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Abstract—The synchronous reluctance machine is an attractive
substitute of induction motors and synchronous PM motors
thanks to its higher efficiency and lower cost of materials,
respectively. One of the main challenges relenting the adoption
of these machines is the lack of a widely recognized procedure
for their design. In the past, design equations were proposed for
SyR machines by different authors. Those models represent a
good starting point and a useful guideline for the designer, but
they are far from being accurate enough in many aspects. To
increase precision, different procedures based on finite element
analysis were proposed over the years, but those methods have
the dual downside of losing the physical insight on the effect of the
various design parameters. In this work, a comprehensive design
procedure based on design equations is reviewed and improved
using few static FEA simulations to fix the errors of the analytical
model, in order to increase the precision without reducing the
generality of the model.

I. INTRODUCTION

Synchronous Reluctance (SyR) machines were proposed in
the last years as a cost competitive and efficient alternative
to other kind of machines in many fields of application.
Compared to Surface-mounted Permanent Magnet (SPM) ma-
chines, the SyR machine solution can reduce cost and increase
safety at high-speed operations, thanks to the absence of
rare-earth Permanent Magnets (PMs). These advantages are
balanced by a more complex design procedure, lower power
and energy density, and a more complicated control strategy.
Against Induction Machines (IMs), SyR machines exhibit
higher efficiency, due to the absence of rotor cage loss, and
similar if not lower manufacturing cost. On the other hand,
IMs have in general a better power factor and well established
design procedures.

The literature reports different approaches to the design of
SyR machines. Examples of use of pure analytical models are
in [1], [2] and [3]. These methods are general and allow a good
understanding of the machine behavior, but they are not very
precise in terms of performance figures estimation. The second
approach includes all the methods based on Finite Elements
Analysis (FEA), as [4] and [5]. Their precision is high, but
very often the design process heavily relies on optimization
algorithms, which limit the generality of the results and
narrow the insight of the designer on the results he obtains.
Besides the precision and the designer insights, a substantial
difference between the two approaches is the computational
time. Analytical models takes up to some seconds to evaluate

several machine model, while FEA-based approaches needs
up to some minutes to evaluate one model.

This paper introduces a new design procedure that joins
the benefits of the analytical and FEA approaches: the design
equations are refined by fast FEA simulations, used to correct
the equations and not to evaluate the output figure of a specific
design. This hybridized design process ensures both generality
and short computational time, typical of the analytical models,
with augmented precision given by the FEA simulations. The
contributions of this paper are:

• to review the design literature of SyR machines;
• to improve the design equations by including the effect

of saturation on the magnetizing current;
• to include the cross saturation effect into the model by

way of selected FEA simulations.
All the procedures and the equations presented in the paper
are embedded SyR-e [11], an open-source tool for electrical
machines design.

II. REVIEW OF THE ANALYTICAL MODEL

The magnetic model of a SyR machine, represented in the
dq frame, can be written as:{

λd = (Lmd + Lσ) id

λq = (Lmq + Lσ) iq
(1)

where λd and λq are the d- and q-axis flux linkages, and
id and iq are the dq current components. Lmd and Lmq are
the respective magnetizing components and Lσ is the leakage
inductance. All the inductances depend on geometric inputs, as
the stator outer radius R, the stack length L, the airgap length
g, the stator slot size, the flux barriers shape and position.
Moreover, two per-unit parameters will be used, as explained
later. Current loading can be indirectly imposed through the
thermal loading factor kj (2), expressed as the ratio between
the allowed copper loss and the stator outer surface:

kj =
3
2 Rs i

2
0

2πRL
=

(6Ns i0)2

kCu
ρ

L
L+lend

4π RAslots
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where i0 is the thermal rated current, considered the number of
turns in series per phase Ns. The term kCu represents the slot
filling factor, ρ is the copper resistivity, lend is the end-winding
length and Aslots is the total cross-section of the slots (sum
of all slots). The thermal loading factor kj accounts for the



cooling system during the design process, thanks to its easy
definition. Typical values are kj = 1.5 ∼ 3 kW/m2 for self-
ventilated machines, kj = 5 ∼ 12 kW/m2 for machines with
forced ventilation and kj = 12 ∼ 20 kW/m2 for water-cooled
machines.

