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HYBRID STOCHASTIC KINETIC DESCRIPTION OF
TWO-DIMENSIONAL TRAFFIC DYNAMICS∗

MICHAEL HERTY† , ANDREA TOSIN‡ , GIUSEPPE VISCONTI† , AND MATTIA ZANELLA‡

Abstract. In this work we present a two-dimensional kinetic traffic model which takes into
account speed changes both when vehicles interact along the road lanes and when they change lane.
Assuming that lane changes are less frequent than interactions along the same lane and considering
that their mathematical description can be done up to some uncertainty in the model parameters,
we derive a hybrid stochastic Fokker–Planck–Boltzmann equation in the quasi-invariant interaction
limit. By means of suitable numerical methods, precisely structure preserving and direct Monte Carlo
schemes, we use this equation to compute theoretical speed-density diagrams of traffic both along
and across the lanes, including estimates of the data dispersion, and validate them against real data.

Key words. Boltzmann and Fokker–Planck equations, uncertainty quantification, structure
preserving schemes, fundamental diagrams, data dispersion
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1. Introduction. In recent years the legacy of classical kinetic theory has found
fruitful applications in the mathematical description of social phenomena [3, 8, 11, 21,
38, 46], including those, such as traffic flow of both vehicles and pedestrians, which
mix mechanical and behavioral aspects of the agents [2, 12, 13, 18, 19, 23, 28, 43].
For the sake of completeness, however, we mention that the mathematical modeling
of vehicular traffic by means of methods of the kinetic theory has by now a quite long
history dating back to the pioneering works [40, 41, 42].

The construction of mathematical models of these phenomena has to face the
lack of fundamental principles and background theories: physical forces normally
driving the dynamics in classical particle systems like gases and fluids are replaced by
empirical interactions among the agents which often are known only statistically; cf.,
e.g., [5]. Therefore models are in principle characterized by random inputs, such as,
e.g., uncertain parameters, which may greatly impact on the realism of the theoretical
results with respect to the empirical observations. This is particularly true for models,
such as the kinetic ones, which link the individual interactions among the agents to the
collective patterns emerging from such interactions. Recent efforts in this direction
exploit the uncertainty quantification (UQ) setting; see, e.g., [4, 9, 15, 26, 47] for
an introduction. As a matter of fact, UQ methods for stochastic kinetic equations
represent a fundamental step toward the actual validation of kinetic models against
real data. Some approaches toward the incorporation of data in those models have
been also undertaken recently; see, e.g., [17, 22].
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2738 HERTY, TOSIN, VISCONTI, AND ZANELLA

In this paper we propose a new kinetic traffic model, which takes into account
speed changes due both to interactions among the vehicles along the road lanes and to
lane changes. Although a few traffic models for lane changes are already available in
the literature (cf., e.g., [25, 33]), here the novelty consists in the fact that our kinetic
model allows us to study the fundamental diagrams of traffic both for the classical
case of the flow of vehicles along the lanes and for the flow of vehicles across the lanes,
which is instead less classical also from the empirical point of view.

In more detail, besides the acceleration and braking dynamics typical of one-
dimensional traffic models along a lane, we suggest that microscopic vehicle dynamics
across the lanes are simply a relaxation toward a desired lateral speed, which how-
ever is not known deterministically and hence, in our context, plays the role of the
aforesaid stochastic parameter. After implementing such microscopic dynamical rules
in a stochastic Boltzmann-type equation, owing to the empirical evidence that lane
changes are much less frequent than one-to-one vehicle interactions along the lanes,
we exploit the quasi-invariant limit technique [46] to finally derive a hybrid Fokker–
Planck–Boltzmann equation for the the probability density of the vehicles. In this
equation a nonlinear Fokker–Planck operator describes the speed variations along the
lanes, whereas a Boltzmann-type collision operator takes into account the speed varia-
tions across the lanes. To the best of our knowledge this describes a novel approach to
multilane traffic. It is in particular different from kinetic models where lane changing
is considered as additional balance terms to a kinetic equation [29]. In fact, the latter
modeling does not allow one to account for the intrinsic dynamics across the lanes.

In simplified cases, such as those of mean-field-type interactions among the ve-
hicles, we obtain from the model analytical information on the large-time trend of
the system. In particular, we are able to compute the asymptotic probability density
of the cars and some of its relevant statistical moments, for instance, the mean and
the energy. In the general case, however, the large-time behavior of the model is not
known analytically. In order to investigate it accurately, and in particular to find the
predicted fundamental diagrams of traffic, we build a suitable numerical scheme for the
hybrid stochastic kinetic problem, which in particular extends second order structure
preserving (SP) schemes for UQ available in the literature [15, 39] to fully nonlinear
Fokker–Planck equations with nonvanishing diffusion. From numerical simulations
we observe that the average trend of our model reproduces correctly the fundamental
diagrams of traffic both along and across the lanes. Moreover, the quantification of
the uncertainty introduced by the stochastic parameter in the dynamics across the
lanes proves to be essential in accounting at a theoretical level for the dispersion of
the data around the mean normally observed in experimental fundamental diagrams.

Specifically, the rest of the paper is organized as follows. In section 2 we discuss
the microscopic models of traffic dynamics along and across the road lanes, which
are at the basis of our kinetic model. As usual in kinetic theory, we give them in
the form of binary (i.e., one-to-one) interactions among the vehicles. In section 3
we formulate the stochastic Boltzmann-type equation and we study, in a simplified
setting, the evolution of some of its thermodynamic-like moments (mean speed and
energy), which give insights into the macroscopic trends of the system. In section 4
we derive the hybrid stochastic kinetic model and, again under suitable simplifying
assumptions, we investigate its asymptotic distributions. In section 5 we build and
test the numerical scheme for the hybrid problem, then we employ it to investigate,
also by means of comparison with real data, the fundamental diagrams of traffic
produced by the model in the general case. Finally, in section 6 we summarize the
main contributions of the work and briefly sketch research perspectives.
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Table 1
Main variables and parameters of the kinetic model.

Quantity Description

vx, vy Preinteraction microscopic speeds in the x- and y-direction
wx, wy Microscopic speeds of the leading vehicle in the x- and y-direction
v′x, v′y Postinteraction microscopic speeds in the x- and y-direction

Wx, Wy Reference speeds in the interactions in the x- and y-direction
ux, uy Macroscopic speeds of the flow in the x- and y-direction
VA, VB Target speeds in acceleration and deceleration in the x-direction

∆v Speed jump in acceleration in the x-direction
P (ρ) Probability of accelerating in the x-direction
vd Desired lateral speed (y-direction)

2. Two-dimensional microscopic dynamics. Unlike most kinetic models of
vehicular traffic available in the literature, which typically treat the flow of vehicles
as one-dimensional, in this paper we consider the case of genuinely two-dimensional
velocities describing the flow along the road and across the lanes. In particular, we
focus on a space homogeneous approach assuming that the density of the vehicles does
not depend on the space position. This setting is very convenient to study the large
time behavior of the system. Consistently, the microscopic state of a vehicle will be
the pair v := (vx, vy), where vx is the speed along the road (x-direction) and vy the
lateral speed (y-direction). Notice that vx can be only positive, because the flow of
vehicles in the longitudinal direction of a road is unidirectional, while vy can be either
positive or negative, because lane changes are possible both leftward and rightward.
Therefore we assume

0 ≤ vx ≤ 1, |vy| ≤ ε,

where 0 < ε ≤ 1 since lateral speeds are in general lower than longitudinal ones. We
write

Vx := [0, 1], Vy := [−ε, ε]

for the domains of the two components of the velocity, which have to be understood as
dimensionless and referred to suitable characteristic maximal values. The microscopic
state space is therefore the set V := Vx × Vy ⊂ R2.

The starting point of a kinetic model is the description of the microscopic speed
transitions produced by binary interactions between any two vehicles. In our two-
dimensional setting we need to design microscopic interactions both in the x-direction
and in the y-direction to account for different dynamics in the two main directions
of the flow. In particular, we assume that the interaction frequency across the lanes
(i.e., in the y-direction) is much smaller than along lanes (i.e., in the x-direction) and,
consistently, that the x-dynamics modify mainly the speed vx leaving vy unaltered,
while the y-dynamics modify mainly the speed vy leaving vx unaltered. Table 1
summarizes the main variables and parameters which we will use for the description
of the microscopic interactions and of the kinetic model.

