is a round section determined by

the visual depth dvis and the half visual angle θvis, which symmetrically extends from the gazingdirection
of bee i, defined by the unit vector gi(t) (which, for the sake of simplicity, will be constantly aligned to
the velocity vi(t)). The inclusion of an anisotropic visual field implies that each bee is not able to see and
therefore to interact with the entire set of their groupmates (see, for instance, the individual k and h). For
representative purposes, hereafter the virtual bees will be indicated by rigid disks centred at their actual
position.

The insects then behave according to their role within the swarm. Coherently, we now
define three different dynamics, each relative to an individual status. All of them are the
sum of a given set of contributions, which can be in common for the entire population
or characteristic of a single subgroup (and underlined in the following equations). In
particular, for the generic ith bee, we have

vi(t) = vavoidi (t) + vgroupi (t) + vboundaryi (t) + vrandi (t) + valigni (t), if i : si(t) = U;

vi(t) = vavoidi (t) + vgroupi (t) + vboundaryi (t) + vrandi (t) + vstreaki (t), if i : si(t) = S;

vi(t) = vavoidi (t) + vgroupi (t) + vboundaryi (t) + vrandi (t) + vpassivei (t), if i : si(t) = P. (8)

We now comment each term in Equation (8), starting from those active for all individuals.
The repulsive velocity component vavoid models the tendency of all bees of staying suffi-

ciently far away from their neighbours, typically in order to avoid physical collisions and to
maintain a minimal comfort space within the swarm. The term vgroup instead implements
the desire of each individual to keep a connection with the groupmates, i.e. to remain close
enough to the rest of the population. For the generic ith insect, regardless of its status,
both behaviours are described by proper kernelsHavoid

ij ,Hgroup
ij : R2 × R

2 �−→ R
2, which

define its pairwise interaction instances with the generic jth individual belonging to one of
the following interaction sets:

N avoid
i (t) = {j = 1, . . . ,N, j 
= i : xj(t) ∈ �vis

i , 0 < |rij(t)| ≤ davoid};
N group

i (t) = {j = 1, . . . ,N, j 
= i : xj(t) ∈ �vis
i , davoid < |rij(t)| ≤ dgroup}, (9)

where rij(t) := xj(t) − xi(t). In (9), davoid is ameasure of the comfort space that each insect
tries to preserve, whereas dgroup is assumed to be equal to dvis, i.e. the bees tend to keep
a connection with the groupmates within their visual region, see Figure 3(a). Further, we
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Figure 3. (a) Representation of the spatial extension of three interaction regions. The repulsive and
attractive sets of the ith bee, i.e.N avoid

i andN group
i , are in fact given by the insects that i sees andwhose

distance falls in the ranges (0, davoid] and (davoid, dgroup], respectively. Finally, alternative assumptions are
set for the flight synchronizationmechanism of uninformed bees. However, in all cases, the insects taken
into account by the ith follower individual have to locate within a distance of dalign ∈ (davoid, dgroup). (b-
c) Plots of the pairwise attractive/repulsive interaction kernels havoid and hgroup defined in Equations (11)
and (12), respectively.

assume that the above-introduced kernels do not depend on the specific couple of bees, i.e.
Havoid

ij = Havoid and Hgroup
ij = Hgroup for any pair (i, j), that the resulting velocity contri-

butions have an effect on the direction ideally connecting the interacting insects and finally
that they depend on individual relative distance. In this respect, we can write:

vavoidi (t) =
∑

j∈N avoid
i (t)

Havoid(xj(t), xi(t)) =
∑

j∈N avoid
i (t)

havoid(|rij(t)|)
rij(t)
|rij(t)| ,

vgroupi (t) =
∑

j∈N group
i (t)

Hgroup(xj(t), xi(t)) =
∑

j∈N group
i (t)

hgroup(|rij(t)|)
rij(t)
|rij(t)| , (10)

being again rij(t) := xj(t) − xi(t). To implement the desired phenomenology, the function
havoid (respectively, hgroup) has to be non positive (respectively, non negative) in its entire
domain, i.e. havoid : R+ �−→ R− ∪ {0} (respectively, hgroup : R+ �−→ R+ ∪ {0}). In prin-
ciple, there are many possible forms for such interaction laws. In particular, the avoidance
bee behaviour is hereafter described by a classical Newtonian-type short-range hyperbolic
kernel

havoid(|rij(t)|) = favoid
(

1
davoid

− 1
|rij(t)|

)
, (11)

which has been employed in other particle models. For instance, it has been used by
Diwold and coworkers to reproduce the collective flight of red dwarf honeybees (cf. [20],
Equation (1)) and by Chen and Kolokolnikov to study predator-swarm interactions (cf.
[10], Equation (1.1) and the references below). Repulsive kernels with similar trends (i.e.
which go to infinity as |rij|α , with α < 0, when |rij| → 0, being |rij| the distance between
two interacting agents) have been implemented also in the case of discrete approaches for
zebrafish embryogenesis [19] and endothelial patterning on polymers [29]. In (11), the
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positive parameter favoid ∈ (0,+∞), with units m2/s, defines the slope of the hyperbolic
function havoid.

On the other hand, long-range attraction between bees is assumed to have the following
parabolic form:

hgroup(|rij(t)|) = 4 fgroup
(dgroup − |rij(t)|)(|rij(t)| − davoid)

(dgroup − davoid)2
. (12)

We do not use linear Hooke-like attraction laws, such as those introduced in some of the
previously cited works dealing with swarming, e.g. [10,20], since we hypothesize that the
attractive stimulus is negligible when two bees are very close and, after a maximum, it
decreases again to zero at dgroup, which is taken to be the margin of the visual field. Finally,
according to us, it is plausible that pairs of insects falling substantially apart one from each
other do not have a significant mutual influence. The exact form of hgroup is taken such
that its maximum is given by the positive coefficient fgroup ∈ (0,+∞), which has units
m/s, and located in the middle of the interval (davoid, dgroup). Analogous attraction func-
tions has been used in the case of other particle models relative to bee and cell dynamics,
see [2,11–13] and references therein. It is also useful to underline that, according to the
above-introduced kernels havoid and hgroup, which are plotted in Figure 3(b), and to the cor-
responding interaction sets N avoid and N group, two individuals do not interact (i) when
they do not see each other and (ii) when they are exactly at the comfort distance davoid.
It is finally useful to underline that the pair of coefficients favoid and fgroup have a clear
mathematical meaning, as commented above, but not a direct and measurable experimen-
tal counterpart. In this respect, their estimate has required a detailed parameter study, as
discussed in the Appendix.

