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Summary

Due to their lightweight, slenderness and extremely low structural damping, foot-
bridges are prone to human-induced vibrations. As a consequence, vibration mit-
igation strategies, mainly Tuned Mass Dampers, have been often implemented to
reduce their dynamic response under pedestrian loading. In this study, a novel strat-
egy towards the mitigation of human-induced vertical vibrations of footbridges is
investigated: instead of acting on the structure, it is proposed to act on the source of
excitation, realising what can be suitably defined as crowd flow control. Crowd flow
control aims at altering the distribution of the crowd density and, as a consequence, of
the walking velocity and step frequency. The dynamic loading exerted by the pedes-
trians is thus modified and the input energy transferred to the footbridge is reduced.
Crowd flow control can be easily and quickly implemented via either permanent
(e.g., benches or light poles) or temporary (e.g., Jersey barriers) obstacles located
along the footbridge span, and is expected to be cheaper than competing vibration
mitigation strategies. The study is carried out by means of numerical simulations.
A microscopic model of crowd dynamics is used to generate pedestrian trajecto-
ries and velocities, whose corresponding force signals are built and then applied to
the single-degree-of-freedom model of an ideal footbridge. The performance of the
crowd flow control is investigated by considering different obstacles locations, by
assessing effectiveness and robustness against variations in the pedestrian excitation
and by establishing comparisons with a linear viscoelastic TMD. An interpretation
of the results from an energy perspective is finally provided.

KEYWORDS:
human-induced vibration, footbridges, vibration mitigation, crowd flow control, crowd dynamics, energy
balance

1 INTRODUCTION

Footbridges are very often lightweight and slender structures with extremely low structural damping. For this reason, they are
prone to vibrations under dynamic loadings, in particular under human-induced excitation. In the last fifteen years, an increasing
number of cases has been reported where vibration mitigation strategies had to be implemented, before or after a footbridge
opening, to mitigate excessive human-induced vibrations (e.g, [13, 15, 8, 34]).
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A valuable interpretation of vibration mitigation is based on energy considerations. In accordance with the law of conservation
of energy, when a structural system is dynamically excited, the input energy transmitted by the source of excitation enters the
system and here converts into different energy forms: mechanical energy, i.e., kinetic energy and elastic strain energy, induced
by the structural vibration, and dissipated energy, e.g., viscous damping energy, due to the presence of non-conservative forces.
From an energy perspective, then, a proper vibration mitigation strategy entails the reduction of the mechanical energy of
the vibrating structure. Two basic approaches are viable: either increasing the energy dissipation by introducing supplemental
damping devices into the structure or reducing the amount of the input energy entering the structure [33].
Typical vibration mitigation strategies applied to footbridges falls into the first approach, such as viscous dampers [13] and

friction dampers [25]. A similar purpose is accomplished by transferring most of the structural vibration energy to an attached
Tuned Mass Damper (TMD), composed, in its simplest form, of an auxiliary mass-spring-dashpot passive system that dissipates
the energy away by vibrating out of phase with the structural motion [21]. TMDs have been widely applied on bridges for
the dynamic response control against wind-induced loads, primarily [33]. Successful applications on pedestrian bridges exist,
wherein the TMD is used to mitigate either vertical or horizontal human-induced vibrations [13, 15, 5, 8, 10]. Unlike buildings,
for which TMDs with high mass ratios have recently received considerable attention [14, 30], in bridges technical reasons cause
the TMD mass to be typically below a few percent (1%-5%) of the structural mass. This limitation may possibly jeopardize,
in practice, the effectiveness of the control device, as well as its robustness against the detuning effects derived from structural
nonlinearities or uncertainties.
In this study, a novel strategy towards the mitigation of the human-induced vertical vibrations of footbridges is investigated:

