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Abstract

In the present paper we propose two mathematical models describing, respectively at the microscopic level and at the
mesoscopic level, a system of interacting tumor cells and cells of the immune system. The microscopic model is in terms of a
Markov chain defined by the generator, the mesoscopic model is developed in the framework of the kinetic theory of active
particles. The main result is to prove the transition from the microscopic to mesoscopic level of description.
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1. Introduction

This paper proposes two mathematical models, describing respectively at the microscopic and at the
mesoscopic level a system of interacting tumor cells and cells of the immune system, and the analysis of
the transition from the first model to the second one.

The biology of cancer is a vast subject and, as a natural consequence, the literature devoted to the
related mathematical models has itself been developing and expanding over the years.

Cancer is a multiscale process in which genetic mutations occurring at a subcellular level manifest
themselves as functional changes at the cellular and tissue scale [1]. Cancer is characterized by a group
of genetic diseases that cause autonomous and uncontrolled cell proliferation, evasion of cell death, self-
construction of oxygen and nutrient supply and spreading of cancerous cells through metastasis (see
e.g. [2,3] and references therein). There are many types of genetic variations found in cancer cells, including
gene mutations and copy number variations. Genetic and epigenetic alterations can spread through a
population of premalignant or cancer cells. Cells become cancerous after mutations accumulate in the
various genes that control cell proliferation. The involvement of the immune system in all stages of the
tumour life cycle, including prevention, maintenance and response to therapy, is recognized as central to
understanding cancer development from a systemic point of view [4].

For most of the human life, the immune system successfully fought cancerous cells, killing them as
they developed: that’s its job. Cancer immunology is the branch of immunology that studies interactions
between the immune system and cancer cells. For cancer to develop, the immune system must either be
worn out, ineffective, unable to kill cancer cells as fast as they normally develop.

In the formation of cancer, i.e. carcinogenesis or oncogenesis or tumorigenesis, all begin in cells. Cancer
starts with changes within the genes of one cell or a small group of cells: different cell interactions are
important at different stages of tumour progression. Cell-cell interactions may dominate the early stages.

The present paper aims to describe the interactions between cancer cells and immune system at this
stage of the development of the disease.
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Two different models, developed at two different scales, will be presented. The first model, see [5], [6] as
references, will describe the entire system of a fixed number N of interacting particles at the micro–scale
level, in the framework of a Markov process. It can be referred to the description of a branching process
of cell division, mutation events and cell death. The second model, see [7–9], describes the system at the
mesoscopic level. It is developed in the framework of the kinetic theory of active particles, see [10–12] and
references therein, and it describes the progression of the cells, namely the modification of their biological
expression and mutation within Darwinian-type selective learning processes.

The main results consists in showing that the solutions of the corresponding nonlinear mesoscopic
equation may be approximated by the solutions of the microscopic one, if N is sufficiently large. The paper
is organized as follows. Section 2 and section 3 review the general framework leading to the description
on the microscopic level and the relative stability. Section 4 contains the main results, dealing with the
transition from Micro to Meso scale. Section 5 tackles the problem of reducing the complexity of the
system and leads to the description on the mesoscopic level. Section 6 looks at research perspectives.

2. Microscopic scale: individually–based models

In this section we construct the microscopic model in terms of a Markov jump process: we introduce the
linear generator that completely describes the evolution of the probability distribution at the microscopic
scale that may approximates the solution of the corresponding macroscopic model.

The biological system under consideration is composed of N interacting cells (epithelial, cancer and
immune cells) and it is divided into populations. Each cell or agent n ∈ {1, 2, ..., N} is characterized by
the pair (jn, un), where jn ∈ J defines the population of the n–element and un ∈ U its biological state
(called ”activity”).