We then include a velocity term that implements the intention of bees to remain
sufficiently distant from the domain boundary (which may represent, e.g. architectural
structures or natural obstacles). In accordance to the case of pedestrians [13], such amigra-
tory contribution enters the picture when the ith individual (regardless of its status) is
close enough, i.e. at a maximal distance hereafter defined with the coefficient dboundary,
to a boundary:

vboundaryi (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aboundary exp
(dboundary − lboundary(xi(t))

bboundary

)
nboundary(xi(t)),

if lboundary(xi(t)) < dboundary;

0, otherwise,

(13)

where

nboundary(xi(t)) = ∇lboundary(xi(t))
|∇lboundary(xi(t))|

(14)

is the unit vector directed from the nearest point of the domain boundary to the actual posi-
tion of the insect i. lboundary(xi(t)) : � → R+ ∪ 0 is in fact the distance function resulting
from the following eikonal equation and relative boundary conditions:

|∇lboundary(x)| = 1 ∀ x ∈ �;
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lboundary(x) = 0, ∀ x ∈ ∂� \ ∂�nest;

∂ lboundary(x)
∂n

= 0, ∀ x ∈ ∂�nest. (15)

We here remark that, despite the term defined in (13), proper boundary conditions are
needed.More specifically, we hereafter assume thatwhen a bee touches a part of the domain
not occupied by the nest, it stops, whereas it is taken out from the simulation when reaches
a point of the target nest.

For each insect i, a fluctuation velocity term is added as well. It is given by a vector
vrandi , whose modulus and direction are, at any time t, random variables which uniformly
fall within the ranges of values [0, vmean/10] and [0, 360◦), respectively (see below for the
meaning of vmean).

We now turn to describe the velocity components characteristic of the different bee sub-
groups. First, valigni is an alignment term typical of the following individuals which, being
uninformed of the position of the new nest, are only able to synchronize their flight with
selected sets of mates. In this respect, for the ith follower insect we define

valigni (t) = vmean

< vj(t) >
j∈N align

i (t)

| < vj(t) >j∈N align
i (t) | , (16)

where vmean denotes the characteristic speed of uninformed bees and

< vj(t) >
j∈N align

i (t)
= 1

#N align
i (t)

∑
j∈N align

i (t)

vj(t) (17)

is the mean of the velocities of the groupmates falling within the alignment setN align
i (t),

denoting by # its cardinality. In this respect, we propose four alternative definitions of
N align

i , in accordance with the different experimental hypotheses:

HP A1 the ith uninformed bee synchronizes its flight with the follower and the streaker
individuals that are sufficiently fast and close to its position. This results in

N align
i (t) = {j = 1, . . . ,N, j 
= i : sj(t) ∈ {U, S}, xj(t) ∈ �vis

i ,

0 < |rij(t)| ≤ dalign, |vj(t)| > |vi(t)|}, (18)

where again rij(t) := (xj(t) − xi(t));
HP A2 the ith uninformed bee aligns to the faster groupmates, regardless of their status,

provided that they are close enough, i.e.

N align
i (t) = {j = 1, . . . ,N, j 
= i : xj(t) ∈ �vis

i ,

0 < |rij(t)| ≤ dalign, |vj(t)| > |vi(t)|}; (19)

HP A3 the ith uninformed bee synchronizes its flight to all insects falling within a given
neighbourhood, regardless of their status and speed. In mathematical terms:

N align
i (t) = {j = 1, . . . ,N, j 
= i : xj(t) ∈ �vis

i ,
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0 < |rij(t)| ≤ dalign}, (20)

HP A4 the ith uninformed bee synchronizes its flight with the follower and the streaker
individuals that fall within a given regions, regardless of their velocity:

N align
i (t) = {j = 1, . . . ,N, j 
= i : sj(t) ∈ {U, S}, xj(t) ∈ �vis

i ,

0 < |rij(t)| ≤ dalign}. (21)

In all cases, dalign defines the extension of the alignment region. As discussed in the fol-
lowing, dalign ∈ (davoid, dgroup), i.e. the flight synchronization set of an individual intersects
those relative to its pairwise interactionswith the groupmates. This assumption implies that
each uninformed bee can simultaneously align to and avoid or be attracted by another indi-
vidual, see Figure 3(a). Further, we remark that, in the case of hypotheses A1 and A4, the
passive leaders are not taken into account by the follower bees, as assumed in the biological
literature [33,35]. However, it is useful to underline that the explanation of such a phe-
nomenon is far to be understood. For instance, it is hypothesized that the passive leaders
make themselves invisible to their groupmates by flying either close to the ground or back-
light with respect to the sun or hidden in themiddle the rest of the cloud (see again [33,35]).
In this respect, given the absence of detailed experimental evidence and in order to avoid
further model overcomplications, we here opt to focus only on the typology of the flight
of the informed insects (i.e. ‘back-and-forth’ vs. ‘go-and-stop’) and not on the zones of
the swarm where such characteristic movements are performed. This issue would require
further empirical investigations and, from a mathematical point of view, the introduction
of three-dimensional settings. However, planar domains to describe bee swarming, includ-
ing the dynamics of the leader individuals, are consistently employed across the theoretical
literature (refer, for instance, to [9,20]).

In Equation (8)2, vstreaki describes the characteristic motion of the scout bees with a
streaker status, i.e. when they fly at high speed in the direction of the nest thereby behaving
as guidance leaders for the rest of the swarm. In particular, for the ith streaker insect (i.e.
i : si(t) = S), we set:

vstreaki (t) = −vmax
∇lnest(xi(t))
|∇lnest(xi(t))| , (22)

where ∇lnest and vmax have been introduced in (3) and (7), respectively. Equation (22)
implies that each streaker individual performs a flight that, at each time instant t, is aligned
to the direction minimizing the distance between its position and the target nest, i.e. it
moves along the optimal trajectory. In this respect, we here remark that the use of eikonal
equations is usually employed in methods related to the computation of optimal paths.
More specifically, Equation (22) has the advantage that it can be used regardless the com-
plexity of the domain, with straightforward extension to the case of non-planar geometries.
Further comments on this aspect can be found in [13], where different approaches for
evaluating individual minimal trajectories to a given target are discussed as well.

We then propose two alternative hypothesis for the characteristic behaviour of scout
bees when they take a passive leader role:

HP L1 on one hand, they are assumed to slowly fly back towards the rear edge of the
swarm, in order to slightly affect the movement of the rest of the groupmates. In
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Table 1. Model parameters.

