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Bimodal Resonance Phenomena. Part III:
High-Contrast Grating Reflectors

Alberto Tibaldi, Pierluigi Debernardi, and Renato Orta, Senior Member, IEEE

Abstract—The extraordinary broadband high-reflectivity fea-
tures of high-contrast gratings are stimulating great interest
in many opto-electronic applications. In view of obtaining
a simple simulation framework, the analogy of high-contrast
grating reflectors with bimodal Fabry-Pérot interferometers is
proposed. The closed-form expressions of the interferometer
reflectivity, obtained starting from a novel parametrization of the
scattering matrices characterizing the bar-air interface, allow a
complete exploration of the device parameter space, explaining
and predicting the phenomenon of ultra-broadband quasi-100%
reflectivity. In this paper an optimized and numerically efficient
design procedure is described and compared with the standard
rigorous coupled wave analysis, both for the classical “bar-in-air”
configuration and for a more robust and practical one, with bars
lying on a dielectric support. It is shown that the model can be
applied also in the more realistic case of lossy gratings.

Index Terms—Gratings, Fabry-Pérot interferometers

I. INTRODUCTION

H IGH-Contrast Gratings (HCGs) have attracted the inter-
est of many research groups worldwide. Even if they

might have a strong impact in several optoelectronic devices
[1], [2], [3], their main application has been so far focused on
vertical-cavity surface-emitting lasers (VCSELs) [1], [4], [5],
[6], [7]. Such compact, reliable and low cost semiconductor
devices are nowadays the optical sources of choice in almost
all Information Technology applications, such as mice, gas
sensors, transceivers, 3D cameras, etc [8].

In today’s commercial VCSELs, more than 95% of the
semiconductor material is used for the distributed Bragg
mirrors (DBRs). Because of the very small active region (few
quantum wells), the reflectivity must be higher than 99%,
which requires typically about 30 quarter-wavelength pairs in
AlGaAs-based VCSELs.

A lot of research is ongoing on tunable VCSELs for their
wide range of possible applications: WDM datacom, wave-
length reconfigurable distribution networks, optical spectrome-
try for sensing, optical tomography for biomedical applications
(e.g. skin cancer detection or ophthalmic applications [9]) are
some examples. Very high tuning ranges have been already
achieved [10], based on a coupled-cavity scheme with an
airgap, which is varied for the tuning. In such devices the
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Fig. 1. Left: sketch of a high-contrast grating; the dielectric bars are
characterized by refractive index nb, surrounded by an index nout and lying
on an index nin. The period Λ, filling factor η and thickness tg are also
defined. Right: equivalent circuit of a bimodal FPI. The scattering matrices
of the left and right interfaces S

′, S′′ have two inner ports (i) and one outer
port (o); the port labels are also indicated. The two inner ports are connected
by two transmission lines with electrical lengths ϑ1 = k1tg and ϑ2 = k2tg.

mass of the movable mirror could be an issue, if fast elec-
trostatic actuation is adopted [11]. Therefore, HCGs are good
candidates for this class of lasers, thanks to their broadband re-
flectivity, compactness and polarization features. In fact, DBRs
are typically polarization-insensitive, while HCGs are highly-
dichroic components that can assure a fixed polarization over
the whole tuning range. A second application is related to
on-chip silicon optical platforms. HCGs have been proposed
[4], [5], [12], [13], because they can provide both the needed
reflectivity.

A HCG is a periodic structure composed of dielectric
bars surrounded by air or deposited on a low-index material,
as shown in Fig. 1(a). The higher is the refractive index
contrast, the better is the mirror performance. The desired
features appear in a well-defined wavelength region i.e., the
so-called “near-wavelength” regime [3]. In these conditions
this structure lies between sub-wavelength gratings, which
can be described by means of a polarization-dependent re-
fractive index, and diffraction gratings having periods larger
than the wavelength, which introduce diffracted orders. The
near-wavelength regime does not lend itself to simplified
approaches and requires an exact treatment. Several techniques
have been proposed, which can be classified into two cate-
gories: “fully numerical approaches” and “modal methods”.
Examples of schemes belonging to the former class are finite
differences, finite elements or spectral elements [14], [15],
[16]. Fully numerical techniques are suitable for studying
complex geometries, but they are rather demanding from a
computational point of view. Moreover, they generally solve
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Maxwell’s equations without providing so much information
about the physics of the device, preventing from elaborating
design strategies. On the other hand, in modal methods the
electromagnetic field is represented as a superposition of the
modes of a periodic waveguide, so that propagation along the
longitudinal direction is described by closed-form expressions
and the dimensionality of the numerical problem is reduced.
The modes can be computed analytically [3], [17], by spectral
methods [18], [19], [20] or by Fourier discretizations such
as in the rigorous coupled wave analysis (RCWA) [21], [22],
[23], [24], [25]. Even if modal methods cannot be applied to
complex geometries they are quite fast, accurate, and allow to
get deeper insight into the physical mechanisms occurring in
the device.

