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Abstract—TOPIC (Tuning Of Parameters for Inference of
Concepts) is a distributed self-tuning engine whose aim is to
cluster collections of textual data into correlated groups of
documents through a topic modeling methodology (i.e., LDA).
TOPIC includes automatic strategies to relieve the end-user of
the burden of selecting proper values for the overall analytics
process. TOPIC’s current implementation runs on Apache Spark,
a state-of-the-art distributed computing framework. As a case
study, TOPIC has been validated on three real collections of
textual documents characterized by different distributions. The
experimental results show the effectiveness and efficiency of the
proposed solution in analyzing collections of documents without
tuning algorithm parameters and in discovering cohesive and
well-separated groups of documents with a similar topic.

Keywords-Text mining; Parameter-free technique; topic detec-
tion; LDA; data weighting function; Big Data framework.

I. INTRODUCTION

With modern applications and technologies (e.g., social
networks, e-learning platforms, digital libraries), the produc-
tion and collection of textual data is constantly increasing.
However, the sheer volume of documents means that extracting
useful information from the data can be difficult and challeng-
ing. It is therefore increasingly necessary to engineer effective
approaches to automatically discover hidden and implicit
information from textual data. Text mining, and specifically
topic modeling, studies algorithms to find previously unknown
but potentially high-quality information from large document
collections. Text mining activities include: (i) grouping docu-
ments with similar properties or similar content [1], (ii) topic
modeling [2], (iii) Clustering Web services [3] and (iv) long
text summarizations [4].

Topic models are a set of statistical text-mining tools
that uncover the hidden topics in a collection of documents.
Intuitively, documents can be associated with a particular topic
or can be seen as a mixture of topics in different proportions,
and certain words can be expected to appear in a document
more or less frequently. Topic modeling techniques are then
able to describe topics (and so documents) by means of similar
word clusters.

Analyzing large data collections with the above techniques
often entails a critical bottleneck of computational costs.
Several studies have sought solutions to this and their results
have produced innovative algorithms and methodologies able
to support large scale analytics, such as MapReduce [5]

and particularly Apache Spark [6], which outperforms others
(e.g., Hadoop) thanks to its distributed memory abstraction.
Applying these techniques to text mining becomes natural
in view of the large volume of the data collections. Besides
the high computational costs, effectively performing the text
mining process on textual data currently requires a multi-step
process involving various algorithms with each one having
different specific parameters that should be manually set by
the analyst. This activity is very time consuming and requires
a lot of expertise to achieve the best trade-off between the
quality of the result and execution time. Innovative, scalable,
and parameter-free solutions need to be devised to streamline
the analytics process for large data collections.

This paper proposes TOPIC (Tuning Of Parameters for
Inference of Concepts), a distributed self-tuning engine run-
ning on Apache Spark, which is able to cluster a collection
of documents into cohesive and well-separated groups. It
includes all the analytics blocks to make the overall analy-
sis problem more effectively tractable. Specifically, TOPIC
comprises different suitable data weighting functions, based
on local and global weights, together with the application of
the Latent Dirichlet Allocation [2], a generative probabilistic
model described in Section III, to divide a given corpus into
correlated groups of documents with a similar topic. Moreover,
TOPIC contains a procedure, named TOPIC-SIMILARITY, to
relieve the end-user of the burden of selecting proper values
for the number of topics. We have experimentally assessed
TOPIC on three real collections of documents: two Wikipedia
textual data collections and the Reuters-21578 collection.
The performed experiments highlighted TOPIC’s ability to
autonomously identify groups of documents with a similar
topic by off-loading the parameter tuning from the end user.

In this paper Section II explores the state-of-the-art tech-
niques, Section III presents TOPIC architecture and its main
building components, while Section IV shows the tests run to
assess TOPIC’s performance and discusses their experimental
results. Finally, Section V draws conclusions and presents
future developments of this work.

