
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Towards Automated Translation between Generations of GUI-based Tests for Mobile Devices / Coppola, Riccardo;
Torchiano, Marco; Ardito, Luca; Emil, Alegroth. - ELETTRONICO. - (2018), pp. 46-53. ((Intervento presentato al
convegno INTUITESTBEDS 2018 tenutosi a Amsterdam (Paesi Bassi) nel 19/07/2018.

Original

Towards Automated Translation between Generations of GUI-based Tests for Mobile Devices

acm_proc

Publisher:

Published
DOI:10.1145/3236454.3236488

Terms of use:
openAccess

Publisher copyright

© {Owner/Author | ACM} {Year}. This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in {Source Publication}, http://dx.doi.org/10.1145/{number}

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712642 since: 2019-05-07T17:08:11Z

ACM

Towards Automated Translation between Generations of
GUI-based Tests for Mobile Devices

Luca Ardito, Riccardo Coppola,
Marco Torchiano
Politecnico di Torino

Turin, Italy
name.surname@polito.it

Emil Alégroth
Blekinge Institute of Technology

Karlskrona, Sweden
emil.alegroth@bth.se

ABSTRACT
Market demands for faster delivery and higher software quality
are progressively becoming more stringent. A key hindrance for
software companies to meet such demands is how to test the soft-
ware due to to the intrinsic costs of development, maintenance and
evolution of testware. Especially since testware should be defined,
and aligned, with all layers of system under test (SUT), including all
graphical user interface (GUI) abstraction levels. These levels can
be tested with different generations of GUI-based test approaches,
where 2nd generation, or Layout-based, tests leverage GUI proper-
ties and 3rd generation, or Visual, tests make use of image recogni-
tion. The two approaches provide different benefits and drawbacks
and are seldom used together because of the aforementioned costs,
despite growing academic evidence of the complementary benefits.

In this work we propose the proof of concept of a novel two-step
translation approach for Android GUI testing, where a translator
first creates a technology independent script with actions and ele-
ments of the GUI, and then translates it to a script with the syntax
chosen by the user. The approach enables users to translate Layout-
based to Visual scripts and vice versa, to gain the benefits (e.g.
robustness, speed and ability to emulate the user) of both gener-
ations, whilst minimizing the drawbacks (e.g. development and
maintenance costs). We outline our approach from a technical per-
spective, discuss some of the key challenges with the realization
of our approach, evaluate the feasibility and the advantages pro-
vided by our approach on an open-source Android application, and
discuss the potential industrial impact of this work.

ACM Reference format:
Luca Ardito, Riccardo Coppola, Marco Torchiano and Emil Alégroth. 2018.
Towards Automated Translation between Generations of GUI-based Tests
for Mobile Devices. In Proceedings of 4th International Workshop on User
Interface Test Automation, and TESTBEDS - 8th International Workshop on
TESting Techniques for event BasED Software, Amsterdam, Netherlands, Jul
16-21 2018 (INTUITESTBEDS 2018), 8 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
INTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND RELATEDWORK
Android (and, in general, mobile) applications are rapidly and pro-
gressively reaching higher levels of complexity in their user inter-
faces to provide the features required by users. Hence, thorough
testing of mobile app Graphical User Interfaces (GUI) – emulating
most of the user interaction and app functionalities – should be a
well-established practice among mobile developers.

To test any application provided with a GUI, three main cate-
gories of automated approaches exist: 1st generation testing tools
(also called Coordinate-based) identify elements of the user in-
terfaces using the exact coordinates at which they are shown on
screen; 2nd generation testing tools (also called Layout-based or
Property-based) identify elements according to the definition of
the screens of the app, and/or one or more of their properties (e.g.
unique identifiers in the layout, text that they contain, etc.); 3rd
generation testing tools (also called Visual GUI testing tools [1])
identify elements through image recognition algorithms, which
capture the actual appearance of the elements as displayed to the
user.