instead of acting on the structure, it is proposed to act on the source of excitation, realisingwhat can suitably defined an excitation-
based mitigation strategy. Examples of excitation-based mitigation strategies have been already implemented on tall buildings
[23] or long-span bridges [31] to reduce wind-induced vibrations, through the shaping of the overall structure (e.g., elicoidal
shape of tall buildings) or the introduction of punctual elements (e.g., guide vanes around bridge decks). When dealing with
human-induced vibrations on footbridges, excitation-based mitigation strategies can be obtained via crowd flow control. Crowd
flow control aims at altering the distribution of the crowd density and, as a consequence, of the walking velocity and step
frequency, thus modifying the dynamic loading exerted by the pedestrians. Crowd flow control apparently falls into the second
approach to vibration mitigation, since it modifies the characteristics of the pedestrian excitation in order to reduce the input
energy transferred to the footbridge.
First suggested by Carroll et al. [9] and subsequently investigated by Venuti and Bruno [38] with reference to the smooth

widening/narrowing of the walkway width along the footbridge span, crowd flow control has been applied, in both studies,
only to the lateral vibrations due to Synchonous Lateral Excitation. In the present paper, crowd flow control is proposed for the
mitigation of human-induced vertical vibrations and is achieved by means of obstacles located along the footbridge span. The
idea comes from the fields of applied mathematics and transportation engineering, in which the problem of forcing the crowd
flow to follow established patterns, e.g., in evacuation scenarios, is often solved through punctual blocks placed in strategic
positions [18, 19]. The obstacles located along the footbridge span can be intended either as a permanent (e.g., benches or light
poles) or as an emergency temporary measure (e.g., Jersey barriers). In the second case, they can be easily and quickly installed
whenever the footbridge is expected to be crossed by a crowd density which could induce vibrations above the comfort limits.
Further advantages can be envisaged: the design, installation and maintenance costs of the crowd flow control are foreseen to be
lower than those of competing vibration mitigation strategies; a great flexibility is possible, because different obstacle locations
can be adopted on the basis of the different traffic scenarios.
The paper develops as follows. Section 2 presents the adopted modelling approach. Section 3 is devoted to the design of

the crowd flow control. In Section 4, a case study is set for the performance assessment of the crowd flow control; in order to
emphasise similarities and differences with mitigation strategies well established in the engineering practice, comparisons with
an optimally designed linear viscoelastic TMD are also provided. The results of the numerical investigations are illustrated and
discussed in Section 5. Section 6 provides a deeper insight into the principle of operation of the crowd flow control from an
energy perspective. Finally, in Section 7, conclusions and research perspectives are outlined.

2 MODELLING APPROACH

The study is carried out on the basis of the following modelling assumptions:
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a1. even though it is widely accepted that Human-Structure-Interaction (HSI) occurs when pedestrians walk on a flexible
structure and a great number of studies have been recently devoted to this issue (e.g., [39], [26], [32],[17]), there is still
great uncertainty about how to model HSI. Therefore, HSI is neglected in this study. This choice is justified by two main
reasons: on the one hand, this allows it to better focus on the effects of the crowd flow on the structural response, without
introducing further sources of uncertainty; on the other hand, modelling HSI still belongs to the research field, while codes
and guidelines neglect its effects;

a2. the obstacles placed along the footbridge span to achieve the crowd flow control are modelled as purely geometrical
constraints, not affecting the structural mass, stiffness and damping properties.

The adopted modelling approach is illustrated in Figure 1 and described below.

C

CROWD MODEL

x t( )p,i v t( )p,i

F

FORCE MODEL

F t( )p,i

S

STRUCTURE MODEL

Mb Kb
C

bf t( )p,i

y t( )b

..

FIGURE 1 Scheme of the modelling approach

2.1 Crowd model
Simulations of the crowd flow are performed through the softwareMassMotion (MM) v. 8.5 [2], which is based on amicroscopic
model of the crowd dynamics derived, as a modified version, from the Social Force Model first proposed by Helbing andMolnár
[20]. In such a model, each individual pedestrian is described as an agent, whose goal is to reach her final destination walking
at her desired velocity. Desired velocities vdes are randomly assigned to the pedestrians from a Normal distribution, with mean
1.34 m/s and standard deviation (std) 0.26 m/s [6]. While walking, each agent is subjected to a set of forces that modify her
desired velocity on the basis of the interaction with neighbouring pedestrians and the environment (walls, obstacles, etc.). The
interested reader is referred to [20] and [2] for a detailed description of the mathematical and numerical framework.
Crowd flow simulations result in trajectory xp,i(t) = [xp,i, zp,i] and velocity vp,i(t) = [vxp,i, vzp,i] for each i-th pedestrian along

time t, where x and z are the longitudinal and transverse axes of the footbridge, respectively.

