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Detection of GNSS Ionospheric Scintillations

based on Machine Learning Decision Tree
Nicola Linty, Alessandro Farasin, Alfredo Favenza, and Fabio Dovis

Abstract

This paper proposes a methodology for automatic, accurate and early detection of amplitude ionospheric

scintillation events, based on machine learning algorithms, applied on big sets of 50 Hz post-correlation data

provided by a GNSS receiver. Experimental results on real data show that this approach can considerably improve

traditional methods, reaching a detection accuracy of 98%, very close to human-driven manual classification.

Moreover, the detection responsiveness is enhanced, enabling early scintillation alerts.
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I. INTRODUCTION

The propagation through the atmosphere has a significant influence on radio signals broadcast by satellites

towards the Earth. Irregularities and gradients of the ionization of the upper layer of the atmosphere, the

ionosphere, a region characterized by a high concentration of free electrons, can cause fluctuations of the signal

amplitude and phase, which are called ionospheric scintillations. Scintillations also affect Global Navigation

Satellite System (GNSS) trans-ionospheric signals. Under disturbed ionospheric conditions, GNSS receivers

are more subject to phase errors, cycle slips, increased carrier Doppler jitter and losses of lock, resulting in

positioning errors of the order of tens of meters, and, in the most severe cases, even in the complete receiver

outage [1]. Scintillations are a threat to GNSSs since they may have disruptive impact on the user receiver

performance when high accuracy, reliability and continuity of the positioning service are needed, as for example

for critical applications and precise positioning [2]–[4].

As a consequence, scintillation monitoring and detection is a key aspect for improving the quality and

reliability of GNSS observations [5]. Networks of GNSS receivers, specifically designed for accomplishing

these tasks, have been installed in recent years, both at low and high latitudes, where scintillation is more likely

to occur [6], [7]. The purpose is indeed twofold: on one side, observation of the signals themselves, which are a

source of information for understanding and modeling the upper layers of the atmosphere [8]; on the other side,

the signals can be used as detectors and triggers to raise warning and take countermeasures for GNSS-based

operations. For this reason, it is important to design receivers robust to the presence of scintillation, but also

to have proper algorithms for the detection of the event and its classification [9].
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Early and accurate detection of scintillation events is a very important feature for space weather applications,

for atmospheric remote sensing and in general for all those data collection systems that automatically detect and

record Intermediate Frequency (IF) raw samples [10], [11]. However, the scientific literature about scintillation

detection techniques is limited. Most of the works are based on very simple event triggers, which are based on the

comparison of scintillation indices provided by commercial receivers with preset threshold values [12]. However,

this approach overlooks high moment characteristics of the signals and requires detrending operations. Some

alternatives to traditional scintillation indices were proposed, for instance exploiting wavelet techniques [13],

decomposing the Carrier-to-Noise density power ratio (C/N0) by means of adaptive time-frequency methods

[14] of evaluating statistical properties of the histogram of received samples [15]. The common drawback of

such techniques is that they rely on complex and computationally expensive operations or on dedicated receiver

architectures.

Recent studies have demonstrated that machine learning techniques can be exploited for scintillation detection.

In [16], the authors propose a survey of data mining techniques, relying on observation and integration of GNSS

receivers, other sensors and online forecast services. However, this approach relies on external data sources and

instruments, which are not always available. A technique based on supervised machine learning Support Vector

Machine (SVM) algorithm has been proposed for amplitude scintillation detection in [17] and [18]. This method

has been extended to phase scintillation detection in [19] and [20]. The main limitations of these approaches

are: they provide a detection trigger at a low rate; they are based on SVM models, which are computationally

demanding; and they have been tested on a set of data pre-filtered at an elevation mask of 30◦, thus discarding

potentially useful and important data.

The work presented in this paper aims at proposing an alternative method for the detection of amplitude

scintillation based on machine learning. The scope of this approach is multifold:

• to propose an alternative to the use of traditional scintillation indices, the performance of which may

depend on algorithmic choices, such as detrending and average operations;

• to use only common GNSS stand-alone receivers observables;

• to be able to understand the presence of the scintillation event including the transient time before and

after its strongest phase, thus providing an early run-time alert;

• to provide an automatic method, resembling manual observation of the observables, while keeping the

cost low in terms of human effort and enabling run-time detection;

• to reduce the rate of false alarms due to the ambiguity between scintillation and other events, such as

multipath, that may affect the assessment of the classical amplitude scintillation index, without the need

of pre-filtering data;

• to reduce the missed detection caused by a-priori filtering of data at low elevation angle, often implemented

to hard-cut multipath effect;

• to use computationally efficient machine learning algorithms, such decision tree.

The paper is organized as follows. After this introduction, which has outlined the scope of the work,

Section II provides an overview on scintillation, its effects on GNSS signals and applications, and on machine

learning algorithms, models and metrics for performance evaluation. Section III gives an overview of traditional

scintillation detection techniques and analyzes their limitations on selected case studies. Section IV introduces

machine learning detection, identifying two different sets of features based on different receiver measurements.

Section V validates the proposed approaches, presenting quantitative and qualitative results obtained running
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different machine learning algorithms on different sets of features. Finally, Section VI draws conclusions and

outlines the future work.

II. GENERAL OVERVIEW

This section presents a general overview on GNSS, ionospheric scintillation and machine learning. A reader

expert in the field can skip to Section III.

A. GNSS and ionospheric scintillations

GNSSs are radio-communication satellite systems that enable a generic user to compute Position, Velocity and

Time (PVT) at its current location, anywhere on the Earth, processing Radio Frequency (RF) signals transmitted

from a constellation of satellites and performing trilateration with respect to the satellites, taken as reference

points [21]. Despite being originally developed for localization, GNSSs are not limited to positioning purposes,

but span an unlimited range of applications, including scientific observations.