Modal methods allow to intuitively understand the HCG
operation in terms of the interference of two grating modes
[26], [27], [3]. In view of providing rigorous foundations to
this picture, Reference [28] proposes an analogy of HCGs
with the generalized concept of Fabry-Pérot interferometer
(FPI) sketched in Fig. 1(b). This framework has been applied
to perform a complete characterization of the features of
high/low-contrast grating high-Q resonators [29] by means
of analytic expressions, showing explicit connections between
Fano resonances (manifesting in quick zero-one transitions of
the reflection coefficient), with leaky waves (related to the loop
gain poles).

After presenting a narrow-band analysis in those two pre-
vious papers, this third work deals with the application of
the analytic bimodal FPI framework to the description of
HCG reflectors. Section II, after recalling the main results of
[28], discusses the nature of the HCG broadband operation,
proposes some design considerations for ultrabroadband HCG
reflectors and a new HCG design approach. In Section III
the generalized analytic expressions for asymmetric HCGs are
provided, to which the same design scheme can be applied.
For this case a discussion is provided about the constraints to
be obeyed by the refractive index of the higher semi-infinite
medium. Finally, Section IV deals with the application of the
generalized FPI model to the analysis of lossy HCGs.

II. SYMMETRIC HCG REFLECTORS

Generally, the simplest way to design an HCG consists of
the exploration of its parameter space by repeated analyses,
performed by a mode-matching technique, such as RCWA.
The HCG parameters are: wavelength (λ), grating period (Λ),
filling factor (η, i.e., ratio of the dielectric bar width to the
period), and thickness (tg). Actually, the grating features can
be scaled by Λ, so that the parameter space reduces to three
dimensions: (λ/Λ, tg/Λ, η). In order to focus on a real device,
Fig. 2 shows an example of parameter space exploration,
inspired by the HCG studied in [3, Fig. 5]. This is illuminated
by a TM plane-wave impinging perpendicularly to the grating
plane. The map is drawn only in the bimodal range. The
curved right boundary corresponds to the cutoff wavelengths
of the second grating mode. The left boundary consists of
a straight vertical segment plus an arc similar to the right
one: the vertical segment, occurring at λ = Λ, indicates
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Fig. 2. (λ/Λ, η) reflectivity map, in the bimodal operation region, of
a symmetric high-contrast grating with bars (nb = 3.214) in air and
tg = 0.63Λ. The yellow regions correspond to reflectivity greater than
99.9%. The red curve indicates the 100% reflectivity locus.

the cutoff of diffracting plane-waves in the outer half-spaces,
while the curved one is related to the cutoff of the third grating
mode. The curvature of these arcs is a consequence of the
η-dependence of the grating dispersion features. Since one is
interested in appreciating the details of very-high reflectivities,
it is convenient to express it in terms of the “number of nines”

R(#9) = − log10(1− |S11|2) = − log10 |S21|2. (1)

This representation has been used to produce Fig. 2, where
the yellow regions indicate reflectivity levels higher than
99.9%. Here, the red curves identify the 100% reflectivity
loci. By performing the parametric analysis of Fig. 2 with
different bar refractive indexes, it could be shown that the
ultrabroadband high-reflectivity region lies always within the
wavelength range exhibiting the same modal configuration,
i.e., two modes propagating in the grating and only the
fundamental Floquet mode in the half-spaces. Therefore, just
like HCG resonators [29], HCG reflectors can be effectively
described as bimodal FPIs.