Referring to the subpopulations of the system, we assume that J = {0, 1, 2, 3, 4}.
j = 0: The subpopulation j = 0 corresponds to the reserve (”Hades”), which consists of cells that have
a sort of transient state. This population plays a special role because it does not have a direct biological
meaning, but it serves as a container for possible events related to proliferation or destruction phenomena
certainly present in the process of interaction between cancer and immune system. We introduce this
population because the model is conservative (probabilistic) in nature. We assume that elements of this
special population are independent of the biological state. The similar idea appeared in the book [13]
(example c-Section 8.1).

j = 1: labels epithelial cells, whose function is to feed proliferative phenomena. It is supposed that
the organism is a source of this kind of cells, so their quantity can be considered as constant in time.
Proliferative events can generate cells with the same phenotype, but also cells with different phenotype
toward the onset of cancer cells.

j = 2: The subpopulation j = 2 is of cancer cells, generated from the population j = 1, that have
acquired the ability of suppressing the immune reaction. During the multistep development of human
tumors, various biological capabilities, i.e. hallmark capabilities, are acquired by the tumor cells, [14].
The transition from population j = 1 to population j = 2 can be understood as the transition of the
epithelial cells to the first hallmarks of cancer.

j = 3: The subpopulation j = 3 is of the innate immune system cells which have the ability to acquire,
by a learning process, the capacity of contrasting the development of cancer cells.

j = 4: labels immune cells generated from the population j = 3, which have acquired the ability of
contrasting the development of cancer cells of the population j = 2.

Referring to the biological state or activity, we refer to a discrete representation of this variable:
U = {u1, . . . , ui, . . . , ur}, with u1 = 0, ur = 1, and ui < ui+1, for i = 1, . . . , r − 1. We assume that it is
heterogeneously distributed and that increasing values of the activity correspond to an increasing ability
of each population to express its biological function.

Following the general framework, [6], [5], we consider the Markov chain setting, because the model
refers to the probabilities on the discrete set. The corresponding modified Liouville equations describes
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the evolution of probability, with microscopic representation of the system of N interacting agents. The
linear generator, defining the modified Liouville equation, completely describes the time evolution of the
probability at the micro-scale.

Let consider the n1–agent which changes its population and/or its activity at random times due to the
interaction with the n2–agent. In the case of proliferative interactions we consider interactions between
two agents n2 and n3 that give rise a new agent n1: a shifting from j = 0 to jn1 6= 0.

The rate of interaction between two agents: The agent of jn1–th population with activity un1 and the
agent of jn2 population with activity un2 is given by function a = a((jn1 , un1), (jn2 , un2)) such that

(1) 0 ≤ a
(

(jn1 , un1), (jn2 , un2)
)
,

for all jn1 , jn2 ∈ J and all un1 , un2 ∈ U.
The transition into k–th population with activity v of an agent of jn1–th population with activity

un1 , due to the interaction with agent of jn2 population with activities un2 is defined by the function A
such that

(2) A = A
(

(k, v); (jn1 , un1), (jn2 , un2)
)
≥ 0 ,

for all k, jn1 , jn2 ∈ J and all v, un1 , un2 ∈ U,

(3)
∑
k∈J

∑
v∈U

A
(

(k, v) ; (jn1 , un1), (jn2 , un2)
)

= 1 ,

for all jn1 , jn2 ∈ J and all un1 , un2 ∈ U such that

a
(

(jn1 , un1), (jn2 , un2)
)
> 0 .

As we stated before, it is quite natural to assume that if jnk
= 0 than the corresponding function do

not depend on unk
: the agents in the reserve are not characterized by any activity.

The (microscopic) stochastic model is completely determined by the functions a and A. Different
choices of the functions give rise to different microscopic stochastic models (Markov chains).

Let system be initially distributed according to the probability
◦
f
N

∈ l(N), where l(N) = R2N is the
standard setting

‖f‖N =
∑
j1∈J

∑
u1∈U

. . .
∑
jN∈J

∑
uN∈U

∣∣∣f((j1, u1), . . . , (jN , uN )
)∣∣∣ .