A. Per-unit factors

According to [6], two per-unit factor are used in the model
definition. They are the rotor/stator split ratio x (3) and the
airgap/iron flux density ratio b (4).

x =
r

R
(3)

b =
Bg
BFe

(4)

where r and R are the rotor and stator outer radii, respectively.
BFe is the peak flux density in the stator yoke and Bg is
the peak flux density in the airgap. These two factors will be
used in a parametric study, enabling the evaluation of several
designs with a limited computational effort and linking the
geometrical definitions with the machine outputs.

B. Torque equation

The general torque equation, valid for SyR machine is:

T =
3

2
p (λd iq − λq id) (5)

where p is the number of pole pairs. Substituting (1) in (5) it
results in:

T =
3

2
p (Lmd − Lmq) id iq (6)

This easy substitution highlights an important property: the
leakage inductance does not affect the output torque. Manip-
ulating (6), it follows:

T =
3

2
p kdq λmd iq (7)

kdq = 1− Lmq
Lmd

(8)

where kdq , defined in (8), accounts for saliency and derives
mainly from rotor design. The term λmd = Lmd id stands for
the magnetizing flux linkage. The q-axis current is obtained
as iq =

√
i20 − i2d, where i0 derives from kj according to (2)

and id is the current component producing λmd.

C. Stator design and d-axis equations

The magnetizing flux linkage λmd is computed through the
main dimensions of the machine and the iron flux density:

λmd =
2RLkwNs

p
BFe x b (9)

where kw is the winding factor. The magnetizing current
necessary to create the target flux linkage is:

id =
π kc g p

3µ0 kwNs
BFe b (10)

where kc is the Carter’s coefficient. As addressed previously,
all the quantity are expressed as a function of the two per-unit

Fig. 1. Main dimension of a general SyR machine

parameters x and b. The d-axis magnetizing inductance can
be easily evaluated as the ratio between (9) and (10). Lmd
will be used as the base value for all the others inductances
estimation.

Lmd =
λmd
id

(11)

Once the d-axis flux linkage and the flux density levels are
defined, it is possible to compute the main stator dimensions:
the yoke length ly (12) and the tooth width wt (13). An
oversizing of these parameters could lead to a low exploitation
of the material limits, while an undersizing could cause
deep saturation of the iron, with a performance deterioration.
Ideally, the yoke length shall permit the flow of half the flux
in the pole pitch. Setting the peak flux density in the yoke
equal to BFe, it follows:

ly =
R

p
xb (12)

Concerning the tooth sizing, the tooth width must allow the
flow of the maximum flux linkage in one slot pitch. In this
case, a tooth reduction factor can be introduced to deform the
Bg waveform and increase its the fundamental amplitude. The
tooth width results in:

wt =
2πR

6pq
kt xb (13)

where q is the number of slots per pole per phase and kt is the
tooth reduction factor. If kt = 1, the peak tooth flux density
is equal to BFe, while if kt < 1, the peak tooth flux density
increase, ideally up to BFe/kt if an unsaturated iron model is
used. Fig. 1 reports in blue the main stator dimension.

D. Rotor design and q-axis equations

The q-axis design mainly deals with the rotor geometry,
and principally with the flux barriers design. The magnetizing
inductance Lmq can be divided into two fundamental terms:
the circulating term Lcq and the flow-through term Lfq . The



former models all the flux linkage paths that cross the airgap,
but not the rotor, while the latter account for the flux linkage
that cross the rotor and the flux barriers along the q-axis. The
circulating component can be evaluated as [6]:

Lcq
Lmd

= 1− 4

π

∑
k

f2k ∆αk (14)

where fk is the stator Magneto-Motive Force (MMF) applied
to the kth flux barrier and ∆αk is the flux barrier position
along the airgap. As mentioned previously, the inductance is
written in per-unit value, referred to Lmd. The inductance Lcq
is affected by the rotor layer number and position, that are
designed starting from the number of stator slots. Assumed
a number of stator slots per pole pair ns = 6q, the number
of equivalent rotor slots per pole pair should be nr = ns ±
4. This combination is a trade-off between the torque ripple
minimization and the iron loss reduction, as addressed in [8].
The flow-through component Lfq can be estimated with [6]:

Lfq
Lmd

=
4

π

p kc g

Rx

∑
k

f2k
sk
hc,k

(15)

where sk is the flux barrier length (in the d-axis direction) and
hc is the flux barrier width (q-axis direction). This inductance
is mainly affected by the flux barriers width: thicker is the
barriers, lower is Lfq . Moreover, thick barriers means thin
flux carriers, that can saturate, increasing the magnetizing
current needed to reach the target flux linkage. To avoid
premature rotor iron saturation, the total flux carrier width
must be at least equal to the stator yoke ly , limiting the
total barrier width. About the single hc,k, different rules
can be used. The suggestion given in [6] is to set constant
barrier permeance. This ratio reduces the torque ripple if the
machine is complete [1], and limits the problems of local
demagnetization if permanent magnets are inserted in the flux
barrier. Moreover, constant barrier permeance rule can lead
to thin flux carriers, that will saturate. A further degree of
freedom in the flux barrier definition (called ∆x) is added,
according to [9]. This parameter admits the flux barriers move
along the q-axis, as shown in Fig. 2. In this picture, the blue
lines represent the barriers axes, defined by ∆α, and ∆x is
constant to each flux barriers. The picture highlight that ∆x
does not affect the position of the flux barriers along the airgap,
and so the number of rotor slots. Furthermore, ∆x permits to
design the rotor in order to have constant flux carrier width
and avoid unwanted local saturations.

E. Rotor ribs effect

The flow-through component models the flux carriers as
disconnected one from the others. In real machines, iron ribs
connect the flux carriers along the q-axis, to make the rotor
mechanically feasible. This iron ribs act like magnetic short-
circuit, providing a preferential path for flux lines along the
q-axis. The related flux linkage is limited by the ribs iron
saturation and their small dimension. Furthermore, to have an
accurate estimation, an additional Lmq component must be
introduced. According to [6], the rotor ribs inductance Lrq

(a) (b) (c)

Fig. 2. Effect of ∆x on rotor flux barriers: ∆x = −1 (a), ∆x = 0 (b) and
∆x = +1 (c). Blue lines reports the barriers axes

can be evaluated setting a given flux density Bribs in the ribs,
from the saturated region of the iron characteristic.

Lrq =
4

π
kwNs wribs l

Bribs
iq

(16)

where wribs is the total ribs width in the flux barrier.

F. Power factor equation and slot leakage inductance

The power factor cosϕ is another important performance
figure of SyR machines. If the motor is not well-designed,
power factor can be low, increasing the inverter size. Neglect-
ing the phase resistance, the power factor can be evaluated
as:

cosϕ = sin(γ − δ) (17)

where γ and δ are the current and flux linkage angles respec-
tively, both evaluated starting from the d-axis. The leakage
inductance affects the power factor, but its influence is not
clear from (17). Manipulations of (17) lead to complicate
and less intuitive equations. To highlight the Lσ effect, the
maximum power factor equation (18), introduced in [7], can
be used:

cosϕmax =
Ld − Lq
Ld + Lq

=
Lmd − Lmq

Lmd + Lmq + 2Lσ
(18)

Substituting (8) in (18), it follows:

cosϕmax =
kdq

2− kdq − Lσ
Lmd

(19)

The first parameter affecting the power factor is the anisotropy.
For a poor anisotropy machine (kdq << 1), the power factor
will be low, even neglecting the leakage effect (Lσ = 0).
This behavior is in accordance with the need to have high
anisotropy (kdq ' 1) for the torque purpose. The other param-
eter that reduce the power factor is the leakage inductance Lσ ,
as said before. This inductance depends on the slot size: bigger
the slot, higher Lσ and lower the power factor. According to
[6], the leakage inductance can be evaluated as:

Lσ
Lmd

=
4

π
p
kc g

Rx
ps
∑
k

∆f2s,k (20)

where ∆fs,k are the stator MMF staircase in pu, and ps is a
permeance factor of the stator slot, evaluated as:

ps =
d0
c0

+
d1
c0

1
c1
c0
− 1

ln

(
c1
c0

)
+
d2
c2
h (21)



Fig. 3. Stator slot dimensions for leakage inductance evaluation

TABLE I
DESIGN PROCESS INPUTS

Number of pole pairs p 3
Number of slots per pole per phase q 2

Stator outer radius [mm] R 87.5
Stack length [mm] L 110

Airgap length [mm] g 0.325
Iron flux density [T ] BFe 1.4

Thermal loading factor [kW/m2] kj 2.8
Tooth width factor kt 0.89

Number of turns in series per phase Ns 108

where h is defined in (22) and the other parameters are the
dimensions defined in Fig. 3.

h =
β2 − β4

4 − ln(β)− 3
4

(1− β)(1− β2)2
(22)

with β = c1/c2.

III. PARAMETRIC DESIGN PLANE T (x, b)− cosϕ(x, b)

The core of the analytical design process presented in
[6] is the parametric design plane. On this plot, torque and
power factor are reported as a function of the two per-unit
factor x and b, defined previously. Each point of the xb-plane
correspond to a different machine, according to the design
rules and equation introduced in this section. Table I reports
the inputs of the design process, with reference of an existing
SyR machine [10]. The input set contain both geometric
characteristic (R, L, g, p, q, kt) and design constraints as the
target flux density in the iron BFe and the thermal loading kj .

Fig. 4 shows the design plane obtained from the data re-
ported in Table I. The torque contours (7) are plotted in red,
while the power factor contours (17) are reported in blue.
Three machines are designed starting from this plane, and are
reported in Fig. 5. They are:

• Mot1: same stator of the IM presented in [10]. x = 0.68
and b = 0.55

• Mot2: highlights the effect of x variations. x = 0.58 and
b = 0.55

• Mot3: highlights the effect of b variations. x = 0.68 and
b = 0.45

Starting from Mot1, the x reduction leads to an increase of
the slot area, resulting in higher output torque. The slot area
growth causes also a cosϕmax reduction. Power factor curves

Fig. 4. Parametric design plane obtained with the analytical model: Torque
(red contours) and power factor (blue contours) function of x and b

(a) (b) (c)

Fig. 5. Design examples from the xb-plane: Mot1 (a), Mot2 (b) and Mot3(c)

do not reflect this trend because of the working point change.
The current angle γ grows with the x reduction, increasing
cosϕ up to its maximum value. About b reductions, the trend
is opposite because Lfq heavily decreases with the flux barrier
width increase. The effect on torque is less evident because the
reduced flux linkage tends to reduce torque, while the higher
q-axis current (caused by an increase of the slot area and a
decrease of the magnetizing current) tends to keep the torque
high. On the contrary, the b reduction increase the cosϕmax
thanks to the higher anisotropy. As in the previous, the trend
on cosϕ is slightly different because of the different current
angle.

A. Preliminary FEA validation

To verify the accuracy of the analytical model, the whole
design domain is analyzed with FEA simulations. Fig. 6 re-
ports the FEA results of torque (Fig. 6a) and power factor
(Fig. 6b) with dashed lines, while the analytical model esti-
mation are reported with solid contours. The different contour
colors highlight the different values of the performance figure.
The discrepancy between the analytical model and the FEA
validation is evident: the torque difference is around 5 Nm,
while the cosϕ gap is 0.04 circa. Furthermore, also the contour
shape of the analytical model is slightly different of the FEA
simulations contours, attesting a model error.