In view of exploiting the analogy between HCG reflectors
and bimodal FPIs [28], it is useful to recall their main
properties. As it can be seen in the sketch of Fig. 1, a bimodal
FPI features two transmission lines with phase shifts ϑ1, ϑ2 in
the FP cavity region, which represent the propagation of the
two modes in the grating bars, and one access port in each
outer region, describing homogeneous half-spaces. The inner
and outer transmission lines are coupled by the 3×3 scattering
matrices describing the bar junctions. If these junctions are
assumed lossless and reciprocal, the corresponding scattering
matrices are unitary and symmetric. This allows to parametrise
the scattering matrix of the junction as [28]:
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Le curve sono ottenute con nin=1, 

nbar=3.214, per vari valori di duty 

cycle
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Fig. 3. Parameters of the bar-air junction for η = 75% and 62% (blue and
red lines); nb = 3.214. At the top, the normalized propagation constants and
below the 6 parameters describing the 3×3 scattering matrix of the junction,
obtained by applying the inverse formulas (3).

S11 = e−j(ϕc+∆)
[
ejΨ cos2 Φ cos Θ− e−jΨ sin2 Φ

]
S22 = e−j(ϕc−∆)

[
e−jΨ cos2 Φ− ejΨ sin2 Φ cos Θ

]
S12 =

1

2
je−jϕc sin 2Φ

[
e−jΨ + ejΨ cos Θ

]
S13 = jej

−ϕc+ϕ33+Ψ
2 e−j ∆

2 sin Θ cos Φ

S23 = −ej
−ϕc+ϕ33+Ψ

2 ej ∆
2 sin Θ sin Φ

S33 = ejϕ33 cos Θ.

(2)

Starting from nine complex coefficients in the general case,
this parametrization represents the manifold of unitary sym-
metric matrices with six real numbers, three angles and three
phases. The angles have a simple physical meaning. Θ and Φ
quantify the coupling between the diffraction order and the two
modes in the bar, Ψ describes the coupling of the two modes
at the interfaces. For example, focusing on S33, Θ = 90◦

corresponds to transmitting the whole power to the inner ports,
leading to no reflection at the junction. Considering S13 and
S23, Φ = 0◦ and 90◦ correspond to coupling all the power
to the first or to the second port on the cavity side, whereas
Φ = 45◦ corresponds to equal power splitting.

One of the remarkable features of this parametrization
compared to others present in the literature [30], [31], [32], is
the availability of simple inverse formulas:

Θ = arccos(|S33|)
ϕ33 = arg

(
S33

)
Φ = arccos

(
|S13|
sin Θ

)
= arcsin

(
|S23|
sin Θ

)
ϕc = −1

2
arg

(
S11S22 − S

2

12

cos Θ

)
∆ = (arg(S23)− arg(S13))− π

2

Ψ = arg(S23) + arg(S13) + ϕc − ϕ33 −
3π

2
.

(3)

In Fig. 3 the six parameters obtained applying the inverse
formulas (3) to the junction scattering coefficients are shown
for some grating geometries. All the junction angles are slowly
varying functions of both the wavelength and filling factor and
span limited angular ranges.

This parametrization is the added value of this approach,
as it can be exploited to derive explicit expressions for the
bimodal FPI response. It is useful to rewrite from [28] the
explicit expression of S21:

S21 =
N

D
e−jτejϕ33 , (4)

where:
D = c4de−j4τ + c2de−j2τ + 1, (5)

and

c4d = cos2 Θ

c2d = e−j(2Ψ+2δ)
(
p4ej4Ψ + p2ej2Ψ + p0

)
,

and

p4 = − cos2 Θ
(
cos2 Φ− e2jδ sin2 Φ

)2
p2 =

1

2

(
1 + e2jδ

)2
cos Θ sin2 2Φ

p0 = −
(
sin2 Φ− e2jδ cos2 Φ

)2
,

where the equivalent transmission line propagation terms are
defined as

τ =
k1 + k2

2
tg + ϕc (6)

δ =
k1 − k2

2
tg + ∆. (7)