2.2 Force model
Trajectory xp,i(t) and velocity vp,i(t) are then used to build the moving time-varying force Fp,i(t) exerted by the i-th pedestrian
on the footbridge.
In the last fifteen years a great number of studies have been devoted to the experimental characterisation of pedestrian dynamic

loading (e.g. [29, 24, 16, 22, 4]) and to the proposal of suitable human-induced load models of both single pedestrians and
crowds (e.g. [29, 37, 28, 27, 12, 11]). In the framework of a comparative study, the classic continuous force model [3] is assumed,
where Fp,i(t) is described by a sum of n Fourier harmonic components:

Fp,i = Gp,i +
n
∑

j=1
Gp,i DLFj sin (2�jfp,i t − �j), (1)

where: Gp,i = mp,i g is the pedestrian weight, being mp,i the pedestrian mass and g the gravity acceleration; fp,i is the pedestrian
step frequency; DLFj and �j are, respectively, the Dynamic Load Factor and phase shift of the j-th contributing harmonic.
Mass mp,i is randomly assigned to each pedestrian from a Normal distribution with mean 75 kg and std 15 kg [42]. DLFj are
expressed as functions of fp,i, according to Young [41].
In this study, the pedestrian step frequency fp,i is considered as not constant in time and it is calculated as a function of the

walking velocity vp,i(t), as proposed by Venuti and Bruno [36]:

fp,i(t) = 2.93vp,i(t) − 1.59v2p,i(t) + 0.35v
3
p,i(t). (2)
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Note that the modifications introduced in the classic continuous force model allow to account for both inter-subject and
intra-subject variability of human load.

2.3 Structure model
The footbridge is modelled as a Single Degree of Freedom (SDOF) system, representing one structural vertical vibration mode
of interest, whose dynamics is governed by the well-known equation of motion:

Mbÿb + Cbẏb +Kbyb = F , (3)

where: yb(t) is the displacement response at the antinode, the overdot indicating differentiation with respect to time t;Mb, Cb
and Kb are the modal mass, damping and stiffness of the footbridge, respectively; F (t) =

∑N
i=1 Fp,i(t) Φ

(

xp,i(t)
)

is the modal
force, beingN the number of pedestrians walking on the footbridge at time t andΦ(x) the unity-normalised modal shape of the
structure.

3 DESIGN OF CROWD FLOW CONTROL

The proposed strategy of crowd flow control is based on the location of obstacles along the footbridge path. The expected effect
is to induce variations in the pedestrian trajectories and velocities, thus modifying the dynamic force exerted on the footbridge,
according to Equations 2, 4 and 1.
Two different types of obstacle location are considered (Figure 2 ):

• obstacles located on the footbridge longitudinal axis, in order to force Lane Separation (LS);

• obstacles located on the footbridge lateral edges, in order to obtain a Bottle Neck (BN), i.e. a local narrowing of the
footbridge width.

LS

A B C D E

/6L /6L/6L/6L/6L/6L

BN

/2B

/2B

/2B

FIGURE 2 Scheme of the obstacle locations

In Table 1 , a list of the investigated controlled layouts is reported, with the indication of the number and position of the
obstacles. For each obstacle, dimensions l = L∕10 and b = B∕10 have been assumed, being L and B the footbridge length and
width, respectively.