For Android apps, the behaviour and the appearance of the
GUI screens are defined by components named Activities (i.e., Java
classes where the functionalities of the screens are defined and
callbacks are assigned to elements of the interface) and by Xml
layout files that describe the properties and arrangement of the
widgets. Even though the widgets may also be defined dynamically
via code, screens are typically populated at once by the Activities,
loading a layout file. Alternative layout files can be provided for
the same screen, to take into account different characteristics of
the displays on which the app can be run (e.g., screen size, pixel
density, portrait or landscape orientation). Layout-based testing
tools usually leverage information that can be extracted from .xml
layout files to identify the elements of the user interface; being
layout files available in the .apk package of any Android appli-
cation, the knowledge of information from layout files allows to
perform black box testing of Android interfaces when the source
code of the Activities is not available. Visual GUI testing tools, on
the other hand, are completely agnostic of the description of the
user interface, basing all the interaction that they perform on the
GUI on the on-screen recognition of images. Hence, they are used
to provide black box system level tests, which exercise and evaluate
the features of the apps at the abstraction of the GUI only.

However, although a variety of testing tools are available for
Android testing, including GUI-based tools of both generations,
evidence from literature and industrial practice suggests that these
apps are not as deeply tested as their desktop counterparts. Instead,
most Android developers just rely on manual testing [5, 12] and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

INTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands L.Ardito, R.Coppola, M.Torchiano and E.Alégroth

ad-hoc testing, or totally neglect testing [9]. A key reason to this
lack of testing relates to domain-specific challenges associated with
mobile devices that adversely affect the ease with which they can be
tested through the GUI compared to desktop systems. For instance,
the quantity of different context events and gestures to which apps
must respond, the diversity of devices on which apps are deployed,
the tight coupling between back-end and front-end functionality
and the high pace of evolution of mobile app appearances all con-
tribute to make the test cases more fragile [8]. Fragility manifests
as incorrectly failing tests on new releases of the app (and thus
failed regression tests) due to even trivial changes in the apps’ core
functionality, control scheme or its visual interface definition [5].

As such, lack of testing has prominent, diverse and significant
effects on mobile app development. Those effects mandate investi-
gation of new approaches to ease the efforts associated with test
script creation, maintenance and evolution. We therefore propose
a combined use of Layout-based and Visual GUI test scripts, with
the novel complement of an automated mechanism to translate
between them. This approach will allow the techniques to leverage
their individual benefits to counter their drawbacks and allow reuse
of existing test scripts to test other layers of abstraction of the GUIs,
raise coverage and reduce cost. A combined technique would also –
as we discuss in the Motivation section – help overcome many of
the core difficulties of testing mobile apps.

2 MOTIVATION
Although Layout-based testing tools are commonly used in indus-
trial practice, e.g. Appium and Robotium [4], Visual GUI testing
tools, e.g. Sikuli [14] and EyeAutomate1 [3], are much less common
despite academic evidence for their applicability, feasibility and
usefulness [1]. Reasons include the lack of robustness and perfor-
mance of Visual GUI testing compared to Layout-based testing [11].
However, in contrast, Layout-based testing cannot fully emulate the
human user as interactions through GUI properties do not verify
the system’s appearance as shown to the human user. Thus, most
research aimed at comparing the two techniques have concluded
that a hybrid approach is required [2] where both generations are
developed and used in parallel by the practitioner.

Instead of defining a hybrid approach, requiring the tester/devel-
oper to have knowledge about both generations of test automation,
we propose an automated translation of test scripts from one gen-
eration to the other, through systematic reuse of test logic, coupled
with translation of property-based locators to visual locators, and
vice-versa. The tool would allow the tester/developer to focus on
manually developing the test suite in one methodology only, and
automatically generate the counterpart.

The proposal can hence provide benefits such as:
(1) Automated generation of Layout-based tests from Visual

GUI tests and vice versa, reducing development costs.
(2) Reduced script maintenance costs through automated analy-

sis of failing locators, and repair based on the other genera-
tion’s scripts.

(3) Reuse of existing Layout-based tests for testing the SUT’s
visual appearance.

1EyeAutomate was previously known as JAutomate.

(4) Porting of visual scripts for different devices/configurations
through strategic reuse of Layout-based tests, i.e. a single
test can be run on a set of emulated devices to automatically
obtain Visual GUI test scripts specific to each device.

(5) Limited need for costly manual, repetitive, and error-prone
regression testing [10].