B. Model refinements

In this section, the refinements on the analytical model
are presented. The main behaviors neglected in the analytical
model (from now addressed as ’initial model’) are the iron



(a) (b)

Fig. 6. Comparison between the initial model estimation (solid lines) and the
FEA simulation (dashed lines) of torque (a) and power factor (b) evaluated
in the working point defined by the loading factors.

MMF drops along the d-axis and the cross-saturation. Some
analytical models exist for the former effect but they rely
on complex calculations and different iterations to keep into
account the non-linear iron characteristic. The latter effect is
hard to formalize and the existing methods are not precise. The
solution proposed in this paper is to correct the flux linkage
model (1) with three factors as reported in (23). The factor
ksat accounts for the iron saturation along the d-axis, and
it is evaluated with a trivial analytical model, while kcross,d
and kcross,q are correction factors used to model the cross-
saturation effect. If all the added factors are equal to one, the
model is equal to the initial model.{

λd = kcross,d (Lmdksat
+ Lσ) id

λq = kcross,q (Lmq + Lσ) iq
(23)

C. Saturation factor ksat
The initial model accounts only for the MMF drop along the

airgap, neglecting the iron path drops. Ideally, the iron relative
permeability µFe is much higher than the air permeability, and
the omission is acceptable. Moreover, if the iron is near or
over its saturation level, the relative permeability drastically
fall down, increasing the iron MMF drop. An accurate model
of the stator iron should take into account the contribution
of all the tooth, in different load conditions, and the whole
yoke, with not constant flux density. This kind of approach is
based on heavy calculations, that increase the computational
time of the process, without having a huge advantage in terms
of precision. The easier solution, adopted here, is to accounts
only for the most loaded parts of the machine. This approach is
quite precise, because the main MMF drops happen in this iron
sections. Furthermore, no iterative loops are needed because
the flux density in this regions is imposed as design input.
Fig. 7a shows the considered part on the machine geometry.
They are:

• Two stator teeth (length equal to 2 lt), shown in green
• The section of the stator yoke between two teeth (length

equal to lsat,s = π
3pq (R− ly

2 )), highlighted in red
• The inner rotor flux carrier (length equal to lsat,r),

colored in blue

(a) (b)

Fig. 7. Iron section added to the d-axis model for the saturation factor
computation (a) and equivalent circuit (b)

The equivalent circuit of the d-axis is reported in Fig. 7b. The
added part are the colored one, with the same colors as the
highlighted sections on the machine lamination. The saturation
factor ksat is evaluated according to (24)

ksat = 1 +
Fy + Ft + Fr

Fg
(24)

where the therms F represents the MMF drops in the magnetic
equivalent circuit according to Fig. 7b. They are evaluated
starting from the sizes of the colored areas of Fig. 7a and the
flux density inputs:

Fy = Hy lsat,s = H(BFe)
π

3pq
(R− ly

2
) (25)

Ft = Ht 2 lt = H(BFe/kt) 2 lt (26)

Fr = Hr lsat,r = H(BFe) lsat,r (27)

Fg =
bBFe
µ0

kc g (28)

The saturation factor is multiplied to the magnetizing cur-
rent id in order to increase it and reach the target flux linkage,
while the d-axis magnetizing inductance is re-computed with
the correct d-axis current. The results are:

• an increase of the magnetizing current needed to reach
the target flux density

• a reduction of the d-axis magnetizing inductance.
The former effect change the design working point, while the
latter affects the magnetic model, only on the d-axis. The base
value for Lmq computation is not updated with the saturation
factor. Fig. 8 shows the ksat values of the case study presented
in the previous section. The saturation effect increase with the
reduction of the two design parameters. The x decrease causes
a rise of lt, and so, the MMF tooth drop, while the b reduction
causes a shrinking of the yoke length, that increase the tooth
length, and so the MMF tooth drop. An interesting insight of
this upgrade can be highlight by comparing Fig. 6 and Fig. 8.
The ksat value is high where the FEA-model discrepancy
is high, while is closer to one where the discrepancy is
lower. This feature allows to change the contour shape of the
performance figures, making them closer to the FEA results.