4 CASE STUDY

4.1 Ideal footbridge
Numerical investigations are carried out on an ideal footbridge, sketched in Figure 3 . Its dimensional and dynamic properties are
summarised in Table 2 , where mb, fb and �b are mass per unit length, fundamental frequency and damping ratio, respectively.
Frequency fb and damping ratio �b refers to the first symmetric vertical mode of the footbridge, for which a sinusoidal modal
shape function Φ(x) = sin(�x∕L) is assumed. Frequency fb, in particular, is chosen within the range corresponding to the
maximum risk of resonance according to the Setra guideline [1]. Consequently, only the first contributing harmonic of the
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TABLE 1 Footbridge with crowd flow control, list of the investigated layouts

Footbridge layout Type N◦ of obstacles Position of obstacles
L1 LS 1 C
L2 LS 3 B-C-D
L3 LS 5 A-B-C-D-E
L4 LS 2 B-C
L5 LS 2 B-D
L6 BN 2 C
L7 BN 6 B-C-D
L8 BN 10 A-B-C-D-E
L9 BN 6 A-C-E
L10 BN 6 A-B-C

L

Bx

z

x

y ( )F x

en
tr

an
ce

ex
it

traffic direction

FIGURE 3 Schematic plan and side view of the footbridge

TABLE 2 Properties of the ideal footbridge

L [m] B [m] mb [kg/m] fb [Hz] !b [rad/s] �b [-]
100 3 1500 1.8 11.31 0.005

pedestrian load is taken into account in Equation 1, since the higher harmonics are expected to have a negligible influence on
the structural response. The corresponding DLF1 is expressed as [41]

DLF1(t) = 0.41(fp,i(t) − 0.95) ≤ 0.56. (4)

4.2 Pedestrian traffic scenarios
Simulations of the crowd flow are performed under different pedestrian traffic scenarios, corresponding to mean crowd densities
�m on the footbridge in the range [0.1, 1] ped/m2.
It has to be observed that, in the softwareMM used for the crowd dynamics simulations, boundary conditions at the footbridge

entrance section can be set in terms of the total number of pedestrians Ntot entering the footbridge over a time T , with arrival
times randomly generated according to a uniform distribution. Time T is taken as equal to 10 times the mean crossing time
Tm = L∕vm, being vm the mean walking velocity of the pedestrians. Such a long time interval is chosen to allow almost steady
state traffic condition to develop, for whichNtot can be calculated as 10�mLB.
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According to the above relations, a certain value of �m can be obtained only if time T is correctly estimated, and this in turn
depends on a correct estimate of vm, which is not a priori known. Therefore, a preliminary parametric analysis has been carried
out to properly tune time T .
A first set of ten simulations - one for each value of �m in the considered range - has been performed, where vm has been

estimated as a function of �m according to the Weidmann (W) fundamental law [6]:

vm,W = 1.34
{

1 − exp
[

−1.913
(

1
�m

− 1
5.4

)]}

. (5)

For each simulation, both mean crowd density �m and mean walking velocity vm have been calculated over a time interval Tfull
corresponding to the full occupancy of the footbridge. The latter has been derived by excluding the initial and final durations in
which the pedestrians populate and leave the bridge, respectively. The lower and upper boundaries of Tfull have been determined
as the first and last time instant when a mean number of pedestriansNm are on the footbridge, beingNm = �mLB.
Results are reported in Figure 4 (a). The mean walking velocities obtained from the numerical simulations (black circles) are

lower than those predicted through Eq. 5, and consequently the mean crowd densities are different than expected. Therefore, a
second run was necessary to tune time T in order to obtain the expected average density on the footbridge (white circles).
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FIGURE 4 Mean walking velocity vm (a) and frequency ratio (b) vs mean crowd density �m.

Figure 4 (b) plots the ratio between the mean step frequency fp,m and the footbridge natural frequency fb in solid line. The
mass of the pedestrians can cause a significant increase in the footbridge modal mass in case of high pedestrian to bridge mass
ratio and a consequent modification of the footbridge frequency. To quantify this effect, the modified footbridge frequency f ∗b ,
which accounts for the pedestrian added mass, is calculated and the ratio fp,m∕f ∗b is plotted in dashed line. It can be observed
that the difference between the two curves is negligible (below 7%) and that the solid line is generally closer to the unit value,
which is the worst case scenario. For these reasons, the contribution of the pedestrian added mass has been neglected. This is
in agreement with assumption a1 and is expected not to affect the results of a comparative study.

