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The blood-brain barrier (BBB) is the tightest endothelial barrier in humans.

Characterized by the presence of tight endothelial junctions and adherens junc-

tions, the primary function of the BBB is to maintain brain homeostasis through

the control of solute transit across the barrier. The specific features of this barrier

make for unique modes of transport of solutes, nanoparticles, and cells across the

BBB. Understanding the different routes of traffic adopted by each of these is

therefore critical in the development of targeted therapies. In an attempt to move

towards controlled experimental assays, multiple groups are now opting for the

use of microfluidic systems. A comprehensive understanding of bio-transport pro-

cesses across the BBB in microfluidic devices is therefore necessary to develop

targeted and efficient therapies for a host of diseases ranging from neurological

disorders to the spread of metastases in the brain. Published by AIP Publishing.
https://doi.org/10.1063/1.5027118

I. INTRODUCTION

The blood-brain barrier (BBB) constitutes the interface between microvasculature and brain

parenchyma, and features unique characteristics. Described as the tightest endothelial barrier in

the body, the BBB is composed of an endothelial monolayer, pericytes enclosed within the

endothelial basal lamina, and astrocytes touching their end-feet to the abluminal side of the

brain vessels.1 Maturation and function of endothelial cells (ECs) are largely dependent on their

tight junction (TJ) and adherens junction (AJ) protein expression, upregulated by intercellular

interactions between the brain stromal cells and the endothelial cells themselves.2

These junctions regulate the exchange of ions, molecules, particles, cells, and fluids

between the blood circulation and the brain parenchyma, and limit the paracellular permeation

of hydrophilic agents,3 forcing much traffic across the BBB to take a transcellular route.1 The

astrocytic end-feet surrounding the BBB regulate barrier permeability, and dictate the localiza-

tion of transporters.4 These unique attributes of the BBB microvasculature govern molecular

trafficking across the barrier and significantly affect drug delivery to the brain.

Brain disorders are some of the most debilitating and life-threatening ones, affecting

numerous functions in the human body.5 Brain diseases are prevalent with up to 40% of cancer

patients showing metastatic lesions to the brain and an estimated 5.4 millions of Americans suf-

fering from Alzheimer’s disease in 2016, a statistic that is expected to double by the mid-cen-

tury.6 By 2040, it is expected that 700 000 people will be affected by Parkinson’s disease in the
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United States alone.7 In light of these statistics, the need for successful and targeted drug deliv-

ery across the BBB is of utmost importance.8 Yet, the characteristic features of this barrier act

as an obstacle for the development of drugs capable of reaching the brain tissue.

Despite its tight endothelial junctions, the BBB is comprised of transport molecules whose

role is to regulate the traffic of essential molecules between the brain and the blood in both

directions. Consequently, multiple endogenous mechanisms for biomolecule transport can be

exploited for enhancing drug transfer to the brain, such as active transport with carriers and

vesicular transcytosis.9

In this context, the focus has been directed towards the development of effective in vitro
models for the study of drug transport across the BBB.10 For years, in vivo trials in animal

model have been considered the most reliable experimental platform to study BBB permeability

and are still regarded as the gold standard.11 However, crucial genetic, molecular, immunologic,

and cellular differences exist between humans and mice, decreasing the ability of animal mod-

els to be used as an effective platform to develop drugs for the treatment of human patholo-

gies,12,13 as evidenced by exceedingly high failure rates in clinical trials of candidate drugs

validated in animal models (>80% of drugs fail clinical tests).14 Coupled with the fact that

in vivo animal tests are labor-intensive, ethically contentious, and expensive, several groups are

turning towards the use of in vitro models of human physiology to enhance the effectiveness of

pharmaceutical research in the development of effective drugs for humans.3,15,16

In this review article, we examine the biological characteristics of the BBB giving rise to

unique bio-transport processes across this barrier, and present the current state-of-the-art

in vitro models of the BBB, with a particular attention on the typical characterizations per-

formed in such models and on the main outcomes deriving from their use. This work provides

a comprehensive understanding of transport processes across the BBB in microfluidic devices,

crucial to the development of targeted and efficient therapies for a host of diseases ranging

from neurological disorders to the spread of metastases in the brain.

II. PHYSICAL BARRIER AT THE BLOOD-BRAIN INTERFACE

The unique properties of the BBB can be attributed to tight junctions (TJs) and adherens

junctions (AJs), elaborate junctional complexes formed between adjacent brain endothelial

cells.16

A. Tight junctions

Both brain astrocytes and brain pericytes have been shown to secrete factors playing a role

in BBB maturation and TJ formation. While not all factors have been identified, it has been

shown that pericytes primarily secrete transforming growth factor b1 which in turn activates

Smad2 and Smad3 leading to the formation of TJ proteins.17 Astrocytes, the star-shaped glial

cells of the nervous system, also play a role in BBB formation and integrity through their secre-

tion of Sonic HedgeHog (Shh), which increases BBB transendothelial electrical resistance

(TEER) and decreases permeability.18 Astrocytes secrete of a-dystrobrevin as well, contributing

to scaffold formation in astrocytic end-feet and regulation of TJ proteins in the endothe-

lium.19,20 These interactions between brain stromal cells and brain endothelial cells are respon-

sible for barrier tightening and for the expression of polarized transport systems to maintain the

homeostasis of the central nervous system (CNS).21 While astrocytes are found only in the

brain and spinal cord, pericytes can be found outside of the brain tissue, in the kidneys, the ret-

ina, the cardiac muscle, and several other organs. Pericytes from different tissues have been

found to adopt different behaviors when it comes to barrier tightening. While the loss of cardiac

pericytes has been observed to increase interstitial permeability, their role in barrier function

was found to be insignificant at the retina and kidneys.22–25

Transport mechanisms at the blood-brain interface rely mostly on the presence of TJ pro-

teins, leading to the development of a tight physical barrier between brain vasculature and

parenchyma. TJ proteins consist of transmembrane proteins, such as occludin, claudins, and

junction adhesion molecules (JAMs), which rely on the support of cytoplasmic proteins zonula
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occludens (ZOs), cingulin, and 7H6 phosphoprotein, as well as heterotrimeric G-proteins.16,26

Occludin, claudins and JAMs are expressed at the interface between adjacent endothelial cells

while zonula occludens and other submembranous proteins are found in their cytoplasm. These

TJ proteins are found in other organs, such as the skin epidermis, the kidneys, and the respira-

tory tract.27–29 However, the ones found at the blood-brain interface tend to be more highly

expressed between adjacent endothelial cells, and are found to restrict ion and fluid transport at

the brain significantly more than TJs found in other tissues. Brain pericytes and astrocytes have

also been shown to play a role in tightening the endothelial barrier by upregulating the

expression of several genes involved in the development of TJ proteins, such as claudins-3

and -5.21,31 Moreover, TJ proteins were found to reduce the number of fenestrations between

adjacent endothelial cells significantly more at the brain than at other sites. These “tight” TJ

proteins at the brain force most solute traffic through a transendothelial route.30 It has been

shown that occludin contributes to the redox-sensitive processes of TJ assembly, while claudins

support TJ integrity and permeability via their capacity of homodimerization with claudins on

adjacent endothelial cells.32 JAMs facilitate the assembly of TJ components and the recruitment

of the polarity complex to TJs.21,33 TJ expression and integrity is sustained by interactions

between transmembrane proteins and heterotrimeric G-proteins, as well as the PDZ and SH3

domains of zonula occludens.21 For instance, PDZ domains on ZO-1 bind to claudins and

JAMs, while other ZO regions bind to occludin.34 Other cytoplasmic proteins such as cingulin

connect to zonula occludens, JAM proteins, and myosin to create a scaffold between transmem-

brane proteins and the cytoskeleton. Cingulin and 7H6 phosphoprotein have also been shown to

play a role in permeability regulation and act as barriers to the transport of ions and large

molecules.26,35

B. Adherens junctions

While TJs primarily regulate the passage of ions and solutes, AJs have been shown to initi-

ate cell-to-cell contacts and promote maturation, maintenance, and plasticity of endothelial

cells.36 Hence, AJs arise at early stages of junction formation and have been reported to influ-

ence TJ organization.37 At TJs, cell-cell adhesion is mainly promoted by claudins, occludin,

and JAMs as described above. At AJs, on the other hand, adhesion is mediated by members of

the cadherin family, such as vascular endothelial (VE)-cadherin expressed by all types of ves-

sels, platelet endothelial cell adhesion molecule-1 (PECAM-1), and N-cadherin which regulates

angiogenesis, in part, by controlling VE-cadherin expression.38

Both VE- and N-cadherins bind to catenins, particularly p120 and b-catenin, which, via

interaction with a-catenin and afadin, promote actin bundling.36 This link with the actin cyto-

skeleton is essential in regulating adhesion, cellular morphology, and signal transduction.39

PECAM-1 also interacts with b-catenin to modulate endothelial permeability and promote leu-

kocyte transmigration across the barrier.40 AJs and TJs are the backbone of transport mecha-

nisms across the BBB and play a crucial role in maintaining vascular integrity and modulating

vessel permeability. Table I summarizes the characteristics and major roles of the TJ and AJ

proteins at the BBB. A schematic of the different TJ and AJ proteins at the BBB is presented

in Fig. 1.