These benefits can mitigate challenges with Visual GUI test
scripts such as their sensitivity to visual changes (e.g. size, reso-
lution, color, etc.), whilst also mitigating challenges with Layout-
based test scripts that are sensitive to code changes (e.g. id, tags,
components, etc.). This is possible since Visual GUI test scripts
operate against what the user sees and can emulate the user, albeit
quite slowly compared to other automation techniques. In contrast,
Layout-based test scripts execute more robustly by using GUI com-
ponent properties, not emulating the user, but at a higher execution
speed.

The respective robustness to changes in the definition of the
layouts and in pure visual changes theoretically allows translation
of valid test scripts from one test generation to the other, e.g. when
the latter is broken due to fragility issues. This allows reduction
of the cost of maintenance and repair of test cases throughout
different versions of the same application, especially if they are
used to perform regression testing.

To sum up, the core idea of this work is to combine the strengths
of scripts of both generations to mitigate the weaknesses of the two
approaches taken individually. In section 4, a motivating example
is described, to underline which weaknesses of test scripts of both
generations can be mitigated leveraging a translation process.

3 PROOF OF CONCEPT
The core idea behind the proposed translator is to use information
provided by the scripts of one generation to create scripts for the
other. This translation is split into two parts. First, the scenario
– a series of GUI actions – is obtained through an execution and
examination of the test script, written with a testing tool of a given
generation. Second, the GUI objects are identified for the destination
syntax, based on the information available in the test scripts of the
starting generation.

In practice, Layout-based information (IDs, coordinates, strings)
should be extracted only using images and Visual GUI testing im-
ages be acquired using Layout-based information.

For instance, the translation of a Layout-based test to a Visual
GUI test requires, at run-time, the X- and Y-coordinates of a GUI
component together its width and height to take a screen capture.
The screen captured image, together with the action performed in
the script, can then be represented in a syntax suitable for a Visual
GUI testing tool to replicate the action with computer vision.

Similarly, a Visual GUI test script, during runtime, could re-
turn the position, width and height (at least approximately) of a
GUI-object. This information could either be used to generate a
completely new, partially completed, Layout-based GUI component,
or use heuristics to look up if an existing component matches the
coordinate, width and height information. Together with the ac-
tion performed in the Visual GUI test script, this information could
then be translated to the specific syntax of a new Layout-based test
script.

Automated Translation between Generations of GUI Tests for Mobile DevicesINTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands

3.1 Architecture of Layout-based to Visual GUI
test scripts translator

The translation process from Layout-based to Visual GUI test scripts
starts from a single script or a suite of scripts createdwith a property-
based testing tool.

The process can be described with the following set of separate
logic blocks, as shown in figure 1.

• The Parser first performs a static analysis of the code of
layout files of an application’s packages, and perform en-
hances that may help in reducing fragilities of test cases. In
this phase, all user interface elements that are used in tests
are assigned – if they do not possess any – unique ids by
modifying the fields of the layouts they are defined in. This
modification allows elements to be uniquely identified on
the screen and can be used for creation of new test scripts,
without ambiguities. Other improvements can be performed
on production code, e.g. the definition of String constants
when hardcoded text is identified in the definition of widgets,
to ease the recognition of text and the repairing of failing
test cases.
The parser then enriches the original Layout-based test code
with instructions that allow the extraction – after each op-
eration that is performed on the GUI – of information that
is then needed for the translation, e.g. commands to take
screen captures of the current activity, to trace clicks and co-
ordinates, and calls to image manipulation libraries to create
the individual images on which Visual GUI test scripts will
be based.

• The Runner executes the enhanced Layout-based test script
on an instrumented Android Virtual Device; at runtime, for
each operation performed on the GUI, visual data is collected
from the device, e.g. the appearance of button where an ac-
tion has been performed. The outcome of the execution phase
is a trace of all the performed actions in the form of tuples
consisting of operation type, interacted image (screenshot),
and layout-based information.
The Runner also checks the outcome of the original Layout-
based test: if the test triggers any exception the developer is
signalled and the translation process is aborted. In the pro-
posed architecture, the Runner block is independent from
both the chosen Layout-based and Visual GUI testing tools.
Additionally, this step encodes extracted imageswith suitable
id-numbers to preserve traceability to the original Layout-
based test script. We also propose that said imagery be saved
together with other meta-data, such as coordinate informa-
tion, to ease identification in the translation of other test
cases (i.e., without having to generate screen captures for
widgets already found in previous test scripts).