Time evolution is described by the following linear equation — the modified Liouville equation:

(4)
d

d t
fN = ΛNf

N ; fN
∣∣∣
t=0

=
◦
f N ,

where ΛN is the generator,

ΛNf
N
(

(j1, u1), (j2, u2), ..., (jN , uN )
)

= 1
N

∑
n1,n2
n1 6=n2

( ∑
k∈J

∑
v∈U

A
(
(jn1 , un1); (k, v), (jn2 , un2)

)
a
(
(k, v), (jn2 , un2)

)
×fN

(
(j1, u1), . . . , (jn1−1, un1−1), (k, v), (jn1+1, un1+1), . . . , (jN , uN )

)
−a
(
(jn1 , un1), (jn2 , un2)

)
fN
(
(j1, u1), . . . , (jN , uN )

))
.

The operator ΛN is the difference between the gain and loss term, where
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• the gain term that is the term describing changes from state (k, v) of the n–agent into state
(jn, un) due to interaction with the m agent with state (jm, um);
• the loss term that is the term describing changes from state (jn, un) of the n–agent into another

state due to the interaction with the m agent with state (jm, um).

Transition from k = 0 into j 6= 0 means a birth of an individual of the population j whereas transition
from k 6= 0 into j = 0 means a death of an individual of the population k.

We neglect the possibility of transition from k = 0 into j = 0 in the sense that the corresponding a
vanishes.

The Cauchy Problem (4) has the unique solution given by the formula

fN (t) = etΛN
◦
f N

in l(N) for all t ≥ 0. Furthermore, standard arguments show that the solution is nonnegative for nonneg-
ative initial data and the l(N)–norm is preserved

(5) ‖fN (t)‖N = ‖
◦
f N‖N = 1 , for t > 0 .

From this,
(
etΛN

)
t≥0

is a group of Markov operators on the discrete space.
We consider symmetric functions, that is

(6) fN
(

(j1, u1), . . . , (jN , uN )
)

= fN
(

(jr1 , ur1), . . . , (jrN , urN )
)
,

for all j1,...,jN ∈ J, all u1,...,uN ∈ U, and for any permutation {r1, . . . , rN} of the set {1, . . . , N}.
We introduce the s–agent marginal probability (1 ≤ s < N)

(7)
fN,s

(
(j1, u1), . . . , (js, us)

)
=

=
∑

js+1∈J

∑
us+1∈U

. . .
∑
jN∈J

∑
uN∈U

fN
(

(j1, u1), . . . , (jN , uN )
)
,

where fN,N = fN and fN,s
′ ≡ 0 if s′ > N .

The function fN satisfies Eq. (4) if and only if fN,s satisfy the following finite hierarchy of equations

(8)
d

dt
fN,s =

s

N
Λsf

N,s +
N − s
N

Θs+1f
N,s+1 ,

for s = 1, 2, . . . , N , where

(Θs+1f)
(

(j1, u1), . . . , (js, us)
)

=

=
s∑

n=1

( ∑
k∈J

∑
v∈U

∑
l∈J

∑
w∈U

A
(

(jn, un); (k, v), (l, w)
)
a
(

(k, v), (l, w)
)

×f
(

(j1, u1), . . . , (jn−1, un−1), (k, v), (jn+1, un+1), . . . , (js, us), (l, w)
)

−
∑
k∈J

∑
v∈U

a
(

(jn, un), (k, v)
)
f
(

(j1, u1), . . . , (js, us), (k, v)
))

,

Taking sufficiently large N we may expect that the solution of the finite hierarchy (8) approximates
the solution of the following infinite hierarchy of equations

(9)
d

dt
fs = Θs+1f

s+1 , s = 1, 2, . . . .
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The integral versions of hierarchies (8) and (9) read

(10)

fN,s(t) = FN,s + s
N

t∫
0

Λsf
N,s(t1) dt1+

+N−s
N

t∫
0

Θs+1f
N,s+1(t1) dt1 , s = 1, . . . , N ,

and

(11) fs(t) = F s +

t∫
0

Θs+1f
s+1(t1) dt1 , s = 1, 2, . . . ,

respectively.
The details of such an approach may be found in [5].