Fig. 8. Saturation factor values for the case study in Table I

(a) (b)

Fig. 9. Comparison between the analytical model with saturation factor (solid
lines) and the FEA simulations (dashed lines) on torque (a) and power factor
(b)

Fig. 9 reports the results of this upgrade. In the two plots,
the torque (Fig. 9a) and the power factor (Fig. 9b) contours
are reported. The results of the upgraded analytical model are
plotted in solid lines, while the FEA results are plotted with
dashed lines. The improvement is evident: the contours shape
of the saturated model is close to the FEA contours. Moreover,
a limited discrepancy between model and FEA still exists in
some areas of the plane.

D. Fast FEA fix of cross-saturation error (FEAfix)

The cross-saturation effect is the reduction of one flux
linkage term due to the current on the other axis. This behavior
is neglect in the initial model and analytical expressions to
compute the cross-saturation are difficult to define and not
always accurate. Moreover, the proposed solution is to model
the cross-saturation using two coefficient (one for each axis)
multiplied for the flux linkages obtained by the analytical
model, as reported in (23). This two factors (named kcross,d
and kcross,q) are computed with fast FEA simulations of
selected machines on the xb-plane. They are evaluated as:

kcross,d =
λd,FEA

(Lmdksat
+ Lσ) id

(29)

kcross,q =
λq,FEA

(Lmq + Lσ) iq
(30)

(a) (b)

Fig. 10. Cross-saturation factors kcross,d (a) and kcross,q (b) over the x, b
plane. Blue: using 1 FEA simulation (FEAfix1 - black dot). Red: using4 FEA
simulations (FEAfix4 - black diamonds).

where the subscript FEA point out the FEA results. Ideally, the
whole design domain can be FEA evaluated to have precise
estimations, but the speed advantage given by the analytical
approach will be lost. The proposed solution is to select only
few significant points of the design domain for the FEA-
calibration, and then extend the factors obtained to the full
design domain. The first solution, called FEAfix1 computes
kcross,d and kcross,q only in the center of the design domain,
and use this value in the full (x, b) range. A more precise
and computing-expensive solution is called FEAfix4 and relies
on the FEA evaluation of the four machines at the corners
of the design domain. The factors locally obtained are then
extended to the full xb-plane using linear interpolation. Fig. 10
shows the correction factors in the xb-plane computed for
the case study. The blue surfaces are the FEAfix1 results,
while FEAfix4 results are reported in red. According to the
definition, the FEAfix1 coefficients are constant in the whole
xb domain, and their values correspond to the FEA results
in the central point (black circle). The results using FEAfix4
are more complex: the red surfaces are obtained using linear
interpolation between the four FEA-evaluated points, tagged
with black diamonds. The cross-saturation factors are always
lower than one, as expected. In general, kcross,q is lower
than kcross,d because the q-axis flux linkage is lower and
the relative effect of the cross saturation is higher. The cross
saturation correction factors are related to the dual currents:
kcross,d has a similar shape of −iq , while kcross,q shape is
similar to −id surface. This is reasonable and holds with
the definition of cross-saturation: higher the current on the
other axis, lower the flux linkage on the considered axis.
The validation process with the entire xb-plane evaluated
with FEA simulations confirms the benefits of the FEAfix
procedure. Fig. 11 shows the comparison between FEAfix
models and full FEA simulations. Thanks to the minimal FEA
approach, the model contours and the FEA contours are quite
superimposed. The maximum accuracy is reached, obliviously,
near the FEAfix simulations points, tagged in black in Fig. 11.



(a) (b)

(c) (d)

Fig. 11. Comparison between the performance figures estimated with the
FEAfix models and the FEA validation. Torque (a) and power factor (b) of
FEAfix1 model and torque (c) and power factor (d) of FEAfix4 model.

IV. RESULTS

In this section the advantages and drawbacks of each model
analyzed in this paper are presented and compared. The four
models are:

• Initial model, marked in red. It is the starting model
from [6], represented with (1) or (23) with ksat = 1,
kcross,d = 1, kcrossq = 1.