• Finally, the Test Case Generator, based on the trace of opera-
tions and screen captures given as output by the previous
module, translates the set to a 3rd generation Visual test
script, according to the chosen output scripting language
(e.g., text files written in the EyeAutomate syntax).
The new generated test script is then merged with existing
3rd generation test scripts; it can be used immediately for

the test of the actual appearance of the app as shown to the
user, or be part of a test suite for future regression testing.

3.2 Architecture of Visual to Layout-based GUI
test scripts translator

The translation process fromVisual to Layout-based GUI test scripts
(Figure 2) starts from a single script or a suite of scripts created
with a Visual GUI testing tool.

The process can be described with the following set of separate
logic blocks, as shown in figure 2.

• In the first phase, Instrumentation is performed of the An-
droid Project. This step is necessary for the translation and
to go from visual reference to test code. The instrumentation
of the Android Project enables (or modifies already existing)
callbacks to any widget shown on the screen. The callbacks
contain code that logs the interactions that have been per-
formed on the GUI of the tested app during execution of a
visual test script.

• The Executor module runs the Visual GUI tests on the emu-
lated device on the desktop screen. At each step of the test
case, as in a typical execution of a Visual GUI test script,
the position of the image on screen and its coordinates are
identified. Together with height and width information from
the expected image, additional information can be acquired
about the interacted element by cross-referencing available
information with either Layout-based data or other meta-
data. For instance, this can be done leveraging the debug
connection with the instrumented device, e.g. using ADB
(i.e., Android Debug Bridge) and the Android UI Automator
Viewer, which allows navigation of an XML-description of a
dump of the current interface shown on the emulated device
screen. The extracted data can thereby be used to correlate
an element represented by the Visual GUI testing tool as
only an image with a Layout-based element represented by
a set of properties.
Since the operation of dumping the current screen may be
long and requires the UI to remain still, the Executor may
need to insert sleep instructions between consecutive opera-
tions in the Visual GUI test scripts. Additionally, the transi-
tion of certain UI elements might require additional steps to
be inserted into the test scripts. For instance, for drop-down
lists, Layout-based tools generally access the elements di-
rectly without expanding the lists. In contrast, Visual GUI
testing tools must first expand the list to make the elements
visible to be able to interact with them.
Due to the high abstraction of Visual GUI testing scripts, a
proposed technical solution to ease and speed up the transla-
tion to Layout-based scripts is to store additional meta-data
about existing objects from previously run test scripts (e.g.,
coordinates, properties, actual appearance). This may enable
association of images in new test scripts with already in-
teracted objects (it is the case, for instance, of buttons that
are interacted in two different test cases). Additionally, the
meta-data must be aligned with the Layout-based test data to
ensure 1-to-1 association between Layout-based and Visual
elements used in the test cases.

INTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands L.Ardito, R.Coppola, M.Torchiano and E.Alégroth

Figure 1: Architecture of translator from Layout-based to Visual GUI test scripts

Figure 2: Architecture of translator from Visual to Layout-based GUI testing tools

Step Screen Widget Description Operation
1 s1 Next Button Click
2 s2 Email account Form Type test account email
3 s2 Password Form Type test password
4 s2 Next Button Click
5 s3 Account description Form Type test account description
6 s3 Account name Form Type test account name
7 s3 Done Button Click
8 s4 Activity Title Check that "Accounts" is shown
9 s4 Account List Item Check that test name is shown
Table 1: Steps for Authentication use case of K-9 mail

• The output of the Executor logic block is a trace of the oper-
ations that will compose the translated test script: a log of
tuples with the properties associated with an identified Vi-
sual element, and the action performed on the element. This
information is given as output through the built-in Logcat
tool of Android. The Logcat Parser logic block of the trans-
lator is in charge of parsing such trace, in order to obtain a
language and technology-independent sequence of opera-
tions and widget descriptions that can be then used for the
generation of test scripts.