Parameter Description Value Reference

dvis Depth of visual field 20 m Biological considerations
θvis Half visual angle 156.5 degree [40]
vmean Mean velocity of uninformed bees 6.7 m/s [25]
vmax Bee maximal admissible speed 9.4 m/s [35]
davoid Extension of the avoidance region 0.3 m [35]
dalign Extension of the alignment region 2 m Coherent with [14]
dgroup Extension of the attractive region 20 m Biological considerations
favoid Avoidance coefficient 1 m2/s Parametric analysis (cf. Appendix)
fgroup Attraction coefficient 10−6 m/s Parametric analysis (cf. Appendix)
dboundary Extension of the repulsion region from boundary 4.0 m Parametric analysis (cf. Appendix)
aboundary Coefficient of the boundary repulsive velocity 0.18 m/s Parametric analysis (cf. Appendix)
bboundary Coefficient of the boundary repulsive velocity 1.0 m Parametric analysis (cf. Appendix)

this respect, for the ith passive leader bee, we set

vpassivei (t) = vmean

xk̄(t)−xi(t)
|xk̄(t)−xi(t)| + ∇lnest(xi(t))

|∇lnest(xi(t))|∣∣∣ xk̄(t)−xi(t)
|xk̄(t)−xi(t)| + ∇lnest(xi(t))

|∇lnest(xi(t))|
∣∣∣ , (23)

where k̄ is such that

lnest(xk̄(t)) = max
k :sk(t)=U

xk(t)∈�vis
i (t)

lnest(xk(t)),

i.e. k̄ is the uninformed insect farthest from the target nest;
HP L2 on the other hand, we hypothesize that the passive leaders stop and wait for the

passage of the rest of the population. For the ith passive leader, we indeed set

vpassivei (t) = 0. (24)

The entire model parameter setting used in the following simulations is summarized in
Table 1, while in the Appendix we will detail how they have been estimated.

3. Numerical results

The numerical results proposed in this section will be divided in two parts. In the first
Section 3.1, wewill test different combinations of the alternative assumptions relative to the
alignment mechanism of the uninformed bees and to the behaviour of the passive leaders.
By considering swarm dynamics within a simple rectangular domain, we will look at the
rules of motion that result in a realistic migration of the insect cloud, which has to fly
compactly and productively towards the nest. The effect of variations in the percentage of
informed bees will be analysed as well. Section 3.2 will be instead devoted to reproduce the
collective phenomenology of the bee population in more complex environments, which
involve domains with different obstacles.
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3.1. Swarming in a large open-space domain

In this first set of simulations, we use a rectangular [0, 200] × [0, 200]m2 domain�, where
the target destination is constituted by the boundary segment y ∈ [95, 105] on the right
side of the domain, see Figure 4. The measure of ∂�nest is larger than the dimension of a
real nest, since we here intend to describe the behaviour of the swarm while approaching
the new home and not the subsequent entrance mechanisms, that are driven by other pro-
cesses (e.g. pheromone cues). The insect population is formed by N=500 individuals (we
recall that we are dealing with a planar section of a larger three-dimensional swarm). In
particular, 480 of them are uninformed followers, while the remaining ones are scouts with
an initial streaker role, i.e. si(0) = S for i ∈ {481, . . . , 500}. We here recall that uninformed
bees are not allowed to change state, whereas the informed insects can switch between
the streaker and the passive leader status. The swarm is initially arranged in an almost
round area centred at (100m, 100 m) of radius equal to r0 = 4m, where the positions
of the insects are randomly assigned, refer again to Figure 4. In this respect, we account
for a reasonable density of ≈ 8 bees/m2 [35]; also the percentage of informed individ-
uals, i.e. 4 % of the entire population, is in agreement with the experimental literature
[36–38]. The initial gazing direction gi(0) of each generic ith bee is randomly generated
as well.

The objective of the swarm is to reach the target destination. In this respect, the numer-
ical realizations are stopped as soon as the last insect touches a point of ∂�nest, i.e. at a time
denotedwith tF . The dynamics of the bee population resulting fromdifferent combinations
of the individual behavioural hypotheses outlined in Section 2 are classified according to
the following criteria:

Figure 4. The sets of simulations proposed in Section 3.1 are employed in a rectangular [0, 200] ×
[0, 200] m2 domain �, where the target destination is constituted by the boundary segment ∂�nest =
200 × [95, 105] (indicated by the green line). The swarm is initially arranged in an almost round area
centred at (110 m, 100 m) of radius equal to r0 = 4m, where the positions of the insects are randomly
assigned. In particular, we account for N= 500 bees, with 480 follower individuals and 20 scouts. All the
informed bees are initially assigned a streaker status. For representative purposes, the virtual insects will
be hereafter indicated by rigid disks centred at their actual position. More specifically, we will use yel-
low circles for uninformed individuals, red circles for streaker scouts and blue circles for passive leader
scouts.
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Definition 3.1: The swarm undergoes a directionally productive motion towards the
nest if

Eswarm = lim
t→∞ lnest(xswarm(t)) = 0, (25)

where xswarm(t) = (
∑N

i=1 xi(t))/N is the centre of mass of the bee cloud and lnest is the
distance function introduced in Equation (3).

The swarm undergoes a coherent and collective flight if

Cswarm = max
t>0

aswarm(t)
aR

< 2, (26)

where aswarm(t) is a measure of the space extension1 of the bee cloud at time t and aR is
equal to π(r0)2, i.e. the area of the round region initially containing all individuals.

The swarm undergoes a collective and productive flight towards the nest if both condi-
tions (25)–(26) are satisfied.

The quantity defined in Equation (26) is able to give an indication of the presence of
dispersed insects, i.e. of bees unable to correctly synchronize their movement with the rest
of the group. In fact, our simulation results have consistently shown that if, at a given time
t, the surface of the insect cloud is twice the reference initial area aR (or even more), then
there is at least a follower bee that actually has no groupmate within its alignment set which
means that it has lost.

Figures 5–7 summarize the results obtained by the different combinations of the indi-
vidual behavioural hypotheses. In particular, for each pair of assumptions, we have run 10
independent numerical realizations, given the presence of randomness both in the initial
position of the bees and in their dynamics due to the velocity term vrand. We can observe
that in all cases the distance lnest(xswarm(t)) between the swarm centre of mass and the nest
decreases almost linearly (see also the inset graph in Figure 5(a)).

In particular, it becomes null in a finite time (< 14 s), as Eswarm is zero. However, as
shown in the plot of Cswarm in Figure 5(b), only under hypotheses (A3, L1), (A3, L2) and
(A4, L2), the flight of the insect population is completely synchronized and therefore col-
lective in all realizations. In the other cases, as also shown in the representative snapshots
in Figures 6 and 7, at least one uninformed bee does not correctly align to the rest of the
swarm, flying away from the groupmates. In these situations, the scout bees have to take
time to reach/wait for the dispersed individual(s) and to guide it (them) towards the nest:
the experimentally-observed compactness of the insect cloud is therefore not maintained.
From the graph in Figure 5(b), it can be further noticed that bee dispersion is more signifi-
cant in the case of assumptions (A2, L1) and (A2, L2), i.e. when the uninformed bees align
to the faster groupmates, regardless of their status.