2.1. Microscopic rules for the x-dynamics. Following [23, 51], we assume
that the postinteraction speed v′x in the x-direction is given by

(2.1a) v′x =

vx + αP (ρ)(VA − vx) +
√
αP (ρ)DA(vx)ξ if vx < Wx,

vx + α(1− P (ρ))(VB − vx) +
√
α(1− P (ρ))DB(vx)ξ if vx > Wx,

where
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2740 HERTY, TOSIN, VISCONTI, AND ZANELLA

• 0 < α ≤ 1 is a constant weighting the strength of the interaction;
• P (ρ) ∈ [0, 1] is the probability of accelerating given as a function of the density
ρ of the vehicles (cf. [42] and see below for a more detailed discussion);

• VA, VB are target speeds in acceleration and deceleration, respectively;
• ξ is a random variable modeling a stochastic fluctuation with zero mean and

finite variance σ2 > 0, and DA, DB ≥ 0 are diffusion coefficients depending
on the speed vx itself (see below).

From (2.1a) we see that the definition of v′x depends on the comparison between
the current speed vx and a reference speed Wx ∈ [0, 1], which discriminates if the
vehicle accelerates or brakes. Possible choices for Wx are

Wx = wx or Wx = ux,

where wx is the x-component of the velocity w := (wx, wy) of a leading vehicle
whereas ux denotes the mean speed of the flow in x-direction; we refer to [23] for
an extensive discussion. If Wx = wx, then we are in the case of genuine binary
interactions and we assume parallelly that

(2.1b) w′x = wx,

i.e., that the x-speed of the leading vehicle remains unchanged after the interaction.
Conversely, if Wx = ux, we are in the case of the so-called mean-field interactions,
which can be regarded as an approximation of the previous ones; cf. [51].

The probability of accelerating P = P (ρ) is in general a nonincreasing function
of the density ρ of the vehicles. In more detail, assuming that 0 ≤ ρ ≤ 1, where
ρ = 1 is the dimensionless value corresponding to the maximum density that can be
accommodated in a fully congested road (bumper-to-bumper traffic), one expects that
P → 1− when ρ→ 0+ and that P → 0+ when ρ→ 1−. The expression of P that we
consider here is in particular

(2.2) P (ρ) := 1− ρ.

The target speeds VA, VB describe instead the driving style of the individuals. For
consistency, we require that vx < VA ≤ 1 and that 0 ≤ VB < vx. In [23, 51] several
choices of VA and VB are discussed along with their influence on the structure of the
resulting fundamental diagrams of traffic. In this paper we stick to the modeling of
VA and VB introduced in [51], namely,

(2.3) VA := min{vx + ∆v, 1}, VB := P (ρ)Wx,

where ∆v > 0 is a fixed parameter denoting the speed jump in acceleration while Wx

is the reference speed discussed above.
The local relevance of the stochastic fluctuation ξ, modeling random effects in

the choice of the postinteraction speed by the drivers, is weighted by the diffusion
coefficients DA, DB , which here we consider of the form

(2.4)
DA(vx) := ν(vx)(VA − vx)κ

DB(vx) := ν(vx)(vx − VB)κ
with ν(vx) := vx(1− vx) and κ ≥ 1;

cf. [23]. In particular, the function ν makes the stocastic fluctuation vanish at the
boundary of Vx (the x-speed domain), i.e., for vx = 0 and vx = 1.
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For a general unbounded stochastic fluctuation ξ ∈ R it may happen that the
postinteraction speed v′x resulting from (2.1a) lies outside Vx, implying that not all
binary interactions are admissible. In order to prevent this it is sufficient to consider
compactly supported stochastic fluctuations as stated in the following result.

Proposition 1. If

|ξ| ≤ min

{
1− αP (ρ)√

αP (ρ)
,

1− α(1− P (ρ))√
α(1− P (ρ))

}
,

then v′x ∈ Vx for all vx ∈ Vx.

Proof. Let us consider the case vx < Wx in (2.1a). Since 0 ≤ VA − vx ≤ 1,
0 ≤ ν(vx) ≤ 1, and κ ≥ 1 we have DA(vx)ξ ≤ (VA − vx)|ξ|, whence

v′x ≤
(

1− αP (ρ)−
√
αP (ρ)|ξ|

)
vx +

(
αP (ρ) +

√
αP (ρ)|ξ|

)
VA.

If αP (ρ) +
√
αP (ρ)|ξ| ≤ 1, i.e.,

(2.5) |ξ| ≤ 1− αP (ρ)√
αP (ρ)

,

the right-hand side is a convex combination of vx, VA. This implies

v′x ≤ max{vx, VA} = VA ≤ 1.

On the other hand, since ν(vx) ≤ vx we also have DA(vx)ξ ≥ −vx|ξ| and therefore

v′x ≥
(

1− αP (ρ)−
√
αP (ρ)|ξ|

)
vx + αP (ρ)VA,

which under (2.5) produces v′x ≥ αP (ρ)VA ≥ 0. Summarizing, condition (2.5) guar-
antees that v′x ∈ Vx for all vx < Wx. For the case vx > Wx in (2.1a) we proceed
similarly, thereby deducing also the other bound on |ξ|. In fact, we can compute

v′x ≥ vx
(

1− α(1− P (ρ))−
√
α(1− P (ρ))|ξ|

)
+ VB

(
α(1− P (ρ)) +

√
α(1− P (ρ))|ξ|

)
.

If α(1− P (ρ)) +
√
α(1− P (ρ))|ξ| ≤ 1, i.e.,

(2.6) |ξ| ≤ 1− α(1− P (ρ))√
α(1− P (ρ))

,

the right-hand side is a convex combination of vx, VB . This implies

v′x ≥ min{vx, VB} = VB ≥ 0.

On the other hand, under (2.6) we also have

v′x ≤ (1− (2α(1− P (ρ))− 1)) vx + VB (2α(1− P (ρ))− 1) ,

and thus v′x ≤ max{vx, VB} = vx ≤ 1. In fact, the right-hand side is a convex
combination of vx, VB since 2α(1− P (ρ))− 1 ≤ 1 holds true.

2.2. Microscopic rules for the y-dynamics. We model lane changing as a
continuous process in an additional spatial dimension. This dimension is orthogonal
to the driving direction and denoted by y. When vehicles move across the lanes (in
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2742 HERTY, TOSIN, VISCONTI, AND ZANELLA

y-direction) we consider the following dynamics:

(2.7) v′y = vy + β(ux)(vd(θ)− vy).

Notice that (2.7) accounts neither for binary nor for mean-field interactions. Since lane
changes are much less frequent than interactions along the main stream of traffic, the
rule (2.7) simply assumes that the lateral speed of the vehicles relaxes toward a desired
speed vd ∈ Vy. However, in order to add realism to the very basic dynamics (2.7),
we refrain from fixing deterministically the value of vd and assume instead that it
depends on a random parameter θ ∈ IΘ ⊆ R. We will come back more precisely to
this aspect in the next sections.

The term β(ux) in (2.7) models the relaxation rate toward the stochastic desired
speed vd(θ). Specifically, it depends on ux, which is the mean speed in the x-direction,
so that the postinteraction speed v′y across the lanes is affected by the traffic flow along
the lanes. Thinking of vd(θ) close on average in θ to zero, a conceivable choice is

β(ux) ∝ ux,

meaning that the faster the flow along the lanes the faster the relaxation toward vd(θ),
namely, toward zero on average in θ, across the lanes, consistently with the intuition
that lane changes are not necessary if the traffic is sufficiently fluent in the driving
directions.

Similarly to the x-dynamics discussed in section 2.1, also for (2.7) we need to
ensure that v′y ∈ Vy for all vy ∈ Vy. The following result holds.

Proposition 2. If β : [0, 1]→ [0, 1], then v′y ∈ Vy for all vy ∈ Vy.

Proof. By rewriting (2.7) as v′y = (1− β(ux))vy + β(ux)vd(θ) we see that, under
the assumption 0 ≤ β(ux) ≤ 1, the postinteraction speed v′y is a convex combination
of vy, vd(θ) ∈ Vy. Hence the thesis easily follows from the convexity of Vy.

3. Stochastic Boltzmann-type description. The interaction rules (2.1a)–
(2.1b), (2.7) can be encoded in a kinetic Boltzmann-type description of the dynamics.
This is particularly useful to study the asymptotic macroscopic trends of the system,
possibly taking advantage of suitable scaling and limit procedures.