III. TRANSPORT ROUTES ACROSS THE BLOOD-BRAIN BARRIER

There are several distinguishable routes of transport of solutes across the BBB. While simi-

lar transport routes are adopted across many endothelial or epithelial barriers other than the

BBB, capillaries at the brain have a smaller number of fenestra, the small “windows” between

adjacent endothelial cells that allow small and large molecules, as well as cells to move easily

across the endothelium. The flow of solutes across the BBB is thus more regulated than across

general capillaries, and larger molecules are prevented from crossing the barrier, unless they

are recognized by specific proteins allowing them to be carried into and out of the brain tis-

sue.42,43 Depending on both the solute type and physicochemical properties, and the biological

features of the blood vessel wall, the solute will permeate across the barrier through a particular
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path that involves a specific set of mechanisms.44 Molecular trafficking across the BBB can be

grouped into four different categories outlined in Fig. 2.

A. Passive transport

Passive transport consists of two main pathways, namely paracellular diffusion, through the

intercellular space between the endothelial cells lining the BBB, and transcellular diffusion,

through the lipid bilayer and cytosol of the endothelial cells.45

Diffusion through the intercellular cleft, or paracellular diffusion, is mainly adopted by

small hydrophilic entities. However, the presence of TJs renders this space extremely narrow,

thus physically hindering this mode of transport across the BBB.45 Thus, molecular diffusion at

the brain predominantly adopts transcellular pathways.46

TABLE I. Localizations and major roles of different TJ and AJ proteins at the BBB.31,36–39

Type of junction

Junction

protein

Localization in brain

endothelial cells Role

Tight junctions Occludin Membrane Promote redox-sensitive processes of TJ assembly

Claudins Membrane Homodimerize with claudins on adjacent endothelial

cells

JAMs Membrane Facilitate assembly of TJ components and recruit

polarity complex

ZOs Cytoplasm Bind to claudins and JAMs via PDZ domain and to

occluding via other regions to sustain TJ integrity

Cingulin Cytoplasm Connect to ZOs, JAMs and myosin to create scaffold

between transmembrane proteins and cytoskeleton

7H6 phosphoprotein Cytoplasm Act as barrier to transport of ions and large molecules

Heterotrimeric G-protein Cytoplasm Continuously interact with transmembrane proteins to

promote TJ integrity

Adherens junction VE-cadherin Membrane Promote actin bundling

N-cadherin Membrane Regulate angiogenesis

PECAM-1 (CD31) Membrane Interact with VE-cadherin to initiate intercellular

contacts

FIG. 1. Schematic of endothelial TJ and AJ proteins at the blood-brain barrier. Reproduced with permission from Troletti

et al., Biochim. Biophys. Acta 1862, 452–460 (2016). Copyright 2016 Elsevier.41
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In contrast to paracellular diffusion, transcellular passive diffusion through the BBB relies

on the solute melding into the cell membrane. On a molecular level, the primary diffusion bar-

rier characterizing the BBB consists of a lipid bilayer, constituent of cell membranes.47 This

bilayer is described as a macroreceptor that interacts simultaneously with multiple ligands, thus

providing a large surface of exchange between solutes and cell membrane. Once contact is

established, the movement of the fatty acid side chains in the lipid membrane leads to the for-

mation of “holes” or “kinks” through which solutes can diffuse.45 Given the mechanism under-

lying transcellular passive diffusion, solutes with high degrees of lipid solubility (lipophilic sol-

utes) and low molecular weights have been shown to adopt this transport route.44 The absence

of rotatable bonds, as well as the low affinity of binding to plasma proteins also promote pas-

sive diffusion through a transcellular route.1 In light of these findings, the pharmaceutical indus-

try has developed a set of rules based on solute molecular size, presence of hydrogen-bon

acceptors/donors, and lipophilicity, for the development of therapeutics able to efficiently cross

the BBB through transcellular passive diffusion.48

B. Active transport via carriers

Tight junctions in brain endothelial cells act as a physical barrier to paracellular diffusion.

As a result, multiple nutrients needed for brain function and metabolism find their entry to the

brain parenchyma prevented. A number of specific solute carriers are then recruited as active

transporters across the BBB through transcellular routes.1 These carriers are found on several

other endothelial barriers, but their expression is more significant in the brain where paracellu-

lar transport is restricted due to the relative lack of fenestra.49,50 If substances need to be trans-

ported through the barrier down a concentration gradient, no additional energy is required for

these processes and the transports are established via solute carriers. On the other hand, if com-

pounds need to be moved against a concentration gradient, adenosine triphosphate (ATP) may

provide the energy to facilitate the process through efflux pumps or ABC transporters.16

To cross the BBB transcellularly, solutes can bind to protein carriers on one side of the

membrane. This triggers a conformational change in the protein, resulting in the influx of the

solute to the other side of the membrane down its concentration gradient, without any addi-

tional energy.16 The majority of these carriers are encoded by genes in the solute carrier (SLC)

family, and are thus often called SLC transporters.2 Among these transporters, we distinguish

GLUT1 (coded by SLC2A1), a glucose carrier located both inside the vasculature and in the

FIG. 2. Four different modes of transport across the BBB. Reproduced with permission from Abbott et al., Neurobiol. Dis.

37, 13–25 (2010). Copyright 2010 Elsevier.1
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extracellular matrix surrounding brain capillaries, as well as LAT1 (coded by SLC7A5) which

transport neutral amino acids from the blood to the brain and vice-versa.51

To transport compounds against a concentration gradient, energy is required. This involves

the solute binding to an ATP-binding cassette (ABC) transporter in the BBB which acts as an

active efflux pump consuming ATP and releasing energy to pump the solute across the barrier,

against a concentration gradient.16 Efflux carriers, such as ABC transporters, have the opposite

effect to influx transporters, such as SLC carriers, since the former transports solutes against a

concentration gradient, while the latter transports them down the concentration gradient.44 As a

result, ABC transporters are often responsible for decreasing the uptake rate of potential drugs

crossing the BBB, as well as enhancing the barrier properties of the BBB.52 The most common

ABC transporters are P-glycoprotein, responsible for the poor penetration of large (>400 Da)

hydrophobic drugs in the brain, the breast cancer resistance protein (BCRP), conferring resis-

tance to non-chemotherapeutic drugs and xenobiotics, and several members of the multidrug

resistance-associated protein family.52–54

C. Vesicular trafficking system

Due to their size and the presence of TJs at the BBB, macromolecules generally cannot

cross the barrier passively or through carriers. To bypass this obstacle, they rely instead on

transcytosis via endocytotic mechanisms.1 Large molecular weight solutes, such as proteins and

peptides, are internalized by brain endothelial cells and carried across the barrier through an

internal membrane system which shuttles the macromolecules between chemically distinct

membrane-enclosed vesicles.55 These vesicular trafficking mechanisms involve either specific,

receptor-mediated transcytosis (RMT), or non-specific, adsorptive-mediated transcytosis (AMT).

In RMT, macromolecules bind their ligands to specific, cognate receptors on the cell sur-

face, triggering the endocytotic event.1 The receptors on the cell surface and their bound

ligands from the macromolecules cluster together, causing caveolae (membrane invaginations)

to form, which pinch off intracellular transport vesicles. These vesicles are actively translocated

via microtubules into the opposite pole of the endothelial cells where they are released.56 The

receptor-ligand complexes are dissociated during cellular transit or during the exocytotic event.