• Saturated model, marked in greed. In this model, only
the d-axis saturation kept into account. Represented with
(23) with ksat > 1, kcross,d = 1, kcross,q = 1.

• FEAfix1 model, marked in blue. In this model, both satu-
ration and cross saturation are modeled with 1 FEA simu-
lation. Represented with (23) with ksat > 1, kcross,d < 1,
kcross,q < 1.

• FEAfix4 model, marked in orange. In this model, both
saturation and cross saturation are modeled with 4 FEA
simulations. Represented with (23) with ksat > 1,
kcross,d < 1, kcross,q < 1.

First, a design example is presented, with the same benchmark
machines introduced before. Than, a comprehensive compari-
son between the models is performed, dealing with precision
and computational time aspects.

A. Case-study designs

A first comparison on the models is done on the three
benchmark machines introduced in the second section. Each
model estimation of each machine is compared with a FEA
simulation, evaluated in the working point computed by the

(a)

(b)

Fig. 12. Comparison between the analytical models and FEA results for the
three benchmark machines. Torque (a) and power factor (b)

design process. This is important because the saturation factor
change the d-axis current, changing the working point. Fig. 12
shows the torque (Fig. 12a) and power factor (Fig. 12b) of the
three benchmark machines, estimated by the models (colored
bars) and computed with FEA simulations (black transparent
bars). The estimations of the initial model (red bars) are
far from the FEA simulations: torque is overestimated of
about 4-6 Nm (30% circa of the estimated torque), while the
power factor is less overestimated, but the error is near 0.04.
The saturation factor (green bars) heavily improve the torque
forecast, thanks to the improvement on the λmd estimation.
The power factor is underestimate with this model, but the
discrepancy between the analytical calculation and the FEA
results is lower. The FEAfix procedures (FEAfix1 in blue and
FEAfix4 in orange) solve definitively the estimation problem,
eliminating the gap between the model and FEA results.

B. Comparison of accuracy and computational time

Dealing with the model comparison, an important term is
the computational time needed to draw the xb-plane. The
trade-off between the computational time and the model preci-
sion on the torque and power factor estimation is summarized
in Fig. 13. The three plots compare the computational time
(Fig. 13a), the mean torque error (Fig. 13b) and the mean
power factor error (Fig. 13c) of the three benchmark machines
designed with the four models previously analyzed. From this
comparison is evident that the higher time consumption of
the Saturated model is more than balanced by a dramatically
higher precision on torque estimation, respect to the Initial
model. Regarding the power factor, the benefit is present, but
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Fig. 13. Tradeoff between the behaviors of the four analyzed models.
Computational time (a), mean torque error respect to FEA simulations (b)
and mean power factor error respect to FEA simulations (c), following the
designs of the previous section.

less evident than on torque. The FEAfix approach definitively
solves the estimation problem, by cutting off the power factor
error and still reducing the torque error. The cost of the higher
precision is the computational time: one FEA simulation for
the FEAfix procedure takes approximatively 20 s. This means
that the FEAfix1 model takes less more than 20 seconds to
be computed, while the FEAfix4 model can take up to 80
seconds.

V. CONCLUSION

In this paper, a fast approach to the SyR machine design
is reviewed and its weak points are improved. The upgrades
aim to increase the model accuracy without increasing the
computational time and maintaining the generality of the
analytical model. The first upgrade to the original model
dealt with the iron saturation effect. An easy equation based
on a simplified equivalent circuit was added increasing the
performance estimation precision with no extra computational
efforts. The second upgrade was the enhance of the analytical
model with FEA simulations. This hybridized model, called
FEAfix, uses selected FEA points to improve the output figures
estimation of an extensive class of SyR machines. This strategy
allows to remove the estimation errors, keeping the generality
of the model and with a limited computational time growth.

All the improvements are validated on a benchmark case using
accurate FEA simulations. The FEA-augmented model is than
included in SyR-e, an open-source framework for the electrical
machine design, evaluation and optimization, enhancing the
tool capability.
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