One of the main characteristic of GNSS signals is their low received power. For this reason, the accuracy,

availability and reliability of the position solution is threatened by potential errors, affecting the overall quality

of the process. Ionospheric propagation is the major and more variable natural error source in GNSS signal

processing at the receiver level. Propagation through this layer introduces a potentially strong degradation

of the GNSS signal, as depicted in Fig. 1, causing significant errors in any GNSS-based application. The

ionosphere affects the quality of GNSS signals both in terms of a temporal delay and of scintillations. While

delay compensation techniques are nowadays applied in any GNSS receiver [21], scintillations is still an issue

for both mass-market and professional devices. Occurrence of scintillations is very difficult to be modeled, due

to their quasi-random nature [22]. Therefore, they remain, to this day, one of the major limiting factors for high

accuracy applications.

Scintillation monitoring is indeed a central activity, both in the GNSS and in the space weather community.

The amount of scintillation affecting a satellite signal can be evaluated by exploiting the correlation output

values. Two indices are usually considered: S4 for amplitude scintillation and σφ for phase scintillation.

S4 measures the amount of amplitude fluctuations due to scintillations in GNSS signals; it corresponds to

the normalized standard deviation of the detrended Signal Intensity (SI) computed from the in-phase (I) and

quadrature-phase (Q) prompt correlation samples. σφ is calculated as the standard deviation of the detrended

carrier phase measurements. Both indices are calculated over a varying observation interval, usually equal to

60 seconds.

Most of the works on scintillation monitoring are based on the comparison of the value of these two indices

with predefined thresholds. Nevertheless, detection based on such fixed thresholds can be misleading, due to:

the loss of the transient phases of the events, causing a delay in the raise of possible warning flags; the missed

detection of weak events with high variance; or the signal distortions caused by other phenomena, such as

multipath. The only reliable procedure is to entrust the detection of scintillation events to a human-driven

visual inspection of data.

B. Machine learning

Machine learning [23] is the systematic study of intelligent algorithms and systems that improve their

knowledge or performance by experience. In its general concept, machine learning process (Fig. 2) refers

to the ability of solving a task, processing right features describing the domain of interest, according to a

June 18, 2018 DRAFT



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2018.2850385, IEEE
Transactions on Aerospace and Electronic Systems

4

TEC irregularities

Io
n

o
s
p

h
e
re

signal

fluctuations

signal

delay

GNSS satellites

Fig. 1. Pictorial representation of ionospheric delay and scintillation phenomena. The red dashed lines are the line-of-sight signal paths

from the GNSS satellites to the receiver on earth; the green continuous signal accounts for propagation distortions.
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Fig. 2. Flow diagram of the machine learning process. In the first stage, the learning process, depicted in the red box, a model is defined,

using training data, selected features and a specific learning algorithm, such as a decision tree. The model is then applied on the test dataset

in the classification task, in the blue box, to generate the output.

model. The use of machine learning in Location Based Services (LBS) is also motivated by the increasing

volume of available data collected at remote sites through low cost GNSS software receivers [24].

The problem under investigation in this work is a typical binary classification task that can be undertaken

exploiting a machine learning approach on a big data set. The main elements of machine learning are [25]:

• domain, the problem to be solved (detection of ionospheric scintillation events in GNSS data collections);

• features, the description of the objects of the domain (GNSS observables);

• task, the abstract representation of the problem which reflects in the mapping between the input and the

output (the automatic classification of data collection sample in scintillation/non-scintillation);

• model, the output of the machine learning when the training set is fed to the algorithms.
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The machine learning goal is to identify the right algorithm, or set of algorithms, to use the right set of

features to build the right models that achieve the right tasks in terms of detection accuracy. This goal is

achieved by feeding the machine learning algorithms with two different sets of data:

• a training-set of historical, pre-labeled data;

• a test-set, non-labeled, possibly real-time data.

Machine learning offers a large number of algorithms, to build models from a given dataset of input

observations, and to make predictions and decision expressed as output. These algorithms are mainly grouped

under three big families:

• supervised learning, where input data (training set) has a known label or result;

• unsupervised learning, where input data is not labeled and does not have a known result;

• semi-supervised learning, where input data is a mixture of labeled and unlabeled examples.

Since the goal of this research is classification of data on the basis of the detection of scintillation events and

the input training set is fully labeled, this study will take into consideration two types of supervised learning

algorithms: decision tree and random forest.

1) Decision Tree: Decision tree is one of the most commonly used classification technique [26]. It is based

on tree structures, defined by recursively partitioning the input space: each internal node represents a certain

feature of the domain; each branch, emanating from the node, is the outcome of the decision taken in the node

according to a function; and each leaf represents a final classification decision, corresponding to the conjunction

of single decisions taken during on the path from the root of the tree to the leaf. The learning takes place as

the machine creates a set of rules defining a model, in terms of sequence of the features along the branches

and functions for the decision criteria in each node. The rules are based on the concept of utility of a feature

for the classification purpose.

Lets consider two classes, D+ and D−, and a boolean feature, D1, which can take the values D+
1 and D−1 .

The ideal situation is when D+
1 = D+ and D−1 = ∅, or D+

1 = ∅ and D−1 = D−: in this case, the branches are

said to be pure. Typically this situation never happens, so the task is to measure the impurity of each feature

and corresponding function. Extending the problem to a general case, the goal is to measure the impurity of a

set of n+ positives and n− negatives, in terms of empirical probability ṗ = n+/(n+ +n−), to evaluate the best

rule. A cost function is defined to achieve this task, thus building the tree model. Among several possibilities,

such as the minority class or the Gini index, the entropy E was chosen:

E = −ṗ log2 (ṗ)− (1− ṗ) log2 (1− ṗ) (1)

By minimizing the entropy, the information gain brought by the tree is maximized. Further mathematical details

on decisions trees can be found in [23], [27], [28].