• Finally, the Test Case Generator, based on the output of the
previous module, creates Layout-based test script in the syn-
tax desired by the user. The generated test script is then
merged with existing test cases to be replayed as part of the
Layout-based generation test suite counterpart.

4 APPROACH VALIDATION
The purpose of this section is to provide a preliminary validation
of our proof of concept, describing the benefits that would result
from the use of a combined approach, based on mutual translation
between Layout-based and Visual GUI test scripts, for Android
application testing. Since much of this research is still in a planning
phase, only a few components of the translator are completed.
Thus, much of the proof of concept study was performed using
manual identification and translation of components and actions.
Hence, operations that would otherwise have been performed by
the automated translator that we envision.

As our sample AUT, similar to a previous case study we con-
ducted to understand the types of fragilities exposed by Scripted
Android GUI testing [6], we have chosen K-9 mail, a popular and
long-lived (366 releases) open-source e-mail client whose source
code is available on GitHub2. The version on which our investiga-
tions are based is V5.500-SNAPSHOT. In our discussion, we call
this original version of the application v1, as it is cloned from the
GitHub repository. We have developed a sample test case to exer-
cise the authentication feature of the application with two tools
pertaining to different generations. All the tests have been run on
an Android Virtual Device, namely a Nexus 5 with Android API 24
installed, with enabled device frame and hardware keyboard inputs.

When it is first launched, without any account already registered,
the K-9 Mail app provides a wizard to perform a registration of a
user e-mail account and to set up its name and description. Such use
case for the registration of an account is described by the sequence

2https://github.com/k9mail/k-9

Automated Translation between Generations of GUI Tests for Mobile DevicesINTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands

s1 - WelcomeMessage
Activity

s2 - AccountSetupBasics
Activity

s3 - AccountSetupNames
Activity

s4 - WelcomeMessage
Activity

Figure 3: Screens and Activities traversed by the authentication use case

of operations shown in table 1: for every operation to be performed,
the table reports the screen onwhich it has to be performed, an high-
level description of the element, the type of operation to perform.
The four screens of the app that are traversed are shown in figure
3, with the respective Activity names indicated in the captions.

4.1 Test scripts definition for original release
As our reference Layout-based testing tool, we have chosen UI
Automator3, a GUI testing framework developed by Android to
test app interfaces as well as the operating system’s one. The UI
Automator API allows to abstract elements of the user interface
that are visible on the current screen of the device as UIObjects,
and to retrieve them upon searches performed on properties like
their description, identifier, contained text. The API also allows to
manage more complex types of widgets, like scrollable elements or
collections, with dedicated classes.

We developed the UI Automator test script for the Authentication
use case using the Android Studio IDE, and inside the K-9 Mail
application project, having full access to the AUT production code
and the .xml layout files describing its user interface. Resource IDs
used in the UI Automator test script have been collected launching
the application and using the UI Automator Viewer tool, retrieving
the "resource-id" field for any of the widgets to be interacted. Table
2 shows the retrieved ids for the elements interacted throughout
the use case. Executed on v1, the test script runs to completion, as
it is shown by the JUnit result provided by the Android Studio IDE.

As our reference Visual testing tool, we have chosen EyeAuto-
mate4, a tool leveraging image recognition to automate interaction
on any kind of GUI software. To test Android applications, the tool
requires the AUT to be launched on a virtual device, rendered on
the screen of a desktop pc on which the Visual GUI testing tool is
launched.
3https://developer.android.com/training/testing/ui-automator.html
4http://eyeautomate.com/index.html

Step Object Description Object ID
1 Next Button next
2 Email account Form account_email
3 Password Form account_password
4 Next Button next
5 Account description Form account_description
6 Account name Form account_name
7 Done Button done
8 Activity Title action_bar_title_first
9 Account List Item description

Table 2: Retrieved IDs for UIAutomator test case

We have developed the EyeAutomate test script using the com-
panion Visual Script Editor EyeStudio5. Reference images, shown
in table 3, have been gathered from a first manual execution of
the application, leveraging the image capture tool embedded in the
EyeStudio suite. Interaction points with the captured image have
been fixed in all cases to the center of the identified images. Sleep
instructions have also been inserted in the test script at the begin-
ning of the test case, and at every screen transition: this prevents
the visual testing tool to search too early for elements that have
not yet been rendered on the virtual device screen, and thus fail.
Executed on v1, the test script runs to completion, as it is shown
by the .html result file provided by the EyeStudio suite.