II. RELATED WORKS

Finding and setting the optimal number of topics in which
to cluster the documents is an open issue in literature. Besides
the trial-and-error approach, which requires a lot of effort



and expertise to correctly configure each algorithm, differ-
ent methodologies have been proposed. Among these, the
approaches considered in this study are (i) En-LDA and (ii)
RPC.

The Entropy optimized Latent Dirichlet Allocation (En-
LDA) approach [7] is an entropy based index that chooses the
K number of clusters to reduce the model entropy as much as
possible. This method measures the entropy of the LDA model
considering the entropy of each term in a document and using
topics as their probabilistic labels. The entropy of words in all
the corpus under analysis are then aggregated to estimate the
overall entropy of words, given the distribution of words with
respect to topics and the distribution of topics with respect to
documents.

The Rate of Perplexity Change (RPC) [8] uses an heuristic
approach that takes into account how the variation of the
average perplexities for a set of topic candidates changes
with respect to the number of topics. The perplexity index
[2] measures how well a probability model predicts a sample.
Thus, the RPC index is defined as the absolute value of the
ratio between the difference of perplexity values for different
models and the difference between the number of topics in the
corresponding models. Authors in [8] consider the first change
point of the RPC curve, which is the first value in the range
2 ≤ i ≤ K−1 that satisfies the equation RPC(i) < RPC(i+1),
to be the most suitable value for the number of topics K.

With respect to these approaches that consider only the
probabilistic properties of the LDA models, TOPIC includes
in the computation also the semantic representation of the
identified clusters. Moreover, it appears that the variances of
both perplexity and entropy are very low, considering different
K values for the same dataset. Thus, choosing a K value rather
than another based only on probability statistics may be not
effective for the analysis. Furthermore, the evaluation of the
En-LDA does not have a stopping criterion to interrupt the
computation to find the optimal K.

Self-tuning strategies to automatically tune the algorithm
parameters for the whole text clustering process have been
proposed in [1], [9]. In [1], the authors explore a data trans-
formation method of input data (Latent Semantic Indexing)
before the cluster analysis (addressed via the K-Means algo-
rithm) to gain insights from textual data and make the overall
analysis problem more effectively tractable. The contribution
proposed in [9] tailors the methodology in [1] to Twitter data.

Different from the above works, this study proposes a new
method to automatically set the optimal number of topics to
partition a given document collection through LDA, exploit-
ing several weighting schemas and datasets characterized by
different data distribution.

III. METHODOLOGY

TOPIC (Tuning Of Parameters for Inference of Concepts)
is a distributed self-tuning engine whose aim is to cluster
collections of textual documents into correlated groups of
documents through a topic modeling methodology. TOPIC
includes automatic strategies to relieve the end-user of the

burden of selecting proper values for the overall cluster
analysis process. The TOPIC architecture, reported in Figure
1, includes three main components: (i) Textual data processing
and features computation, (ii) Document modeling and self-
tuning textual data clustering and (iii) Knowledge visualization
and validation.

Fig. 1. TOPIC architecture

Textual data processing is carried out through five steps
which are done sequentially as interrelated tasks. (1) Document
splitting: documents can be split into sentences, paragraphs, or
analyzed in their entire content, according to the next analytics
task; (2) tokenization: each document is broken into groups
of words named tokens within the same split; (3) stopwords
removal: the most common words in a language (e.g., articles,
prepositions), which do not bring additional information, are
eliminated; (4) stemming: prefixes and suffixes are removed
to reduce each word to its base or root form; (5) case
normalization: this last step converts the text to uppercase or
lowercase.

Features definition and computation is an engine able to
characterize the data distribution of a collection of documents
through several indices as proposed in [10], [11]. It includes:
number of categories; number of documents, maximum, min-
imum and average frequency of a term’s occurrence; number
of terms in the collection with repetitions (# term), number of
different terms in the collection without repetition (dictionary);
the ratio between the dictionary variety and the total number of
terms in the collection (Type-Token Ratio); the ratio between
number of Hapax (absolute frequency of terms with one
occurrence) and the cardinality of the dictionary (Hapax %);
and the ratio between the cardinality of the dictionary and the
square root of # terms (Guiraud Index).