3. Stability

Although the linear (microscopic) model Eq. (4) is quite complex, its stability analysis usually (in
some cases) can be easier than the analysis of the corresponding bilinear (mesoscopic) model Eq. (36). On
may apply the general theory of continuous Markov chains or e.g. the Lasota–Yorke theorem, see [15,16]
(and references therein) in one of its version.

Assume that A and a satisfies the following condition, cf. [17,18]:

Assumption 3.1. There is (j, u) ∈ J × U such that for each pair (k1, v1) ∈ J × U and (k2, v2) ∈ J × U
we have

A
(

(j, u); (k1, v1), (k2, v2)
)
> 0 , a

(
(k2, v2), (k2, v2)

)
> 0 .

We say that a stochastic semigroup T = T (t) on l(N) is asymptotically stable if there exists a
probability f∗ on J× U such

(12) lim
t→∞
‖T (t)f − f∗‖N = 0 for all probabilities f .

We have ( [17,18])

Theorem 3.1. Let (1), (2), (3) together with Assumption 3.1 be satisfied. Then the semigroup etΛN is
asymptotically stable.

Proof. Let a+ = N−1
2 max a. We rewrite Eq. (4) in the form

(13)
d

d t
fN = ΓNf

N − a+f
N ,

where ΓN is a positive operator. Then

(14) etΛN
◦
f
N

= e−a+ tetΓN
◦
f
N

,

The semigroup etΛN is asymptotically stable iff the operator et0 ΛN , for some t0 > 0, is asymptotically
stable as the operator defining a discrete dynamical system, cf. [15,16]. We may consider e.g. t0 = 1.

Let n ≥ 1, we have

(15) enΛN
◦
f
N

= eΛN e(n−1) ΛN
◦
f
N

.

We note that f̂N = e(n−1) ΛN
◦
f
N

is a probability. On the other hand

(16) eΛN f̂N = e−a+eΓN f̂N ≥ e−a+ 1

N !
ΓNN f̂

N ≥ cN ‖f̂N‖N ,
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for any probability
◦
f
N

, where cN is a positive (> 0) constant (that depends on N and a+).
Because ‖f̂N‖ = 1 we obtain

(17) enΛN
◦
f
N

≥ cN ,

for any n ≥ 1 and any probability
◦
f
N

.
Therefore a lower function for the semigroup etΛN exists and the semigroup is stable — cf. [15,16].

4. Micro — Meso links

In order to derive the nonlinear equations resulting in the limit N →∞ i.e. at the mesoscopic level,
from Eq. (4) the approach of [5] (c.f. [6,17,18]) may be used.

We assume that the process starts with a factorized probability

(18)
◦
f N =

◦
f N ⊗ :=

◦
f ⊗ . . .⊗

◦
f︸ ︷︷ ︸

N×

,

where
◦
f ⊗ . . .⊗

◦
f︸ ︷︷ ︸

N×

(
(j1, u1), . . . , (jN , uN )

)
=

N∏
n=1

◦
f (jn, un),

i.e. N -fold outer product of the probability
◦
f .

In the limit N →∞, the (linear) modified Liouville equation (4) yields, [5], a nonlinear Boltzmann–
like integro–differential equation that can be related to the mesoscopic description. In fact we may see
that the propagation of chaos is held and the solution fs(t) to Eq. (11) is the s-product of solution f(t)
of the following nonlinear kinetic equation, see [5],

(19)
d

dt
f(t, j, u) = G[f ](t, j, u)− f(t, j, u)Lf(t, j, u) , (j, u) ∈ J× U ,

where G is the gain term,

G[f ](t, j, u) =
=
∑
k∈J

∑
v∈U

∑
l∈J

∑
w∈U

A
(
(j, u); (k, v), (l, w)

)
a
(
(k, v), (l, w)

)
f
(
t, (k, v)

)
f
(
t, (l, w)

)
,

and fLf is the loss term,

Lf
(
t, (j, u)

)
=
∑
k∈J

∑
v∈U

a
(
(j, u), (k, v)

)
f
(
t, (k, v)

)
.