4.2 Layout-based fragility induction
To highlight the fragility of layout-based test scripts to modifica-
tions performed on the properties of the interacted widgets, we
performed a simple modification on the definition of a layout of
v1 of the AUT, thus obtaining the version that we called v2a. In
particular, as it is shown by figure 4, the resource ID associated
to the Done button is changed from "done" to "completed", in the
layout file (namely, wizard_done.xml) where the button is declared.

5http://eyeautomate.com/eyestudio.html

INTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands L.Ardito, R.Coppola, M.Torchiano and E.Alégroth

Table 3: Retrieved images for the EyeAutomate test script

In the UI Automator test script, the Resource IDs are inserted as
constants; if the layout file is modified outside the development IDE,
or no automated refactoring functions propagate the modifications
on the widget property, the test script will still search for the old
widget ID even though it has changed. In particular, the UI Automa-
tor test script fails (launching the UIObjectNotFoundException)
when the following line of code is reached.
UIOb j e c t done_but ton = new UiOb j e c t (new U i S e l e c t o r ()

. r e s o u r c e I d (" com . f s c k . k9 . debug : i d / done ")) ;

In all transitions like the one from v1 to v2a, containing only
modifications in the widget definition and properties, all test cases
leveraging widgets with varied properties may fail; in the provided
example, the test case fails due to an ID change fragility. On the
other hand, the Visual test runs to completion without errors.

In the translation approach that we envision, an automated fea-
ture should be launched at the beginning to instrument the appli-
cation to perform additional logging operations, using the Android
Development Bridge to log all the interactions that are performed
with the widgets of the user interface, along with their IDs. This
way, the visual test case - which is still valid - can be used to re-
trieve the actual (changed) id of the Done button when it is clicked,
generating a valid companion layout-based test case.

4.3 Visual fragility induction
To cause a fragility in the visual test script, we performed a couple
of graphic modifications on the original version v1, leading to the
version that we called v2b. In particular, we changed the appearance
of Screen 3, modifying the background color and the text of the
"Done" button. Each of the two modifications performed would
be sufficient, if applied alone, to invalidate a visual test case. The
changed appearance of the screen between v1 and v2b is shown in
figure 5.

Without any modification in layout and widget definitions, there
is no impact in scripted test cases, since the button to be clicked is
unambiguously retrieved by its unchanged ID. On the other hand,
the visual recognition test case that we developed experiences a
failure, due to the inability to identify an element with the appear-
ance of the Done button, still linked in the test script to the screen
capture shown in table 3.

In the translator approach that we envision, the layout-based
test script is properly enhanced, with the addition of instructions

Layout excerpt from v1

Layout excerpt from v2a

Figure 4: Modification in the layout file between v1 and v2a

Screen 3 in v1 Screen 3 in v2b

Figure 5: Graphic change in Screen 3 between v1 and v2b

to log – at any interaction performed – the type of interaction,
the absolute coordinates where it has took place, and a capture of
the current screen. Using the coordinates of the interaction, and
possible additional information extracted from layout files (e.g.,
size and padding of the interacted widget) a picture of the new
appearance of the interacted widget can be cut from the capture of
the whole current screen, when the working Layout-based script is
executed.

This way, the translator can automatically create a valid com-
panion visual script for the layout-based test script, without any
manual maintenance intervention from the tester/developer.

Automated Translation between Generations of GUI Tests for Mobile DevicesINTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands

5 NEXT STEPS
As the next step of our current work, we plan to progressively
implement the components of both the translators, from Layout-
based to Visual GUI test scripts and vice versa. The translator will be
initially specialized for Android, and implemented as a plug-in for
the Android Studio IDE. Along with the modules of the architecture
shown in Section 3, we plan to develop some helper modules that
will be needed to uniform the declaration of widgets in layout files,
and to make all elements of a GUI unambiguously identifiable for
the creation of a Layout-based test script: a Parser module for .xml
files will be developed, with the objective of creating a map of the
IDs used by an application, and assigning a new unique ID to all
widgets not having it.