2) Random Forest: Random forest is an ensemble learning method for classification, based on the construction

of a multitude of decision trees at training time [29]. It helps to overcome the problem of overfitting, as well as

to reduce the variance of an estimate, exploiting averaging. Random forests are a combination of tree predictors

such that each tree depends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest. The generalization error for forests converges to a limit as the number

of trees in the forest becomes large and depends on the strength of the individual trees in the forest and the

correlation between them.
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3) Performance evaluation metrics: Performance of a machine learning classification algorithm is typically

evaluated using statistical tools and metrics [28]. One of the most common is the confusion matrix, or

contingency table; an example is reported in TABLE I. Each row refers to actual classes as annotated in the test

case, each column to classes as predicted by the classifier. Last column and last row give the marginals, which

are important to allow the statistical significance assessment. In order to distinguish performance on the classes,

correctly classified positives and negatives are referred to as True Positives and True Negatives, respectively;

incorrect classified positives are called False Negatives or missed detections; misclassified negatives are called

False Positives, or false alarms. Consequently, the True positive rate is the proportion of positives correctly

classified, also called sensitivity or recall, while the True negative rate is the proportion of negatives correctly

classified.

TABLE I. GENERAL EXAMPLE OF A CONFUSION MATRIX.

Prediction

0 1

T r
ut

h 0 True negatives False positives

1 False negatives True positives

Other metrics that can be used to assess the machine learning performance are:

• Accuracy: the percentage of correct predictions made by the model over a data set, calculated as:

True Positives + True Negatives.

• Precision: the ratio of correct positive observations, calculated as:

True Positives/ (True Positives + False Positives).

• Recall: the ratio of correctly predicted positive events, also known as sensitivity, calculated as:

True Positives/ (True Positives + False Negatives).

• F-score: an alternative measure of a test accuracy, taking into account also both false positives and false

negatives. It corresponds to the weighted average of Precision and Recall:

(2 ·Recall ·Precision) / (Recall + Precision).

4) k-fold cross validation: Cross-validation is a validation technique which measures how the results of a

statistical analysis will generalize to an independent dataset. In fact, knowledge about the test-set can affect

the model and the evaluation metrics decreasing generalization performance. This situation is typically called

overfitting. A solution to this problem is a procedure called cross-validation. In the basic approach adopted

in this paper, denoted k-fold cross validation [30], the training set is split into k smaller sets, called folds.

Afterwards, for each of the k folds, first a model is trained, using the remaining k − 1 folds as training data.

The resulting model is then used to test the untrained fold. Finally, the average of the values obtained in each

iteration is computed.

III. TRADITIONAL SCINTILLATION DETECTION

In this section, the traditional state-of-the-art approaches for amplitude scintillation detection are presented.

Two detection rules are considered and tested on two case studies, evaluating and carefully discussing their

performance and limitations.
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A. Description of traditional methods

The majority of the works on amplitude scintillation monitoring are based on the analysis of the value of

the S4 index. Scintillation is typically considered present if S4 exceeds a predefined threshold TS4
. Different

detection rules can be identified, according to the literature on the topic.

1) Hard detection: A Hard detection rule is defined by simply applying the threshold TS4 on the estimated

value of S4. Ionospheric scintillation is present at epoch n if and only if:

S4 [n] > TS4
(2)

It is a simple approach, easy to be implemented, but it might lead to an undesired and non-negligible number

of false alarms. The threshold is commonly assumed to be TS4 = 0.4 by many authors [31]–[35]; other works

consider scintillation moderate in the range between 0.2 and 0.5, and strong above 0.5 [36].

As the S4 index is a measure of the variation of the amplitude of the GNSS signal, it is not unlikely that

events other than ionospheric scintillation cause it to increase above the threshold, in a way similar to what

scintillations do, thus affecting the detection process. This is particularly frequent for low elevation satellites,

when the number of multipath reflected rays increases and, at the same time, the C/N0 is lower.

2) Semi-hard detection: In order to better characterize the scintillation phenomenon and to reduce the false

alarm rate, more filters can be applied to the signal. For example, it is quite common to apply an elevation

mask; most of the multipath-induced false alarms can be removed by considering only signals from satellites

above a certain elevation angle. Further conditions can be defined on the C/N0 value, so as to exclude noisy

measurements, or on the satellites azimuth ϑaz. According to the Semi-hard detection rule, scintillation is present

at epoch n if and only if:

S4 [n] > TS4 ∧ θel [n] > Tθel ∧ C/N0 [n] > TC/N0
(3)

The value of the elevation threshold Tθel is typically set to 30◦ [36], [37]. The definition of TC/N0
is more

complex, as the C/N0 is the result of an estimation process and depends on the receiver implementation. The

value 37 dBHz gives satisfactory results [38]. Nevertheless, it has been proven that the filter on the C/N0 is

not very discriminant in terms of detection results; lower values, such as 30 dBHz, which corresponds to the

sensitivity of a standard tracking loop, lead to analog results.

3) Manual detection: A “third” approach corresponds to human-driven manual and subjective identification

of the portion of data affected by scintillation. This can be achieved by visual inspection of the S4 and C/N0

estimates, of the satellite azimuth and elevation and of the comparison of historical data. Even though this

approach lacks scientific rigor, it can assure the best detection performance, provided that the person doing the

manual annotation has enough knowledge and experience. However, it is time-consuming, subject to human

errors and not automatic.

In this paper, the manual annotation is considered as the reference ground truth for the detection performance

analysis. The same approach has been used also in other works relying on machine learning for scintillation

detection [17], [18].

B. Case studies

The examples refer to GNSS data collections performed on March 26 and April 2, 2015, in Hanoi (Vietnam),

at 11◦ 20′ N geo-magnetic latitude, using a customized Software Defined Radio (SDR)-based GNSS data grabber

and software receiver [38]. Moderate and strong amplitude scintillation events were observed; the Dst index
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Fig. 3. Comparison of traditional scintillation detection methods for two different scintillation events. Top panels report the trend of the

S4, the manual annotation, the detection results of the Hard and Semi-hard rules and the value of the S4 threshold TS4 = 0.4. Bottom

panels report the elevation and C/N0 trends, and their respective thresholds used in traditional rules, Tθel = 30◦ and TC/N0
= 37 dBHz.

negative peaks, provided by the World Data Center of Kyoto, amount to −20 nT and −21 nT respectively.