For a certain realization θ ∈ IΘ of the random parameter appearing in (2.7), let

f = f(v, t; θ) : V× [0, +∞)→ R+

be the probability distribution function such that f(v, t; θ) dv is the fraction of ve-
hicles which at time t ≥ 0 have a microscopic speed in an infinitesimal volume of the
state space V centered at v. Since θ is a constant parameter in each y-interaction,
whose precise value is however unknown, we proceed along the lines of the so-called
UQ: we first consider the family of all possible dynamics of the system for θ ∈ IΘ,
which amounts to regarding f as parametrized by θ; next we average their outputs
according to the probability distribution of θ, say, h = h(θ) : IΘ → R+ such that∫
IΘ
h(θ) dθ = 1. We refer to [47] for more details.

According to standard arguments in kinetic theory (see, e.g., [36] and references
therein), the time evolution of f is given by the following dimensionless Boltzmann-
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type kinetic equation in weak form:

d

dt

∫
V
ϕ(v)f(v, t; θ) dv =

ρ

2

〈∫
V

∫
V

(ϕ(v′x)− ϕ(v)) f(v, t; θ)f(w, t; θ) dv dw

〉
+ γρ

∫
V

(
ϕ(v′y)− ϕ(v)

)
f(v, t; θ) dv,

(3.1)

where the following hold:
• ϕ : V→ R is a test function, i.e., any function depending on the microscopic

state v.
• The first term at the right-hand side accounts for the interactions in the x-

direction which leave the speed vy unaltered; in particular, v′x := (v′x, vy)
with v′x given by (2.1a). The coefficient ρ/2 is the interaction rate, which is
supposed to be proportional to the density of the vehicles and, in particu-
lar, takes into account the asymmetric form of the interactions (2.1a)–(2.1b)
(cf. [48]).

• 〈·〉 denotes the expectation with respect to the stochastic fluctuation ξ (cf.
(2.1a)).

• The second term at the right-hand side accounts for speed changes in the y-
direction which leave the speed vx unaltered; in particular, v′y := (vx, v

′
y) with

v′y given by (2.7). The coefficient γρ is the interaction rate, with 0 < γ � 1
modeling the much lower frequency of the interactions across the lanes with
respect to those along the lanes.

It is worth pointing out that (3.1) is a stochastic Boltzmann-type equation, be-
cause it is parametrized by the random parameter θ. From the knowledge of the
kinetic distribution function f one can compute θ-expected quantities, such as the
expected distribution function and its θ-variance:
(3.2)

f̄(v, t) :=

∫
IΘ

f(v, t; θ)h(θ) dθ, Varθ(f)(v, t) :=

∫
IΘ

f2(v, t; θ)h(θ) dθ−f̄2(v, t).

Similarly, from the thermodynamic-like moments of f parametrized by θ,

Mϕ(t; θ) :=

∫
V
ϕ(v)f(v, t; θ) dv,

one can recover the average expected v-moments and their θ-variance:

M̄ϕ(t) :=

∫
IΘ

Mϕ(t; θ)h(θ) dθ =

∫
V
ϕ(v)f̄(v, t) dv,

Varθ(Mϕ)(t) :=

∫
IΘ

M2(t; θ)h(θ) dθ − M̄2
ϕ(t),

which are useful tools for quantifying the uncertainty induced in the system dynamics
by the random parameter θ. Notice that from (3.1) it is in general not possible to
derive a closed equation for f̄(v, t) by simply integrating both sides with respect to
h(θ) dθ.

3.1. Evolution of the macroscopic quantities. First, from (3.1) with ϕ(v) =
1 we obtain that the integral of f with respect to v is conserved in time for all θ ∈ IΘ.
Hence, if f(·, t; θ) is chosen to be a probability density at t = 0 it will be so for all
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2744 HERTY, TOSIN, VISCONTI, AND ZANELLA

t > 0. The physical counterpart of this fact is the conservation of the mass of vehicles,
whose density is fixed by the parameter ρ ∈ [0, 1] appearing in (2.1a) and (3.1).

Let us now consider any pth order moment, p ∈ N, of f in the x-direction, which
amounts to taking ϕ(v) = vpx. Plugging into (3.1) we get

(3.3)
d

dt

∫
V
vpxf(v, t; θ) dv =

ρ

2

〈∫
V

∫
V

((v′x)p − vpx) f(v, t; θ)f(w, t; θ) dv dw

〉
,

because ϕ(v′y)− ϕ(v) = vpx − vpx = 0. Similarly, if we consider any pth order moment
of f in the y-direction, i.e., if we take ϕ(v) = vpy , we discover

(3.4)
d

dt

∫
V
vpyf(v, t; θ) dv = γρ

∫
V

(
(v′y)p − vpy

)
f(v, t; θ) dv,

because now ϕ(v′x)− ϕ(v) = vpy − vpy = 0.
This argument implies that the evolution of the macroscopic quantities in the

single directions of the traffic flow may be obtained from (3.1) by considering sepa-
rately the two collision operators at the right-hand side. Notice, however, that it is
in general not possible to reconstruct the kinetic distribution function f(·, t; θ) on
the whole space V of the microscopic states by taking in (3.1) test functions which
depend on only one of the two speeds, namely, by looking at the dynamics in only
one direction.

3.1.1. Macroscopic x-dynamics: The synchronized flow case. We now
investigate in more detail the evolution equations of some macroscopic quantities in
the x-direction. Precisely, we consider (2.1a)–(2.1b) and (3.3) in the simplified setting

VA = ux, VB = ux, Wx = ux,

which makes possible some explicit analytical computations.
The time evolution of the x-mean speed ux = ux(t; θ) results from (3.3) with

p = 1. In particular, recalling that the stochastic fluctuation ξ is a centered random
variable, we obtain

dux
dt

=
αρ

2

(
P (ρ)

∫ ε

−ε

∫ ux

0

(ux − vx)f(v, t; θ) dvx dvy

+ (1− P (ρ))

∫ ε

−ε

∫ 1

ux

(ux − vx)f(v, t; θ) dvx dvy

)
.

Now, observing that∫ ε

−ε

∫ ux

0

(ux − vx)f(v, t; θ) dvx dvy +

∫ ε

−ε

∫ 1

ux

(ux − vx)f(v, t; θ) dvx dvy

=

∫
V

(ux − vx)f(v, t; θ) dv = 0,

we get

dux
dt

=


αρ

2
(2P (ρ)− 1)

∫ ε

−ε

∫ ux

0

(ux − vx)f(v, t; θ) dvx dvy,

αρ

2
(1− 2P (ρ))

∫ ε

−ε

∫ 1

ux

(ux − vx)f(v, t; θ) dvx dvy,
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whence finally, summing the two equations,

dux
dt

=
αρ

4
(2P (ρ)− 1)

∫
V
|ux − vx|f(v, t; θ) dv.

By defining the marginal distribution fx(vx, t; θ) :=
∫ ε
−ε f(v, t; θ) dvy, we notice

that at the right-hand side it results in
∫
V |ux − vx|f(v, t; θ) dv = 0 if and only if

fx(vx, t; θ) = δux(vx). Therefore, if ρ(2P (ρ) − 1) 6= 0, the only steady state in the
x-direction, which allows for a stationary mean speed, is the synchronized traffic with
all the vehicles travelling at the same speed [27]. Conversely, for fx(vx, t; θ) 6= δux

(vx)
(and ρ 6= 0) the mean speed either increases or decreases in time depending on the
sign of 2P (ρ) − 1. In particular, it increases for P (ρ) > 1

2 , which defines the so-
called free phase of traffic when the vehicle density is small (recall that the mapping
ρ 7→ P (ρ) is nonincreasing), whereas it decreases for P (ρ) < 1

2 , which defines the
so-called congested phase of traffic when the vehicle density is large. The value ρ = ρc
such that P (ρc) = 1

2 is called the critical density. For the function (2.2) it results,
for instance, in ρc = 1

2 , which is consistent with the values found in [43, 44, 45] for
different kinetic models of traffic flow.