By ref. [5] we have

Corollary 4.1. Let Assumptions (1), (2), (3) be satisfied and
◦
f be a probability on J×U. Then, for each

T > 0, there exists an admissible hierarchy {fs}s=1,2,... such that

(i) it is a unique solution of Eq. (11) with factorized initial data (18),
(ii) fs(t) is factorized,

(20) fs(t) =
(
f(t)

)s⊗
,

for all 0 < t ≤ T and s = 1, 2, . . ., where f(t) is the unique solution in l(1) of Eq. (19) with the initial

datum
◦
f .
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As a by–product, we obtain the existence (and uniqueness) of solutions to Eq. (19).
We may now state the theorem (cf. [5]) that defines the links between the solutions to Eq. (4) and to

Eq. (19) or, in other words, that defines the transition from the microscopic level to the mesoscopic level.

Theorem 4.1. Let Assumptions (1), (2), (3) be satisfied and
◦
f be a probability on J×U. Then, for each

T > 0, there exists N0 such that for N ≥ N0

(21) sup
t∈[0,T ]

‖fN,1 − f‖l(1) ≤
c

N ζ
,

where fN ∈ l(N) is the unique non–negative solution of Eq. (4) corresponding to the initial datum (18);

f ∈ l(1) is the unique non–negative solution of Eq. (19) corresponding to the initial datum
◦
f ; and ζ, c are

positive constants that depend on T .

Proof. See [5].

Theorem states that the solution to the (nonlinear) mesoscopic equation (36) may be approximated
by the solutions of the (linear) microscopic equation (4), with properly chosen A and a, if both N and M
are sufficiently large. Approximation may be realized by many possible microscopic equations (various A
and a may taken into account).

If, on the other hand,N is not large, then the linear equation (4) related to the microscopic description,
and the nonlinear equation (36) at the mesoscopic scale, may independently play important roles in the
mathematical description of the complex processes, presumably giving different results. In such a case
one may expect that the microscopic model gives results that are closer to reality.

5. Mesoscopic model

In this section we present a mesoscopic approach to the problem of the modeling Darwinian mutations
and selection processes, [8,9]. The overall state of the system is described by the discrete distribution
function

(22) f(t, j, u), j ∈ J, u ∈ U

which represents the number of agents (cells) from population j that, at time t, have the state u. As
before it is natural to assume that if j = 0 then f is independent of u, i.e.

f(t, 0, u) = f(t, 0) ∀ t ≥ 0, ∀ u ∈ U .

The quantity,

(23) n(t, j) =
∑
u∈U

f(t, j, u), j ∈ J,

gives the number of agents (cells) that, at time t, are in the j-th population; while the total number of
cells at time t is normalized

(24)
∑
j∈J

n(t, j) = 1 ∀t ≥ 0 .

This latter condition is due to the role of population j = 0, indeed its presence allows the conservation
of the probability distributions.

This representation is consistent with the heterogeneous behavior of cells and with the need of reducing
the large number of components.
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The mathematical structure for such a system should describe the evolution in time of the probability
functions f(t, j, u). It is obtained by equating the variation rate of agents, in the corresponding state u
of functional subsystem j, with the difference between the inlet and outlet fluxes from this state. In this
way, the balance equation can be summarized as follows:

(25)
d

dt
f(t, j, u) = T [f ](t, j, u) + P [f ](t, j, u) ,

where T and P are suitable operators acting over the whole set of probability densities. Specifically,

• P [f ](t, j, u) denotes the gain, at time t, into the state u of the population j, due to proliferative
events;
• T [f ](t, j, u) is the term modeling the other types of interactions, including the net flux, at time t,

into the state u of the population j, due to interactions that only modify the micro–state, and/or the
transition to the population j = 0, i.e. the loss, at time t, in the state u of the population j, due to
destructive events. This term may also include the natural relaxation of the immune system at time
t and in the state u of the population j, to a given healthy state.