Taking all the results together, we can state that in our model alignment mechanisms
involving a control over groupmate velocity do not certainly imply directionally productive
and collective swarm dynamics. An efficient and coordinate flight is instead reproduced
if the follower individuals synchronize their movement (i) to all insects sufficiently close
to their position, regardless of their status and of the behaviour of the passive leaders, or
(ii) only to close enough uninformed and streaker groupmates, provided the fact that the
passive leaders stop upon reaching the front of the cloud. In particular, it is somehow
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Figure 5. (a) Plot of Eswarm, defined inEquation (25), in the caseof 10 independentnumerical realizations
for each combination of bee behavioural assumptions. It is worth to notice that, in all cases, the swarm
undergoes a productive movement, in terms of centre of mass displacement. For the sake of complete-
ness, in the inset graph, we represent the evolution in time of the distance of the centre of mass of the
insect cloud from the nest. (b) Plot of Cswarm, defined in Equation (26), in the case of 10 independent
realizations for each combination of bee behavioural assumptions. A consistent (i.e. in all realizations)
absence of bee dispersion is only obtained in the case of hypotheses (A3, L1), (A3, L2), and (A4, L2).

Figure 6. Representative evolutions of the bee population in the case of combinations between the
hypothesis L1 (relative to the behaviour of the passive leader scouts) and the alternative assumptions
on the alignment mechanism of the follower insects. It is possible to notice that, in all cases, the swarm
reaches the target destination, but only for the pair (A3, L1) without bee dispersion.We recall that yellow
disks represent follower bees, red circles represent streakers, andblue disks represent passive leaders. For
each scout individual, we finally indicate by a coloured arrow its velocity.
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Figure 7. Representative evolutions of the bee population in the case of combinations between the
hypothesis L2 (relative to the behaviour of the passive leader scouts) and the alternative assumptions
on the alignment mechanism of the follower insects. It is possible to notice that, in all cases, the swarm
reaches the target destination, bee dispersion is not observed for the pairs (A3, L2) and (A4, L2).We recall
that yellowdisks represent follower bees, red circles represent streakers, and blue disks represent passive
leaders. For each scout individual, we finally indicate by a coloured arrow its velocity.

worth to remark that, in the case of hypotheses A1 and A4, passive leader bees are not
considered for the alignment mechanism: however, they determine the flight of the fol-
lower groupmates by affecting the other velocity components (e.g. collision avoidance and
attraction).

We now turn to describe and compare in more details selected characteristics of swarm
dynamics under the plausible combinations of behavioural assumptions. In this respect,
Figure 8 shows the time-evolution of the amount of bees belonging to each subpopula-
tion in the different cases.As it is possible to observe, the number of follower individuals
remains obviously constant whereas, transitions between streaker and passive leader states
continuously occur. In particular, under the coupled hypotheses (A3, L1), the amount of
streaker insects remains substantially higher that the number of passive leaders during the
entiremigration (the former fallingwithin the range 14–20, the latter within the range0–6).
On the opposite, in the case of assumptions (A3, L2) and (A4, L2) (i.e. when the passive
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Figure 8. Evolution in time of the number of bees belonging to each subpopulation in the case of
hypothesis combinations resulting in directionally productive and collective swarming. For clarity pur-
poses, we plot the outcomes of a single numerical realization for each setting, since we do not observe
large variances in the case of multiple independent simulations.

Figure 9. Representative trajectories of scout bees during swarming, in the case of the three combina-
tions of behavioural assumptions resulting in a directionally productive and collective insect flight.

leaders are assumed to stop and wait for the rest of the colony), the fluctuations in the car-
dinality of two subgroups of scout bees are more significant: for instance, the amount of
streakers can drop and be almost equal to the number of passive leaders.

Figure 9 finally compares the trajectories of representative scout bees under the differ-
ent assumptions resulting in realistic swarm dynamics. In particular, under the coupled
hypotheses (A3, L1), it is straightforward to notice the short-time backward movement of
the informed individual during its passive leader status. It is also interesting to observe
that under the assumptions (A3, L2) and (A4, L2), the scout bees, when passive leaders,
do not completely stop but rather still move as a consequence of the velocity components
which are still active (i.e. those relative to attractive/repulsive interactions and to random
fluctuations).

Variations in the percentage of scout bees.As seen, the collectivemigration of bee swarms
is guided by few informed individuals, that are able to diffuse information of the nest loca-
tion within the rest of the population. An interesting question is indeed relative to the
consistency of the flight directional efficiency upon variations in the ratio between the
number of individuals having the different roles within the colony.
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Figure 10. Relationships between the directional efficiency of swarm flight (in terms of Eswarm, defined
in Equation (25)) and the percentage of informed bees, in the case of different sizes of the colony (i.e. of
overall number of components N). To avoid redundancy, we plot the outcomes obtained from a single
realization in the case of coupled hypotheses (A4, L2): however, these results have been obtained also
with assumptions (A3, L1) and (A4, L1) and are robust in the case of independent simulations.

In this respect, we now study the dynamics of insect clouds characterized by different
numbers of scouts and of overall components. In particular, we employ the same domain
of the previous section and the rules of motion defined in Section 2: however, only the
combinations of assumptions that have resulted in a plausible system phenomenology are
hereafter used, i.e. the pairs (A3, L1), (A3, L2), and (A4, L2). As initial data, the bees are
again randomly disposed in round regions, whose radius is chosen, in each case, to main-
tain the density of 8 bees/m2. All scout individuals have a streaker status whereas the initial
bee gazing direction is randomly assigned.

As it is possible to observe in Figure 10, for a given group size, i.e. for a fixed N, the
directionally productive component of swarm movement increases (i.e. Eswarm decreases)
as the percentage of informed individuals increases. Furthermore, still from the same plot,
we can notice that the higher the overall number of bees is, the smaller the proportion of
informed individuals necessary is in order to have an efficient migration towards the nest.
In particular, substantially large swarms require a very small set of scout bees to reach the
target destination.

These results are observed for all the tested combinations of behavioural assumptions
(even if for clarity we represented only the case relative to the pair (A4, L2), being com-
pletely robust also in the case of independent simulations in the different settings (in each
case, the standard deviation deriving from 10 simulations is < 1% and therefore not rep-
resented in the graphs). We also remark that in the cases of full productive swarming
(i.e. when Eswarm ≈ 0) no bee dispersion occurs (i.e. Cswarm < 2), in agreement with the
outcomes presented in the previous subsection.

As it will be commented in more details in the conclusive part of the paper, analogous
quite surprising results have been obtained in theworks byCouzin et al. [14] and by Fetecau
and Guo [22], where similar microscopic/discrete models have been employed to describe
collective swarming.
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Figure 11. Bee swarming in the case of more complex environments. Representative evolutions of the
bee population placed within a domain characterized by a square obstacle between its initial position
and the new nest, whose centre is located at the same y-coordinate of the initial centre of mass of the
insect cloud, in the case of the sets of plausible behavioural assumptions (A3, L1), (A3, L2), and (A4, L2).
The insect population is assumed to be composed of N= 500 individuals, which are initially subdivided
into 480 uninformed insects and 20 streakers. The initial configuration of the swarm consists of a circle
of radius r0 = 4m with bee position and gazing direction randomly assigned. It is possible to observe
that the swarm autonomously deflects its motion and undergoesmorphological reorganization in order
to pass the structural element and compactly reach the target destination. We recall that yellow disks
represent follower bees, red circles represent streakers, and blue disks represent passive leaders. For each
scout individual, we finally indicate by a coloured arrow its velocity.