In order to further explore the macroscopic trends of the model it is useful to in-
vestigate also the evolution of the energy along the lanes, say, Ex = Ex(t; θ), namely
the second order x-moment of f obtained by taking p = 2 in (3.3). Since the complete
equation for Ex is quite complicated, we conveniently resort to a particular limit pro-
cedure, called the quasi-invariant interaction limit [46], which allows us to grasp the
essential time-asymptotic behavior of Ex. This technique is inspired by the so-called
grazing collision limit introduced in the classical kinetic theory in [49]; see also [20, 36].
Specifically, in (2.1a) we consider the regime of weak but frequent interactions. This
corresponds to taking α small (notice that α tunes both the strength of the speed
variation and the variance of the stochastic fluctuation) and to simultaneously scaling
the time as τ := αt. In practice, we pass from the characteristic t-scale of single
microscopic interactions to a larger time scale defined by the variable τ . Introducing
the scaled kinetic distribution function g(v, τ ; θ) := f(v, τ/α; θ) and noticing that
∂τg = 1

α∂tf we obtain from (3.3) with p = 2 the equation

dEx
dτ

=
ρ

2α

〈∫
V

∫
V

(
(v′x)2 − v2

x

)
g(v, τ ; θ)g(w, τ ; θ) dv dw

〉
,

whence, using (2.1a) together with 〈ξ〉 = 0,
〈
ξ2
〉

= σ2 and letting α→ 0+,

=
σ2ρ

2

(
P (ρ)

∫ ε

−ε

∫ ux

0

D2
A(vx)g(v, τ ; θ) dvx dvy

+ (1− P (ρ))

∫ ε

−ε

∫ 1

ux

D2
B(vx)g(v, τ ; θ) dvx dvy

)
+
ρ

2

(
u2
x − Ex

)
− ρ

2
(1− 2P (ρ))

∫
V
vx|ux − vx|g(v, τ ; θ) dv.

In particular, in the absence of stochastic fluctuation (σ2 = 0) this equation specializes
as

dEx
dτ

=
ρ

2

(
u2
x − Ex

)
− ρ

2
(1− 2P (ρ))

∫
V
vx|ux − vx|g(v, τ ; θ) dv.
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The term u2
x − Ex at the right-hand side is the opposite of the variance of the

microscopic speeds in the x-direction, and therefore it is nonpositive. Moreover, for
P (ρ) ≤ 1

2 , namely, in the congested phase of traffic, also the second term at the
right-hand side is nonpositive, which makes the energy on the whole nonincreasing
in time. Conversely, for P (ρ) > 1

2 , namely, in the free phase of traffic, the second
term at the right-hand side is nonnegative, and thus in principle the energy may
not be monotonic in this case. This implies that the convergence to the steady state
Ex → u2

x, consistent with the asymptotic state of synchronized traffic discussed before,
is in general smoother in the congested than in the free phase of traffic.

Finally, we stress that also in the case σ2 > 0 the full equation of Ex gives an
asymptotic trend of the energy consistent with the synchronized traffic (i.e., Ex → u2

x)
thanks to the fact that with the definition (2.4) it results in DA(ux) = DB(ux) = 0.

3.1.2. Macroscopic y-dynamics. We now study the evolution of the mean
speed uy = uy(t; θ) and energy Ey = Ey(t; θ) of traffic in the y-direction taking
advantage of (3.4) complemented with the microscopic dynamics (2.7).

For p = 1 we get
duy
dt

= γρβ(ux)(vd(θ)− uy),

and therefore asymptotically (
duy

dt → 0) it results in uy → vd(θ), consistently with
microscopic relaxation dynamics toward the desired speed vd.

To investigate the asymptotic trend of the energy Ey it is convenient to resort also
in this case to the quasi-invariant interaction limit. For this, we assume, for instance,
β(ux) = β0ux, 0 < β0 ≤ 1, and we consider the regime of small β0. By scaling the
time as τ := β0t and the distribution function as g(v, τ ; θ) := f(v, τ/β0; θ) we obtain
from (3.4)

d

dτ

∫
V
vpyg(v, τ ; θ) dv =

γρ

β0

∫
V

(
(v′y)p − vpy

)
g(v, τ ; θ) dv,

whence, for p = 2 and using (2.7) in the limit β0 → 0+,

dEy
dτ

= 2γρux(vd(θ)uy − Ey),

which asymptotically (
dEy

dτ → 0) produces Ey → vd(θ)uy → v2
d(θ). This implies

that the speed variance in the y-direction tends to zero, namely, that fy(vy, t; θ) →
δvd(θ)(vy), where fy denotes the marginal distribution fy(vy, t; θ) :=

∫ 1

0
f(v, t; θ) dvx.

4. Hybrid kinetic model. Considering again the full Boltzmann-type equa-
tion (3.1) with general terms VA, VB , Wx in (2.1a), we now use the quasi-invariant
interaction limit introduced in section 3.1.1 to derive a hybrid kinetic model under
the assumption of different interaction frequency among the vehicles along and across
the lanes; cf. section 2. The advantage of the resulting model is that it is simpler
than (3.1) but it still preserves the main features of the asymptotic dynamics of the
Boltzmann-type model. In more detail, the nonlinear integral collision operator in
the x-direction (the first term at the right-hand side of (3.1)) is replaced by a Fokker–
Planck-type transport-diffusion differential operator which describes the mean-field
effect of the frequent interactions among the vehicles along the lanes. Parallelly, the
linear collision operator in the y-direction (the second term at the right-hand side
of (3.1)) remains to describe the rare interactions among the vehicles across the road
lanes.
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As already mentioned, the quasi-invariant interaction limit has been introduced
in [46] (see also [36]) as an asymptotic procedure reminiscent of the grazing collision
limit in classical kinetic theory [14, 16, 37, 50]. Since then it has been widely used in
the literature to study the large-time trends of, e.g., traffic flow models [23, 51], crowd
dynamics models [19], opinion formation models [3], and socio-economic models [11,
21].

4.1. The Fokker–Planck–Boltzmann model. The regime that we want to
study is characterized by a small value of the parameter α in (2.1a), corresponding
to weak interactions in the x-direction, and by a simultaneously small value of the
parameter γ in (3.1), corresponding to rare interactions in the y-direction with respect
to those in the x-direction. As before, we introduce the time scale τ := αt, where the
frequency of the x-binary interactions raises to O(1/α), and we scale the distribution
function as g(v, τ ; θ) := f(v, τ/α; θ). Notice that for α small we have t = τ/α large,
and hence the limit α→ 0+ describes the asymptotic trend of f . On the other hand,
in view of the previous definition, the asymptotic trend of f is well approximated by
that of g.

Since ∂τg = 1
α∂tf , from (3.1) we get

d

dτ

∫
V
ϕ(v)g(v, τ ; θ) dv =

ρ

2α

〈∫
V

∫
V

(ϕ(v′x)− ϕ(v)) g(v, τ ; θ)g(w, τ ; θ) dv dw

〉
+

γ

α
ρ

∫
V

(
ϕ(v′y)− ϕ(v)

)
g(v, τ ; θ) dv.

(4.1)

Let us pick a smooth test function with compact support ϕ ∈ C3
c (V). Expanding the

difference ϕ(v′x)− ϕ(v) at the right-hand side we have

ϕ(v′x)− ϕ(v) = ∂vxϕ(v)(v′x − vx) +
1

2
∂2
vxϕ(v)(v′x − vx)2 +

1

6
∂3
vxϕ(v̄x)(v′x − vx)3,

where v̄x := (v̄x, vy) is a point such that min{vx, v′x} < v̄x < max{vx, v′x}. Using the
expression of v′x given in (2.1a) with 〈ξ〉 = 0,

〈
ξ2
〉

= σ2 and plugging this expansion
into (4.1) we discover

d

dτ

∫
V
ϕ(v)g(v, τ ; θ) dv

= −ρ
2

∫
V

∫
V
∂vxϕ(v)L(vx, VA, VB , Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

+
σ2ρ

4

∫
V

∫
V
∂2
vxϕ(v)D2(vx, Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

+Rα(ϕ)

+
γ

α
ρ

∫
V

(
ϕ(v′y)− ϕ(v)

)
g(v, τ ; θ) dv,(4.2)

where we have denoted for brevity

L(vx, VA, VB , Wx) :=

{
P (ρ)(vx − VA) if vx < Wx,

(1− P (ρ))(vx − VB) if vx > Wx,

D(vx, Wx) :=

{√
P (ρ)DA(vx) if vx < Wx,√
1− P (ρ)DB(vx) if vx > Wx.

(4.3)
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Furthermore the term Rα(ϕ) is

Rα(ϕ)

:= −αρ
4

∫
V

∫
V
∂2
vxϕ(v)L(vx, VA, VB , Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

− α2ρ

12

∫
V

∫
V
∂3
vxϕ(v̄x)L3(vx, VA, VB , Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

− ασ2ρ

4

∫
V

∫
V
∂3
vxϕ(v̄x)L(vx, VA, VB , Wx)D2(vx, Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

+

√
αρ

12

〈
ξ3
〉 ∫

V

∫
V
∂3
vxϕ(v̄x)D3(vx, Wx)g(v, τ ; θ)g(w, τ ; θ) dv dw

and is such that

|Rα(ϕ)| ≤ αρ

4

∥∥∂2
vxϕ
∥∥
∞ ‖L‖∞ +

α2ρ

12

∥∥∂3
vxϕ
∥∥
∞ ‖L‖

3
∞

+
ασ2ρ

4

∥∥∂3
vxϕ
∥∥
∞ ‖L‖∞‖D‖

2
∞ +

√
αρ

12

〈
|ξ|3
〉 ∥∥∂3

vxϕ
∥∥
∞ ‖D‖

3
∞,

where ‖·‖∞ is the∞-norm in V. Since L and D are bounded and ξ has finite moments
of any order thanks to Proposition 1, we deduce Rα(ϕ)→ 0 for α→ 0+.