Most macromolecules, such as iron-transferrin, insulin, leptin, and epidermal growth factor

(EGF), are transported from the blood to brain; however, a few compounds, such as low-

density lipoprotein cholesterol (LDL-1 and 2) and amyloid b, can cross the barrier bi-

directionally.1

AMT requires an excess of positive charges on the molecule for it to interact with the cell

surfaces that are negatively charged. These non-specific electrostatic interactions allow macro-

molecules to bind to cell surfaces, thus inducing endocytosis.57 Several positively charged sub-

stances, such as cationic lipids, polymers, dendrimers, and albumin, are known to cross the

BBB through AMT.2

This understanding of RMT and AMT, similarly to the findings related to passive diffusion,

has promoted the development of neuropharmaceuticals with specific physicochemical proper-

ties allowing them to undergo transcytosis and cross the BBB.55 In fact, several groups have

functionalized the surface of nanoparticle (NP) drug carriers with specific ligands promoting

their binding to receptors on the surface of brain endothelial cells (RMTs). Alternatively, modu-

lating the surface charge of drugs has been of interest to stimulate AMT across the BBB.58,59

D. Cell transmigration

In the normal BBB and other endothelial barriers, resident mononuclear cells, such as leu-

kocytes, monocytes, and macrophages, can undergo diapedesis and cross the barrier via both

paracellular and transcellular routes. During inflammation, trafficking of mononuclear cells

across the BBB is highly upregulated. Leukocytes have been observed to cross the blood-brain

interface via a transcellular route through the endothelial cells during autoimmune encephalo-

myelitis, thus leaving TJs and barrier function undisrupted.1,60 However, CNS inflammation is

also characterized by the opening of TJs due to the action of certain cytokines, such as
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interleukin (IL)-8 and matrix metalloprotease (MMP)-9.61 This in turn can cause mononuclear

cells to also enter the brain parenchyma using a paracellular route.62,63

Mononuclear cells are not the only ones crossing endothelia, including the BBB. During

metastasis, tumor cells from various primary sites can extravasate from within capillaries to col-

onize the secondary organ. This process is prominent at the brain, where 20%–40% of cancer

patients develop metastases.8,64 Most tumor cell transmigration observed occurred through the

paracellular pathway.65,66 Evidence suggests that tumor cells can release enzymes that induce

the digestion of VE-cadherin known to tighten vascular barriers. This results in VE-cadherin

cleavage, thus increasing vascular leakage and tumor cell extravasation.37,67

IV. MICROFLUIDIC MODELS OF TRANSPORT ACROSS THE BBB

In order to observe and study the cellular, physical, and biochemical characteristics of a

specific microenvironment, several groups have shifted their work towards using in vitro micro-

fluidic assays rather than in vivo animal models or other in vitro models relying on cells cul-

tured in Petri dishes.68 The shift towards microfluidics has been significant in studies pertaining

to the brain microenvironment in health and disease.

For several years, animal models have been used extensively to study transport across the

BBB. These in vivo models provide the advantage of studying the BBB in its natural microen-

vironment, where cellular interactions are fully represented and physiological responses can be

observed at the scale of the entire organism.69 Moreover, in vivo models allow for the investi-

gation of specific genes, proteins, and carriers involved in transport across the BBB, which

might be limited in vitro models that do not fully recapitulate the in vivo microenvironment

when it comes to protein expression.70 Yet, despite these advantages, significant challenges

remain when it comes to translating experimental results obtained in animal brains to conclu-

sive outcomes for human brains. Genetic, molecular, and cellular differences prevent animal

models from achieving high physiological relevance when it comes to studies of transport

across the BBB. In addition, in vivo models offer a low-throughput and low-resolution platform

of study when compared to in vitro models.64 Coupled with the costs associated with animal

models, several groups have shifted their focus towards the use of in vitro models.

As described, most BBB models in the current literature rely on either in vivo animal mod-

els or in vitro monolayers of brain cells, be it endothelial cells or brain stromal cells.71 In the

past few years, microfluidics have become a more popular platform to conduct more physiologi-

cally relevant and controlled experiments.68 However, they have been rarely used for brain

microenvironment applications, where in vivo animal models and in vitro 2D cell culture mod-

els predominate.72–74

In the context of in vitro BBB models, several groups rely on the use of primary human

brain microvascular endothelial cells (HBMECs) isolated from the human brain tissue, as well

as primary human pericytes, astrocytes, neurons, microglia, and oligodendrocytes.75,76 These

primary cells offer the advantage of being directly isolated from the relevant brain tissue, and

can be well-characterized by their cell-specific protein expression.77 One of the drawbacks of

primary human brain cells lies in the lack of well-defined long-term behavior of the individual

cells cultured in 2D, as well as the lack of freezing protocols for extended use. For these rea-

sons, immortalized cell lines have been developed, particularly for brain endothelial cells and

microglia. While these cells have the advantage of being able to be cultured for extended peri-

ods of time without loss of specific phenotype, their values of barrier permeability when cul-

tured alone and with brain stromal cells remain significantly higher than the permeabilities

observed with primary HBMECs. In the process of immortalization, these cells experienced a

loss in barrier integrity, thus preventing them from accurately capturing the unique properties

of the BBB.78 To address these issues and to develop patient-specific models, several groups

have shifted towards the use of human induced-pluripotent stem cells (iPSCs) and human

embryonic stem cells (ESCs). These cells can be cultured in 2D for extended periods of time,

with defined cell freezing protocols. In addition, these cells can be employed in the develop-

ment of patient-specific models since they are derived from the skin or blood of individual
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patients. Their exact behavior and phenotype when differentiated into the different brain cell

types remains to be fully characterized. However, several groups have been able to differentiate

these pluripotent cells into brain-specific endothelial cells, astrocytes, and neurons, thus devel-

oping BBB models on a chip with greater accuracy and physiological relevance.79–82

A. 2D monolayers in microfluidic devices with physiologically relevant conditions

Moving away from in vivo animal models in order to create more physiologically relevant

models, the most common in vitro platform is created using transwells with one, two or more

cell types used, such as brain endothelial cells, with the addition of astrocytes or pericytes on

the abluminal side of the membrane.73 This system, as opposed to simple cell culture in Petri

dishes, allows for the addition of various cell types on different layers, for the application of

various physical parameters to the culture such as flow and shear stresses, and for the measure-

ment of relevant properties characteristic of the BBB, such as permeability and transendothelial

electric resistance (TEER) values.72,83

For instance, Siddharthan et al. cultured HBMECs in a snapwell insert which they then

placed in a flow chamber within a temperature-controlled CO2 incubator (Fig. 3). This enabled

coculture of HBMECs with human fetal astrocytes (HFAs) while applying shear stress on the

cells. Their experiments suggest that coculture with astrocytes, the application of shear stress

and their combination decrease the permeability of the monolayer while increasing its TEER,

thus enhancing the properties of HBMECs and yielding a more physiologically relevant BBB

model.75

Expanding on this idea, Hatherell et al. conducted a comparative analysis of mono-, co-,

and tri-cultures of human brain endothelial cells, pericytes, and astrocytes in transwell assays,

to study the effect of brain stromal cells on BBB properties. Due to the geometry of transwells,

the group was not able to perform adjacent tri-cultures but instead resorted to placing brain

endothelial cells on the insert mask, brain pericytes or brain astrocytes on the abluminal side

and brain astrocytes or brain pericytes, respectively, at the bottom of the dish (Fig. 4).76

Their results showed significant increase in TEER and barrier tightening in their co-culture

cases where brain endothelial cells were in contact with either pericytes or astrocytes. Although

their tri-culture results showed significantly increased TEER compared to the mono-culture

case, the TEER values were lower than the ones obtained for the co-culture cases. They con-

cluded that cellular contact communications from pericytes and astrocytes are needed to induce

proper barrier function in brain endothelial cells.71,76,83

FIG. 3. Siddharthan et al. cultured HBMECs in a flow chamber with human fetal astrocytes and showed that flow and

coculture with astrocytes decreases permeability and increases TEER. Reproduced with permission from Siddharthan

et al., Brain Res. 1147, 39–50 (2007). Copyright 2007 Elsevier.75
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Since primary BMECs may lose some of their BBB characteristics in culture, Wang et al.
have utilized human brain endothelial cells derived from human iPSCs via a biased spontaneous

differentiation approach derived by Shusta and Palecek groups. They co-cultured these brain

endothelial cells with rat primary astrocytes in their pumpless microfluidic device to apply

physiologically relevant shear stresses matching the blood residence time in the human brain.

They reported sustained high TEER levels above 2000 X cm2 for up to 10 days.84

D. Assembled 3D monolayers in microfluidic devices

To circumvent some of the limitations of 2D monolayer models and to create more physio-

logically relevant BBB systems, several groups have adopted more geometrically relevant

assembled 3D monolayer models. Brown et al. constructed a 3D BBB model in a microfluidic

chip consisting of a monolayer of HBMECs coating a rectangular vascular chamber, and pri-

mary human brain pericytes, and astrocytes, as well as neurons differentiated from human

iPSCs, in an adjacent brain parenchyma chamber (Fig. 5). With this microfluidic model, they

were able to test for diffusion of dextran to measure for permeability, and perform TEER mea-

surements with a custom-built impedance analyzer.85

Adriani et al. have also developed a similar platform using both human umbilical vein

endothelial cells (HUVECs) and human cerebral microvascular endothelial cells (hCMEC/D3)

in a rectangular channel adjacent to channels containing primary rat astrocytes and neurons in a

collagen gel. With this platform, they were able to obtain measurements of barrier permeability

using dextran for both HUVECs and hCMEC/D3, with astrocytes and neurons.86

FIG. 4. Different tri-culture models employed by Hatherell et al. to study the effect of brain pericytes and brain astrocytes

on brain endothelial cell permeability. Reproduced with permission from Hatherell et al., J. Neurosci. Methods 199,

223–229 (2011). Copyright 2011 Elsevier.76

FIG. 5. Assembled 3D monolayer of HBMECs in contact with human brain pericytes and astrocytes, as well as neurons dif-

ferentiated from human iPSCs. Reproduced with permission from Brown et al., Biomicrofluidics 9, 054124 (2015);

Copyright 2015 Authors, licensed under a Creative Commons Attribution 3.0 License.85
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Herland et al. developed an assembled 3D monolayer BBB model using HBMECs, primary

brain pericytes, and primary brain astrocytes. However, instead of a rectangular geometry with

one plane of contact with brain stromal cells, their platform consists of a circular hollow lumen

inside a collagen gel where the HBMECs are coated with pericytes or astrocytes on the ablumi-

nal side of the assembled endothelial cell vessel (Fig. 6). This design allows for a more physio-

logically relevant geometry and cell-cell contact for the study of permeability and response to

inflammation.87

FIG. 6. Co-culture of human brain microvascular endothelial cells and pericytes or astrocytes in the circular 3D BBB chip.