Even if these quantities have no strong physical meaning, they
are convenient variables to work with. As for the reflection
coefficient magnitude, the only parameter investigated in this
paper, one can rely on (1); for the complete expression, refer
to eq.(24) of [28].
The numerator N in (4) is given by

N = −1

2
e−j(Ψ+δ) sin2 Θ

(
c0n + c1ne−j2τ

)
, (8)

with

c0n = ej2Ψ
(
1− e2jδ +

(
1 + e2jδ

)
cos 2Φ

)
c1n =

(
1− e2jδ

)
−
(
1 + e2jδ

)
cos 2Φ.
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Fig. 4. Symmetric bars-in-air grating with nb = 3.214, tg = 0.632Λ and
η = 75%. Top: reflectivity spectrum. Center: δ computed with (7) (dashed
curve) and δ0 computed with (9) (solid curve). Bottom: |δ−δ0| in logarithmic
scale.

After manipulating (8), it is possible to prove that a trans-
mission zero occurs when the condition

δ0 = arctan [tan (τ + Ψ) cos 2Φ] (9)

is satisfied. It is to be pointed out that the position of
transmission zeros does not depend on the in/out coupling
at the junction Θ, but it is affected by the power partition
between the two grating modes, Φ. This is interesting since,
as shown in Fig. 3, HCG reflectors operate in the proximity
of this condition.

In order to apply this model to the description of ul-
trabroadband HCG reflectors, it is necessary to relieve the
hypothesis of absence of dispersion introduced in [28], [29]
for the junction parameters. In particular, in these works δ
was assumed frequency-independent as well. Even if this
assumption is locally acceptable, for instance in view of char-
acterizing narrowband resonance phenomena, it may generate
misleading results when applied over broad wavelength ranges.
For example, [28] states that a single transmission zero always
occurs, for constant δ, by varying τ in the [0, π] range. This
statement seems to contradict the results published in the
literature, which show two 100% reflectivity peaks. This is
very important because the presence of multiple, neighboring
peaks is at the basis of broadband operation.

A striking example is reported in Fig. 4 (top), which shows
a HCG reflectivity spectrum exhibiting three 100% reflectivity
peaks. It is to be remarked that the reflectivity remains very

high (above 99.9%) also in the valleys between them. If the
actual frequency dependence of both the junction parameters
(3) and the transmission line propagation terms (6), (7) is taken
into account, the bimodal FPI model can reproduce accurately
the broadband operation of an HCG reflector, as demonstrated
in Fig. 4 (top). There, the solid curve exhibits a remarkable
agreement with the RCWA results (dot markers). For the
sake of generality, in this paper results are reported versus
normalized wavelenghts and refractive index dispersion has
not been included. In fact, it would just provide minor shifts
to the peaks, without adding much to the device behavior.
However, material dispersion could be kept into account at no
extra computational cost in the preliminary RCWA simulations
when choosing a specific wavelength operation range. In other
words, starting from the one-peak picture of [28], the presence
of multiple peaks can be interpreted as the “wavelength shift”
of this single peak, caused by dispersion. This is the first
time, to the best of our knowledge, that the origin of multiple
reflectivity peaks is explained.

To deepen this perspective, Fig. 4 (center) reports two
curves: the solid one, obtained by (9) and (6), and the dashed
one, from (7). The solid curve is the locus of (λ/Λ, δ0)
points such that 100% reflectivity occurs. However, it does not
include complete information about the propagation (k1, k2)
occurring in the grating, which is instead included in the
dashed curve. Then, transmission zeros occur at the intersec-
tions of these two curves, indicated by circular markers.

To summarize, in the former approach presented in [28],
[29], the effect of dispersion was included only in τ , so that
δ0 was a monotonic function and δ a constant, leading to
the fact that only one peak was observed. In actual devices,
all parameters depend on wavelength, therefore dispersion
influences both the dashed curve δ, which becomes a function
of λ, and the solid curve δ0, which could be non-monotonic.
As emphasized by the extraordinary agreement between the
intersections of the dashed/solid curves, indicated by circular
markers, this representation allows to describe, by means of
a simple analytic expression, the operation of high-contrast
grating reflectors.