A. Document modeling and Self-tuning textual data clustering

This TOPIC component entails the representation of the
document collection through different weighting functions to
highlight the relevance of specific terms in the collection, and
then it applies LDA to build a model able to cluster a given
collection of textual data into correlated groups of documents
with a similar topic.



TABLE I
LOCAL AND GLOBAL WEIGHT FUNCTIONS EXPLOITED IN TOPIC

Weight Definition

Local
TF = tfij
LogTF = log2(tfij + 1)
Boolean = { 0, 1 }

Global
IDF = log

|D|
dfj

Entropy = 1 +
∑

i
pij log pij

logn
TFglob = tfj

Let D = {w1, w2, ... wM} be a collection of M documents,
named corpus, wi = (w1, w2, ... wN ) a general document in
it and V = {t1, t2, . . . , t|V |} the set of distinct terms in the
collection, i.e. the set of all the distinct stems used at least
once in a document. D is represented as a matrix X , named
document-term matrix. In X , rows correspond to documents
in the corpus and columns, one for each tj ∈ V , correspond
to terms.

Weighting functions. To measure the relevance of terms/
words appearing in the document, each term in the corpus
D is associated with a weight. A weight wij is a positive
real number associated with each term tj of a document di,
and quantifies its level of importance in each document under
analysis. Various weighting functions, combining a local term
weight with a global term weight, have been proposed in [12].
A weighting function applied on a collection D generates its
weighted matrix X . Specifically, for each term tj of a docu-
ment di the corresponding weight xij in X is computed as the
product of a local term weight (lij) and a global term weight
(gj) (xij=lij×gj). lij measures the relative frequency of a term
j in a document i, while gj describes the relative frequency
of the term tj within the entire collection D. TOPIC includes
three local term weights: Term-Frequency (TF), Logarithmic
term frequency (Log) and Unitary (Boolean), and three global
term weights: Inverse Document Frequency (IDF), Entropy
(Entropy) and Term-Frequency (TFglob). The formulas for all
local and global weights exploited in TOPIC are shown in
Table I. TOPIC investigates the five weighting schema as TF-
IDF, TF-Entropy, Log-IDF, Log-Entropy, Boolean-TFglob.

B. Self-Tuning LDA

This TOPIC component discovers a good partition of a
document collection based on the LDA modeling. The latter
produces a probabilistic model evaluated by the TOPIC-
SIMILARITY block. The result of TOPIC-SIMILARITY is then
fed back into the LDA algorithm to produce a new evaluation,
taking into account a new configuration and the previous
TOPIC-SIMILARITY evaluation. This process is repeated until
a good trade-off between the quality of the obtained results and
the execution time is achieved.

Latent Dirichlet Allocation (LDA) is an unsupervised
generative probabilistic model for collections of discrete data
such as text corpora [2]. The aim of this algorithm is to
build a model able to shortly describe large collections of data
without resorting to data dimensionality reduction. Given the
document-term matrix of weights X the generative model is

computed for a specific number of topics K, which is supposed
to be known. However, in many real use cases the right
value for K is unknown and it is set experimentally. TOPIC
allows the automatic identifying of a good value for K through
TOPIC-SIMILARITY. The LDA modeling describes topics and
words as probabilistic distributions from which the document
terms will be drawn. Documents are then seen as a distribution
over a mixture of latent topics, since each term of a document
is drawn from the vocabulary taking into account the terms’
probabilities for each given topic of the document’s mixture
[2]. Specifically, to generate each document in the corpus, the
steps performed are:

1) Choose the number of terms from a Poisson distribution;
2) For each of the document’s words:

- Choose a topic zn from Multinomial(θ), where θ
is a Dirichlet(α), representing the document-topics
distribution;

- Choose a word wn from Multinomial(φzn ), where
φ represents the topic-words distribution (φ ∼
Dirichlet(β)), conditioned on the topic zn.