Reproduced with permission from Herland et al., PLoS One 11, e0150360 (2016); Copyright 2016 Authors, licensed under

a Creative Commons Attribution 4.0 License.87
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C. Vascular networks in a 3D gel

While assembled 3D monolayers in microfluidic chips allow for greater control of the ves-

sel geometry and area of contact between brain endothelial cells and stromal cells, they may

not fully replicate self-assembled vascular networks in terms of branching, diameter sizes, and

barrier tightness. Very recently, Bang et al. have developed a BBB model in a microfluidic

chip using perfusable vascular networks composed of HUVECs in a separate channel, adjacent

to astrocytes, neurons, and normal human lung fibroblasts. This platform allowed for a higher

degree of neurovascular interfacing and low vascular permeabilities, characteristic of the

BBB.88 While this type of model is promising in terms of network morphology, cell-cell inter-

actions, and physiological barrier tightness, it is still very recent in terms of its application to

the brain and remains to be further studied.

D. Fluid flow stimuli in BBB models

Several groups have observed that exposure of brain endothelial cells and stromal cells to

fluid flow stimuli, such as shear stress from blood flow, changes the expression of TJ proteins

and decreases the permeability of the barrier.75,85,87 Physiologically relevant shear stress values

tested in the literature for media flow on brain endothelial cells range from a few mPa to �600

mPa.89,90 In Siddharthan et al., a pump circulates media exposing the HBMEC monolayer to

fluid shear stresses of �100–200 mPa and leading to significantly reduced permeability

values.75

Shear stress from media flow is not the only fluid flow stimulus endothelial cells may expe-

rience. Transmural pressure gradients can also generate flows that can convect solutes and mol-

ecules across the barrier. In fact, many permeability tests impose a pressure gradient during the

introduction of a specific tracer, such as fluorescently labeled dextran, propidium iodide (PI) or

Evans Blue (EB) dye. The flux rate at which the dye crosses the cellular barrier is correlated

with barrier tightness and permeability.72,75,87

V. PERMEABILITY MEASUREMENTS IN BBB MODELS

In order to evaluate barrier function, most groups rely on permeability measurements using

fluorescent solute diffusion or TEER. Key features and relevant values of each measurement

technique are outlined below.

A. Fluorescent solute diffusion

Several groups have relied on the use of fluorescent solute diffusion across the BBB to

measure permeability and assess barrier tightness.10 The general protocol consists in filling one

side of the monolayer or the lumen of the vessel with a solution of fluorescent dye and creating

a pressure gradient with the opposite compartment on the abluminal side of the endothelial

cells. This allows the dye to diffuse across the barrier. Fluorescent intensity is recorded at dif-

ferent timepoints in both compartments to assess the rate of solute exchange across the barrier.

Permeability is proportional to the flux of the dye, which depends on its Stokes radius.72,75

Considering the principle of mass conservation, the mass transfer rate (J) that crosses the endo-

thelial barrier is expressed by

J ¼ AsPvDC ¼ d

dt

ð
CdV;

where As is the surface area of the endothelial barrier, DC is the concentration difference, and

Pv is the permeability coefficient of the vasculature. The fluorescent solute concentration is

assumed to be proportional to the fluorescent intensity (Iv for the vessels and IT for the tissue

outside the vessels at two different time points), V is the tissue volume (or gel region), and Dt
is the time between two measurements. The permeability coefficient of the vasculature is given

by
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Pv ¼
1

It1
V � It1

T

� � It2
T � It1

T

� �
Dt

V

As
:

While the general experimental protocol for dye diffusion is relatively similar across all studies,

multiple parameters are left at to the discretion of each group performing the measurement,

such as the type of solute (dextran, Evans Blue, propidium iodide, etc.), its size, its lipophilic-

ity, and its propensity to bind to tissue and proteins.91–93 This lack of standardization and con-

sensus among researchers often limits comparison and validation of BBB-on-chip models.

Several reviews have promoted the need for commonly accepted standards in terms of perme-

ability and TEER measurements.10,92

While a universal protocol for permeability measurement, independent of the microfluidic

device design, is still needed, a summary of most reported measures of permeability for human

in vitro BBB models is shown in Fig. 7. In light of the considerable variability in recorded perme-

ability values for human BBB models employing similar cell types and microfluidic platforms, a

need exists for a standardized protocol for choosing fluorescent solutes and performing permeability

tests. Nevertheless, several trends are evident, namely that vascularized networks and brain endothe-

lial cells derived from iPSCs tend to yield lower permeability measures (�10�7–10�8cm/s).

B. TEER

Several groups have relied on transendothelial electrical resistance (TEER) as a measure of

the tightness of barrier function, based on measuring ohmic resistance or impedance to the pas-

sage of small ions through the BBB over a range of frequencies.94,95 These measurements are

made using two electrodes placed on either side of a membrane in which the cells are cul-

tured.26 Typically, TEER is measured in 2D transwell membrane systems by applying an alter-

nating current (AC) voltage signal with a square waveform, as direct current could damage the

cells.94 Subtracting the resistance of the semipermeable membrane RBLANK from the measured

total resistance RTOTAL, the tissue resistance RTISSUE is given by

RTISSUE Xð Þ ¼ RTOTAL � RBLANK :

With resistance being inversely proportional to area, TEER values are computed as:

TEER ¼ RTISSUE Xð ÞAS cm2ð Þ:

Most groups have reported TEER values below 600 X cm2, indicative of poor barrier function

in vitro (Fig. 8). However, Wang et al. managed to measure TEER values above 4000 X cm2,

FIG. 7. Permeability values for human in vitro BBB models for different fluorescent solute sizes and different types of

microfluidic models (references included in brackets for data obtained from Lippmann et al.,82 Herland et al.,87 Wang

et al.,84 Bang et al.,88 and Adriani et al.86).
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thanks to a microfluidic device allowing for oxygen and nutrient transportation, as well as waste

product clearance.84

Due to the lack of in vivo permeability and TEER measurements in humans, researchers often

compare measurements in in vitro human models to measurements in in vivo animal models, that

typically range from 1500 to 8000 X cm2; most in vitro values reported for human models fall well

beneath this range.71 However, the comprehensive assembled 3D monolayer developed by Brown

et al. with HBMECs, primary pericytes, and astrocytes, as well as neurons derived from iPSCs

yielded TEER values of �2080 X cm2, within the in vivo range obtained for animal models.85

Moreover, 2D monolayer model of Wang et al. with brain endothelial cells derived from iPSCs,

co-cultured with rat astrocytes, resulted in TEER values peaking at 4399 X cm2 at day 2, and

remaining nearly constant at 2000 X cm2 until day 10 in culture.84 Although caution must be used

in making a direct comparison between human in vitro models and animal in vivo models, the two

models developed by Brown et al. and Wang et al. resulted in the largest TEER values recorded in

microfluidic systems, shedding some light on the role of brain stromal cells and neurons in barrier

tightness, and adding to the argument that brain primary endothelial cells might lose some of their

BBB characteristics in culture.84,97

VI. SIGNALING PATHWAYS, GENE, AND PROTEIN EXPRESSIONS IN BBB MODELS

The expression and activity of signaling molecules are typically similar for both 3D micro-

fluidic systems and traditional 2D models, although 3D models offer a more functional and rel-

evant organ-like context. Most protocols rely on the use of conditioned media and cell lysates

collected from fluidic or gel channel regions to perform Western Blot and polymerase chain

reaction analyses, molecular detection, and mass spectroscopy.98 Due to the small size of most

microfluidic models, an adequate scale-up of the device might be required in order to get a pro-

portionally functional amount of proteins and RNA.99 In order to understand how signaling

pathways, gene, and protein expressions are affected in BBB models, fundamental questions

should be addressed, namely (i) how cytokines and chemokines modulate barrier functions;100

(ii) how microenvironmental cues and cellular interactions regulate BBB differentiation4 and

genetic expression;101 (iii) how BBB function may be altered by physical stimuli102 or drug

transport effects,103 as well as inflammation or infection that may occur in the human brain.