Finally, taking the limit α→ 0+, γ → 0+ in (4.2) and assuming γ/α = O(1), i.e.,
γ/α→ µ > 0, we obtain

d

dτ

∫
V
ϕ(v)g(v, τ ; θ) dv = −

∫
V
∂vxϕ(v)L[g](vx, τ ; θ)g(v, τ ; θ)dv

+
σ2

2

∫
V
∂2
vxϕ(v)D[g](vx, τ ; θ)g(v, τ ; θ) dv

+ µρ

∫
V

(
ϕ(v′y)− ϕ(v)

)
g(v, τ ; θ) dv,(4.4)

where we have denoted

L[g](vx, τ ; θ) :=
ρ

2

∫
V
L(vx, VA, VB , Wx)g(w, τ ; θ) dw,

D[g](vx, τ ; θ) :=
ρ

2

∫
V
D2(vx, Wx)g(w, τ ; θ) dw.

(4.5)

Integrating back by parts the right-hand side of (4.4) and recalling the compactness
of the support of ϕ we see that, owing to the arbitrariness of ϕ, (4.4) is a weak form
of the equation

(4.6) ∂τg = ∂vx

(
L[g]g +

σ2

2
∂vx(D[g]g)

)
+ µρQy(g),

where

Qy(g) = Qy(g)(v, τ ; θ) =
1

1− β(ux)
g(′vy, τ ; θ)− g(v, τ ; θ)

is the strong form of the Boltzmann-type collision operator in the y-direction. Specif-
ically, ′vy := (vx,

′vy) denotes the preinteraction velocity yielding v = (vx, vy) as
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postinteraction velocity according to (2.7), i.e., ′vy =
vy−β(ux)vd(θ)

1−β(ux) , while the coeffi-

cient 1
1−β(ux) is the Jacobian of the transformation (2.7).

Equation (4.6) represents our hybrid kinetic model, featuring at the right-hand
side the Fokker–Planck-type operator

∂vx

(
L[g]g +

σ2

2
∂vx(D[g]g)

)
for the frequent vehicle interactions in the x-direction complemented with the linear
collision operator Qy(g) for the less frequent speed changes in the y-direction. The
constant µ > 0 permits to tune the relative importance of the two terms.

Remark 1. Equation (4.4), hence (4.6), has been obtained from (4.2) assuming
that γ/α = O(1) for α, γ → 0+. Other asymptotic regimes may be considered as
well, among which we mention in particular the one with γ/α = o(1). It corresponds
to interactions across the lanes so rare that for large times one recovers a classical
one-dimensional traffic model with only x-dynamics along the lanes (in practice, (4.6)
without the collision term Qy(g)). Clearly, the choice leading to (4.6) is the one which
guarantees a correct balance between the two contributions, thereby allowing one to
study genuinely two-dimensional traffic dynamics with the proper frequencies.

4.2. Asymptotic distributions. As stated at the beginning of section 4, model
(4.6) preserves the macroscopic trends of the original Boltzmann-type model (3.1).
In particular, the large-time behavior of g is the same as that of f under the quasi-
invariant interaction limit; cf. section 4.1. Owing to the results of section 3.1.2, this
allows us to conclude immediately that gy(vy, τ ; θ)→ δvd(θ)(vy) for τ → +∞, where

gy(vy, τ ; θ) :=
∫ 1

0
g(v, τ ; θ) dvx.

More in general, assuming for simplicity that β(ux) ≡ β0 > 0 in (2.7), so that the
microscopic x- and y-dynamics are decoupled, we can look for asymptotic distributions
g∞ = g∞(v; θ) of the form

g∞(v; θ) = g∞x (vx)g∞y (vy; θ).

Plugging this representation into (4.6) yields

(4.7) g∞y ∂vx

(
L[g∞x ]g∞x +

σ2

2
∂vx(D[g∞x ]g∞x )

)
+ µρg∞x Qy(g∞y ) = 0,

where

L[g∞x ](vx) =
ρ

2

∫ 1

0

L(vx, VA, VB , Wx)g∞x (wx) dwx

D[g∞x ](vx) =
ρ

2

∫ 1

0

D2(vx, Wx)g∞x (wx) dwx

Qy(g∞y )(vy; θ) =
1

1− β0
g∞y (′vy; θ)− g∞y (vy; θ).

Besides the already determined g∞y (vy; θ) = δvd(θ)(vy), which is such that
Qy(g∞y ) = 0 (in the proper weak sense; cf. (4.4)), from (4.7) we see that the asymptotic
marginal distribution g∞x in the x-direction is determined by setting

L[g∞x ]g∞x +
σ2

2
∂vx(D[g∞x ]g∞x ) = 0.

The way in which this equation can be solved may be strictly dependent on the choice
of the terms VA, VB , Wx in (2.1a). For instance, from section 3.1.1 we know that for
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VA = VB = Wx = ux we should expect g∞x (vx; θ) = δux
(vx) (again in the proper weak

sense; cf. (4.4)). In a more general case, when we only assume Wx = ux and admit
that VA, VB may be functions of vx, i.e., VA = VA(vx) and VB = VB(vx), following [51]
we determine

(4.8) g∞x (vx) =


CA

(
VA(ux)− ux
VA(vx)− vx

)2

exp

(
− 2

σ2

∫ ux

vx

1

VA(v)− v
dv

)
if vx < ux,

CB

(
ux − VB(ux)

vx − VB(vx)

)2

exp

(
− 2

σ2

∫ vx

ux

1

v − VB(v)
dv

)
if vx > ux,

where CA, CB > 0 are normalization constants to be fixed in such a way that∫ 1

0
g∞x (vx) dvx = 1 and

∫ 1

0
vxg
∞
x (vx) dvx = ux.

Remark 2. We refer to the already mentioned paper [51] for detailed expressions
of g∞x in case of several choices of VA, VB including (2.3). We simply remark that for
VA = VB = ux (4.8) gives g∞x (vx) = 0 for vx 6= ux, which is indeed consistent with
the true distributional solution g∞x (vx) = δux

(vx).

5. Numerical results. In this section we present a numerical scheme for solv-
ing the hybrid stochastic Fokker–Planck–Boltzmann traffic equation (4.6) along the
lines of UQ. Among the popular numerical methods in the literature for UQ we re-
call here in particular stochastic collocation methods, stochastic Galerkin schemes,
and multilevel Monte Carlo methods; see, e.g., [15, 32, 53]. In what follows we will
specifically consider stochastic collocation methods. They are based on introducing
a discretization {θk}Mk=0 ⊂ IΘ of the uncertain parameter θ and then in solving, by
means of well-established deterministic algorithms, a family of M +1 equations of the
form (4.6), each for a fixed value θ = θk. Their solutions {g(v, τ ; θk)}Mk=0 can finally
be postprocessed to obtain statistical information at both the kinetic and the macro-
scopic level with respect to θ; cf. section 3. The collocation nodes θk are typically
chosen according to Gaussian quadrature rules and consistently with the probability
distribution of θ; see [52, 54].

As a preliminary step to the numerical solution of (4.6), we consider the following
dimensional splitting: on a certain time interval [τn, τn+1] with τn := n∆τ , n ∈ N,
and ∆τ > 0 fixed, we first solve the Fokker–Planck step in (τn, τn+1/2]:

(5.1)

∂τ g̃ = ∂vx

(
L[g̃]g̃ +

σ2

2
∂vx(D[g̃]g̃)

)
, vx ∈ Vx, τn < τ ≤ τn+1/2,

g̃(v, τn; θ) = g(v, τn; θ)

for all vy ∈ Vy (regarded as a parameter) with the nonlocal operators L[·], D[·]
defined as in (4.3) and (4.5); we refer the reader to Table 2 for the definitions of all
the relevant quantities concurring with the definitions of these operators. To help the
reader, we report here the explicit expressions of the operators that we consider in
the forthcoming numerical tests:

L[g̃] =
ρ

2

∫
V
L(vx,min{vx + ∆v, 1}, P (ρ)wx, wx)g̃(w, τ ; θ)dw,

D[g̃] =
ρ

2

∫
V
D2(vx, wx)g̃(w, τ ; θ)dw,
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Table 2
Summary of the main parameters used in the numerical simulations.