3.2. Swarming inmore realistic situations

Finally, we turn to asses the applicability of our model in real-world situations by means of
representative numerical results involving more complex environments.

In particular, referring to Figures 11 and 12, we deal with domains characterized either
by a structural obstacle or by a bottleneck, placed in between the initial position of the
swarm and the target destination. Such environmental elements may represent architec-
tural buildings or trees that the insect cloud has to avoid during itsmigration.Hereafter, the
bee population is still assumed to be composed of N=500 individuals, which are initially
subdivided into 480 uninformed insects and 20 streakers. As usual, the initial configuration
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Figure 12. Bee swarming in the case of more complex environments. Representative evolutions of the
bee population placed within a domain with a bottleneck between its initial position and the new nest,
whose centre is located at the same y-coordinate of the initial centre of mass of the insect cloud, in the
case of the sets of plausible behavioural assumptions (A3, L1), (A3, L2), and (A4, L2). The insect population
is assumed to be composed of N= 500 individuals, which are initially subdivided into 480 uninformed
insects and 20 streakers. The initial configuration of the swarm consists of a circle of radius r0 = 4mwith
bee position and gazing direction randomly assigned. It is possible to observe that the swarm squeezes
to pass through the structural element. We recall that yellow disks represent follower bees, red circles
represent streakers, andbluedisks represent passive leaders. For each scout individual,wefinally indicate
by a coloured arrow its velocity.

of the swarm consists of a circle of radius r0 = 4m with bee position and gazing direction
randomly assigned. Again we test the coupled hypothesis (A3, L1), (A3, L2), and (A4, L2).
The centre of the nest is located at the same y-coordinate of the initial centre of mass of the
insect cloud.

As it is possible to observe in Figures 11 and 12, in both situations, the swarm has to
slightly deflect its direction of movement and to deform to pass the structural elements
and reach the target destination. In particular, in the case of the square obstacle, the bees
located at the bottom part of the population are pressed towards the centre of the swarm
by the repulsive velocity vboundary. We indeed have an increasing density of insects in the
centre of the cloud. However, the productive direction of flight is still maintained. Once
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passed the structural element, the compressed area of the swarm slightly relaxes and an
almost homogeneous density of bees is recovered.

Referring to Figure 12, when approaching the bottleneck, the swarm is instead substan-
tially stretched horizontally and compressed vertically, i.e. it switches from a round shape
to an ellipsoidal geometry, with shorter axis along the y-direction of the domain. Interest-
ingly, after passing the bottleneck, there is only a slight relaxation of the insect cloud, which
does not acquire again a fully round configuration. The underlying rationale is that, even
when the colony has an elongated shape, the component bees are at a sufficient (but not
excessive) distance one from another and therefore there is no reason to spend energy to
further reorganize.

In both domains configurations, the swarm finally redirect again its coordinate flight to
reach the target destination.

The above-described phenomenologies are observed under the three tested coupled
hypotheses, with slight differences in themorphological transitions of the swarm.However,
we remark that, in all settings, there is no bee dispersion.

The results presented in this section allow us to conclude that the behavioural rules
of bees (A3, L1), (A3, L2), and (A4, L2) give a realistic swarming not only in open-space
simple domains but also in more complex scenarios. In particular, our model, under such
plausible hypotheses, is able to capture autonomous morphological reorganizations and
changes of flight direction of the insect cloud, necessary to preserve its compactness and
to reach the target destination.

4. Discussion

The collective motion of groups of animals has recently attracted an increasing interest
in the modelling community. Particularly intriguing is the swarming of bee populations
towards a new nest. In fact, such a characteristic migration is led by few informed/scout
individuals, which have previously explored the possible new home and therefore are able
to guide the groupmates towards the target destination. However, also from an experimen-
tal point of view, little is known on the behavioural rules underlying the coordinated flight
of bee swarms. In particular, it is not completely clear how the information on the nest
location spreads within the population and what are the exact dynamics of the informed
individuals.

The aim of this work has been indeed to test alternative assumptions and to find out
those resulting in realistic swarming phenomenologies. To do this, we employed a discrete
mathematical model, where each insect has been individually represented by a material
point and assigned a given behavioural status (i.e. streaker, passive leader, or uninformed).
The subgroups of bees have in common some general rules of motility, such as the ten-
dency to remain within the population while keeping a comfort distance from the other
components. Other principles of motion are instead characteristic of a single subpopula-
tion, such as the ability if uninformed bees to synchronize their flight with the surrounding
groupmates. These ideas have been translated in a mathematical model based on a set of
first-order ODEs, each of them describing the evolution of the position of an insect.

The resulting model has been used to test combinations of alternative assumptions
underlying the synchronization mechanisms of uninformed bees and the individual
behaviour of passive leader bees. In particular, our results have shown that a productive
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collective flight of the swarm is only possible if the uniformed individuals synchronize their
movement (i) to all insects sufficiently close to their position regardless of their status and
velocity and of the dynamics of the passive leaders (i.e. coupled assumptions (A3, L1) and
(A3, L2)) or (ii) only to close enough follower and streaker groupmates, provided the fact
that the passive leaders stop upon reaching the front of the swarm (i.e. coupled assump-
tions (A4, L2)). Other sets of hypotheses have produced the unrealistic phenomenon of
bee dispersion, i.e. at least one follower individual is not able to synchronize its movement
with the rest of the swarm during the entire flight, thereby flying away and affecting the
migration of the informed bees and eventually of the entire population.

Once the most plausible behavioural assumptions have been identified, we have turned
to analyse the effect of variations in the number of scout bees. Interestingly, we have found
that larger swarms require fewer scout individuals to compactly reach the target destina-
tion. This quite surprising outcome is in agreement with the results obtained by similar
models [14,22]. However, it is useful to remark that from experimental observations it is
known that, regardless the size of the population, the fraction of informed insect typically
falls in the range 3–5%In this respect, we can speculate that, although in principle the per-
centage of scout bees could decrease, their amount may be established also by other social
dynamics of the swarm not involving migration issues. For instance, a sufficiently high
number of scout bees could be necessary to explore the environment to find a new home
in a substantially short time.

With the last set of simulations, we have finally provided the fact that ourmodel, with the
selected combinations of bee behavioural assumptions, is able to capture swarm dynamics
in more complex scenarios, that may require morphological rearrangements of the insect
cloud to pass structural elements and significant changes of flight directions.

4.1. Comparisonwith pertinent literature

The description of the collective and coordinated dynamics of groups of animals is a chal-
lenging topic for theoretical researchers. Populations of intelligent living entities are in fact
complex systems, since the component individuals are not passively dragged by external
forces but rather they undergo active decision-based dynamics, so that the use of classical
passive mechanics is no longer sufficient. The overall evolution of the group then emerges
from the rules governing the individual behaviour. In this respect, the mathematical and
computational literature in this field presents indeed a wide range of approaches.