A. Cytokine profiling

Cytokine expression at the blood-brain interface modulates CNS function100 and the activ-

ity of membrane transporters.104 The BBB is comprised of several receptors that selectively

FIG. 8. TEER values for human in vitro BBB models at different times and for different types of microfluidic models

(references included in brackets for data obtained from Siddharthan et al.,75 Hatherell et al.,76 Griep et al.,96 Czupalla

et al.,72 Lippmann et al.,82 Wang et al.,84 and Brown et al.85).
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transport cytokines, such as interleukins (ILs) and tumor necrosis factor (TNF)-a implicated in

various inflammatory responses,105 or leptin involved in neuroendocrine regulation.106 Some of

these physiological responses, such as the neuroinflammatory response of the CNS, are associ-

ated with several neurodegenerative diseases, including meningitis105 and Alzheimer’s dis-

ease.107 In these situations, elevated TNF-a levels have been measured in the brain, mainly

secreted by astrocytes, microglia, and injured neurons, in response to inflammation (Fig. 9).105

Previously, cytokine release has been studied using static 2D transwell membranes108 and

complex in vitro systems.109 Recently, microfluidic chips have permitted the reproduction of

complex and physiologically relevant conditions with stimulation of TNF-a under fluid flow.87

Importantly, a substantial amount of granulocyte colony-stimulating factor (G-CSF) and

interleukin-6 (IL-6), functioning as neuro-protectors in vivo, were detected in the 3D BBB

model on a chip, significantly higher than in the static transwell membranes. Interestingly, peri-

cytes and astrocytes were associated with this increase in cytokine release in the 3D BBB

model on a chip. Microfluidic platforms have provided significant advantages in cytokine profil-

ing studies during neuroinflammation and other related brain diseases.87

B. Protein and gene expression in BBB models

Genomic and proteomic studies have provided tremendously useful information on BBB

function and revealed the genes and proteins responsible for inducing a BBB phenotype.110

Studies in 2D culture and 3D systems have shown that protein and gene expressions of mem-

brane transporters and efflux pump increase during fluid flow stimuli in microfluidic BBB

FIG. 9. Comparison of inflammatory cytokine profiling of (a) a human 3D BBB model on a chip and (b) a transwell mem-

brane model for granulocyte colony-stimulating factor (G-CSF), interleukin-6 (IL-6), and interleukin-8 (IL-8). Reproduced

with permission from Herland et al., PLoS One 11, e0150360 (2016); Copyright 2016 Authors, licensed under a Creative

Commons Attribution 4.0 License.87
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models compared to static cultures.89 However, thus far, variation in gene expression has been

evaluated only in 2D transwell membranes,111,112 or in iPSC-derived BBB models.113 Gene

expression of membrane transporters has been measured in complex 3D assembled monolayer

systems that recreate hollow lumens. Flow was observed to up-regulate the expression of most

junctional genes, responsible for barrier tightening through TJs and AJs, and drug transporter

genes, responsible for transport of molecules across the BBB, studied. This indicates the impor-

tance of physiological fluid flow in the development of proper blood-brain barrier function.109

The analysis of gene expression in self-vascularized BBB microfluidic models should be per-

formed to validate the 3D assembled monolayer results;109 particularly, gene expression of TJ

proteins and membrane transporters by the brain endothelial cells should increase during fluid

flow experiments or in co-culture with pericytes or astrocytes.114

VII. DRUG DELIVERY STUDIES IN BBB IN VITRO MODELS

To study drug delivery into the brain parenchyma, several groups have based their investi-

gations on initial in vitro BBB models, followed by in vivo animal models.68

A. In vitro BBB models for drug transport screening

As animal models fail to replicate the human BBB microenvironment, new in vitro models

of human pathological and healthy BBB are under development115 with the aim to study and

predict drug transport. Optimal in vitro BBB models should satisfy different requirements: sim-

plicity, low cost, resemblance to in vivo conditions, and capabilities for high throughput screen-

ing.3 Particularly, they should display similar permeability values to human BBB to be

exploited in studies for drug targeting validation and/or toxicological evaluations. The relevance

of in vitro BBB models can be understood by comparing in vitro results with data obtained

using in vivo methodologies.3

As discussed below, 2D transwell membrane models have been widely used for BBB

in vitro modeling. Such models have been mainly generated from human primary and immor-

talized cells on a 2D porous membrane with or without the co-culture of astrocytes and peri-

cytes in the lower chamber or in the upside-down membrane.111,116,117 Such in vitro BBB mod-

els, when based on animal cells, have shown low correlations with respect to in vivo
results.118,119 This has been mainly attributed to a low expression of L-amino-acid transporter

(LAT), suggesting that the model was not completely functional. Hence, beside the establish-

ment of TJs, other parameters affect the performance of BBB models, for example the expres-

sion of transporter molecules.

Another human BBB model using transwell membrane has been developed to assess func-

tional activity of P-GP, BCRP, and multidrug resistance-associated proteins using hCMEC/D3

cells.111 Several compounds such as inulin, lucifer yellow, sucrose, propranolol, morphine, and

midazolam have been investigated in the model. The measured permeability values were consis-

tent with previous data120 and lower than those measured using rat cell lines.121 However, sev-

eral issues limit the use of transwell models, such as constraints in availability of human neural

cells, as well as the lack of expression of those genes and TJ proteins present in the human

immortalized BBB cells. On the other hand, recently, two different transwell platforms using

iPSCs120 in combination with neural multipotent stem cells (NMSCs) have been established,

with excellent potential to generate a more reliable BBB model.113 Appelt-Menzel et al. have

differentiated human iPSCs and NMSCs into endothelial cells (ECs), astrocytes (ACs) and neu-

rons with BBB characteristics within a few weeks. Then, transport studies using small mole-

cules able to permeate the BBB via the transcellular route were performed. Additionally, in this

BBB model, paracellular transport was characterized and compared to in vivo observations test-

ing drugs and other small hydrophilic compounds, such as caffeine, diazepam, ibuprofen, and

diclofenac.122 As expected, permeation was significantly lower in the quadruple culture of ECs,

pericytes, ACs, and neurons compared to the mono-culture of ECs, indicating an even more

in vivo-like phenotype. These results were in agreement with other in vitro data obtained from
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BBB models based on rat primary cells. Comparison with in vivo measurements showed that

the human iPSC-derived BBB model was effective in predicting the permeability of drugs.

One advantage of the transwell models for drug studies is that they all provide significant

barrier integrity. However, care should be taken when interpreting results derived from correla-

tions between in vitro and in vivo models, because any misleading interpretation of data could

generate inaccurate results and failure in the next clinical trials3 [Figs. 10(a) and 10(b)]. For

these reasons, in vitro models of the BBB should reflect as many relevant properties of the

in vivo brain endothelium as possible, to serve as reliable tools for predictions of human condi-

tions and consequent effective drug development.

B. Microfluidic platforms and organs-on-chips for drug studies

Organ-on-a-chip technology is being used to develop cost-effective in vitro models that can

more reliably predict the efficacy, toxicity, and pharmacokinetics of drug compounds in

humans, using novel phenotypic screening assays.98,124 To evaluate drug efficacy, organs-on-

chips provide many advantages over 2D in vitro models, such as improved representation of

complex pathophysiology in a 3D microenvironment with possibility of physiologically relevant

fluid-mechanical stimuli. 3D tissue structures with barrier function more accurately simulate

and predict delivery and penetration of drug compounds in vivo than 2D cell monolayers in

conventional culture models. Several drug delivery studies have been developed including 3D

microfluidic platforms. In particular, some groups have estimated drugs and compounds trans-

port permeabilities through the EC layers by evaluating TEER.109

Cucullo et al. have performed drug transport studies in a 3D assembled monolayer BBB

model with a hollow cylindrical geometry, operating under a laminar flow regime.89,109 Under

the effect of shear stress, brain endothelial cells redistributed their actin fibers and changed their

morphology. This model predicted a lower permeability for mannitol and morphine by measur-

ing TEER compared to the case without treatment. However, such a platform is incompatible

FIG. 10. Brain uptake index (BUI) correlation between in vivo and in vitro. (a) In vitro model using human brain capillary

endothelial cells and (b) Caco-2 cell line (colon-epithelial cell line). Reproduced with permission from Kim et al.,
Biomicrofluidics 9, 1–15 (2015).Copyright 2015 AIP publishing.123 (c) Vascular permeability measurement after mannitol

disruption and (d) average normalized variation in fluorescence intensities (DF/F0) of X-Rhod-1 that measures calcium

concentrations and consequently reduced glutamate transport across the endothelial barrier. Reproduced with permission

from Adriani et al., Lab Chip 17, 448–459 (2017). Copyright 2016 Royal Society of Chemistry.86
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with high-throughput pharmaceutical screening because of the large number of cells and high-

handed technical skills needed to set up the model, as well as the lack of a real-time monitoring

of cell behavior.