One added value of the curves reported in Fig. 4 (center) is
the achievement of a qualitative estimate of the transmission
coefficient in the intervals between the reflection peaks. In fact,
Fig. 4 (bottom) shows the difference δ−δ0 in logarithmic scale.
This is quite similar to the reflection coefficient in the top plot,
proving that the closer the δ and δ0 curves are, the higher is
the reflectivity. In other words, if it could be possible to find
a configuration such that δ = δ0 in a wavelength range, then
the HCG would exhibit 100% reflection on it. Therefore, by
simply inspecting this quantity, one can find the best parameter
combinations for broadband operation.

The analysis based on the δ and δ0 curves allows to classify
different HCG operation regimes, which can be useful in view
of establishing new design guidelines based on the bimodal
FPI concept. To this aim, Fig. 5 reports the reflectivity spectra
(top) and the corresponding δ, δ0 curves (bottom) for two
gratings characterized by nb = 3.214 (the same of Fig. 4),
with η = 62%. The blue curves are obtained for a grating very
similar to that of [3, Fig. 5(a)] (with tg = 0.63Λ), featuring
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Indice barre 3.214, duty cycle 62% (Chang-Hasnain)

Blu: tg=0.63/Lambda (simile a 2012ChangHasnain_AOP, Fig. 5

Rosso: tg=0.66/Lambda (condizione di tangenza delle due curve)

Solido: approssimato; puntini: valutazioni ESATTE con RCWA (matrici piene, non 3x3!!!)
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Fig. 5. Top: reflection coefficient in number of 9 for a HCG with nb = 3.214,
η = 62% and tg = 0.63Λ (blue, same as [3] Fig. 5) and tg = 0.66Λ (red);
dots refer to full RCWA computation. Bottom: as in Fig. 4, center.
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Fig. 6. 100% reflectivity loci in the symmetric configuration, for gratings
with nb = 3.214, and tg = 0.619Λ (green), 0.629Λ (blue), 0.633Λ (red),
0.637Λ (black) and 0.647Λ (cyan). Compared to Fig. 2, the loci are zoomed
in the region of interest.

the common “double peak”.
Even if both the gratings corresponding to the blue reflec-

tivity curve of Fig. 5 and to that of Fig. 4 exhibit three peaks,
they belong to two families, which differ for the peak spacings.
This difference is evident when comparing Figs. 4(center) and
5(bottom): in the former the dashed and solid curves are very
close to each other over a broad range, leading to a very large
bandwidth. On the other hand, in the latter the presence of the
discontinuity causes one peak to be far from the other two.

Since the dispersion curves δ(λ) (from (7)) are always
monotonic decreasing, the classification arises from the dif-
ferent behaviors of the 100% reflection loci δ0. In fact, in Fig.
5 the δ0 curve exhibits a change of slope around λ = 2.1Λ.
The origin of this is clear from (9) and the red Φ curve of

Fig. 3. Indeed, the change of slope corresponds to the Φ = 45◦

crossing. On the other hand, the blue Φ curve does never cross
Φ = 45◦, causing the δ0 curve from Fig. 4 to be monotonic.
As Φ rules the power balance between the two grating modes,
having 45◦ crossings corresponds to a switch of the dominant
mode. In addition to avoiding mode switching, in order to
obtain a large bandwidth, it is required for the slopes of the
δ and δ0 curves to be similar, so that the best condition is
Φ < 45◦.

As a final example, the red curve of Fig. 5 (obtained for
tg = 0.66Λ) exhibits an interesting behavior: even if no
intersections of the δ and δ0 curves occur in the two-peak
region, reflectivity reaches high values because, what does
matter is their proximity, as already discussed for Fig. 4
(bottom).

In order to draw some design considerations relying on the
bimodal FPI concept, a fundamental step is to produce a syn-
thetic representation of the reflectivity features on the whole
3-D parameter space. To this aim, Fig. 6 reports the 100%
reflectivity loci, as also shown in Fig. 2 for only one tg value,
on the (λ/Λ, η) plane, for various values of grating thickness.
Therefore, this plot represents the evolution, with respect to
the tg parameter, of the 100% reflectivity loci. Drawing each
locus would require to search, for each η value, the HCG
transmission zero by means of a root-finding algorithm, so that
a huge number of RCWA computations should be performed.
By exploiting the bimodal FPI expressions, these loci are
found in a quick and efficient way by a coarse sampling of
the (λ/Λ, η) plane of the junction parameters and propagation
constants. Then, such profiles, which appear to be always
smooth (see Figs. 3), are interpolated on a much denser grid at
almost zero numerical effort. The availability of interpolated
parameters to be used in simple analytic formulas allows to
compute efficiently such loci as the intersections of the δ and
δ0 curves of Figs. 4, 5.