4.3 Design of TMD
The case of a linear viscoelastic TMD controlling the dynamic response of the footbridge is considered for comparison purposes.
The TMD is tuned to the first symmetric vertical mode of the footbridge and is connected to it at the mid-span section,

i.e., where the relevant modal shape function Φ(x) attains its maximum value. Setting this value to unity, or Φ(L∕2) = 1, a
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generalised SDOF structure–TMD system can be introduced (Figure 5 ), whose equations of motion are given as

Mbÿb + Cbẏb +Kbyb = F + u, (6a)
mdÿd = −u, (6b)

u = cd(ẏd − ẏb) + kd(yd − yb), (6c)

in which: yb(t), Mb, Cb, Kb and F (t) have been defined in Section 2.3; yd(t) is the TMD displacement; md, cd and kd are,
respectively, the mass, viscous damping constant and stiffness coefficient of the TMD; u(t) is the force exerted by the TMD on
the footbridge.

FIGURE 5 Structural model of the generalised SDOF structure–TMD system.

Equations 6 can be conveniently rewritten as

ÿb + 2�b!bẏb + !2byb =
F
Mb

+ u
Mb

, (7a)

�ÿd = −
u
Mb

, (7b)

u
Mb

= 2�d�!b� (ẏd − ẏb) + �2!2b� (yd − yb), (7c)

to highlight the five parameters that govern the dynamic response of the generalised SDOF structure–TMD system: !b and
�b are the uncoupled modal frequency and damping ratio of the structure; �d = cd∕(2

√

kd md) is the uncoupled damping
ratio of the TMD; � = md∕Mb and � = !d∕!b are the mass ratio and frequency ratio of the system, denoting with !d =
√

kd∕md the uncoupled natural frequency of the TMD.Within this set of parameters,!b = 11.31 rad/s and �b = 0.005 are known
from the dynamic properties of the footbridge (Table 1 ), mass ratio � = 0.01 is set out as a customary value in pedestrian
bridges, frequency ratio � and damping ratio �d have to be designed on the basis of an optimum criterion. In accordance with
Warburton [40], who optimised the TMD by minimising the variance of the structural displacement under a random white noise
force, the optimal values of the TMD design parameters are determined as

�opt =

√

1 + �
2

1 + �
= 0.9926, (8a)

�opt =

√

√

√

√

�(1 + 3
4
�)

4(1 + �
2
)(1 + �)

= 0.0498. (8b)

The applicability of the Warburton criterion to the case under consideration may be questioned, observing that: on the one hand,
pedestrian traffic is not accurately represented by a white noise input; on the other hand, the minimisation of the displacement
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response may not be a suitable optimisation criterion when the acceleration response is of concern. Recent numerical investiga-
tions conducted by Tubino and Piccardo [35] have demonstrated, however, that the Warburton criterion leads to a TMD control
performance comparable to the one obtained by minimising the structural acceleration under unrestricted pedestrian traffic.

5 PERFORMANCE OF CROWD FLOW CONTROL

In this Section, the results of the numerical investigations performed on the ideal footbridge are presented and discussed. In
particular, comparisons are drawn among different footbridge layouts:

• the uncontrolled layout, denominated as L0;

• the footbridge with the crowd flow control implemented (layouts L1–L10)

• the footbridge with the TMD installed (layout L11).

For each layout and each value of the mean crowd density �m, 20 simulations of the crowd dynamics were performed and the
resulting acceleration time histories of the footbridge were obtained. The statistical reliability was checked by calculating mean
and std of crowd density, walking velocity and peak acceleration during Tfull and averaging their values over an increasing number
of simulations. As an example, Figure 6 plots the relative error in the average estimation between successive simulations n and
n + 1 for L0 and �m = 0.4 ped/m2. The relative error falls below 1% for all the computed statistics and this level of accuracy is
fully satisfactory for the present study.