In addition, Booth et al. have developed a microfluidic BBB model on a dual layer of

mouse brain endothelial cells and astrocytes in multi polydimethylsiloxane (PDMS) glass layers

including electrodes to measure TEER and fluid flow. They have found a drop and recovery of

TEER compared to the original value when exposed to histamine, indicating the robustness of

the model for repeated long-term testing purposes.125

Kim et al. have also engineered a brain microvascular structure by using a 3D printed

frame where microneedles were inserted. Then, a collagen mixture was applied on the frame,

microneedles were removed, allowing the mouse brain endothelial cells to form hollow tubular

microvessels.123 The BBB model was temporarily disrupted by the use of mannitol.123

Interestingly vasculature permeability already decreased at a low concentration of mannitol after

60 min of treatment [Fig. 10(b)].

Moreover, Adriani et al. have assessed the possibility of using a microfluidic BBB model

comprising a 3D assembled monolayer of hCMEC/D3, with rat astrocytes and neurons for com-

pound screening.86 Their model served as a functional transport assay of monosodium gluta-

mate, a potent neurotransmitter whose presence is highly regulated by the BBB. The 3D mono-

layer model prevented the monosodium glutamate added into the endothelial cell channel to

pass through the barrier and activate the neurons cultured on the opposite side of the channel.

To this purpose, they measured the neuronal activity by calcium imaging and c-Fos expression.

A higher concentration of calcium was measured in neurons when the endothelial barrier was

not present, compared to the 3D monolayer model [Fig. 10(c)]. Hence, the presence of the

endothelial barrier was shown to restrict the passage of glutamate and the consequent increase

in calcium in neurons.

A new modeling approach has come to light a few years ago based on the in vitro culture

of brain spheroids and organoids.126 These are usually self-organized multicellular structures

grown in low attachment conditions and showing a similar organization as the human brain.

This emerging approach has been used for the screening of drug transport127 and could be

potentially integrated with microfluidic devices including microvascular networks.

VIII. FUTURE PERSPECTIVES FOR BBB MICROFLUIDIC MODELS

Microfluidic devices for in vitro BBB modeling have the potential to make basic research

more effective in the process of drug development for treating neurodegenerative diseases and

brain cancers. The optimal BBB model should provide a valuable tool for studying the mecha-

nistic aspects of drug transport and the biological outcomes of drug delivery in the presence of

pathological processes affecting the BBB. However, before in vitro BBB models can be used

for transport studies and other applications, they need to fulfill a number of requirements,

namely provide reproducible permeability values for reference compounds, as well as express

TJ proteins, BBB phenotypic transporters, and transcytotic activity.10

Additionally, the model should be able to mimic physiological and pathological states as

well as recreate stress responses, such as the effects of ischemia, regional hypoxia, and nutri-

tional deprivation. Microfluidic technologies could be combined with patient-derived primary or

iPS cells115 from different genetic subpopulations or engineered with gene editing technologies

(e.g., CRISPR) to obtain patient-specific disease models that facilitate drug discovery targeted

to specific subpopulations.128 Microfluidic platforms are promising for the investigation of

novel drug candidates, including drug bioactivation, drug clearance, and drug-drug interactions

through induction/inhibition pathways.129

On the other hand, certain limitations need to be overcome before microfluidic models can

be widely used in research laboratories. For example, performing long-term experiments (on the

order of months) is not currently possible in microfluidic systems. A number of research studies

on dose-dependent species-specific drug interactions need long-term treatment. Moreover, drug

toxicity response might emerge a few weeks or months after the start of the treatment. Thus

042213-17 Hajal et al. Biomicrofluidics 12, 042213 (2018)



far, such experiments cannot be replicated in more complex and physiologically relevant micro-

fluidic in vitro models, but only in 2D culture and in in vivo models. This is mainly caused by

cell overgrowth and/or extracellular matrix (ECM) matrix breakdown when model complexity

is increased in microfluidic systems.98,124 Additional limitations in microfluidic models arise

from the use of PDMS in the micro-fabrication of the fluidic device. While PDMS is easy to

use and has high optical clarity, gas permeability, and biocompatibility, it can absorb small

organic compounds, which might alter results in drug treatment.130 Additional research is

needed to develop new materials for device microfabrication with quality/cost benefits.

Moreover, microfluidic chips need to be designed such that connections with microfluidic

pumps can be easily implemented to introduce physiologically relevant fluid flows into the

device channels, thereby reproducing the dynamic in vivo microenvironment. This aspect of

microfluidic technology is the aim of “next-generation” chips which would include sensors for

parameter measurements (e.g., flow, pressure, temperature, pH, oxygen, glucose, lactate, TEER,

and electrical conduction) and integrated microscopic and microfluorimetric imaging capabili-

ties to monitor the system overtime.98,124 Another relevant point to be considered pertains to

the preparation of ECM-mimetic non-immunogenic biomaterials as an interface between neural

and endothelial cells, providing transport, mechanical and structural properties similar to those

of natural basement membranes. Additionally, a “universal medium” with optimal composition

for all the cells present in the brain (endothelial cells, pericytes, astrocytes, neurons, and micro-

glia) would be necessary, providing essential components for neural differentiation.98

Finally, one of the main challenges of microfluidic technologies lies in their technical

robustness and reliability for in vitro testing. Although there have been few recent successes

demonstrating that microfluidic models can mimic specific organ-level functions,98 the imple-

mentation of reliable testing tools for drug transport screening to fully replace animal model

testing remains to be achieved. In vitro microfluidic models have the potential to contribute to

a reduction in the use of animal models for experiments, accelerating research for the discovery

of new effective drugs and/or drug carriers.

IX. ENHANCING DRUG TRANSPORT ACROSS THE BBB VIA NANOCARRIER-MEDIATED

DRUG DELIVERY

In vivo animal studies and in vitro models have highlighted the BBB as the major obstacle

in drug transport to the brain, indicating that the design of more efficient brain-delivery systems

is key to improve therapeutic outcomes of patients affected by CNS pathologies. Indeed, only

3%–5% of compounds with positive in vitro and in vivo results on neurological disease models

have reached clinical applications, mostly because of their inability to cross the BBB in vivo.131

For instance the humanized monoclonal antibody Solanezumab, designed for the treatment of

Alzheimer’s disease, failed to demonstrate clinical benefit in phase-3 trials, possibly due to the

drug not actually reaching its target.132,133 Similarly, proteasome inhibitors which have demon-

strated a potent anti-tumor effect on brain cancer models in vitro offered limited clinical bene-

fits due to their poor affinity with the BBB.134 These examples suggest that treatment of CNS

pathologies requires new delivery systems rather than new drugs.

Nano-size drug delivery systems (DDSs) based on inorganic or polymer nanoparticles

(NPs) have been proposed for this purpose in virtue of their small size, tunable shape, and ease

of surface modification that can be used to facilitate transport across the BBB via both, trans-

cellular and paracellular pathways. Table II shows the main types of NPs used to deliver drugs

to the brain tissue, their composition, average size, advantages, and limitations.

While inorganic NPs offer better control of size and shape, their intrinsic toxicity and poor

biodegradability have limited their application to imaging or theranostic purposes. On the other

hand, polymeric NPs have been extensively investigated to deliver drugs to the CNS. Although

size and shape control is more challenging, these platforms offer high versatility in terms of

tunable polymer composition, drug encapsulation, and surface functionalization. Depending on

the polymer of choice, polymeric NPs can encapsulate drugs of different molecular weights,

physical properties and water solubility.58 Moreover, several surface modification strategies can
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TABLE II. Main NP types tested in BBB models, their average sizes, main advantages, and limitations. Reproduced with permission from Veszelka et al., Acta Biol. (Szeged) 59, 157–168 (2015).

Copyright 2015 Authors, licensed under Creative Commons Attribution 3.0 License.72,82,83,87,135

Type of NP Composition Size Advantage Limitations

Liposomes Aqueous core surrounded

by phospholipid bilayers

Small (<100 nm), large (>100 nm),

and multi- (>500 nm) lamellar

Encapsulation of both hydrophilic and

hydrophobic drugs

Poor control over release of the drug and

low stability during storage

Solid lipid NPs Hydrophobic core surrounded by

triglycerides, fatty acids, and waxes

10–500 nm Low toxicity, high drug loading capacity,

and controlled release

Encapsulation of only hydrophobic drugs

Polymeric NPs Natural or synthetic degradable polymers 10–1000 nm Stability against enzymatic metabolism Some have toxic hydrolysis by-products

Metal NPs Gold, and titanium or iron oxides 1–100 nm Gold and titanium NPs: inert, ultra-small

size, absorb, and scatter near infra-red light

Iron NPs: can be paramagnetic

Gold and titanium NPs: controversy on car-

cinogenicity

Iron NPs: may induce oxidative stress

Quantum dots Colloidal semi-conductor

nano-scale crystal

2–50 nm Fluorescent targeting and imaging, long-

term visualization, and extremely high sta-

bility to photobleaching

Cytotoxic in high concentrations
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be implemented to functionalize the particle surface with ligands that selectively interact with

receptors over-expressed by BBB cells, resulting in enhanced CNS accumulation.