Hence, the joint multivariate distribution for the whole
corpus of the document-topics distribution θ, the set of K
topics z and the set of N terms w is defined as: p(D|α,β) =∏K

d=1

∫
p(θd|α)

(∏Nd
n=1

∑
zdn

p(zn|θd)p(wdn|zdn,β)
)
dθd,

where

• α represents the concentration for the prior placed on
documents’ distributions over topics;

• β describes the concentration for the prior placed on
topics’ distributions over terms.

With a corpus of documents X in input, the generative LDA
model can then be used to support inference of the posterior
distribution of the latent variables for the given corpus. Gener-
ally, computing these distributions it is unfeasible, and so it is
impossible to exactly solve this posterior Bayesian inferential
problem. To overcome this problem, several approximate infer-
ence algorithms have been proposed in literature: the TOPIC
engine exploits the Online Variational Bayes algorithms [13],
while α and β are set to maximize the log likelihood of the
data under analysis.

ToPIC-SIMILARITY index. In order to predict a suitable
number of topics (i.e. the desired number of clusters) to divide
the corpus into, TOPIC uses a novel proposed strategy named
TOPIC-SIMILARITY to assess how topics are semantically di-
verse and choose proper configurations for the LDA modeling.
Given a lower and an upper bound number of clusters set by
the analyst (i.e, [Kmin, Kmax]) a new LDA model is generated
for each K value. For each of these partitionings, TOPIC-
SIMILARITY requires three steps to be gone through:

1) topic characterization, to describe each t topic (0 ≤ t <
K) with the most n representative words;

2) similarity computation, to assess how the topics in the
same partitioning are similar;

3) K identification, to find good clustering configurations
to be proposed to the analyst;



Steps 1) and 2) are repeated for all the t topics in every K
clustering model.

Topic characterization. To determine the TOPIC-
SIMILARITY, each topic t has to be described with its
n most representative terms. This number of words is
automatically set, depending on:
• variety of the corpus dictionary |V |,
• the average frequency of the terms in the corpus

(AvgFreq),
• the Type-Token Ratio (TTR, ∈ [0, 1]) and the currently

considered number of topics K.
To select the number of representative words, TOPIC

considers only the richest part of the corpus under analysis
(by means of the TTR index, which represents the lexical
variation of the corpus) and then samples the remaining words
by the average frequency of the terms. This quantity, named
Q, represents the total number of considered terms, and it
is mathematically defined as: Q := |V |·TTR

AvgFreq . Given Q, the
number of words n describing a single topic t is given by:

n =

{
Q
K , if Q ≥ K ·AvgFreq

AvgFreq , if Q < K ·AvgFreq
(1)

For each topic t, the number of n terms is obtained taking the
corpus dictionary sorted by the distribution φ.
This is done if the final number of words considered for
each topic is greater than the average frequency of terms
of the corpus, to make the sampling reasonable (it does not
make sense to sample with a period greater than the number
of items themselves) and to have every topic represented at
least by a number of words equal to the average frequency.
If the condition is not satisfied, then a minimum number of
terms is considered. We set this lower bound quantity to be
equal to the average frequency of the terms in the corpus.
Repetitions among the considered terms characterizing each
topic are removed and the resulting words are considered
together to make the topic representations comparable. Then,
for each term in every topic, if the word is present in the topic
description, the correspondent value is set to the probability
that the term has to be picked up in the topic, or to 0 if it is not.

Similarity computation To compute the TOPIC-
SIMILARITY index of the partitioning, all the possible
pairs of topics are considered. Similarity among all the
topics is computed through the cosine similarity. Cosine
similarity is one of the most used techniques in information
retrieval and data mining, especially in text analysis and
topic modeling, because of its efficiency [14] and ability to
reflect the human perception of similarity [15]. It is derived
from the Euclidean dot product and, given two topics t’ and
t” of the same partitioning K, it is computed as follows:

similarity(t′, t′′) =
Nt′ · Nt′′

‖Nt′‖2‖Nt′′‖2
, where Nt′ and Nt′′ are

the set of representative words of topic t’ and t”, respectively.
The result is a K×K symmetric matrix where each cell (i,j)
is the similarity between topic in row i and topic in column j.