5 10 15 20

Number of simulations

10-2

100

E
rr

o
r 

[%
]

mean

std

5 10 15 20

Number of simulations

10-2

10-1

100
mean

std

5 10 15 20

Number of simulations

100

101

(a) (b) (c)

Crowd density Walking velocity Peak acceleration

FIGURE 6 Relative error in the average estimation between successive simulations of (a) mean and std crowd density, (b)
mean and std walking velocity and (c) peak acceleration

5.1 Uncontrolled layout
Figure 7 illustrates an example of time histories of the number of pedestrians/crowd density on the footbridge and of the
acceleration response for three values of crowd density: �m = 0.1, 0.4 and 1 ped/m2. The intermediate value has been chosen as
the traffic condition corresponding to the frequency ratio fr closest to unit in L0 (see Fig. 4 ). The Setra [1] acceleration limits
that identify maximum, mean and minimum comfort regimes are reported as dashed lines in the acceleration time history plots.
The response increases for increasing crowd density. Note that this is a consequence of having neglected the added damping
effect induced by human-structure interaction [26] and a different trend could occur if HSI is taken into account. For �m = 0.1
ped/m2 (Fig. 7 a) the peak acceleration exceeds the lower limit of mean comfort, while for higher densities (Fig. 7 b,c) the peak
response falls within the minimum comfort range.
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FIGURE 7 Example of time histories of the number of pedestrians N , pedestrian density � and acceleration response ÿb for
(a) �m = 0.1 ped/m2, (b) �m = 0.4 ped/m2 and (c) �m = 1 ped/m2

Figure 8 a plots the probability density functions (PDF) of moduli v of actual velocity and vdes of desired velocity, as obtained
with MM considering all the 20 simulations. It can be observed that the distribution of actual velocities follows a normal
distribution as well as the desired velocities, but with lower mean and std. In particular, mean and std values decreases as
the crowd density increases. This is expected, since desired velocities correspond to unconstrained pedestrian behaviour (i.e.,
a pedestrian walking alone, that is, �=0), while, in the presence of a higher crowd density, mean walking velocity decreases
and std decreases as well. Step frequencies, calculated as a function of walking velocities, follow the same trend, in line with
experimental observations [7] (Figure 8 b).
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5.2 Controlled layouts
With the aim of assessing the effectiveness and robustness of the crowd flow control, a performance index is defined as

ra,j = apeak,j∕apeak,0 for j = 1, 3,… , 11, (9)

where apeak,j is the average peak acceleration of the footbridge in the j-th controlled layout, while apeak,0 is the average peak
acceleration in the uncontrolled layout L0. For each layout, the average peak acceleration is computed by averaging the peak
values of the 20 simulated acceleration time histories. Note that a value of ra,j smaller than one implies the effectiveness of the
control strategy in reducing the footbridge acceleration response.
The values obtained for the performance index in each one of the controlled layouts, assuming three different values of the

mean crowd density �m = 0.1, 0.4 and 1 ped/m2, are shown in Figures 9 -11 . As a reference, the Setra [1] acceleration limits,
normalised with respect to apeak,0, are also reported as dash-dot horizontal lines.
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FIGURE 9 Performance index for each controlled layout, �m = 0.1 ped/m2

Regarding the crowd flow control, BN location is, in general, more effective than the LS one in reducing the peak acceleration
response. This difference can be explained by looking at the distribution of the crowd density, which is locally increased due to
the obstacle placement. As an example, Figure 12 illustrates the distribution of the crowd density, averaged over Tfull, for L0,
L2 (LS-type) and L7 (BN-type), in the case with �m = 0.4 ped/m2: it becomes apparent that the density increase is much higher
in the BN case, since the obstacle location causes a higher local reduction of the footbridge width. The main consequence of the
variation in the crowd density distribution can be seen in the distribution of step frequencies. Figure 13 plots, for each layout
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and �m = 0.4 ped/m2, the mean and std values of the step frequency. It is evident that the BN layouts are the most effective
since they induce a step frequency distribution characterised by the highest dispersion and by the farthest mean value from the
footbridge natural frequency fb.
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FIGURE 12 Example of the crowd density distribution averaged over Tfull for L0, L2 and L7, �m = 0.4 ped/m2 (for a correct
interpretation of the colors, please refer to the electronic version of the paper).