The aforementioned two HCG reflector families correspond
to two different design concepts, which can be both inves-
tigated by the synthetic representation of Fig. 6. In fact,
a “classic” two-peaks HCG can be designed by choosing
the thickness corresponding to the transmission zeros having
optimal relative distance (designed from a trade-off of desired
reflectivity level and bandwidth), and the filling factor η by
cutting with an horizontal line the desired section. This design
is quite robust against variations of both tg, which will just
change the relative distance of the transmission zeros, and η.
A different aim could be that of looking for regions where
the transmission zero loci exhibit zero derivative. This goal
may recall the guideline proposed in [17]. In fact, by cutting
with an η=constant line such region, the reflectivity would be
very high over an ultra-broad band. This is how the design
presented in Fig. 4 has been obtained: the quasi-horizontal
transmission zero loci are, in fact, mapped into δ ' δ0 curves.

III. ASYMMETRIC HCG REFLECTORS

The previous ideas can be easily extended to the asymmet-
ric case, which is of interest for more manufacture-oriented
mirrors. For an asymmetric FPI, by denoting the left and right
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Indice barre 3.214, duty cycle 62% (Chang-Hasnain)

Blu, rosso: uguale alla figura simmetrica; solo, in questo caso, abbiamo un mezzo di ingresso 

con indice 1.41 (ossido di silicio)

Verde: condizione di tangenza, sempre con ossido di silicio, duty cycle 62%
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Fig. 7. Top: reflectivity of an asymmetric HCG with nin = 1.41, nb =
3.214, η = 62% and tg = 0.63Λ (blue), tg = 0.66Λ (red) and tg = 0.68Λ
(green); dots refer to full RCWA computation, the solid curve to the bimodal
FPI model. Bottom: as in Fig. 4, center.

junction by the superscripts a, b and introducing the equivalent
parameters

τ =
k1 + k2

2
tg +

ϕa
c + ϕb

c

2

Ψ =
Ψa + Ψb

2

δ =
k1 − k2

2
tg +

∆a + ∆b

2
, (10)

it can be proved that the transmission zero condition (9)
becomes

δ0 = arctan

(
cos(Φa + Φb)

cos(Φa − Φb)
tan

(
τ + Ψ

))
. (11)

As an example, Fig. 7 reports a set of results analogous
to those of Fig. 5, but for dielectric bars laid on an oxide
substrate. It can be seen that there is no apparent drawback
in placing high index bars on a lower index substrate, until it
continues to support just one propagating order. In fact, the
impact of the substrate index on the junction parameters can
be appreciated in Figs. 8 and 9. In most cases the variations of
the parametrization angles evaluated by (3) are stronger, the
lower is the index contrast. Moreover, the bandwidth appears
to be narrower due to the closer cutoff of the diffracted orders
in the oxide, as emphasized by the long vertical boundary at
λ = 1.41Λ (due to the corresponding nin = 1.41). This shrinks
the bimodal FPI operation region, as well as the corresponding
high-reflectivity broadband operation range, until reaching the
monolithic HCG (MHCG) limit [6], [33]. Due to the presence
of multiple diffracted orders in the substrate, MHCGs do not
belong to the class of devices described in the present paper.

Curve blu: relative alla giunzione di 

destra (giunzione tra barre e aria).

Curve rosse: relative alla giunzione 

di sinistra (giunzione tra mezzo a 

indice 1.41 e barre)

Curve verdi: relative alla giunzione 

di sinistra (giunzione tra mezzo a 

indice 1.8 e barre)
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Fig. 8. Parameters of the bar-air (blue lines) and of the bar-substrate
(nin =1.41 and 1.80, red and green lines respectively) junctions for η = 62%.
At top, the normalized propagation constants and below the 6 angles describ-
ing the 3x3 scattering matrix of the junction, obtained by applying the inverse
formulas (3).