Parameter Value

Wx wx

P (ρ) 1− ρ
VA min{vx + ∆v, 1}
VB P (ρ)Wx

∆v 0.2

being

L(vx,min{vx + ∆v, 1}, P (ρ)wx, wx)

=

{
P (ρ)(vx −min{vx + ∆v, 1}) if vx < wx,

(1− P (ρ))(vx − P (ρ)wx)if if vx > wx,

D(vx, wx)

=

{√
P (ρ)ν(vx)(min{vx + ∆v, 1} − vx) if vx < wx,√
1− P (ρ)ν(vx)(vx − P (ρ)wx) if vx > wx.

Next, in (τn+1/2, τn+1] we solve the Boltzmann step as

(5.2)

∂τg = µρQy(g), vy ∈ Vy, τn+1/2 < τ ≤ τn+1,

g(v, τn+1/2; θ) = g̃(v, τn+1/2; θ)

for all vx ∈ Vx (regarded as a parameter). This process may be iterated to obtain the
numerical solution of the initial equation at each time step.

To approximate numerically (5.1) we adopt SP methods which have been recently
developed in [39]; see also [15, 47]. Conversely, to solve (5.2) we use direct Monte Carlo
methods; see, e.g., [35, 36]. In particular, we employ stratified sampling methods to
extract at each time step from g̃ the particle ensemble to be evolved in (5.2); see [34].

5.1. Structure preserving methods for nonlinear Fokker–Planck equa-
tions. The derivation of SP schemes in the fully nonlinear case (i.e., for a Fokker–
Planck equation in which the diffusion coefficient depends on the unknown distribu-
tion function itself) follows from the approaches described in [7, 10, 30] and has been
further investigated, in both the deterministic and stochastic settings, in the recent
works [15, 39].

We observe that for each θk, k = 0, . . . ,M , the Fokker–Planck equation in (5.1)
may be written in flux form

∂τ g̃(v, τ ; θk) = ∂vxF [g̃](v, τ ; θk),

where the flux is

(5.3) F [g̃](v, τ ; θk) := C[g̃](v, τ ; θk)g̃(v, τ ; θk) +
σ2

2
D[g̃](v, τ ; θk)∂vx g̃(v, τ ; θk)

with C[g̃] := L[g̃] + ∂vxD[g̃] and L, D are defined in (4.5).

We introduce the uniform grids {vx,i}Nx
i=1 ⊂ Vx, {vy,j}

Ny

j=1 ⊂ Vy and let ∆vx :=
vx,i+1 − vx,i > 0. In the rest of this section, for ease of notation, we drop the index
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j since vy remains constant in the Fokker–Planck step (5.1). We denote as usual
vx,i+1/2 := vx,i + 1

2∆vx and consider the conservative discretization

(5.4)
d

dτ
g̃ki (τ) =

Fki+1/2[g̃]−Fki−1/2[g̃]

∆vx
, i = 1, . . . , Nx,

where, for each τ > 0, g̃ki (τ) ≈ g̃(vx,i, vy, τ ; θk) while Fki+1/2[g̃] is the numerical flux

that here we take of the form (cf. (5.3))

(5.5) Fki+1/2[g̃] = Ĉki+1/2ĝ
k
i+1/2 +

σ2Dki+1/2

2

g̃ki+1 − g̃ki
∆vx

.

In (5.5) we set in particular

ĝki+1/2 :=
(

1− δki+1/2

)
g̃ki+1 + δki+1/2g̃

k
i ,

which is a convex combination of the values of g̃k in the two adjacent cells i, i + 1
provided 0 ≤ δki+1/2 ≤ 1. The standard approach based on central difference is

obtained taking δki+1/2 = 1
2 for all i and Ĉki+1/2 := C[g̃](vx,i+1/2, vy, τ ; θk). It is worth

pointing out that a numerical scheme based on central difference imposes stability
restrictions on ∆vx. On the contrary, the present approach permits us to derive
bounds on the time step. Setting in particular

(5.6) Ĉki+1/2 = Lki+1/2 +
σ2

2
(∂vxD)ki+1/2

we obtain explicitly

(5.7) δki+1/2 =
1

λki+1/2

+
1

1− exp(λki+1/2)
, λki+1/2 :=

2∆vxĈki+1/2

σ2Dki+1/2

,

and the following result holds (cf. [39]).

Proposition 3. The numerical flux (5.5) with Ĉki+1/2, δki+1/2 given by (5.6)–

(5.7) vanishes when the exact flux (5.3) vanishes in [vx,i, vx,i+1] ⊂ Vx. Moreover,
δki+1/2 ∈ [0, 1] for all i and for every fixed j, k.

Remark 3. In the limit case of vanishing diffusion (D = 0) we obtain the weights

δki+1/2 =

{
0 if Lki+1/2 > 0,

1 if Lki+1/2 < 0,

and the scheme reduces to a first order upwind scheme for the corresponding diffu-
sionless mean-field type equation.

The introduced scheme preserves the asymptotic solutions of the Fokker–Planck
equation in (5.1) with second order accuracy. In the case of linear diffusion, i.e.,
for D independent of g̃, it captures such solutions with arbitrary accuracy; see [15,
39]. Furthermore, for general strong stability preserving and high order semi-implicit
methods it is possible to prove the nonnegativity of the numerical solution without
any restrictions on ∆vx but with suitable restrictions on the time step ∆τ .
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For the explicit-in-time scheme deduced from (5.4), i.e.,

g̃
k,n+1/2
i = g̃k,ni +

∆τ

∆vx

(
Fk,ni+1/2[g̃]−Fk,ni−1/2[g̃]

)
,

where g̃k,ni ≈ g̃(vx,i, vy, n∆τ ; θk), the following result holds.

Proposition 4. Let

∆τ ≤ ∆v2
x

2

(
max
i,k
|Ĉki+1/2|∆vx + max

i,k
Dki+1/2

) .
Then the explicit-in-time scheme is positivity preserving, i.e., g̃

k,n+1/2
i ≥ 0 if g̃k,ni ≥ 0

for all i, j.

To avoid parabolic time step restrictions typical of the explicit schemes, such as
the one in Proposition 4, it is possible to resort to a semi-implicit scheme:

g̃
k,n+1/2
i = g̃k,ni +

∆τ

∆vx

(
F̌k,n+1/2
i+1/2 [g̃]− F̌k,n+1/2

i−1/2 [g̃]
)

with

F̌k,n+1/2
i+1/2 := Ĉk,ni+1/2

[(
1− δk,ni+1/2

)
g̃
k,n+1/2
i+1 + δk,ni+1/2g̃

k,n+1/2
i

]
+
σ2Dni+1/2

2

g̃
k,n+1/2
i+1 − g̃k,n+1/2

i

∆vx
.

In this case the following result holds.

Proposition 5. Let

∆τ ≤ ∆vx

2 max
i,k
|Ĉk,ni+1/2|

.

Then the semi-implicit scheme is positivity preserving.

We omit the proofs of Propositions 4, 5, which are reminiscent of similar ones
proposed in [39].

In order to show the effectiveness of the described scheme we now apply it to the
nonlinear Fokker–Planck equation in (5.1) with Wx = wx and VA, VB like in (2.3).
Notice that, since in this illustrative example we are not interested in the coupling
with (5.2), we can formally neglect the variables vy, θ, thereby reducing the problem
to a one-dimensional equation in the sole variable vx.