Global Positioning System (GPS) L1 C/A signals are considered, respectively of Pseudo-Random Noise (PRN)

satellite 10 and 23. Fig. 3 shows the estimates of the S4 index (top plot, black dots), of the C/N0 and of

the satellite elevation (bottom plot, blue and red lines respectively) as computed by the software receiver. In

addition, three horizontal lines are drawn in correspondence of the S4, C/N0 and elevation thresholds, used in

the detection rules.

Traditional detection rules for scintillation monitoring are applied.

1) All points for which scintillation is detected according to the Hard rule, (2), are colored in cyan. In this

case, TS4
= 0.4; therefore, all points with a S4 higher than 0.4 are marked as scintillation.

2) All points for which scintillation is detected according to the Semi-hard rule, (3), are colored in magenta.

In this case, Tθel = 30◦ and TC/N0
= 37 dBHz; as a consequence, only a subset of points of the previous

case are marked as scintillation.

3) All points enclosed by the blue boxes are manually marked as scintillation by visual inspection.

From a careful analysis of the figure, it is clear that the Hard and Semi-Hard rules fail in identifying

scintillation, when compared to the manual annotation, considered as ground truth. In particular, in the first

case, reported in Fig. 3a, the high S4 values in the time interval between 16:18 and 16:36 are likely due to

multipath reflections. This is evident by considering the fact that the satellite is rising (elevation lower than

5◦), but also exploiting a-priori information on environmental conditions, such as the presence of obstacles in

the satellite line-of-sight, or historical data analysis, such as the sidereal repetition of the event with the same

S4 pattern. The detection results of the Hard rule are then characterized by a high false alarm rate. On the

contrary, the Semi-hard rule correctly marks all the points as no scintillation, thanks to the filter added by the

threshold on the elevation.

On the other hand, in the second case, depicted in Fig. 3b, both rules are too conservative. There are time

windows which are part of the same scintillation event, but the values of S4 and θel slightly lower than the

corresponding thresholds classify them as non scintillated time epochs, thus generating a high missed detection

rate. The interval from 16:03 to 16.20 is the leading edge phase of the event detected starting from 16:20.

Similarly, the interval from 16:40 to 16:44 can be considered scintillation, even if the S4 value is slightly below
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the detection threshold; the presence of high S4 values a few minutes before and after this time interval assures

that it can be marked as scintillation.

Results can be formalized by means of the confusion matrix. In the first example, no scintillation is present,

so the False Positives and False Negatives are equal to 0. While the semi-hard rule gives a True negatives rate

of 100%, this percentage reduces to 61.6% for the Hard rule. In the second example, the rate of True negatives

and False positives is the same for both rules, and corresponds to 4.2% and 0% respectively. However, in this

case the Hard rule has a True positives rate of almost 58%, overcoming the Semi-hard (51.8%), which in turn

has a higher False positives rate.

The overall confusion matrices for detection results of the two examples and for both the Hard and Semi-hard

rule are reported in TABLE II. The Hard rule detection gives an overall percentage of correct estimations of only

32.9%+29% = 61.9%. The false alarm rate amounts to 19.2%, while the missed detection rate is 18.1%. When

moving to the Semi-hard case, the number of points correctly estimated increases to 52.1% + 25.9% = 78%.

As expected, the false alarms are 0%, but the missed detection rate increases to 22%.

TABLE II. CONFUSION MATRICES FOR THE HARD AND SEMI-HARD RULE, ON THE EXAMPLES OF MARCH 26, PRN 10 AND

APRIL 2, PRN 23.

Hard

0 1

M
an

ua
l

0 32.9 19.2

1 18.9 29.0

Semi-hard

0 1
M

an
ua

l

0 52.1 0

1 22.0 25.9

C. Limitations

As demonstrated by the previous examples, the traditional thresholding-based approaches for automatic

scintillation detection appear not to be able to fully characterize the event, since decisions based on hard

thresholds do not take into account either the physics of the event, or the environmental conditions. Multipath,

interference and other nuisances might lead to erroneous scintillation detection, as S4 overlooks the higher-

moments characteristics of the signals.

Furthermore, it has to be remarked that the computation of S4 is cumbersome and demanding: it requires

complex averaging and detrending operations on the correlation outputs, in order to reduce noise and to remove

the slow variations due to the signal dynamics. The choice of the best detrending technique is not trivial:

several approaches, based on the use of high-order Butterworth filters, of wavelet transformations, and on

simple averaging, have been described [39]–[41]. Nevertheless, it has been proven that different methods lead to

different results [42]. It has also been proven that a different detrending shall be chosen for different geographical

areas [43] and that detrending operations could introduce post-processing artifacts [19].

Manual annotation can assure higher accuracy in the event classification, in terms of duration and continuity,

at the expenses of a time-consuming human-driven visual inspection. Furthermore it is a post-processing analysis

which is not suitable for a quasi real-time detection. As a summary, strengths and weaknesses of these three

approaches are reported in TABLE III.
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TABLE III. SUMMARY OF THE TRADITIONAL SCINTILLATION DETECTION APPROACHES STRENGTHS AND WEAKNESSES.

Detection Strengths Weaknesses

Hard Very simple rule. Low detection accuracy

Easy implementation Requires detrending.

also in real time. False alarms due to

multipath reflections.

Semi-hard Increased accuracy. Not general approach.

Higher robustness to Location dependent.

non-ionospheric impairments. Higher computational burden.

Manual High accuracy. Costly and time consuming.

Cross analysis of Dependent on human experience.

historical data. Subjected to human errors.

Non-real-time (post-processing).

This, in turn, justifies the investigation of different detection and classification techniques. The limitations

of the aforementioned approaches can be mitigated exploiting machine learning techniques, able to learn from

human processes to produce automatic high accuracy detection and classification.