For instance,microscopicmodels (also called individual-basedmodels, IBMs) describe a
group of animals as a collection of isolated agents: each of them is individually considered,
assimilated for instance to a point particle or a quasi-rigid disk and followedduringmotion.
More specifically, a first subgroup of microscopic models is represented by the so-called
cellular automata (CA), where each animal is set to behave according to phenomenological
algorithmic rules, that depend on its individuality and/or on the surrounding environment.
Another subtype of microscopic approach involves instead discrete models: they rely on
classical Newtonian laws of point mechanics, as the motion of each agent is defined by a
first- or a second-order ordinary differential equation (ODE).

However, when the number of component individuals is significantly large, as in the
case of fishes [30] or myxobacteria [24,26], microscopic methods become computationally
expensive and therefore different approaches are needed. In this respect, continuousmodels,
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characteristic of a macroscopic point of view, rely on the definition of a proper density of
agents, which evolves following (typically nonlinear) partial differential equations (PDEs),
which implement conservation laws and require phenomenological assumptions for their
closure, see for example [3,41–43].

A bridge between the microscopic word and the macroscopic representation of animal
systems is represented by kineticmodels. Characteristics of amesoscopic point of view, they
are able to derive, employing hydrodynamic arguments, Boltzmann-like evolution laws for
statistical distribution functions, which describe position and velocity of the components
of the population of interest [5,7,27].

Themodel presented in this article belongs to the class ofmicroscopic/discretemethods.
Since some of them are devoted to reproduce selected features of bee swarming, it is impor-
tant to discuss differences and similarities with respect to our approach, mainly in the term
relative to the behaviour of scout/informed individuals. Entering in more details, in [22],
Fetecau and Guo implement a second-order model with differentiation between informed
and uninformed bees. More specifically, the formers do not interact with their groupmates
and move faster towards the target destination according to two alternative hypothesis: (i)
they streak with a constant acceleration or (ii) they fly with a constant speed. In both cases,
when such informed individuals reach the leading edge of the cloud, they come back to the
rear of the population being 10 time less visible. Each uninformed insect instead undergoes
attractive and repulsive stimuli, described by a Morse potential, and alignment mecha-
nisms, which involve its two-fold faster neighbours. Bee dynamics account for a random
component as well, which is active only when the interaction of an individual with the rest
of the swam is low enough. The authors also introduce a visual field for each bee, given by
a planar cone which is constantly aligned to the direction of motion and formed by two
regions: a central cone where the other individuals are set to be seen directly, and therefore
assigned a unit weight, and a peripheral area where the other individuals are set to be seen
partially, and therefore assigned a lower weight. In our model, a peripheral vision is not
considered, since it is known from biology that the compound eyes of bees cover most of
the front and of the sides of their head, assuring an almost homogeneous vision. Themodel
by Fetecau and Guo is therefore based on behavioural rules similar to the pairs (A1, L1)
and (A2, L1) employed in our article. Interestingly, in both works, such hypotheses result
in a directionally efficient swarming: however, we have discarded the two combinations of
assumptions as a consequence of the lack of a consistent compactness of the insect cloud.

As in the case of the work by Fetecau and Guo, also in [28], a set of informed bees
is defined within the swarm and assigned a back-and-forward motion within the swarm,
in order to diffuse the information of the productive direction to the overall population.
Such a first-order model also involves attraction, repulsion, and alignment. In particu-
lar, the cohesion velocity contribution is modelled as a vector pointing from the position
of each bee to the centre of mass of the set of neighbouring insects which fall within its
visual distance. In this respect, we here preferred to implement pairwise interaction ker-
nels, since it is difficult to establishwhether a bee exactly knows the position of the centre of
mass of the rest of groupmates. The alignment rule instead relies on an Euclidean metric-
based assumption, namely each bee is set to synchronize its movement with all the seen
groupmates (regardless of their speed).

In [20], the authors describe both the decision-making process used by the house-
hunting honeybees to find a new nest site and their guidance role within the rest of the
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swarm. Focusing on the latter, we can notice that Diwold and colleagues employ a cohe-
sion term that makes each bee attracted by the centre of mass of the population only in
the case of the presence of at least a fast enough individual within a given neighbour-
hood. These authors also implement a topological metric-based alignment mechanism,
i.e. a flight synchronization with a given number of closest fast individuals. The result-
ing model is then applied to compare the swarming of two different species of honeybees,
namely Apis Mellifera and Apis Florea. In particular, while A. Mellifera is a cavity-nesting
species, whereasA. Florea is an open-nesting species. Thismeans that theApisMellifera has
to find a roomy and comfortable homesite, protected from cold winds and from predators.
Conversely, A. Florea usually nests on a shaded branch, having less constraints in finding
a suitable location.

Amore general (i.e. not strictly related to bee dynamics) model is proposed in [14]. The
authors here focus on two aspects: how information is transferred among moving groups
of animals and how they can find an agreement when scout individuals suggest different
moving directions to rest of the population. Such an approach still relies on the classical
social principle of attraction/repulsion and alignment. As previously commented, one of
their main results is related to the relationships between the percentage of informed bees
and the flight efficacy of the swarm at different population sizes. The same research group
also proposes amodel that focuses on the pattern characteristic of animal populations [15].
Their approach includes a Morse potential and two additional terms: they are relative to
self-propulsion and friction and their balance results in the capability of the system to reach
an asymptotic collective speed (as it happens also in our model in given regimes of the free
parameters).

Finally, the Cucker–Smale model (even with the inclusion of temporary leader emer-
gence) accounts only for a term relative to amovement synchronizationmechanism, which
is affected by a communication rate that depends on the interindividual mutual distances
[17,18]. The model is, of course, able to capture flocking phenomenology.

Chen and Kolokolnikov instead presented in [10] a particle model able to capture
selected features of predator-prey interactions in the case of a generic swarm. In their
approach, each prey is attracted by its groupmates, whereas repulsive stimuli describe
its intention to maintain a comfort space within the insect cloud and to fly away
from the predator. The predator, in turn, is attracted by the preys. In more details,
hyperbolic laws are implemented to describe repulsive dynamics (as in our model)
while a linear short-range attraction is used for the individual cohesive behaviour. The
approach by Chen and Kolokolnikov is finally able to predict the shape of the swarm
as well as the behaviour of the predator in different regions of the model parameter
space.