As a second step, we plan to develop our translator as a stand-
alone tool, to leverage possible Enhancer and Test Case Generator
modules for test languages that are not specific to mobile appli-
cations. This will be generalized through the two-step translation
procedure described in Sections 3.1 and 3.2, where tuples of com-
ponents and interaction types are first extracted independently of
scripting language. Such tool-independent, general representation
of the interactions with a GUI element, is then in a second step
translated to a language of the user’s choice. This approach aims to
enhance the generalizability of the developed tool and to make it
extendable to work also with other Layout-based testing tools (e.g.,
Selenium [11] for web application testing).

As pointed out in section 3, the step of identifying layouts and
properties from clicked buttons on a GUI is the most complex to
carry out, hence the described architecture and algorithm may
be subject to limited variations. Also, further investigations are
needed to understand the feasibility of the creation and translation
of textual oracles from Layout-based to Visual GUI test scripts
and vice-versa: an investigation of the possibility of using OCR
techniques to "read" textual contents from screen captures, to use
them as parameters for layout-based scripts construction, is also
planned.

The evaluation of our translator approach will also look into
possible solutions for solving challenges where translation from
one generation to another is simply not possible. For instance,
when information is visually rendered, e.g. in a graph, which can
be tested with the Visual GUI test scripts, but not accessed by the
Layout-based testing tools due to interface restrictions.

To validate our project, we plan to apply the translator to sets of
open-source Android applications, to evaluate the impact on the
needed effort to develop test caseswith a proper coverage and on the
fragility of test suites. We also plan to measure the gain – in terms
of effort and time required – obtainable by using the translation
approach for creating a new visual GUI test suite from an existing
scripted one, and vice-versa. Additionally, we aim to evaluate the
combined Layout-based and Visual GUI testing procedure in an
industrial environment, to assess the applicability and usefulness
of such an approach in a real scenario. This will also enable an
evaluation of the cost savings and potential return on investment
(ROI) of the approach compared to, for instance, currently used
manual practices.

6 CONTRIBUTION AND INDUSTRIAL
IMPACT

GUI-based testing is growing in commonality and importance in
industrial practice due to the growing adoption of continuous ways-
of-working [13]. As a result, more companies have realized the need
for multi-layered automated testing. However, maintenance of GUI-
based tests is costly since the tests are affected by changes on all
levels of abstraction beneath the GUI. This cost greatly affects the
tests’ longevity and companies ability to sustain multiple test suites
over time, with negative effects on the software system quality,
time to market and, as a result, customer satisfaction.

The proposed approach could thereby provide a significant con-
tribution as it enables companies to expand their testing capabilities
at very low cost. This capability is given by the ability to translate
existing test cases from one generation to another. In practice, this
means that companies that use Appium [4], Selenium [11] or other
Layout-based tools that are commonly used in industry, can quickly
acquire Visual GUI tests for regression testing. A single translation
can have long-term effects, as it enables automated maintenance of
the tests. Hence, if the GUI is changed, the Layout-based tests can
be used to maintain the Visual GUI test suite, and vice versa if the
code-base but not visual appearance is changed. Thus providing
unprecedented capabilities for testware reuse and cost-savings.

Additionally, due to its positive impact on quality feedback, the
approach is perceived an enabler for more stringent continuous
ways-of-working practices such as continuous deployment. The
reason is that the translator enables robust automated GUI-based
testing that mitigates the need for manual testing, lowering devel-
opment lead-times and quickening time to release. Additionally, as
the approach alleviates the need for manual regression testing, it
opens the possibility of more exploratory testing [7], which enables
efficient identification of new faults.

7 CONCLUSION
Automated GUI-based testing is becoming more commonly used in
practice, not to mention in the ever expanding mobile app domain
where GUI-functionality is key to market success. Several tools are
available; they can be categorized as 2nd generation (Layout-based
or Property-based) or 3rd generation (Visual, or Image-recognition
based). Both approaches are able to replace manual GUI-based test-
ing, but suffer from high development and maintenance costs and
are therefore seldom used together. This is a challenge as both tech-
niques have mutually exclusive benefits and drawbacks related to
factors such as speed, robustness and ability to emulate the human
user, which make the two generations approaches complementary
to one another.

