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A lower bound for transient enstrophy growth of
two-dimensional internal traveling waves

F. Fraternale∗, L. Domenicale∗†, G. Staffilani‡, and D. Tordella∗

This study1 provides the temporal monotonic decay region of the wavenumber-
Reynolds number stability map, for the enstrophy of any two-dimensional perturba-
tions traveling in the incompressible and viscous plane Poiseuille and plane Couette
flows. Mathematical difficulty related to this problem was due to the unknown bound-
ary conditions on the perturbation vorticity, which left the problem open since the
first historical studies conducted by J. L. Synge234 (1930s). By extending Synge’s
work to the non-modal approach, we provide the smallest Reynolds number, ReΩ,
allowing transient growth of perturbations’ integral-enstrophy. As a noticeable re-
sult, the enstrophy monotonic decay region inside the parameters space is wider than
the kinetic energy one. The shape, evolution and wall vorticity of optimal-enstrophy
streamfunctions will also be discussed.

Concurrently, this study considers the dispersive nature of wavy perturbations.
Building on our previous study5, we show how the coexistence of dispersion and
nondispersion at fixed value of the flow control parameter can affect the morphology
and evolution of wave packets in the plane Poiseuille flow. Short waves experience
mild growth but travel nondispersively and generate compact structures. Dispersive
wave components show the largest enstrophy growth and are responsible for the mor-
phology of the spot core. Both components are relevant in the dynamics of transitional
structures6.
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Figure 1: Lower bounds for the enstrophy and kinetic energy growth of 2D waves. Propa-
gation properties.

∗Dip. di Scienza Applicata e Tecnologia, Politecnico di Torino, Torino 10129, Italy
†now at University of Southampton, Faculty of Engineering & Environment, Southampton SO16

7QF Hants, England
‡Dep. of Mathematics, MIT, Cambridge, MA, USA
1Physical Review E, under review
2J. L. Synge, P. Lond. Math. Soc. 1, 40: 23–36 (1935).
3J. L. Synge, Semicentenn. Publ. Amer. Math. Soc. 2, 227–269 (1938).
4J. L. Synge, Proc. Fifth Intern. Congress of Appl. Mech. 2, 326–332 (1938).
5F. De Santi, F. Fraternale, D. Tordella Phys. Rev. E 93, 033116 (2016).
6F. Fraternale, PhD Dissertation, Politecnico di Torino (2017)