IV. MACHINE LEARNING SCINTILLATION DETECTION

The goal of the machine learning detection algorithm is to replicate the performance of the manual detection,

without introducing additional human effort to manually classify the data. The algorithm, once trained on big

datasets labeled by manual annotation, demonstrates better detection properties with respect to the Hard and

Semi-hard approaches.

The machine learning algorithm considered is the decision tree, as it offers the best compromise between

computational complexity, performance and data pre-processing operations. k-fold cross validation, with k = 10,

is performed on the dataset: for each run, 90% of input data are used in the training phase and 10% of data

are used for the test set.

A. Correlation matrix analysis and features selection

The first necessary step is the selection of the features used to train the model. Features shall be selected

between the measurements provided by a GNSS receiver. Nevertheless, their choice is not trivial, and the final

performance of the algorithm, as well as the scalability and generality of the technique, depend on the features

chosen.

The correlation matrix is a statistical tool used to underline the correlation between each couple of features.

Each cell of the correlation matrix reports the Pearson correlation coefficient between variables X and Y ,

defined as:

ρ (X,Y ) =
σXY
σXσY

=

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)
2
√∑n

i=1 (yi − ȳ)
2

(4)

where xi is a single record of the dataset and x̄ is the sample mean. The correlation coefficient ranges from

−1 to 1. Correlation between X and Y is absent when the correlation coefficient ρ (X,Y ) is equal to 0, weak

when |ρ (X,Y )| ≤ 0.35, moderate in the range 0.36 to 0.67 and strong when it exceeds 0.68 [44].
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1 -0.11 0.25 0.92 0.4

1 0.12 -0.07 0.6

1 0.14 0.1

1 0.4

1

C/N0

S4

Azimuth

Elevation

Manual

Fig. 4. Correlation matrix, considering the observables of the signal.

(a) April 2, PRN 23 (b) March 26, PRN 10

Fig. 5. Decision tree detection results for two different scintillation events and for set L1. Top panels report the manual annotation

(ground truth), the detection results of the Hard and Semi-hard rules, and the machine learning detection results. Bottom panels report the

trend of the S4 and the value of the S4 threshold TS4
= 0.4.

B. Observable-based features

Fig. 4 reports the matrix of the correlation ρ (X,Y ) between the manual ground truth and the 1 Hz observables

provided by the GNSS scintillation monitoring receiver: S4, C/N0, θel and ϑaz. Manual annotation has a

moderate correlation with C/N0, θel and S4, and a very low correlation with ϑaz.

A first set of features, L1, that looks to be a reasonable starting choice, is then defined as:

L1 = {S4, C/N0, θel} (5)

It includes the observables having the highest correlation with the manual annotation. Furthermore, they are

the same parameters used in the Semi-hard detection rule (3).

The same two case studies considered in Section III-B are analyzed. The detection results of machine learning

algorithm based on set L1 are reported in Fig. 5, along with the detection results of the Hard and Semi-hard

rules. The blue line identifies the manual human-driven detection. The green line corresponds to the detection

results of the machine learning decision tree algorithm. With respect to the Hard and Semi-hard cases, and

compared to the manual detection, machine learning results show both a lower rate of false alarms, in the

example of Fig. 5a, and a lower rate of missed detection, in the example of Fig. 5b.

The confusion matrix, reported in TABLE IV, summarizes the results. When compared to the case reported

in Fig. 3, the missed detection rate is reduced to 7.4%, while there are no false alarms. The global success rate

corresponds to 52.1% + 40.5% = 92.6%, meaning that for more than 9 cases over 10 the machine learning
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prediction matches the manual annotation. It is important to underline that these two examples, in particular the

first, reflect a worst case situation, in which the presence of multipath introduces a further level of complexity.

More simple cases, relative to portions of the dataset affected by scintillation only, show a higher success rate,

and are not reported here.

TABLE IV. CONFUSION MATRIX FOR MACHINE LEARNING PREDICTION AND FOR THE SET L1 , ON THE EXAMPLES OF MARCH 26,

PRN 10 AND APRIL 2, PRN 23.

Prediction

0 1

M
an

ua
l

0 52.1 0

1 7.4 40.5

Nevertheless, although the results in terms of scintillation detection are good, the approach based on the signal

observables reveals some limitations. On one side, the use of S4 should be avoided, as it already corresponds

to the output of the traditional approach. In addition, its derivation is computationally demanding and involves

complex operations that could introduce post-processing artifacts and location dependent solutions. At the same

time, the use of C/N0 could lead to misleading detection result, as, in the presence of scintillation, it might

be affected by a bias or even provide completely wrong results [18]. Finally, the use of satellites elevation can

potentially lead to overfitting, making the model suitable only for the specific location of the data collection

used for the training.

C. Signal-based features

In order to further improve the machine leargning scintillation detection performance, it is possible to exploit,

as features, not the final observables and the final scintillation index, but rather their components; in other words,

to unpack the S4 formulation [45]. In this section the raw GNSS signal measurements at the output of the receiver

tracking stage in time domain are used as features, the 50 Hz I and Q correlators output. They correspond to

the higher rate observables which can be provided by a commercial receiver, and thus to the most accurate

representation of the original GNSS signal. It will be proven that a machine learning approach that uses raw

observables as features rather than the scintillation indices not only is able to detect scintillations, but offers a

higher performance. Furthermore, such an approach overtakes the problem of computing the scintillation indices

and is able to exclude the side effects and artifacts introduced by the post-processing.

I and Q values cannot be directly injected in the learning, but they have to be averaged, in order to reduce the

impact of thermal noise and to highlight the scintillation phenomenon. Therefore new quantities are defined,

based on a short observation window, Tobs. N samples of I and Q are averaged over the observation period,

where N = Tobs · 50 Hz. The averaged correlations samples, denoted 〈I〉 and 〈Q〉, are then defined as:

〈I〉 =
1

N

N∑
n=1

In (6)

〈Q〉 =
1

N

N∑
n=1

Qn (7)
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𝑛1

𝑇obs = 60 s
𝑁 = 3000

1 s → 1 Hz

𝑛2
𝑛3

𝑛4
𝑛5

20 ms → 50 Hz decision

𝑡

1 Hz

Fig. 6. Illustration of the samples averaging and window overlapping procedure used in the work.

where In and Qn are respectively the I and Q correlator outputs at time n.