In Figure 1 we show the stationary profiles of the kinetic distribution for ρ =
0.3, 0.5, 0.7 and two choices of the diffusion constant σ2 = 10, 15. The profiles of
the densities for large times (T = 103) have been obtained via the semi-implicit SP
scheme for the nonlinear Fokker–Planck equation with ∆τ = ∆vx/σ

2.
Furthermore, in Table 3 we estimate the order of convergence of the semi-implicit

SP scheme for ρ = 0.3, 0.7 and σ2 = 15 as log2
e1(τ)
e2(τ) , where e1(τ) is the relative

error at time τ of the solution computed with Nx = 21 grid points with respect to
that computed with Nx = 41 grid points and, likewise, e2(τ) is the relative error
at time τ of the solution computed with Nx = 41 grid points with respect to that
computed with Nx = 81 grid points. The time step is such that the CFL condition
for the positivity of the scheme is satisfied, i.e., ∆τ = O(∆vx) in the semi-implicit
case according to Proposition 5.
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(a) ρ = 0.3, σ2 = 10
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(b) ρ = 0.5, σ2 = 10
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(c) ρ = 0.7, σ2 = 10
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(d) ρ = 0.3, σ2 = 15
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(e) ρ = 0.5, σ2 = 15
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(f) ρ = 0.7, σ2 = 15

Fig. 1. Large time solutions of the Fokker–Planck equation in (5.1) computed with the semi-
implicit SP scheme for the values of ρ = 0.3, 0.5, 0.7 and σ2 = 10, 15, ∆τ = ∆vx/σ2, and final
time T = 103. The blue line is the solution computed with Nx = 41 grid points while the red circles
represent the reference solution computed with Nx = 321 grid points. See Table 2 for the specific
choice of the model parameters necessary for the definition of the SP scheme. We considered as an
initial distribution g̃0(vx) = χ[0,1](vx).

Table 3
Estimate of the order of convergence of the semi-implicit SP scheme for the Fokker–Planck

equation in (5.1) with σ2 = 15 and ∆τ = ∆vx/σ2.

ρ = 0.3 ρ = 0.7
τ = 1 1.7543 1.7794
τ = 20 1.9524 1.7821
τ = 60 2.2934 1.9282
τ = 100 2.3014 1.9283

5.2. The two-dimensional stochastic model. We now turn to the numerical
solution of the two-dimensional hybrid stochastic model (4.6) by means of the dimen-
sional splitting illustrated at the beginning of section 5. We consider as an initial
condition the following deterministic distribution:

(5.8) g(v, 0; θ) = g0(v) = g0,x(vx)g0,y(vy),

which does not depend on the random parameter θ, with in particular

(5.9) g0,x(vx) = χ[0, 1](vx), g0,y(vy) =
1

2
χ[−1, 1](vy).

Notice that the choice of g0,y implies that we are fixing Vy = [−1, 1], i.e., ε = 1.
As far as the random input θ is concerned, we choose θ ∼ U(−1, 1), and hence

IΘ = [−1, 1] and h(θ) = 1
2χ[−1, 1](θ), and a desired speed in (2.7) of the form

(5.10) vd(θ) = v̄d + λP (ρ)θ,

where v̄d ∈ (−1, 1) and λ > 0 are given constants. For the application of the stochas-
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1 2 3 4 5
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10-2

10-1

100

1 2 3 4 5
10
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10
0

Fig. 2. Average relative L1 error on the θ-expected solution (left) and its θ-variance (right)
of (4.6) via the dimensional splitting (5.1)–(5.2) for an increasing number M = 1, . . . , 5 of collocation
nodes in IΘ taking θ ∼ U([−1, 1]). The reference numerical solution is computed with M = 50
collocation nodes. In (5.10) we have fixed v̄d = 0 and λ = 10−1. Moreover, we have fixed T = 102,
∆τ = ∆vx/σ2, µ = 1, σ2 = 10 and we have discretized the velocity space with Nx = 101 and
Ny = 41 grid points. The relaxation rate in (2.7) is β(ux) = ux. We considered the deterministic
initial distribution given in (5.8)–(5.9).

tic collocation method we discretize θ by means of the first M > 1 Gauss–Legendre
collocation nodes.

Finally, we solve the Boltzmann step (5.2) via a direct Monte Carlo method
implemented through the Nanbu algorithm [6]. Precisely, we use N = 104 y-speeds
extracted from the distribution g̃ with a stratified sampling approach [34] and we
approximate the collisional equation in (5.2) as

(5.11) gn+1 = (1− µρ∆τ)gn+1/2 + µρ∆τQ+
y

(
gn+1/2

)
,

where Q+
y (g) := 1

1−β(ux)g(′vy, τ ; θ) is the gain term of the collision operator Qy.

Observing that Q+
y (g) is a probability distribution, we see that under the restric-

tion µρ∆τ ≤ 1 the previous equation is a convex combination of the probability
distributions gn+1/2 and Q+

y (gn+1/2), and therefore also gn+1 is a probability den-
sity function. The probabilistic interpretation of (5.11), which underlies the direct
Monte Carlo method used for the numerical solution, is the following: a vehicle with
lateral speed vy will not interact with other vehicles with probability 1− µρ∆τ while
it will interact with probability µρ∆τ according to the interaction law defined by
Q+
y (gn+1/2).

In Figure 2 we show the relative L1 error on the expected solution ḡ and its vari-
ance Varθ(g) (cf. (3.2)), of the full two-dimensional problem for an increasing number
M = 1, . . . , 5 of collocation nodes in IΘ, computed with respect to a reference numer-
ical solution on M = 50 nodes. The variable vx has been discretized with Nx = 101
grid points in Vx, the variable vy with Ny = 41 grid points in Vy, and a time step
∆τ = O(∆vx) has been chosen for the semi-implicit SP scheme (cf. Proposition 5)
with final time T = 100. We point out that, due to the stratified sampling approach,
the curves plotted in Figure 2 are actually averages computed out of 102 estimates of
the relative error.

In Figures 3 and 4 we show instead the time evolution of the expected solution
ḡ and of its variance Varθ(g), respectively (cf. again (3.2)) for the traffic densities
ρ = 0.3, 0.6, 0.9. In particular, the graphs of Varθ(g) highlight the regions of the
space of the microscopic states V = Vx × Vy, where the statistical variability of the
expected solution ḡ is higher due to the uncertainty in vd(θ) of the form introduced
in (5.10).
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(a) ρ = 0.3, τ = 1 (b) ρ = 0.3, τ = 5 (c) ρ = 0.3, τ = 50

(d) ρ = 0.6, τ = 1 (e) ρ = 0.6, τ = 5 (f) ρ = 0.6, τ = 50

(g) ρ = 0.9, τ = 1 (h) ρ = 0.9, τ = 5 (i) ρ = 0.9, τ = 50

Fig. 3. Evolution of the θ-expected solution of (4.6) for different values of the traffic density,
in particular ρ = 0.3 (top row), ρ = 0.6 (middle row), and ρ = 0.9 (bottom row). The collocation
method for the UQ has been implemented taking θ ∼ U([−1, 1]) and using M = 5 nodes in the
interval [−1, 1]. We have considered vd(θ) of the form (5.10) with v̄d = 0, λ = 10−1, ∆τ = ∆vx/σ2,
σ2 = 10, µ = 1 and we have discretized the velocity space with Nx = 101, Ny = 41 grid points. We
considered the deterministic initial distribution given in (5.8)–(5.9).

5.3. Two-dimensional speed diagrams of traffic. A usual benchmark for
validating a kinetic traffic model consists in checking if the theoretical speed diagrams
arising from the asymptotic kinetic distributions reproduce the features typically ob-
served in the empirical speed diagrams.

Speed diagrams express the average speed of the vehicles as a function of the
vehicle density at equilibrium and in spatially homogeneous conditions. In our case,
we compute the mean speeds at equilibrium from the asymptotic solution of (4.6) as

u∞x =

∫
V
vxg
∞(v; θ) dv =

∫ 1

0

vxg
∞
x (vx) dvx,

u∞y (θ) =

∫
V
vyg
∞(v; θ) dv =

∫ ε

−ε
vyg
∞
y (vy; θ) dvy.

Notice that only the asymptotic y-mean speed is actually uncertain, because the y-
dynamics (2.7) contain the random input θ. The asymptotic x-mean speed is not,
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(a) ρ = 0.3, τ = 1 (b) ρ = 0.3, τ = 5 (c) ρ = 0.3, τ = 50

(d) ρ = 0.6, τ = 1 (e) ρ = 0.6, τ = 5 (f) ρ = 0.6, τ = 50

(g) ρ = 0.9, τ = 1 (h) ρ = 0.9, τ = 5 (i) ρ = 0.9, τ = 50

Fig. 4. Evolution of the θ-variance of the expected solution to (4.6) for different values of the
traffic density, in particular ρ = 0.3 (top row), ρ = 0.6 (middle row), and ρ = 0.9 (bottom row).
The collocation method for the UQ has been implemented taking θ ∼ U([−1, 1]) and using M = 5
nodes in the interval [−1, 1]. We have considered vd(θ) of the form (5.10) with v̄d = 0, λ = 10−1,
∆τ = ∆vx/σ2, σ2 = 10, µ = 1 and we have discretized the velocity space with Nx = 101, Ny = 41
grid points. We considered the deterministic initial distribution given in (5.8)–(5.9).

because the x-dynamics (2.1a)–(2.1b) do not contain any random input nor any ex-
plicit coupling with the y-dynamics. By further averaging u∞y with respect to the
uncertainty in θ we get

ū∞y :=

∫
IΘ

u∞y (θ)h(θ) dθ,

while obviously it results in ū∞x = u∞x . Clearly, these values depend on the density
ρ ∈ [0, 1] fixed in (4.3), hence in (4.5), and in (4.6). Finally, we plot the mappings
ρ 7→ ū∞y , ρ 7→ u∞x and compare them with the empirical ones obtained from a dataset
described below; cf. section 5.3.1.

