
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Numerical Simulation of Cascaded Planar Metasurfaces Exhibiting Bianisotropic Properties / Verni, F.; Grbic, Anthony;
Vecchi, Giuseppe. - (2018). ((Intervento presentato al convegno 2018 IEEE International Symposium on Antennas and
Propagation and USNC-URSI Radio Science Meeting tenutosi a Boston nel 8 - 13 July 2018.

Original

Numerical Simulation of Cascaded Planar Metasurfaces Exhibiting Bianisotropic Properties

ieee

Publisher:

Published
DOI:

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2712390 since: 2018-09-06T18:17:24Z

IEEE



Numerical Simulation of Cascaded Planar Metasurfaces
Exhibiting Bianisotropic Properties

F. Verńı*1, A. Grbic2, and G. Vecchi1

1 Dipartimento di Elettronica e Telecomunicazioni, Politecnico di
Torino, Torino, Italy

2 Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI, USA

Metasurfaces (MTSs) are electrically-thin metamaterial layers designed to exhibit unusual
reflective/refractive properties or guided wave characteristics. The goal of this work is to
develop a full-wave fast-solver (Method of Moments based on Fast Fourier Transform) for the
design of metasurfaces with bianisotropic responses, with a special emphasis on modulated
metasurfaces, i.e. aperiodic cell arrangements. Bianisotropic metasurfaces can be realized
by cascading multiple isotropic/anisotropic electric sheet admittances (patterned metallic
claddings), with dielectric spacers separating them. Here, we present a numerical, spatial
domain approach to computing the electromagnetic response of cascaded planar electric sheet
admittances by means of Surface Integral Equations (SIEs). Each sheet admittance (i) is
modeled as a zero-thickness electric discontinuity characterized by the following Impedance
Boundary Condition (IBC):

eav = Z i
e · jav (1)

where Z i
e is a 2 × 2 tensor, which can be anisotropic, and varying in space. The terms jav

and eav represent the electric surface currents and the average electric field tangential to the
surface Σi, respectively. Assuming an arbitrary incident field, einc, we can write the Electric
Field Integral Equation (EFIE) for planar cascaded metasurfaces as:

n̂× (Ze · j) + n̂× Z0L (j) = n̂× einc (2)

where L is the Electric Field Integral Operator (EFIO). A conventional Galerkin testing
procedure is assumed. The overall domain Σ =

⋃
Σi is approximated by a mesh of planar

triangles. The solution j is approximated as j ≈
∑

n jnfn where fn, n = 1, . . . , N are Rao-
Wilton-Glisson (RWG) basis functions defined on the N internal edges of the mesh. The
unit vector n̂ is normal to the surface Σ. Ze is a matrix which accounts for the contribution
of each impedance tensor Z i

e. It should be noted that the tensor Z i
e does not include the

dielectric spacers. The spatial dispersion resulting from the electrical thickness of the cas-
caded metasurface (multiple electric sheet admittances separated by spacers) is taken into
account by the Green’s functions for multi-layered media. It is worth noting that cascaded
metasurfaces can also be analytically modeled as a single bianisotropic Generalized Sheet
Transition Condition (GSTC) with spatially dispersive surface parameters. In the design
of bianisotropic metasurfaces, one typically goes from the single bianisotropic GSTC sheet
to a realizable, cascaded metasurface consisting of multiple electric sheet admittances. This
process can be performed analytically using Wave Matrices for periodic metasurfaces (A.
Ranjbar and A. Grbic, Phys. Rev. B, 95, 205114, 2017), but becomes rather challenging for
aperiodic designs. The goal of the proposed full-wave solver is to aid in this process, and
avoid approximate strategies such as employing the local periodicity approximation.