While for �m = 0.4 and 1 ped/m2, the crowd flow control is always effective in reducing the acceleration response (Figures
10 -11 ), when �m = 0.1 ped/m2, the average peak acceleration is higher in the majority of the controlled layouts than in the
uncontrolled layout, i.e., ra > 1 (Figure 9 ). Nevertheless, it should be observed that, in this case, the uncontrolled average
peak acceleration is already in the mean comfort range and does not require mitigation. Moreover, the maximum increase in the
average peak acceleration is limited to about 10% in L3.
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FIGURE 13 Mean and std values of the step frequency fp for each layout with crowd flow control, �m = 0.4 ped/m2

Considering the footbridge provided with the installation of the optimised linear viscoelastic TMD (L11), reductions of the
average peak acceleration amount to about 60% for all the considered values of crowd density. Despite the higher effectiveness of
the TMD in reducing the acceleration response of the footbridge, a direct comparison with the crowd flow control is misleading,
given the irreducible differences between the two mitigation strategies. First, the TMD is designed according to an optimum
criterion, which is not the case of the proposed crowd flow control. Second, the two strategies have been compared only from a
quantitative point of view, but other factors should be considered. In this sense, the crowd flow control presents some advantages
with respect to the TMD counterpart: it can be adopted as a temporary measure, since it can be quickly installed and removed;
its design, installation and maintenance costs as expected to be lower; different obstacle locations can be adopted, and changed
over time, on the basis of the traffic scenario that is expected to cross the footbridge.
Finally, the robustness of the proposed crowd flow control against variations in the pedestrian excitation is evaluated by

comparing its effectiveness for the different values of the mean crowd density �m. Figure 14 compares the values of the average
peak acceleration apeak obtained in the uncontrolled layout L0, in themost effective layout with crowd flow control (L8) and in the
layout with TMD (L11). Even though the TMD is always more effective in reducing the acceleration response, the performance
of crowd flow control appears to be adequately robust. In particular, for mean crowd densities higher than 0.1 ped/m2, the
controlled average peak acceleration shows negligible variations (< 5%), i.e., its value remains almost constant whichever the
value of the mean crowd density. This result is extremely meaningful, since it demonstrates that the proposedmeasure is effective
even though the traffic conditions change during the footbridge lifetime.
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FIGURE 14 Average peak acceleration apeak versus mean crowd density �m in layouts L0, L8 and L11
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6 ENERGY CONSIDERATIONS

To gain a deeper insight into the principle of operation of the proposed crowd flow control, an energy formulation is developed
and applied to the analysis of the dynamic response.
From an energy perspective, crowd flow control operates by modifying the characteristics of the pedestrian excitation in order

to reduce the input energy transferred to the footbridge. This effect can be quantified by deriving the equation of energy balance
for the generalised SDOF system: multiplying Equation 3 by velocity ẏb(t) and integrating from time 0, when the dynamic
excitation begins, to current time t, yields

EKb(t) + EDb(t) + EEb(t) = EIb(t), (10)

where EKb(t) is the kinetic energy of massMb, EDb(t) is the viscous damping energy, EEb(t) the elastic strain energy and EIb(t)
the input energy. As an example, Figure 15 illustrates the time histories of each energy contribution when the footbridge is
analysed without (layout L0) and with the crowd flow control (layout L8). While EKb(t) and EEb(t) are functions fluctuating
over time, starting from and diminishing to zero, EDb(t) and EIb(t) converge, at the end of the structural vibration, to the same
constant value, which represents the overall input energy transferred to the footbridge. From Figure 15 (d), it becomes apparent
that crowd flow control greatly reduces, during the entire duration of the structural response, the input energy EIb(t) entering
the footbridge. In terms of maximum values, reported in Table 3 , the reduction from L0 to L8 amounts to about 40%. As a
consequence, the kinetic energy and the elastic strain energy, in which the input energy converts due to the structural vibration,
are also suppressed down, with reductions of more than 50% in terms of maximum values.
To comparison purposes, the energy response of the footbridge controlled via TMD is also analysed. For the generalised SDOF

structure–TMD system, the equations of energy balance are derived by taking one degree of freedom at a time. Considering first
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FIGURE 15 Energy response of the footbridge under pedestrian excitation with �m = 0.4 ped/m2, comparisons between no
control (L0) and crowd flow control (L8): (a) kinetic energy EKb; (b) elastic strain energy EEb; (c) viscous damping energy EDb;
(d) input energy EIb.
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the structure, Equation 6a is multiplied by velocity ẏb(t) and integrated from time 0 to time t, yielding