Since we use the cosine similarity in the text analysis context
and the probabilities of the terms are always positive, the
obtained values will always be in the interval from 0 to 1.
The TOPIC-SIMILARITY index for the considered clustering
is obtained averaging the similarity matrix over K to keep in
consideration the different number of clusters. For this issue,
the norm of the whole similarity matrix (using the Frobenius
norm) is computed and then the obtained values are divided
by K. Since TOPIC-SIMILARITY is expressed in percentage,
the previous values are multiplied by 100.

K identification A topic similarity function is obtained,
computing TOPIC-SIMILARITY for the several LDA models
generated for different K. To find optimal K values a trade-off
approach between optimal results and computational cost has
been chosen. It has been empirically seen that the obtained
TOPIC-SIMILARITY function is, in most cases, decreasing
but not monotonic. Two conditions are defined to choose as
K values:
• the local minima of the curve, namely the K for which

TOPIC-SIMILARITY(Ki) < TOPIC-SIMILARITY(Ki+1)
• the only points belonging to a decreasing segment of

the curve. Thus, the second derivative is computed and
only the points that have a positive second derivative are
considered.

In our study we considered the selected values to be the first
three points that satisfy both of the above conditions. The
topic modeling and the search for optimal K values can stop
when the first three values are found, or when the algorithm
reaches the K upper bound value set by the analyst (and in
this case a lower number of optimal values will be proposed
to the analyst).

C. Knowledge visualization and validation

Model evaluation is hard when using unlabeled data. Since it
is important to check whether a model makes sense practically,
four different methods are integrated in TOPIC to assess the
model quality. TOPIC includes two visualization approaches:
(i) t-SNE visualization and (ii) topic-term diagram and two
quantitative validation approaches: (iii) perplexity and (iv)
clustering metrics. All the approaches are described below.

t-SNE. Visualizing high-dimensional data, such as textual
documents, is not a trivial task. TOPIC includes t-Distributed
Stochastic Neighbor Embedding (t-SNE) [16], a dimension-
ality reduction algorithm for high-dimensional data visual-
ization. It allows the representing of data in two or three
dimensions while preserving their most significant structure.
Although t-SNE modeling is nondeterministic and probabilis-
tic, it provides a good approximation of the underlying data.

Topic-Term representation. Since the topics descriptions
are available after the LDA modeling process, TOPIC allows
the comparison across and within the topics identified by
the model through the analysis of the most representative
terms and their probabilities. TOPIC provides the word cloud
representation to visualize the topic-terms distribution. Besides
showing the content of a topic, this visualization approach



stresses the terms with higher probabilities to represent the
topic with a bigger font size. Thus, it is possible to straight-
forwardly observe whether the identified partition is good or
the topic modeling has not yielded an acceptable outcome.

Perplexity. TOPIC includes the perplexity [2] measure to
assess the quality of the probabilistic model. It describes how
well a model depicts a sample, i.e. how much it is perplexed
by a sample from the observed data. The lower the perplexity
score, the better the model for the given data.

Clustering quality metrics. To evaluate the goodness of the
LDA model, TOPIC integrates two metrics: (i) Entropy and
(ii) Silhouette. In information theory, Entropy [17] is defined
as the amount of information in a transmitted message. The
larger the entropy, the more uncertainty is contained in the
message. Instead, to measure the consistency and the cohesion
of a clustering, Silhouette [18] is one of the most used and
well-known metrics able to assess cluster separation together
with cluster cohesion. It can assume a value between -1 and
1, representing how well the clustering performs for the given
dataset.