By comparing the zero transmission loci of symmetric and
asymmetric HCGs (Figs. 6 and 9) useful information can be
gained:

• the broadband HCG region of interest is limited from
below to λ/Λ = nin,

• the symmetric and asymmetric mirrors loci are obtained
by changing the HCG thickness within 4.3% (from
0.619Λ to 0.647Λ) and 2.5% (from 0.662Λ to 0.6795Λ)
relative ranges respectively, leading to quite similar evo-
lution plots; this indicates that the sensitivity of the HCG
performance with respect to its thickness is higher in the
asymmetric case.

• the bandwidth of the asymmetric HCG is reduced and the
sensitivity to filling factor increased.

IV. ACCOUNTING FOR THE PRESENCE OF LOSSES

The analysis approach based on the bimodal FPI model
has been derived assuming to deal with lossless materials. In
this section, we show that the model can be applied also to
the more realistic case of lossy gratings. The idea is that the
loss in the bulk of the bars plays a major role in comparison
with that related to the interfaces. Hence, one can use the
scattering matrices of the interfaces evaluated for the same
grating but neglecting the losses, accounting for them only in
the transmission lines describing the propagation of the modes
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Mappa costruita con tg=0.672/Lambda, nin=1.41, nbar=3.214
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Fig. 9. Top: Reflectivity map in the bimodal operation region of an
asymmetric HCG with nin = 1.41, bar nb = 3.214 and tg = 0.672Λ
in the λ/Λ − η plane. The yellow regions correspond to reflectivity greater
than 99.9%. The red curve indicates the 100% reflectivity locus. Bottom:
HCG as above, but showing the 100% reflectivity loci for different thickness:
tg = 0.662Λ (green), 0.6695Λ (red), 0.672Λ (red), 0.6725Λ (black) and
0.6795Λ (cyan). The loci are zoomed in the region of interest and in the
same range of Fig.6 for an easier comparison.

in the grating bars. This concept is tested in Fig. 10, where the
grating of Fig. 4 is analyzed by including losses both in the full
RCWA and in the bimodal FPI approach. Good agreement is
achieved independently of the amount of loss, demonstrating
the small influence of the slight non-unitarity of the interface
scattering matrix on the grating reflection coefficient. It is
to be remarked that, in presence of reasonable losses, the
general structure of the response is unchanged with respect
to the lossless case, so that this can still be used for design
purposes. On the contrary, very high losses drastically modify
the response, and the corresponding low reflectivity makes this
device no longer useful.

V. CONCLUSIONS

Due to their bimodal principle of operation, high-contrast
gratings can be modeled as generalized Fabry-Pérot inter-
ferometers [28]. Previously [29] such description allowed to
study HCG resonators from a new perspective, deepening

λ/Λ
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Fig. 10. Reflectivity of the grating of Fig. 4. The blue and red curves are
obtained for lossy gratings with RCWA and with the generalized FPI model.
The results are reported for two amounts of losses, characterized by the
extinction coefficient κ. The lossless case is shown for reference in green.

our understanding of narrowband features such as Fano reso-
nances.

This work focuses on HCGs as broadband reflectors and
shows that dispersion is the key mechanism generating the
100% reflectivity multiple peaks and the corresponding high-
reflectivity regions between them. The simple analytic expres-
sions for the 100% reflectivity condition have been applied to
analyze broadband operation for both the symmetric and asym-
metric cases. New design guidelines for ultrabroadband HCG
reflectors, to some extent complementary to those of [17],
have been proposed, resulting in simple qualitative/quantitative
analytical expressions, suited to investigate also the design
sensitivity. Even if developed under the assumption of lossless
structures, this model proved to be effective for realistic
gratings as well.

Beyond providing rigorous explanations and interpretations
of the grating physics, the bimodal FPI framework can be
exploited for HCG design. As it can be seen in Fig. 3 and
8, in the cases of interest the junction parameters are mildly
dispersive. For this reason, it is possible to evaluate such
parameters by a full-wave approach only at few wavelengths
and filling factors. This allows to perform in few seconds
extensive parameter space explorations.
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