In order to reproduce the scattering of the experimental data normally seen in the
measured speed diagrams, we compute the following indicator of maximum dispersion
of the y-energy:

Iy := Ē∞y +
√

Varθ(E∞y ),

where Ē∞y denotes the θ-expected value of the asymptotic energy in the y-direction
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Fig. 5. Speed-density diagrams in the y-direction (a) and x-direction (b). The grey circles are
the experimental speeds obtained from the U.S. dataset described in section 5.3.1.

and Varθ(E
∞
y ) its θ-variance, then we plot the mappings ρ 7→ ū∞y ±

√
Iy. Notice that

Iy represents the deviation from the expected y-energy of the model, and hence its
square root is dimensionally comparable to a speed.

5.3.1. Experimental dataset. We consider a set of experimental data recorded
on a section on the southbound direction of the U.S. Highway 101 (known as Holly-
wood Freeway) in Los Angeles, California. The data are part of the Federal Highway
Administration’s Next Generation Simulation project [1]. They consist of the two-
dimensional vehicle trajectories collected between 7:50 am and 8:15 am on June 15,
2005 using 8 video cameras with a resolution of 10 frames per second. The road sec-
tion is approximately 640 m in length with five main lanes plus an auxiliary lane in
the corridor between an incoming and an outgoing ramp. However, we only consider
the stretch as if there were no ramps.

The microscopic velocities of the vehicles are recovered out of their microscopic
positions in consecutive frames. From the microscopic data, the macroscopic quanti-
ties in each direction of the flow can be computed as explained, e.g., in [24, 31]. The
aggregation of the data is made with respect to time (5 s) and distance (100 m).

In Figure 5 we observe that the order of magnitude of the recorded mean speed
in the y-direction is much smaller than that in the x-direction, which indeed justifies
the formulation of a hybrid kinetic model to clearly separate the two speed scales.
We stress that, to our knowledge, this is one of the first times that speed diagrams
are recorded also for lateral displacements of the cars across the lanes.

5.3.2. Theoretical speed diagrams. In Figure 6 we show the theoretical
speed-density diagrams, computed as discussed at the beginning of section 5.3, in
both the y-direction (a) and the x-direction (b). For straightforward comparison, we
place them on top of the empirical data (grey circles), which here are duly normalized
with respect to the maximum density and the maximum speed in either direction of
the flow for consistency with the dimensionless results of the mathematical model.

The red solid lines are the graphs of the mappings ρ 7→ ū∞y in Figure 6(a) and
ρ 7→ u∞x in Figure 6(b). The black dashed lines in Figure 6(a) are instead the graphs
of the mappings ρ 7→ ū∞y ±

√
Iy. On the whole, we see that the theoretical results

reproduce quite well the measurements. In particular, we notice that the theoretical
speed diagram in the y-direction is constant at all densities around the value v̄d
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Fig. 6. Theoretical speed-density diagrams (red, black lines) in the y-direction (a) and the
x-direction (b) on top of the normalized empirical ones (grey circles). The red solid lines are the
θ-expected asymptotic mean speeds in the two directions of the flow while the black dashed lines in
(a) are the deviations from the mean speed ū∞y given by the energy-based estimator Iy. In (5.10) we

have set v̄d = −0.0109 and λ = 1
2

.

in (5.10), which here we set to v̄d = −0.0109 (estimated from the data). In contrast,
the theoretical speed diagram in the x-direction shows the typical decreasing trend
toward zero at high density (congested traffic phase) after a nearly constant trend for
low density (free traffic phase).

As far as the data scattering is concerned, we observe that the energy-based con-
fidence interval around ū∞y estimated by means of Iy (cf. Figure 6(a)) catches the
qualitative trend of the empirical speed values, thus suggesting that the data disper-
sion in the y-direction can be indeed explained in terms of the stochastic variability
due to θ in the microscopic dynamics across the lanes; cf. (2.7), (5.10). Again, we
stress that, to our knowledge, this is one of the first times that theoretical speed dia-
grams due to lane changes are studied and explained by a mathematical model. Since
we have not included any source of uncertainty in the x-dynamics (2.1a)–(2.1b), we
cannot reproduce a similar estimate of the data dispersion in the theoretical x-speed
diagram. However, for the sake of completeness, we mention that other works offer
alternative explanations for the data dispersion in the x-direction which do not appeal
to uncertain parameters nor UQ; see, e.g., [17, 43, 51].

Thanks to the results of section 4.2, we can also compute analytically the theoret-
ical curves appearing in the y-speed diagram of Figure 6(a). In fact from g∞y (vy; θ) =
δvd(θ)(vy) we have u∞y (θ) = vd(θ), whence using (5.10) with θ ∼ U(−1, 1) we obtain

ū∞y =
1

2

∫ 1

−1

vd(θ) dθ = v̄d,

which is the equation of the red line in Figure 6(a). Moreover, since E∞y (θ) = v2
d(θ)

we compute

Ē∞y (θ) =
1

2

∫ 1

−1

v2
d(θ) dθ = v̄2

d +
1

3
λ2P 2(ρ),

Varθ(E
∞
y ) =

1

2

∫ 1

−1

v4
d(θ) dθ −

(
Ē∞y

)2
= 4

(
1

3
v̄2
d +

1

45
λ2P 2(ρ)

)
λ2P 2(ρ).

In particular, for v̄d = 0 (nearly the value used for the simulated diagram of Fig-
ure 6(a)) this gives Iy = ( 1

3 + 2√
45

)λ2P 2(ρ), and thus the curves of the energy-based
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confidence interval in the y-speed diagram are

ū∞y ±
√
Iy = ±

√
1

3
+

2√
45
λP (ρ) ≈ ±0.4(1− ρ)

for the expression (2.2) of P (ρ) with the value of λ in Figure 6(a).

6. Conclusion. In this work we have introduced a hybrid stochastic kinetic
model of two-dimensional traffic dynamics, which takes into account speed changes
both along and across road lanes as a consequence of vehicle interactions and lane
changes, respectively. Starting from a Boltzmann-type description based on suitable
microscopic dynamics, we have derived a hybrid Fokker–Planck–Boltzmann equation
in the quasi-invariant interaction limit assuming that lane changes, described by a
linear collision operator, are much less frequent than speed variations along the lanes,
described by a nonlinear Fokker–Planck operator. In particular, we have suggested
that speed variations due to lane changes can be modeled at the microscopic level
simply as a relaxation process toward a desired lateral speed, which however is not
known deterministically. This introduces an intrinsic uncertainty in the kinetic equa-
tion, which proves to be essential for reproducing theoretically not only the average
macroscopic trends observed in reality but also the scattering of the experimental
data typical of the empirical fundamental diagrams of traffic.

Besides the result just mentioned, the main methodological contributions of this
work are the following: (i) we have proposed a formal asymptotic procedure to derive
hybrid kinetic models including uncertain parameters, which can be applied to mul-
tivariate microscopic dynamics when some of them occur at a much lower rate than
others. The advantage is that the most frequent dynamics turn out to be modeled
by Fokker–Planck-type differential operators replacing the original Boltzmann-type
collision operators, while the latter remain to model only the less frequent dynam-
ics; (ii) we have proposed a numerical study of the general hybrid stochastic kinetic
equation by means of an extension of SP methods existing in the literature to fully
nonlinear Fokker–Planck equations combined with direct Monte Carlo methods, strat-
ified sampling, and UQ collocation methods to quantify the uncertainty intrinsic in
the stochastic kinetic equation.

Further amplifications of the present work may include a systematic study of the
numerical method for the hybrid kinetic equation with special attention to the case
of possibly vanishing nonlinear diffusion in the Fokker–Planck operator. From the
modeling point of view, the derivation of macroscopic traffic equations in a suitable
hydrodynamic limit from the hybrid stochastic kinetic description is another com-
pletely open issue.
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