IV. EXPERIMENTAL RESULTS

Experimental validation has been designed to address two
main issues: (i) TOPIC’s performance and (ii) comparison
with state-of-the-art approaches. The current implementation
of TOPIC is a project developed in Scala exploiting the LDA
algorithm available in apache.spark.ml.clustering [19]. The
two hyper parameters α and β have been set to 50/k and to 0.1
respectively, as proposed in [20]. All experiments have been
performed on the BigData@PoliTO cluster1 running Apache
Spark 2.0.0. Three nodes, two executors and a driver having
a 7GB main memory and a quadcore processor, have been
deployed for this research using a cluster configuration.

A. Datasets

We experimentally assessed TOPIC on three real collections
of documents: two Wikipedia textual data collections (includ-
ing respectively 5 categories2 and 10 categories3) and the
Reuters-21578 collection4. The main characteristics of each
dataset are reported in Table II.

Table II shows the proposed indices characterizing the data
distribution in the considered datasets with Hapax (WH) and
without Hapax (WoH). Eliminating words that appear only
once within the corpus (i.e., Hapax) allows the LDA to
construct a more precise probabilistic model. Since each term
of the corpus is drawn from the vocabulary taking into account
the terms’ probabilities for each given topic of the documents’
mixture, excluding Hapax terms will allow the reduction of
noise in the vocabulary. Moreover, the features with Hapax
(WH) and without Hapax (WoH) in Table II does not show any

1https://bigdata.polito.it/content/bigdata-cluster
2Cooking, literature, mathematics, music and sports.
3Astronomy, cooking, geography, history, literature, mathematics, music,

politics, religion, sports.
4http://www.daviddlewis.com/resources/testcollections/reuters21578.

A subset of the collection has been taken, namely the Apte’ Split 90 categories
(http://disi.unitn.it/moschitti/corpora.htm)

significant difference. Thus, removing Hapax does not change
the main dataset features but allows better LDA modeling.

The TTR index well describes the data sparsity of each
dataset and it is able to distinguish between sparse and dense
data distribution. In these datasets, the TTR index falls into
the range [0.01, 0.03]. Thus, dataset D3 is denser than the
other two. Conversely, the Guiraud index is able to describe
the lexical richness of a document corpus. D1 and D2 are
characterized by a large number of terms (words with rep-
etition) and by a very large dictionary (number of distinct
words without repetition). Each word appears on average 16
times and 21 times respectively (see columns WH in Table
II), but over 50% of words in both corpus appear only once
(percentage of Hapax). Removing Hapax from the analysis
increases the value of the average frequency in D1 and D2 to
32 and 44, respectively. On the other hand, D3 is characterized
by a smaller dictionary, and the Hapax percentage is smaller
than D1 and D2. Thus, the lexical richness used in D3 is
not significant with respect to the other two datasets. These
proportions are also confirmed excluding Hapax terms.

B. ToPIC’s performance

Here we discuss TOPIC’s ability to discover good quality
partitions of a collection of textual documents. Table III
shows the results obtained using TOPIC for each dataset and
weighting schema. Since weights highlight the importance of
words within documents, analyzing how different weighting
schemas affect the model is important. Specifically, Table III
includes a row for each K obtained utilizing our proposed
clustering methodology and the three proposed metrics used
to analyze the goodness of the statistical model generated.
The selection of the three K values is performed through the
analysis of the TOPIC-SIMILARITY curve.

An analysis of TOPIC’s performance, reported in Table III,
reveals several trends. Entropy and Silhouette are inversely
proportional, since better clustering is characterized by a high
level of Silhouette and a small value of entropy. Specifically,
local weight TF tends to find a smaller number of topics
using TOPIC-SIMILARITY independently of the global
weight. Instead, local weight LogTF finds a large number
of clusters which makes it possible to analyze the same
dataset in a more detailed way that is able to find some
interesting subtopics. Different considerations arise for the
global weights. Global IDF results present a better value
of perplexity (e.g., at least 0.1 greater) compared to those
obtained using global Entropy, although the quality metrics
are not in line. However, analyzing the found topics only
by means of the quantitative metrics is not enough, since
they merely measure distances (Euclidean and probabilistic)
among the document groups. A deep understanding of human
common-sense knowledge to interpret the major topic in each
cluster should be done in order to validate the LDA model.
Moreover, since TOPIC-SIMILARITY proposes three good
values for the analysis, the analyst can choose a solution from
the results according to the required granularity of the topics.