A. Surface-modified nanoparticles for targeted drug delivery to the CNS

NPs can be used to deliver drugs across the BBB in two main ways: (i) passive accumula-

tion and (ii) active interaction with BBB cells.136 Passive targeting of the CNS is based on

higher concentration gradients at the BBB that are achieved by enhancing the NP concentration

in plasma. This implies that particles must circulate in the blood stream long enough to result

in enhanced crossing of the BBB. As NPs are rapidly taken up by the Mononuclear Phagocyte

System (MPS) and, consequently, cleared through the kidneys and the liver, MPS capture must

be delayed and a “stealth” particle design has to be adopted. Typically, this is achieved by cov-

ering the particle surface with a flexible, hydrophilic layer of poly(ethylene glycol) (PEG) that

is well known to delay clearance, extend circulation time and, consequently, enhance the chan-

ces of BBB passage.137 It has been demonstrated that particles with size ranging between

50 nm and 100 nm are passively taken up by BBB cells, resulting in favored transcellular trans-

port. Indeed, virus-sized iron oxide nanoparticles (Ferumoxtran-10) have been successfully used

to image CNS lesions in patients.138 On the other hand, Chertok et al. have shown that inor-

ganic iron oxide NPs with a nominal size of about 100 nm could successfully accumulate into

orthotropic 9L gliosarcoma-bearing rats only if an external magnetic guidance was used to force

cranial accumulation of the particles. Without application of the external magnetic field, no

contrast-enhancement (indicative of particle accumulation in the brain) was observed, sugges-

ting that 100 nm may be the threshold size for passive BBB crossing, and that particles with

larger sizes may require surface-modifications for active-transport.139

Active transport across the BBB involves receptor-mediated endocytosis or transcytosis as

mentioned above. It requires surface-modification of NPs with ligands, antibodies, or small

molecules that are typically a target for receptors over-expressed by BBB cells. For instance,

Meng et al. have proposed chlorotoxin-conjugated iron oxide NPs (SPIOs) to actively target

human and rat glioma models, as the glioma-specific chloride ion channel is sensitive to chloro-

toxin.140 They showed that MRI contrast was strongly enhanced when conjugated platforms

were used, as compared to the unfunctionalized SPIOs.141

The most common target used to enhance particle accumulation in the brain is the transfer-

rin receptor (TfR), a transmembrane glycoprotein extensively expressed by endothelial cells in

the BBB and highly over-expressed by brain cancer cells. Several NP platforms functionalized

with transferrin (Tf), lactoferrin, TfR-specific antibodies (TfR-Ab) or peptides have been

designed to target TfR. Hu et al. have designed PEG- poly-lactide (PLA) nanoparticles for

brain targeting by using lactoferrin as a targeting ligand, coupled to the maleimide groups on

PEG chains. After intra venous (i.v.) administration they showed a 3-fold increase in brain

delivery of the fluorescent dye coumarin-6 with targeted nanoparticles as compared to their un-

functionalized counterparts.142 Loureiro et al. designed TfR-Ab (OX26) conjugated poly(lactic-

co-glycolic acid) (PLGA)-PEG NPs for brain delivery of iAb5, a peptide for the treatment of

Alzheimer’s disease. Although an in vivo proof of concept was not provided, the authors

showed significant cellular uptake in a porcine brain capillary endothelial BBB model, indicat-

ing that TfR-Ab has strong affinity for the BBB endothelial cells.143 Indeed, other studies

highlighted that the use of TfR-Ab may result in too strong ligand-receptor interaction, causing

the particles to remain trapped at the brain capillary endothelium without reaching the brain

parenchyma.144,145 These considerations suggest careful selection of ligands as well as of the

functionalization strategies to achieve effective BBB by passing.

Peptides able to selectively recognize BBB endothelial cells can also be used for active

particle accumulation in the CNS. Dal Magro et al. used ApoE-functionalized solid lipid nano-

particles (SLN) for brain targeting after pulmonary administration. They showed significantly

higher brain SLN accumulation for targeted nanoparticles delivered via the pulmonary route as

compared to untargeted particles or to targeted particles delivered intra-venous (i.v.) or intra-

peritoneal (i.p.).146 This work seems to suggest that the delivery route also plays a role in
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increasing particle accumulation in the brain. By reducing the circulation time of the NPs in the

blood, this alternative delivery strategy aims at reducing particles uptake by the MPS, increas-

ing the number of particles interacting with the BBB.147

Thus far, the majority of the available information on NP design including the tailoring of

their surface composition has been derived from studies in animal models. This approach has

some limitations, particularly regarding the transferability of the obtained results to the human

case. Preliminary tests in in vitro models of the human BBB would allow for a more specific

design of NPs, taking into account their applications in humans. On the other hand, testing in

animal models still stands as a fundamental complementary step to test the NPs in the environ-

ment of a complex organism and get insights into immune response to NPs, NP toxicity, target-

ing, and accumulation in different tissues/organs, as well as to select the preferred delivery

route for NPs.

B. Nanoparticle testing in in vitro BBB models

While in vitro BBB models have been used extensively for drug transport studies, drug-

loaded NPs have only been recently integrated into these platforms, in an attempt to determine

their efficacy and safety for use in humans. In this regard, microfluidic models allow for high-

throughput screening of NP drugs to determine optimal chemical composition, size, and shape

with respect to different applications (Fig. 11).58

For instance, the surface composition of NPs affects their interaction with blood compo-

nents, their duration of circulation in the vasculature, and their likelihood of barrier penetration

to reach target cells/tissues. NP size is also a fundamental parameter, affecting cell uptake and

intracellular localization of NPs,148 e.g., NPs with 50 nm size have been found to be optimal

for effective internalization by the cells through receptor-mediated endocytosis.149,150

Additionally, in vitro models are also effective tools to understand the mechanisms by which

NPs cross the BBB, in order to tailor NP properties for enhanced delivery to the brain. Hence,

in accordance with the 3Rs principle, in vitro models play a key role in reducing the number of

animal experiments needed to optimize NP design.

While intrinsically simple and well-established for the study of drug delivery, transwell

BBB models do not always constitute an optimal platform for the study of NP delivery [Fig.

12(a)]. In fact, NPs may self-agglomerate or adhere to the transwell membrane pore walls, and

imperfections in the BBB model (e.g., multi-layer structure, presence of holes, or lack of TJs)

might render the results imprecise [Fig. 12(b)].150,151 Despite some of the issues surrounding

transwell assays for NP delivery, these models have been widely used for NP testing, employ-

ing animal or human cells (Table III).

As an example, Hanada et al.163 developed a rapid, easy, and reproducible in vitro assay to

screen the ability of NPs with different size and surface charge to cross a commercially

FIG. 11. Major NP features influencing systemic delivery across the BBB. Reproduced with permission from Saraiva et al.,
J. Controlled Release 235, 34–47 (2016). Copyright 2016 Elsevier.58
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available rat BBB model (RBT-24H, BBB KitTM, purchased from PharmaCo-Cell Co.,

Nagasaki, Japan) composed of primary rat brain endothelial cells, pericytes, and astrocytes. The

testing of fluorescent silica NPs with different sizes (30, 100, 400 nm, and microparticles) and

at 0.1–1.0 mg/ml concentration showed that permeability was significantly higher for NPs

with 30 nm size (3.56 6 1.62 � 10�6 cm/s). On the other hand, experiments using Qdots
VR

NPs

with optimal size (approximately 30 nm) and surface cationic, anionic, and neutral groups

FIG. 12. (a). Schematic of a BBB transwell model used for the testing of NP permeability. (b) Schematic representation of

potential issues arising when using transwell BBB models for NP transport screening by Åberg, Tissue Barriers 4,

e1143545 (2016). Copyright 2016 Authors, licensed under Creative Commons Attribution 3.0 License.151
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TABLE III. Relevant examples on the testing of NPs in BBB transwell models in the last decade (2008–2018). Adapted from Veszelka et al., Acta Biol. (Szeged) 59, 157–168 (2015). Copyright 2015

Authors, licensed under a Creative Commons Attribution 3.0 License.135 Abbreviations: BDNF, bone derived neurotrophic factor; BSA, bovine serum albumin; CRM197, a ligand of diphtheria toxin

receptor; mAb, monoclonal antibody; MMA-SPM, methylmethacrylate–sulfopropylmethacrylate; MMP9, matrix metalloproteinase-9; N.D., no data; PBCA, poly(butylcyanoacrylate); PEG, polyethyl-

ene glycol; PLA, poly-lactide; PLGA, poly(lactic-co-glycolic acid); PVP, polyvinylpirrolidone; Qdots, quantum dots; RMP-7 (Cereport), bradykinin type II receptor agonist; MDCK, Madin–Darby

canine kidney.