This requires the modeling of interactions at the cellular level to compute the balance of agents in the
elementary volume of the space of the microscopic states. If the f ’s are known, the overall behavior of
the system is properly described not only by moments, but also by the distribution of biological activity
of cells. Accordingly all emerging behaviors are put in evidence.

Let us now consider the problem of modeling a multicellular system consistently with the represen-
tation that has been given above. The guidelines to pursue such objective are the following:

i. Interactions involve not only immediate neighbors (short range interactions) but also the distant
ones (long range interactions). In fact, living systems communicate each other directly or through
media. Consequently, each agent interacts with all the others in a domain whose elements are able to
communicate.

ii. Each cell plays a game with the surrounding cells lying in its interaction domain. This game modifies
the state of the agents, while the strategy it expresses can also be modified by the shape of the
heterogeneous distribution of the interacting cells. In some cases generates net proliferative and/or
destructive events.

iii. Interactions are complex, namely the output of the game is not the linear superposition of its separated
interactions, but a complex combination whose form depends on the strategy that all agents can
develop.

iv. The output of the game can also generate, in the proliferative process, agents with a different structure
(for instance, entities with a different phenotype).

v. The following agents play the game: candidate, whose distribution function is f(t, k, v) and which
interacts with field agents; field, whose distribution function is f(t, l, w) and test, whose distribution
function is f(t, j, u). Candidate agents may acquire, in probability, the state of the test ones by
interaction with the field agents.

Some guidelines toward the modeling of the quantities related to the interaction terms are suggested
here in view of the derivation of the specific model proposed in this paper. A useful reference is that
offered by the mathematical approach to the theory of evolution presented in [19]. In order to simplify
the notation, let us denote by the abbreviation (j, u)–agent the meaning of cell belonging to the j–th
population with state u.

• α
(
(j, u), (k, v)

)
and λ

(
(j, u), (k, v)

)
are the encounter rates between the (j, u)–candidate with the

(k, v)–field. It is assumed, according to [20], that it depends on the ability of interacting cells to
recognize each other based on the distance between their states |u− v|.
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• B
(
(j, u); (j, v), (l, w)

)
is the transition probability that the (j, v)–candidate falls into the state u of the

same population after an interaction with a (l, w)–field:∑
j∈J

∑
u∈U
B
(

(j, u); (j, v), (l, w)
)

= 1 .

For instance, it can be assumed that the activity variable has a trend toward an increase of progression
that depends on the state of the interacting cells and on the overall action of the system.
• Λ

(
(j, u); (k, v), (l, w)

)
models the net proliferation rate into the (j, u)–state, due to interactions, oc-

curring with rate λ
(
(k, v), (l, w)

)
between the (k, v)–candidate the (l, w)–field. Interactions can induce

net proliferative events, which may generate, although with small probability, a daughter cell that
presents genetic modifications with respect to the mother cell.

In some cases, these different cells represent the first mutation toward the onset of cancer cells. If
these cells have the ability to overcome the immune defense, then further mutations can occur [21] toward
progression [22] and hallmarks of cancer [14]. The modeling approach is based on the idea that these
mutations occur with higher probability when progression increases. The general framework is that of
mutations and Darwinian selection [19,23].

Remark 5.1. More general models can be obtained by assuming that the encounter rate α depends
nonlinearly on the distribution functions over the microscopic states, i.e. α is an operator over f [8]. For
example, a source of nonlinearity arises from the idea that two subsystems with close distributions are
affine and hence interact with higher frequency. Thus, a dependence of α

(
(k, v), (l, w)

)
on the affinity

distance between the interacting agents distribution functions can be considered [8].