TABLE II
DATASETS FEATURES WITH HAPAX (WH) AND WITHOUT HAPAX (WOH)

Wikipedia Reuters
WH WoH WH WoH WH WoH

ID D1 D2 D3
# categories 5 10 90
# documents 989 2,463 15,437

Max frequency 6,343 9,405 42,886
Min frequency 1 2 1 2 1 2
Avg frequency 16 32 21 44 55 76

# terms 1,109,408 1,075,210 2,995,762 2,882,781 1,337,225 1,316,988
Dictionary |V | 67,613 33,415 138,329 65,336 24,239 17,153

TTR 0.06 0.03 0.05 0.02 0.02 0.01
Hapax % 50.58 0 52.77 0 29.2 0

Guiraud Index 64.19 32.23 80.46 38.48 20.96 14,95

Fig. 2. TOPIC-SIMILARITY curve for dataset D1

Figure 2 shows the TOPIC-SIMILARITY curve for dataset
D1 and TF-IDF weighting schema. The first three points that
satisfy both the conditions stated in Section III-B are 3, 6 and
10. These three values are selected by TOPIC and reported in
Table III.

D1 is discussed as the representative dataset. We computed
the histogram of the TF-IDF and LogTF-Entropy weights. The
values of LogTF-Entropy present almost a uniform distribution
in the range [0,1] (Kurtosis index > 0 and standard dev.
0.5) and the distribution has maximum value 8. Instead,
with the IDF an asymmetrical bell distribution is obtained
with average values between [2,5] (Kurtosis index > 0 and
standard dev. 12.7) and maximum value 1161. The IDF weight
schema better differentiates the weights within the corpus, thus
producing a probabilistic model with better performances. The
Entropy global weight performs badly in providing relevance
for the words in all the datasets. As shown in Figure 3, even
though the quantitative evaluation metrics cannot spot the
bad results of the clustering produced with these weighting
schemas, it is still possible to asses the quality of the generated
model. Indeed, Figure 3 presents interesting considerations
analyzing dataset D1 for LogTF-Entropy (on top) and TF-
IDF (on bottom) schemas. Specifically, figure 3(left) shows
for the LDA models (obtained with the two weights) the
probability distribution of each document of the corpus D1
to belong to the K topics selected by the algorithm (i.e.,
K=6 for TF-IDF and K=7 for LogTF-Entropy). In detail, the

documents present a more homogeneous distribution using the
IDF weight, with topics balanced by the number of documents.
Instead, with the Entropy weight, there is one cluster in which
90% of the documents have a probability greater than 0.90 of
membership. It turns out that 90% of the documents belong
to a single cluster (topic) and the result is due to the fact
that the weight entropy fails to isolate the most significant
terms within the collection of documents. These results are
also confirmed analyzing the t-SNE visualization in Figure
3(right). For this reason, clustering results having Entropy as
global weights will not be considered in the discussion. When
unbalanced clusters are generated, the use of only goodness
metrics is not able to guarantee good performance. Indeed,
high values of Silhouette or low values of entropy do not
involve a good clustering but represent a simplification of
the problem. It is like classifying 90% of the documents in
a single topic, thus generating many false negatives. Having
the class label available, indices such as recall or precision
could help identify these incorrect assignments. However, if
the label were not available, the use of quantitative indicators
would not be effective. Methods that take into account the
semantics must be presented.