In order to combine the information brought by phase and quadrature components, the SI, at time n, can be

computed:

SIn = I2n +Q2
n (8)

Similarly, SI is averaged over the observation period:

〈SI〉 =
1

N

N∑
n=1

SIn =
1

N

N∑
n=1

(
I2n +Q2

n

)
(9)

This suggests to compute other two additional features, i.e. the average over the observation period of the square

of the I and Q correlators: 〈
I2
〉

=
1

N

N∑
n=1

I2n (10)

〈
Q2
〉

=
1

N

N∑
n=1

Q2
n (11)

By analogy with the previous cases and with the algorithm used to compute S4, a last feature is identified as

the average over the observation windows of the square of the SI:

〈
SI2

〉
=

1

N

N∑
n=1

SI2n (12)

A new subset of features, including combinations of the I and Q correlators, is introduced:

L2 =
{
〈I〉 , 〈Q〉 , 〈SI〉 ,

〈
I2
〉
,
〈
Q2
〉
,
〈
SI2

〉}
(13)

On the other hand, previous works on the topic consider as a feature only the Fourier transform of the SI [19],

[20]. Furthermore, it is important to mention that, contrary to what is typically done in literature [18], [46], no

prior elevation-based filtering aiming at reducing the effect of multipath is performed. Indeed, applying a mask

partially hides the signal distortion phenomenon that are under study.

The features in (13) are obtained by averaging N = 3000 values of the 50 Hz correlator stage outputs. The

observation windows is set to Tobs = 60 s, in agreement with common scintillation observation algorithms

[22]. In addition, a sliding and overlapping windowing technique is applied, depicted in Fig. 6: by shifting the

observation window of 1 s, the resolution of the observation is increased to 1 Hz. The same average operation

over 60 s of values is performed and a set of new features is injected in the machine learning algorithm at the

end of each window, thus at a 1 Hz rate.

The correlation matrix for the set of features L2 is reported in Fig. 7. From the table, it emerges that a

moderate correlation is experienced between the manual scintillation annotation and the variables 〈SI〉,
〈
I2
〉

and
〈
SI2

〉
.
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1 -0.26 -0.15 0 -0.15 -0.19 -0.17 -0.03 -0.01

1 0.08 -0.18 0.08 0.07 0.06 -0.02 -0.02

1 0.01 1 0.95 0.92 0.02 0.46

1 0.01 0.03 0.03 0.04 -0.01

1 0.95 0.92 0.02 0.46

1 0.98 0.06 0.41

1 0.18 0.47

1 0.6

1

S4

<SI>

Manual

<SI>2

<SI 2 >

<Q2>

<Q>

<I>

<I2>

Fig. 7. Correlation matrix considering the features defined in set L2.

The results obtained running decision tree on set L2 on the selected case studies will be presented in

Section V-B, respectively in Fig. 11a and 11b.

V. RESULTS

In this section, a complete performance analysis of different machine learning algorithms, on the full dataset,

and considering different sets of features, is provided and compared to the traditional detection methods. First,

quantitative results in terms of confusion matrices, accuracy, precision, recall and F-score are reported and

commented. Then qualitative results focusing on the punctual analysis of some false negatives and false positives

predictions are proposed, with a focus on the run time detection capabilities. To conclude, results of a test on

novel, untrained data, collected in a different location, are presented.

Data are part of the same data collection described in Section III-B (Hanoi, Vietnam, at 11◦ 20′ N geo-

magnetic latitude, in March and April 2015). They include a total of 169 955 entries of data at 50 Hz resolution,

spanning a total time interval of about 6 hours, and including in total 20 different satellites. The rate of

scintillation events is about 1:4.

A. Quantitative results

1) Hard and Semi-hard rules: First, summary results related to the Hard and Semi-hard rules tests are reported.

The confusion matrices are depicted in TABLE V. The number of false positives and of false negatives is quite

high in both cases, respectively 18.75% and 13.87%. In the Semi-hard rule case, the percentage of false positives

is reduced to only 0.26%, at the expenses of a higher rate of false negatives. This is justified recalling that the

Semi-hard rule is a conservative approach.

Accuracy, precision, recall and F-score are reported in the first two rows of TABLE VI. Although also

precision and recall are reported, a fair performance analysis shall be made focusing on the the accuracy,

and in particular on the F-score. As detailed in Section II-B3, precision and recall give a partial overview on
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TABLE V. CONFUSION MATRICES FOR THE HARD AND SEMI-HARD RULE, ON THE COMPLETE DATASET.

Hard

0 1
M

an
ua

l
0 65.45 9.97

1 8.78 15.8

Semi-hard

0 1

M
an

ua
l

0 73.97 13.61

1 0.26 12.16

Fig. 8. Summary of the accuracy and F-score obtained for the different scintillation detection techniques presented.

the goodness of the algorithms, while the F-score is the most complete metric, taking into account also the

numerosity of the points denoted as scintillated. The accuracy is about 5% higher in the second case. However,

the lower value of the recall is the sign of an uneven evaluation of the performance. Indeed, the F-score for the

two approaches is similar; the Semi-hard algorithm only improves this indicator by 1%. The two approaches

can then be defined similar in terms of detection performance.

TABLE VI. SUMMARY OF THE OVERALL DETECTION RESULTS FOR DIFFERENT ALGORITHMS OVER DIFFERENT SET OF FEATURES.