NP type Composition

Targeting ligand

or coating Cargo NP size (nm) EC type Co-cultured cells Result References

Lipid NPs Fluorescent

magneto-liposomes

Transferrin No 130 Primary human Human astroglia Increased NP

permeability

Ding et al.152

Solid lipid NPs Solid lipid Anti-insulin receptor

mAb

Carmustine 100-450 Primary human Human astroglia Increased NP uptake and

permeability

Kuo et al.153

Metal NPs Fe3O4 (magnetic) No BDNF 60 Primary human Human astroglia Magnetically guided NP

permeability

Pilakka

et al.154

Metal NPs Gold Peptide targeting

transferrin receptor

b-sheet breaker

peptide

15 Primary bovine Rat astrocytes Increased NP

permeability

Prades

et al.155

Metal NPs Gold PEG, transferrin,

albumin

No 5, 12, 25 Human cerebral

micro-vessel ECs

… NP internalisation in lyso-

somes; rare transcytosis

Ye et al.156

Polymer NPs PLGA Tween-20, BSA,

Transferrin

Fluorescent dye 63–90 Primary bovine Rat astroglia Increased NP endocytosis Chang et al.157

Polymer NPs PBCA Ligand of diphtheria

toxin receptor

(CRM197)

Zidovudine 87, 163, 195 Primary human Human astroglia Increased NP uptake and

permeability

Kuo et al.158

Polymer NPs MMA-SPM Bradykinin type II

receptor agonist

(RMP-7)

Stavudine

DelavirdineSaquinavir

48, 13, 8 Primary human Human astroglia Increased NP uptake and

permeability

Kuo et al.159

Polymer NPs PEG-PLA PVP coating Curcumin <100 MDCK cells … Increased drug

permeability

Cheng et al.160

Polymer NPs PLGA … Metoclopramid N.D. MDCK cells … Increased drug

permeability

Nikandish

et al.161

Inorganic NPs TiO2 No No 25 Primary rat Rat astrocytes Np uptake, transport and

cellular toxicity.

Brun et al.162

Inorganic NPs TiO2 No No 3–5 Human cerebral

micro-vessel ECs

… NP internalization in

lysosomes; rare

transcytosis

Ye et al.156
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TABLE III. (Continued.)

NP type Composition

Targeting ligand

or coating Cargo NP size (nm) EC type Co-cultured cells Result References

Inorganic NPs Silica NPs … … 50, 100, 200 Human cerebral

micro-vessel ECs

… NP internalization in

lysosomes; rare

transcytosis

Ye et al.156

Inorganic NPs Silica NPs No No 30, 100, 400 Primary rat ECs Rat astroglia and

rat pericytes

Size dependent

permeability

Hanada

et al.163

Inorganic NPs Silica matrix

magnetic core/

green fluorescence

Prion or PEI (cat-

ionic) coating; surface

hydroxyl groups

(uncoated)

No 500 Human cerebral

micro-vessel ECs

… Internalization

mechanism dependent on

the surface composition

Georgieva

et al.164

Inorganic NPs Mesoporous

silica NPs

Bare or coated with

PEG-PEI

No 152–222 RBE4 rat brain ECs

and MDCK cells

… Coating increased NP

uptake

Baghirov

et al.165

QDots QDots No siRNA for MMP9 15–20 Primary human Human astroglia NP uptake and MMP9

gene silencing

Bonoiu

et al.166

QDots QDots Transferrin No Length: 26 width:6.5 Primary human Human astroglia Concentration- and

time-depending NP

crossing

Xu et al.167

QDots QDots Amino-, caboxy-,

PEGylated Qdots

No 30 Primary rat ECs Rat astroglia and rat

pericytes

Amino-groups dependent

permeability

Hanada

et al.163
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(amino-, carboxyl-, and PEGylated-Qdots, respectively) showed that amino-functionalised NPs

more efficiently crossed the BBB model. This behaviour was attributed to the interaction of

amino-functionalities with anionic phospholipids on the cell surface, leading to NP paracellular

transport. However, the carboxyl-functionalised NPs mainly underwent endocytosis, slowing

down their delivery to the basolateral compartment of the model. Finally, the study by Hanada

et al.163 also evidenced that the use of serum-containing medium in in vitro tests may reduce

permeability values, due to the interaction of proteins in the medium with the NP surface, pos-

sibly causing NP agglomeration.

Cheng et al.160 have analyzed the effectiveness of curcumin-loaded PVP-coated PEG-PLA

NPs in crossing the BBB in a MDCK cell monolayer transwell model, followed by in vivo trials

in Alzheimer’s Disease Tg2576 Mice. The permeability of curcumin reached 1.8� 10�6 cm/s

from 15 to 45 min, then decreased and settled to a constant value from 75 min onward. The per-

meability of tetrahydrocurcumin (THC), a curcumin metabolite, was also measured showing a

linear increase as a function of time. These findings indicated a transport mechanism based on

transcytosis and/or endocytosis: curcumin-loaded NPs penetrated into the cells, the drug was

released, partially metabolized, and then both curcumin and THC were delivered into the basal

well. According to another hypothesis, curcumin was released from NPs in the apical medium,

close to the cell membrane and then diffused into the cells. Regardless of the involved mecha-

nism, curcumin encapsulation into NPs was found to improve its permeability to the BBB.168

Indeed, the measured permeability was in a range suggesting drug ability to penetrate the BBB

in vivo.169

Although several in vitro studies in BBB transwell models have been followed by in vivo
trials in animal models (e.g., Cheng et al.;160 Mc Carthy et al.170) correlations between in vitro
and in vivo results are not available for drug-loaded nanocarriers. Additionally, dynamic micro-

fluidic platforms and organ-on-chips models represent optimal tools for reliable testing of drugs

and drug-loaded NPs, however there is no published data currently available on their use to

assess the transport of NPs through the BBB. These observations underline that research in the

field of biotransport of NPs in BBB models is still at the early phases and needs intense investi-

gations in the next years. It is important to underline that in vitro experiments in BBB models

using NPs should also evaluate cellular toxicity and the targeting ability of the NPs in an

in vivo-like microenvironment.

X. CONCLUDING REMARKS

The BBB is characterized by unique features responsible for the maintenance of brain

homeostasis. The presence of tight and adherens junctions regulates the transport of solutes

across the barrier and molecular trafficking usually occurs through transcellular diffusion or

active transport with carriers. A fundamental understanding of these transport mechanisms is

needed for the development of drugs and solutes able to cross the BBB. While BBB transwell

models continue to be widely used for the testing of drugs and drug-loaded NPs, microfluidic

3D BBB models are now regarded as the state-of-the-art in vivo-like platforms for reliable drug

delivery testing.

Although the BBB is the main obstacle for therapeutics aimed at targeting neurological and

brain degenerative diseases, as well as cancers, the field of BBB modeling has received less

attention than that of brain disease treatment. Nevertheless, poor outcomes of many clinical tri-

als for brain disease treatment should shift the focus back to the implementation of more physi-

ologically relevant in vitro and in vivo BBB models, as well new strategies for drug release.171

Although in vitro platforms do not fully replicate the in vivo condition, microfluidic models are

powerful and flexible tools to study transport across the BBB in normal and pathological states.

Microfluidic platforms offer the possibility of reconstituting human organ-level physiological

functions, clinically relevant disease phenotypes, and pharmacological responses that arise from

structural and functional integration of multiple cell types.

The main advantage of microfluidic devices lies in their precise control of culture parame-

ters allowing investigations that would be difficult, or even impossible, to be carried out
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in vivo. Unlike 2D culture systems, microfluidic models have the potential to serve as a new

enabling platform to identify and validate the efficacy, toxicology, and safety of drugs toward

potential targets, evaluate brain uptake, and assess permeability early in the drug discovery

pipeline to increase success in clinical trials. This characteristic may allow more comprehensive

and accurate predictions of complex drug responses in vivo. Fluid motions and cell culture sub-

strates can also be controlled to reproduce various types of mechanical cues induced by physio-

logical flow or pressure (for example, blood flow and interstitial flow) including shear stress,

tension, and compression.

An integrative use of in vitro BBB models and in vivo techniques (together with advances

in design of innovative nanocarriers and precise and personalized medicine) is likely to be of

key importance in the development of CNS therapeutics with enhanced activity and improved

BBB permeability. Given the complexities of organ function and regulatory requirements, it is

unlikely that BBB microfluidic models will replace animal testing anytime soon to see a wide-

spread use of this technology in basic and clinical research, however, it may be possible to pro-

gressively replace one animal-based assay at a time. Rigorous validation of this technology

using not only animal data but, more importantly, the results of clinical trials is required to

determine whether human in vitro models accurately represent human-relevant physiology and

show predictive capability across broad drug classes and clinical outcomes.
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