By reviewing the different works commented in this dissertation, we can conclude that
the main features of a swarming phenomenology can be captured by minimal, i.e. two- or
three-component, models. In fact, reasonable configurations of swarms (where the agents
stabilize at given and finite mutual distances) can be obtained only by taking into account
repulsive/attractive pairwise dynamics. The insertion of an alignedmechanism, such as the
one we proposed in [2], is instead needed to get effective directional flights. Such simple
models have also the advantage of being suitable for interesting analytical analysis and
insight, e.g. on the properties of the steady states of the system as done by different groups
[7,8,23].
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In this respect, the inclusion of more sophisticated model ingredients, i.e. bee status dif-
ferentiations and relative transitions and flight rules, is therefore not essential to reproduce
basic collective dynamics of insect swarms. However, such model components have been
here introduced in order to be as close as possible to experimental evidences and to find
out reasonable assumptions at the basis of the still unknown bee behaviour.

4.2. Further developments

The proposed model has investigated and tested different social mechanisms underlying
the behaviour of a bee swarm. However, our approach can be further improved in several
directions. First, it would be useful to have a better comparison with experimental data.
In particular, this would improve the quality of the work from two points of view: it could
be possible to derive a more precise parameter estimate and we could have a quantitative
validation of the proposed theoretical results.

Further, a three-dimensional extension of the model would be a natural development.
In fact, it would allow to better describe the dynamics of the informed bees which, when
passive leaders, are also supposed to hide themselves along the top or the bottom region of
the swarm in order to not significantly affect the flight of the groupmates, as hypothesized
in the empirical literature [33,35] and previously commented in this work.

Notes

1. The spatial extension of the swarm is evaluated by the Matlab (the MathWorks�) function
boundary. More specifically, this function returns the area enclosed by the single conform-
ing 2-D boundary containing of a given set of discrete particles. For further details, we refer to
Matlab manuals and tutorials.

2. From statistical mechanics [32], a system of mutual interacting particles is said H-stable if, for
any arbitrarily large number of agents, the microscopic agents will not collapse onto themselves
and a typical distance between individuals will be well defined.
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Appendix. Parameter estimate

The proposed approach is intrinsically multiparametric. In particular, the model coefficients can
be classified in two groups: those that have a direct and measurable biological meaning (e.g. speed
values) and those that are more technical, i.e. that only subsume experimental dynamics, such as the
interaction coefficients. We indeed derived a composite parameter setting, obtained by observations
and data present both in the experimental and in the theoretical literature and, when necessary, by
preliminary numerical realizations.

First, the half visual angle θvis, which symmetrically extends from the individual gazing direc-
tion, was taken equal to 156.5◦, according to the biological measures presented in [40]. We here
remark that a visual field determined by such an angle θvis (i.e.< 180◦) introduces anisotropy in the
behaviour of bees although, with respect to most animal species, they are characterized by a sub-
stantially limited blind area behind them. As far as we know, in the experimental literature there was
instead no study that explicitly defined the depth of the bee visual field. We therefore opted to set
dvis = 20m, which is a value that allows each insect to perceive the presence of all groupmates when
the swarm is sufficiently compact and not dispersed. The proposed estimate took also into account
the domain characteristic dimensions, such as the distance of the nest from the initial position of
the insect population: in this respect, dvis was set small enough to avoid that the target destination
falls within the visual field of the uniformed individuals at the beginning of the observation time.

In ourmodel two characteristic bee speed values are taken into account. Themaximal admissible
velocity vmax, introduced in Equation (7) was set equal to 9.4m/s in accordance with [35]. Themean
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speed of the uninformed insects, defined in Equation (16), was instead fixed equal to 6.7m/s, again
coherently with the experimental literature [25]. We here underline that vmax is also used in the case
of the fast fly of the streaker bees towards the nest, whereas vmean for the slower backwardmovement
of the passive leader towards the trailing edge of the swarm. The difference between the speed of
streakers and of the uninformed individuals has been empirically demonstrated and is at the basis
of the rejection of the subtle flight alignment hypothesis [35].

All bees, regardless of their status, are characterized by repulsive/attractive interactions. Accord-
ing to the measure reported in [35], the insects tend to preserve a minimal mutual distance, here
denoted by davoid, equal to 0.3m. The extension of the alignment region dalign was taken equal to
2m. Since this value can not be empirically measured, we obtained its estimate referring to themod-
elling literature. The ratio davoid/dalign used in this work falls in fact in the middle of the range of
analogous quantities tested by Couzin and colleagues [15]. A dgroup = dvis was instead set since we
have assumed that each insect aims to maintain a connection with all individuals within its visual
region.

As already commented in the text, from a mathematical point of view, favoid (with units m2/s)
gives the slope of the hyperbolic repulsive kernel havoid, whereas fgroup (with units m/s) establishes
the maximum of the parabolic-type attraction behaviour of bees, described by function hgroup. Both
positive parameters indeed do not have a clear and direct experimental counterpart and therefore
their estimate was not straightforward. However, a numerical study, supported by selected empirical
evidences, facilitated in this respect. In particular, we first took into account the following considera-
tions: (i) upon attrative/repulsive stimuli only (in the absence of directional, alignment, and random
dynamics), the computational swarm has to stabilize in a realistic crystalline configuration, charac-
terized by optimal interparticle spacing ≈ davoid (i.e. we have to avoid unrealistical situations such
as the collapse or the explosion of the insect cloud); (ii) the specific flight of the informed bees has
not to be affected by other velocity contributions, in the case of both assumptions L1 and L2.

To account for observation (i), we ran a series of numerical realizations varying the interaction
parameters favoid and fgroup in the case of a swarm formed by N = 500 bees (480 of them with a
follower role and the remaining 20 with an initial streaker status), which were assumed to be subject
only to repulsive/attractive stimuli, i.e.

vi(t) = vavoidi (t) + vgroupi (t), (A1)

for all i = 1, . . . ,N, where the interaction velocity components were defined as in Equa-
tions (11)–(12). Given the same domain � and initial conditions described in Section 3.1, the
obtained dynamics were then classified according to the following asymptotic quantities:

dmin = min
i,j=1,...,N

i 
=j

|xi(tf ) − xj(tf )|; (A2)

dmax = max
i,j=1,...,N

i 
=j

|xi(tf ) − xj(tf )|, (A3)

begin tf an observation time sufficiently large to allow the insect cloud to reach a stable equilib-
rium configuration. Themeasures introduced in (A2)–(A3) have clear empiricalmeanings: dmin is in
fact the minimal interparticle distance, whereas dmax defines the extension of the overall swarm. As
shown by the representative cases reported in Figure A1, almost all pairs of coefficients (favoid, fgroup)
such that favoid/fgroup ≥ 106 resulted in realistic swarm pattern, as dmin was very close to the experi-
mentallymeasured bee comfort space davoid. In these cases, also the swarmoverall diameter dmax was
consistent with the empirical observations relative to the spatial density of bees [35]. On the oppo-
site, if favoid/fgroup < 106 the insects were observed to stabilize unrealistically close one to another,
as dmin � davoid. Such simulation outcomes were indeed able to give a first restriction of the possi-
ble variations of the interaction coefficients favoid and fgroup. Interestingly, the resulting permitted
interaction parameters fall within the H-stability region2 of the space of interaction parameters
(favoid, fgroup) that would characterize pairs of attractive/repulsive interaction kernels analogous to
havoid and hgroup, with the same coefficients davoid and dgroup, if we neglected the asymmetry intro-
duced by the anisotropic visual region of bees (cf. Hypothesis 3 in [4] is not satisfied in our case).
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In fact, referring to the series of works by Carrillo and colleagues [4–9] (in particular, [9] deals with
particle-based models of swarming), and to the calculations proposed in Section 3.2 in [2], we have
that the H-stability region for the swarm of our interest in the case of fully isotropic hypotheses (i.e.
if the bees had a round visual field) would be given by the following parametric relation:

favoid
fgroup

>
2(dgroup − davoid)