Detection rule Set Accuracy Precision Recall F-score

Hard S4 81.2% 64.3% 61.3% 62.8%

Semi-hard S4, C/N0, θel 86.1% 97.9% 47.2% 63.7%

Decision tree L1 96.7% 93.4% 93.8% 93.6%

Decision tree L2 98.0% 96.3% 96.1% 96.2%

Random forest L2 99.7% 99.4% 99.3% 99.4%

2) Decision tree on set L1: The central row of TABLE VI reports the results obtained running the decision

tree algorithm over the set of features L1, on the complete dataset, using a standard 10-fold cross-validation

approach. The confusion matrix is reported in TABLE VII, and is the result of the average of the ten confusion

matrices generated during the 10-fold cross validation process. Despite being a non standard approach, this is

allowed as each fold has the same proportion of scintillation and non scintillation points.

The number of false positives and false negatives is reduced to about 3.3%. The accuracy, corresponds to

96.7%, meaning that for 164 299 over 169 955 points the machine learning prediction matches the manual

annotation. The improvement, with respect to the Semi-hard rule is larger than 10%.

Complementary information is reported in Fig. 9. The figure shows the three dimensional space defined by
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TABLE VII. CONFUSION MATRIX FOR THE COMPLETE DATASET USING DECISION TREE OVER SET L1 .

Prediction

0 1

M
an

ua
l

0 72.2 1.7

1 1.6 24.5

Fig. 9. Representation of the capabilities of the features defined in L1 to detect scintillation events.

L1 and reports the machine learning detection results. Blue points correspond to the portions of the signal for

which no scintillation is detected, red points correspond to points for which machine learning algorithm detects

scintillation. The two different regions appear to be quite well separated, sign that the global classification

performance is good.

3) Decision tree on set L2: The last rows of TABLE VI report the results of the machine learning approaches

on the set of features L2, identified in (13), and have been obtained performing a 10-fold cross validation.

Machine learning approaches overcome both traditional methods based on Hard and Semi-hard thresholding.

The improvement, in terms of F-score, is about 30%. In addition, the signal-based set of features L2 outperforms

the observable-based set of features L1. This is important, considering the fact that L2 only includes features

obtained by averaging and summing the I and Q correlator outputs, and that more elaborated features, such

as S4 and C/N0, are not considered. This overcomes the problem of computing the scintillation indices and

in turn reduces the computational burden of the detector. No complex averaging and detrending operations are

required to compute S4 and C/N0 values, making this approach more generic and flexible. Furthermore, the

use of L2 makes the technique location independent, as elevation is not used.

The confusion matrix obtained averaging the 10 folds of the decision tree approach is reported in TABLE VIII.

When compared to the confusion matrices for the set L1, the number of false positives passes from 1.7% to

1.0%, and the number of false negatives passes from from 1.6% to 1.0%.
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TABLE VIII. CONFUSION MATRIX FOR THE COMPLETE DATASET USING DECISION TREE FOR SET L2 .

Prediction

0 1

M
an
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l

0 72.9 1

1 1 25.1
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Fig. 10. Accuracy and F-score of the decision tree algorithm versus the number of points used in the training set.

Fig. 10 reports the accuracy and the F-score obtained running decision tree algorithm on set L2 and using

10-fold cross validation over a different number of input points. The graph shows that the value of the metrics

increases as more points are used in the training phase, because the model defined by the machine learning

algorithm is more complete. In order to obtain an accuracy of at least 98% and a F-score of at least 96%, a

training dataset of at least 140 000 points shall be used.

TABLE VI also shows that random forest technique further improves the results, as it evaluates the decisions

obtained by several decision trees, at the expenses of a higher computation burden in the training phase.

B. Qualitative analysis of the false predictions

Despite being easy to read and offering a quick quantitative overview of the overall performance of machine

learning, the metrics reported in Section V-A deserve a deeper analysis. This section focuses on a few test cases,

correspondent to different scintillation events, analyzing in detail the most relevant examples of false negatives

and false positives. All plots show the detection results of machine learning decision tree tests, performed on

set L2 (green points), compared to the the Hard (orange points), Semi-hard (red points) and manual/ground

truth (blue points). The value of θel and of C/N0, along with the thresholds used in the Semi-hard rule, are

reported as a reference in bottom panels, for a better interpretation of the results.

First, the same two examples analyzed in Section III are reported in Fig. 11b and 11a. The detection

performance of decision tree computed over set L2 is in line with the case over set L1, reported in Fig. 5. There

are no false alarms, and the manual ground truth perfectly matches in both cases, confirming the goodness of

the features of set L2.

Fig. 11c proves that the machine learning approach solves some of the the problems due to predefined
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(a) April 2, PRN 23 (b) March 26, PRN 10

(c) April 2, PRN 1 (d) March 26, PRN 2

(e) April 2, PRN 3 (f) March 26, PRN 6

Fig. 11. Decision tree detection results for different test cases. Top panels report the manual annotation, the detection results of the Hard

and Semi-hard rules, and the machine learning detection results, computed over set L2. Middle panels report the trend of the S4 and

the value of the S4 threshold TS4 = 0.4. Bottom panels report the elevation and C/N0 trends, and their respective thresholds used in

traditional rules, Tθel = 30◦ and TC/N0
= 37 dBHz.

thresholds in Hard and Semi-hard rules, thus reducing the missed detection rates and improving the overall

accuracy. In this case, many points are wrongly not considered as scintillation by traditional approaches, as the

value of S4 is below TS4
. This happens both in the middle and at the borders of the event, although from visual

inspection it is clear that all the points belong to the same 40-minutes long scintillation event. In particular, the

raising and falling edges of the event are very well classified by machine learning with respect to Hard and

Semi-hard rules. Also in this case, the decision tree prediction perfectly matches the manual annotation.
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Fig. 12. Example of early scintillation detection, April 2, PRN 17.

Fig. 11d is a clear example of the importance of avoiding the a-priori filtering of data according to an elevation

mask. In this case, a scintillation event can be clearly identified, despite the elevation of the satellite is below

30◦. The Semi-hard rule, as well as any algorithm which applies an elevation mask to exclude low elevation

satellites, would fails in detecting the event. On the contrary, the decision tree model detects the scintillation,

and perfectly matches the manual annotation.