It is now possible to specify the terms appearing in the right–hand side of Eq. (25) and relate it with
Eq. (19)

(26) A
(
(j, u); (j, v), (l, w)

)
= B

(
(j, u); (j, v), (l, w)

)
,

for any k 6= 0 and any l 6= 0 ,

(27) a
(
(k, v), (l, w)

)
= α

(
(k, v), (l, w)

)
,

for any k 6= 0 and any l 6= 0, and

(28) a
(
(k, v), (l, w)

)
= α

(
(k, v), (l, w)

)
= 0 if l = 0 .

Moreover

(29) A
(
(j, u); (0, v), (l, w)

)
= Λ

(
(j, u); (0, v), (l, w)

)
= δjlΛ0(u,w) ,

where ∑
u∈U

Λ0(u,w) = 1 ∀ w ∈ U .

Finally

(30) a
(
(0, v), (l, w)

)
= λ

(
(0, v), (l, w)

)
,

for all l 6= 0, is independent on v ∈ U.
Eqs.(26)-(30) define the relationship between the microscopic and mesoscopic models. Their spirit lies

in the fact that the interaction and destruction terms are treated as a one part. In other words the play
between two object may either create a change of state or destruction of an agent.
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Under some restrictive assumption, one may also consider a model in which the interactions which
change only the state and the ones generating the destructions are separated, and are respectively denoted
as conservative term and the destructive term.

We decompose the set
(
J× U

)2
into the set defining the interactions that change only the state and

only create destruction (shifting to j = 0), respectively,

(31)
(
J× U

)2 ⊇ UC ∪UD , UC ∩UD = ∅ ,

and non of the sets UC and UD is empty.
We assume that

a
(
(k, v), (l, w)

)
= 0 , ∀

(
(k, v), (l, w)

)
∈
(
J× U

)2 \ (UC ∪UD

)
,

that means the interactions may either change the state (i.e. referring to UC) or create destruction (i.e.
referring to UD).

The balance equation can now be summarized as follows:

(32)
d

dt
f(t, j, u) = C[f ](t, j, u) + P [f ](t, j, u) +D[f ](t, j, u),

where C, P , D are suitable operators acting over the whole set of probability densities. Specifically,

• C[f ](t, j, u) denotes the net flux, at time t, into the state u of the population j, due to ”conservative”
interactions that only modify the micro–state;
• P [f ](t, j, u) denotes the gain, at time t, into the state u of the population j, due to proliferative

events;
• D[f ](t, j, u) denotes the loss, at time t, in the state u of the population j, due to destructive events;

and

• αC
(
(k, v), (l, w)

)
= a

(
(k, v), (l, w)

)
χ
((

(k, v), (l, w)
)
∈ UC

)
and

αD
(
(k, v), (l, w)

)
= a

(
(k, v), (l, w)

)
χ
((

(k, v), (l, w)
)
∈ UD

)
in the ”conservative” or destructive in-

teractions, respectively, are the encounter rates between the (k, v)–candidate with the (l, w)–field.
• B

(
(j, u); (j, v), (l, w)

)
, j = 1, 2, 3, 4, is the transition probability that the (j, v)–candidate falls into

the state u of the same population after an interaction with a (l, w)–field:∑
u∈U

B
(
(j, u); (j, v), (l, w) = 1 ,

for any
(
(j, v), (l, w)

)
∈ UC .

• Λ
(
(j, u); (j, v), (l, w)

)
models the net proliferation rate into the (j, u)–state, due to interactions, oc-

curring with rate λ
(
(j, v), (l, w)

)
between the (j, v)–candidate the (l, w)–field. Interactions can induce

net proliferative events, which may generate, although with small probability, a daughter cell that
presents genetic modifications with respect to the mother cell.

• ν
(
0; (k, v), (l, w)

)
= A

(
0; (k, v), (l, w)

)
=

δj0
|U| models the net destruction rate into the (k, v)–state,

due to interactions, occurring with rate αD
(
(k, v), (l, w)

)
between the (k, v)–candidate and the (l, w)–

field, where
(
(k, v), (l, w)

)
∈ UD. Interactions can induce net destructive events in the sense that the

immune system has the ability to kill a cancer cell.