In this work we proposed a novel approach for automated trans-
lation between one generation of tests to the other. This approach
would enable gaining the benefits of both generations whilst miti-
gating the costs and drawbacks of the individual approaches; The
result would be a reduced need for manual testing, shorter lead-
times, and enabling practices such as continuous deployment and
more exploratory testing.

Consequently, the approach would help software development
organizations to meet the software market’s growing needs for
faster delivery and higher quality software.

INTUITESTBEDS 2018, Jul 16-21 2018, Amsterdam, Netherlands L.Ardito, R.Coppola, M.Torchiano and E.Alégroth

REFERENCES
[1] Emil Alégroth and Robert Feldt. 2017. On the long-term use of visual gui testing

in industrial practice: a case study. Empirical Software Engineering 22, 6 (2017),
2937–2971.

[2] Emil Alégroth, Zebao Gao, Rafael Oliveira, and Atif Memon. 2015. Conceptualiza-
tion and evaluation of component-based testing unified with visual gui testing:
an empirical study. In Software Testing, Verification and Validation (ICST), 2015
IEEE 8th International Conference on. IEEE, 1–10.

[3] Emil Alégroth, Michel Nass, and Helena H Olsson. 2013. JAutomate: A tool
for system-and acceptance-test automation. In Software testing, verification and
validation (icst), 2013 ieee sixth international conference on. IEEE, 439–446.

[4] Haneen Anjum, Muhammad Imran Babar, Muhammad Jehanzeb, Maham
Khan, Saima Chaudhry, Summiyah Sultana, Zainab Shahid, Furkh Zeshan, and
Shahid Nazir Bhatti. 2017. A Comparative Analysis of Quality Assurance of Mo-
bile Applications using Automated Testing Tools. INTERNATIONAL JOURNAL
OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS 8, 7 (2017), 249–255.

[5] Riccardo Coppola, Maurizio Morisio, and Marco Torchiano. 2017. Scripted GUI
Testing of Android Apps: A Study on Diffusion, Evolution and Fragility. In
Proceedings of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering. ACM, 22–32.

[6] Riccardo Coppola, Emanuele Raffero, and Marco Torchiano. 2016. Automated
mobile UI test fragility: an exploratory assessment study on Android. In Proceed-
ings of the 2nd International Workshop on User Interface Test Automation. ACM,
11–20.

[7] Juha Itkonen and Kristian Rautiainen. 2005. Exploratory testing: a multiple case
study. In Empirical Software Engineering, 2005. 2005 International Symposium on.
IEEE, 10–pp.

[8] Thomas W Knych and Ashwin Baliga. 2014. Android application development
and testability. In Proceedings of the 1st International Conference onMobile Software
Engineering and Systems. ACM, 37–40.

[9] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo. 2015. Un-
derstanding the Test Automation Culture of App Developers. In 2015 IEEE 8th
International Conference on Software Testing, Verification and Validation (ICST).
1–10. https://doi.org/10.1109/ICST.2015.7102609

[10] Martin Kropp and Pamela Morales. 2010. Automated GUI testing on the Android
platform. Testing Software and Systems (2010), 67.

[11] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Paolo Tonella. 2014. Visual
vs. DOM-based web locators: An empirical study. In International Conference on
Web Engineering. Springer, 322–340.

[12] Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Kevin Moran, and Denys Poshy-
vanyk. 2017. How do developers test android applications?. In Software Mainte-
nance and Evolution (ICSME), 2017 IEEE International Conference on. IEEE, 613–
622.

[13] Daniel Ståhl and Jan Bosch. 2014. Modeling continuous integration practice
differences in industry software development. Journal of Systems and Software
87 (2014), 48–59.

[14] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI
screenshots for search and automation. In Proceedings of the 22nd annual ACM
symposium on User interface software and technology. ACM, 183–192.

https://doi.org/10.1109/ICST.2015.7102609