In Fig. 11e, machine learning detection gives a certain number of false positives, when compared to the

manual annotation. However, a better analysis of the scintillation event could raise doubts about the correctness

of the visual inspection: some of the false positives are concentrated in portions of signal for which the manual

annotation could be called into question. Although the S4 value is below the threshold, the points declared as

scintillation by the decision tree algorithm could actually mark the start of a second and lighter event. Similarly,

Fig. 11f reports a certain number of false alarms. Also in this case, the points in which scintillation has been

detected could actually be precursors of the consecutive long event.

In general, it is possible to state that the cases in which the decision tree approach fails are not serious

failures. In some cases, they correspond in ambiguous situations, and can be the consequence of carelessness

in the visual inspection procedure, which is one of the limitations of human-based manual annotation. In other

situations, missed detections and false alarms are isolated events, and could be completely eliminated, for

instance, eliminating scintillation occurrences lasting less then a few seconds. It can be proved that an accurate

post-processing of the machine learning results can lead to even higher accuracy and F-score values, further

confirming the validity of the machine learning approach for autonomous scintillation detection.

C. Run time events detection

In addition to the good performance in terms of accuracy and detection rates, the results reported above show

that machine learning offers a valid solution also for run time detection of the events. An increasing number

of applications requires to rapidly raise an alert in case of scintillation, potentially leading to poor quality of

the GNSS positioning solution. As traditional methods mostly rely on S4, no alerts can be raised during the

leading edge phase of a scintillation event. Indeed, when compared to the Hard and Semi-hard rules, decision

tree approach allows an earlier detection of the event.

This is confirmed by many experimental results; one example is depicted in Fig. 12. In this specific case,

machine learning can detect the scintillation event with an advance of 9 minutes, with respect to Hard and Semi-

hard rules. Similar considerations could be drawn by considering the detection results reported in Fig. 11b, 11c

and 11f. It is important to point out that this cannot be considered a prediction of the scintillation event, but

rather an early detection. Scintillation prediction is out of the scope of this work.
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Fig. 13. Example detection for novel and untrained data, March 25, PRN 9.

D. Test on novel data

This section presents some test results on novel GNSS data affected by scintillation, in order to demonstrate

the effectiveness of the decision tree approach. Data were acquired using a similar acquisition system, on March

25, 2015, in a different location (Presidente Prudente, Brasil, at a geomagentic latitude of 12◦ 90′ S). A fragment

of 1 hour of data, on 7 different GPS satellites, corresponding to 28066 entries has been considered. As in the

previous case, a manual ground truth has been defined by visual inspection. It is important to underline that

such data are not involved in the training phase, and thus in the construction of the model. The model applied

is the same considered in all previous tests, defined over the signal-based features of set L2.

The overall F-score is higher than 90%, while for the Semi-hard rule only 80.1% is reached. An example

of detection results is reported in Fig. 13. The results for the other PRN affected by scintillation are similar

and are not reported. Machine learning decision tree detection results are in line with the manual human-based

annotation. All the data between 23:56 and 00:32 are below 30◦ of elevation. Detection techniques based on data

pre-filtering would have completely discarded from the analysis the data in this interval, while rules including

an elevation threshold would have wrongly marked those events as non-scintillation.

VI. CONCLUSION

This paper proposes a novel approach to systematically detect ionospheric scintillation events affecting the

GNSS signals amplitude, characterized by a higher level of accuracy, reliability and readiness. This goal is

achieved by leveraging machine learning techniques, able to learn from historical pre-classified data, and to

perform automatic classification on new data. A theoretical background on GNSS, ionospheric scintillations

and machine learning is given in the first part of the paper, along with a description of the classical detection

techniques based on the computation of the amplitude scintillation index and on hard thresholding rules. Several

tests have been carried out and are reported in Section V. The results demonstrate that this approach outperforms

state-of-the art techniques in terms of accuracy and F-score, and that it can reach the levels of a manual human-

driven annotation. Furthermore, it has been proven that signal based features (set L2) outperform observable-

based features (set L1).

In addition, this solution offers the following added values:

1) increased generalization and location-independence, by avoiding the use of scintillation indices;

2) independence from detrending and average operations, required to compute S4;

3) independence from a-priori filtering of data at a certain elevation mark, thus preserving potential useful

information;
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TABLE IX. FEATURES IDENTIFIED TO BE USED IN THE MACHINE LEARNING APPROACH.

Name Description

O
bs

er
va

bl
e-

ba
se

d
fe

at
ur

es

S4 The typical amplitude scintillation index used in scintillation monitoring. It is equal to zero for non-scintillation amplitude events, and

increases during a scintillation event.

C/N0 The carrier over noise power density ratio, a low rate averaged measure of the signal strenght, based on the value of the I and Q output

correlators.

θel The satellite’s elevation angle above the horizon.

ϑaz The satellite’s azimuth with respect to the North.

Si
gn

al
-b

as
ed

fe
at

ur
es

〈I〉 The in-phase correlator output averaged over the observation window, defined in (6).

〈Q〉 The quadra-phase correlator output averaged over the observation window, defined in (7).〈
I2

〉
The in-phase correlator output squared and averaged over the observation window, defined in (10).〈

Q2
〉

The quadra-phase correlator output squared averaged over the observation window, defined in (11).

〈SI〉 The signal intensity, averaged over the observation window, defined in (9).〈
SI2

〉
The signal intensity squared and averaged over the observation window, defined in (12).

4) capability to avoid false alarms due to multipath reflections;

5) improved computational speed and costs optimization in terms of human effort and time;

6) potentiality to raise early run-time scintillation alerts.

Machine learning can facilitate the work of analyzing big sets of GNSS data affected by amplitude scintillation,

leading to a better understanding of the physical phenomenon, and to a potential improvement of the robustness

of GNSS receivers.

APPENDIX A

SUMMARY OF ALL THE FEATURES

All the features considered in this paper are summarized in TABLE IX.
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