EKb(t) + EDb(t) + EEb(t) = EIb(t) − EFL(t), (11)

where EKb(t), EDb(t), EEb(t) and EIb(t) are defined as in Equation 10, while

EFL(t) =

t

∫
0

−uẏbdt (12)

is the energy flowing from the structure to the TMD. The “net” input energy to the structure EIb,net(t) is therefore equal to EIb(t)
deducted the energy flow EFL(t). Considering next the TMD, Equation 6b is multiplied by velocity ẏd(t), rewritten in the form

mdÿdẏd + u (ẏd − ẏb) = −uẏb (13)

and integrating over time, obtaining
EKd(t) + EDd(t) + EEd(t) = EFL(t), (14)

where EKd(t) is the kinetic energy of the TMD mass md, EDd(t) is the viscous energy and EEd(t) the elastic strain energy
dissipated and stored, respectively, in the TMD vibration. The input energy to the TMD is represented by the energy flow EFL(t)
from the structure.
Figure 16 illustrates the time histories of each energy contribution when the footbridge is analysed without (layout L0) and

with the TMD installed (layout L11). The effect of the TMD is a significant reduction of the actual input energy to the footbridge
(Figure 16 (d)): in terms of maximum values, the net input energy EIb,net to the footbridge in layout L11 is equal to 12% of
the input energy EIb in layout L0, as gathered from Table 3 . Such a reduction is due to the energy flow EFL(t) entering the
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FIGURE 16 Energy response of the footbridge under pedestrian excitation with �m = 0.4 ped/m2, comparisons between no
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VENUTI ET AL 15

TMD. The TMD is hence, also called to provide supplemental viscous damping energy EDd(t) in order to dissipate EFL(t) away
(Figure 16 (c)).

TABLE 3 Maximum values of the footbridge energy response under pedestrian excitation with �m = 0.4 ped/m2: comparisons
among no control (L0), crowd flow control (L8) and TMD (L11)

max EKb max EEb max EDb max EIb
[Nm] [Nm] [Nm] [Nm]

L0 343.9 348.9 5019.2 5038.3
L8 160.8 165.0 3065.6 3069.0
L11 39.6 38.6 583.9 589.6∗

∗Maximum value of net input energy EIb,net

7 CONCLUSIONS

In this paper, a novel strategy for the mitigation of the human-induced vertical vibrations of footbridges has been proposed and
explored. Aiming at acting on the source of excitation, instead of introducing modifications into the structure, the strategy is
based on the crowd flow control by means of obstacles located along the footbridge span.
Crowd flow control has been applied to an ideal footbridge crossed by unidirectional traffic and subject to uncomfortable

vertical vibrations under human loading. Different obstacle locations have been investigated, in order to determine the most
effective one in reducing the peak vertical acceleration of the footbridge. The maximum reduction, amounting to 31%, has been
obtained when the obstacles are placed to create local bottlenecks along the footbridge. A local reduction of the footbridge width
results in a local increase of the crowd density and in a consequent step frequency distribution characterised a higher dispersion
and farther mean value from the footbridge natural frequency fb.
The control performance obtained through the crowd flow control has been measured against the one achieved by way of an

optimised linear viscoelastic TMD, which is a structure-based mitigation strategy widespread, nowadays, in pedestrian bridges.
Although the effectiveness of the TMD is higher, it has to be noted that a mere quantitative comparison in terms of control
performance may be misleading, given the irreducible differences, as to design, installation and maintenance costs, between the
two mitigation strategies. Moreover, the crowd flow control can be designed not only as a permanent solution (e.g., through
the installation of benches or light poles) but also, more interestingly, as an emergency temporary measure (e.g., through the
placement of Jersey barriers).
The results obtained from the present study have demonstrated that crowd flow control has a high potential as an effective

and robust vibration mitigation strategy for footbridges and is worth further investigations. Future research will deal with the
consideration of HSI in estimating the structural response and will tackle the accurate modelling of the local crowd density
increase, with reference to possible congestions and delays in the crossing time.
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