It is now possible to specify the terms appearing in the right–hand side of the evolution equation (32):

(33)

C[f ](t, j, u) =

=
4∑
l=1

∑
v∈U

∑
w∈U

B
(
(j, u); (j, v), (l, w)

)
αC
(
(j, v), (l, w)

)
f(t, j, v) f(t, l, w)

− f(t, j, u)
∑
k∈J

∑
v∈U

αC
(
(j, u), (k, v)

)
f(t, k, v) ,
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for j = 1, 2, 3, 4 , u ∈ U ;

(34)

P [f ](t, j, u) =
=
∑
l∈J

∑
v∈U

∑
w∈U

Λ
(
(j, u); (j, v), (l, w)

)
λ
(
(j, v), (l, w)

)
f(t, j, v) f(t, l, w)

− f(t, j, u)
∑
k∈J

∑
v∈U

λ
(
(j, u), (k, v)

)
f(t, k, v) ,

for j = 1, 2, 3, 4 , u ∈ U ;

(35)

D[f ](t, j, u) =
=
∑
k,l∈J

∑
v,w∈U

ν
(
0; (k, v), (l, w)

)
αD
(
(k, v), (l, w)

)
f(t, k, v) f(t, l, w)

− f(t, j, u)
∑
k∈J

∑
v∈U

αD
(
(j.u), (k, v)

)
f(t, k, v)

for j = 0, u ∈ U.
The general class of bilinear systems of Boltzmann–like integro–differential equations describes the

dynamics of elements undergoing kinetic binary interactions — see [6,24]. This type of equations can
model interactions between pairs of elements of various populations at the mesoscopic scale.

The general mesoscopic model, Eq. (25), in a compact form reads

d

dt
f(t, j, u) = A[f ](t, j, u) , j ∈ J , u ∈ U .(36)

Theorem 5.1. Consider the IVP (36) with
◦
f∈ l(1)

+ . Assume that conditions Eqs. (1) – (3) are satisfied.

Then there exists a unique solution f = f(t) in l(1) of the the IVP for Eq. (36), for any t > 0. Moreover,

if
◦
f is a probability then f(t) is a probability for any t > 0.

The conditions assure that the operator appearing at the right hand side of (36) is Lipschitz continuous
in l(1) which proves the existence of a unique solution local in time. Positivity follows in a standard way.
This together with the conservative properties leads to the global existence result. Finally the l(1)–norm
is conserved.

6. Research perspectives

In this paper we have linked two classes of models, developed respectively at the micro and at the
meso scale. We have proved that the solutions of the corresponding nonlinear mesoscopic equation may
be approximated by the solutions of the microscopic one, if N is sufficiently large.

A challenging open problem would be development of a theory of macroscopic limits corresponding
to the microscopic or mesoscopic models. It would lead to the full scale description of the process in
question. One may observe that except some particular cases — see [17,25] and references therein —
that generally could be quite complex. The main question is what we are going to consider as a basic
scale. If one accepts the models on macroscopic scale, for which generally the identification of parameters
is easier — we may construct a class of the corresponding microscopic or macroscopic models. Then
with the presence of experimental data on microscopic or mesoscopic scale we may choose a proper
one among the classes. The mathematical framework of such approach was proposed in series of works
— see [6,17,25]. An alternative but much difficult approach could be the modeling on microscopic (or
mesoscopic) scale and finding a corresponding macroscopic limit (a kind of ”hydrodynamic limit”). This
is a challenging problem because of the difficulties both on the level of modeling at the agent–based scale
and mathematical difficulties. On the mathematical level the starting point could be an identification
of the equilibria for the models on microscopic and mesoscopic scales. In some cases — see [17] — it is
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possible (and relatively easy), but in the general case it seems to be a difficult question. Using standard
tools in the present paper we show that such an identification is possible under however rather strong
assumptions — see Section 3. It can be treated as a preliminary step towards the general description of
mathematical relationships between microscopic, mesoscopic and macroscopic scales.
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