5(davoid)2
(
3(davoid)2 + 4dgroupdavoid + 3(dgroup)2

)
= 1.0719164 · 105, (A4)

which is indicated by the grey-shadowed area in Figure A1 that contains the couples of permitted
parameters found by the above numerical investigation. However, despite the consistence between
these analytical results and the obtained computational outcomes, it is useful to underline that a
theoretical analysis of the H-stability properties of an agent-based system in the case of asymmetric
attractive/reulsive kernels is far to be provided and therefore would require further investigations.

Having reduced the range of values of the interaction parameters, we then used the above-cited
observation (ii) to have a further estimate. In this respect, we varied the coefficients favoid and fgroup
in the case of a simulation setting involving a swarm formed again by 480 follower individuals and
20 streaker bees. The insect population, placed in the open-space domain � with initial conditions
defined again as in Section 3.1, was assumed to behave according to the following rules:

vi(t) = vavoidi (t) + vgroupi (t), if i : si(t) = U;

vi(t) = vavoidi (t) + vgroupi (t) + vstreaki (t), if i : si(t) = S;

vi(t) = vavoidi (t) + vgroupi (t) + vpassivei (t), if i : si(t) = P, (A5)

for i = 1, . . . , 500, being the velocity contributions defined exactly as in Section 2 (in particular
vpassivei was set to take the form either of Equation (23) or of Equation (24)). With respect to the
completemodel, we indeed neglected alignmentmechanisms and randomcontributions.Our choice
was justified by the fact that the aim of the study was to find the values of the attraction/repulsion
parameters that did not affect the characteristic motion of the informed bees, under the assumptions
L1 and L2. As summarized in Figures A2 and A3, we observed that, in both cases, too large values of
fgroup disrupted the hypothesized flight of the informed bees, regardless of the value given to favoid.
Inmore details, the group of following bees constantly stabilized into a crystalline configuration but,
for fgroup > 10−3, the following dynamics arose:

• in the case of assumption L1, the scout individuals were not able to reach any edge of the fixed
cloud (see the bottom-right panel of Figure A2);

• in the case of assumption L2, the informed insects were not able to rest at the leading front of the
population (where they had to remain since the follower bees had not allowed to have a direc-
tional movement and therefore to pass the scouts), as reproduced in the bottom-right panel of
Figure A3.

The underlying rationale involves two competingmechanisms: on one hand, a too large attraction
strength fgroup makes the group of follower individuals almost a rigid disk which is difficult to be
flown across; on the other hand, it causes the scout bees to perform an abnormal movement.

Within the remaining set of permitted interaction parameter values, we finally opted to fix
favoid = 1m2/s, i.e. we opted for a classical equilateral hyperbolic repulsive kernel as done, for
instance, by Kolokolnikov and Chen in the already cited work [10] dealing with predator-prey
swarming dynamics. An fgroup = 10−6 m/s was consequently set to avoid further increments in the
difference between the order of magnitude of the two parameters.

As seen, a repulsive velocity component from the domain boundary, given by a negative exponen-
tial function, has been set for each bee. In this respect, the insects perceive and react to the presence
of the boundaries from a distance of dboundary, whereas aboundary and bboundary determine the exact
form of vboundaryi . In the absence of pertinent experimental measurements, a reasonable estimate of
such triplet of coefficients was obtained with a series of preliminary simulations, i.e. in order to avoid
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Figure A1. Dependence of the stable configuration of the bee cloud, subjected only to attractive and
repulsive dynamics, upon variations in the values of the interaction parameters favoid and fgroup. The
quantities dmin and dmax represent the minimal interagent distance and the overall diameter of the
swarm at a observation time tf sufficiently large to have a stabilization of the system, as defined in Equa-
tions (A2) and (A3), respectively. The grey area in each panel indicates the H-stability region that one
would have in the case of the same interaction kernels by assuming a isotropic visual region of bees.

Figure A2. Dependence of the dynamics of the informed bees upon variations in the values of the
interaction parameters favoid and fgroup, in the case of assumption L1. As it is possible to observe the
hypothesized ‘back-and-forth’ flight can be obtained only for fgroup < 10−3, regardless of the values of
coefficient favoid (provided that thepair (favoid, fgroup) leads to crystalline equilibriumconfigurations upon
attractive/repulsive interactions only). Too large values of fgroup in fact result in a disrupted behaviour of
the informed insects, which remain stuck within the bee cloud (represented by the yellow shadow), as
reproduced in the corresponding representative bottom panel.
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Figure A3. Dependence of the dynamics of the informed bees upon variations in the values of the
interaction parameters favoid and fgroup, in the case of assumption L2. As it is possible to observe the
hypothesized ‘go-and-stop’ flight can be obtained only for fgroup < 10−3, regardless of the values of
coefficient favoid (provided that thepair (favoid, fgroup) leads to crystalline equilibriumconfigurations upon
attractive/repulsive interactions only). Too large values of fgroup in fact result in a disrupted behaviour
of the informed insects, which are not able to stop at the leading edge of the bee cloud (represented
by the yellow shadow) being dragged within the population, as reproduced in the corresponding
representative bottom panel.

unrealistic dynamics such as swarm collapse at the domain boundary or deflection from the opti-
mal flight trajectory at too large distances from the domain edge. In particular, the found values of
aboundary and bboundary are analogous to their counterpart employed in a particle model reproducing
pedestrian behaviour [13]. For the sake of completeness, we illustrate in FigureA4 some pathological
system evolutions in the case of rejected sets of values of dboundary, aboundary, and bboundary.

Finally, the modulus of the random velocity vectors falls within the range [0, vmean/10]: in par-
ticular, we set such an upper threshold to avoid unrealistically large fluctuations in bee flight, taking
also advantage of the study and relative observations performed in [2].
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Figure A4. Unrealistic bee swarming in the cases of representative rejected sets of parameters relative
to the velocity component vboundary. (a) Thebee swarmcollapseson thedomain structural elementbeing
unable to react to its presence. This phenomenology can be obtained, for instance, with a too low value
of dboundary and a too high value of bboundary. (b) The insect population deforms at an implausibly high
distance from the obstacle. This systembehaviour is instead the result of too high values of dboundary and
aboundary.