Fig. 3. (left) Document probability distributions in each topic (right) t-SNE
representations, for dataset D1

The TOPIC performances are reported in the last column
of Table III. The execution times for the used datasets are



TABLE III
TOPIC’S PERFORMANCE

Weight K Perpl Silh Entr Execution
Time

D1

TF-IDF
3 8.8127 0.7721 0.2561

1h 50min6 8.5970 0.6935 0.3634
10 8.4822 0.6827 0.3956

TF-Entr
5 9.0724 0.7623 0.2825

1h 30min8 9.2482 0.6324 0.3388
9 9.2679 0.6319 0.3395

LogTF-IDF 8 9.1873 0.6754 0.3205 1h 40min17 9.1262 0.6370 0.3626

LogTF-Entr
5 9.9126 0.8915 0.1004

1h 30min7 9.8841 0.8460 0.1748
11 9.9794 0.9515 0.1089

Boolean-TF
4 6.4926 0.6979 0.4214

2h 5min5 6.4640 0.6618 0.4832
17 6.4208 0.3813 1.0901

D2

TF-IDF
3 9.2008 0.7715 0.2460

3h 20min8 8.9628 0.5878 0.5314
10 8.9436 0.5530 0.6118

TF-Entr
3 9.5568 0.8075 0.2161

3h 25min7 9.4555 0.7008 0.3556
8 9.4631 0.6985 0.3693

LogTF-IDF 11 9.4108 0.6016 0.4895 3h 20min14 9.4529 0.5652 0.4958

LogTF-Entr
7 10.2031 0.8751 0.1258

3h 10min9 10.2194 0.8922 0.1219
11 10.2327 0.9012 0.1253

Boolean-TF
6 6.6223 0.4398 0.7979

5h 20min13 6.5833 0.3380 1.1922
18 6.5699 0.3205 1.3262

D3

TF-IDF
3 7.7154 0.7347 0.2763

1h 55min4 7.6455 0.6913 0.3485
9 7.4389 0.5966 0.5586

TF-Entr
4 8.5396 0.0564 1.3806

1h 50min6 8.6242 -0.247 1.7805
9 8.7109 -0.0811 2.169

LogTF-IDF
5 7.7503 0.7005 0.3565

1h 50min7 7.6686 0.6676 0.4440
13 7.5614 0.5989 0.6396

LogTF-Entr
5 8.7880 0.0774 1.6090

1h 50min9 9.0011 -0.0437 2.1955
13 9.1759 -0.0690 2.5600

Boolean-TF
4 3.9669 0.6373 0.4659

2h 20min7 3.8947 0.4730 0.7352
16 3.7309 0.3016 1.3112

generally acceptable. Indeed, the timings report the computa-
tion of the TOPIC-SIMILARITY curve for all the K values in
[2,20], and they are actually due to the computational time of
the LDA models themselves.

C. Comparison with state-of-the-art approaches

In this Section, a comparison of the results obtained with
TOPIC and state-of-the-art techniques (i.e., RPC and En-LDA)
is presented. RPC [8] is a heuristic algorithm evaluating the
average perplexity variation of the LDA models to choose
the number of topics. EnLDA [7] is instead an entropy based
approach which selects the K value in order to minimize the
overall amount of entropy of the topic modeling. They will be
discussed in more detail in Section II.

Table IV shows the results obtained with the state-of-the-
art techniques wrt TOPIC and their evaluation using the same
metrics as Table III. It is observable that the first number of
topics found by TOPIC-SIMILARITY is comparable with the

TABLE IV
PERFORMANCE OF STATE-OF-THE-ART METHODS VS TOPIC

Weights Method K Perpl Silh Entr

D1

TF-IDF
RPC 3 8.8127 0.7721 0.2561

En-LDA 19 8.4273 0.6211 0.5345
TOPIC 10 8.4822 0.6827 0.3956

TF-Entr RPC 5 9.0724 0.7623 0.2825
En-LDA 5 9.0724 0.7623 0.2825
TOPIC 5 9.0724 0.7623 0.2825

LogTF-IDF RPC 7 9.1837 0.6935 0.3192
En-LDA 16 9.1890 0.5530 0.4434
TOPIC 8 9.1873 0.6754 0.3205

LogTF-Entr RPC 3 9.7774 0.8524 0.1441
En-LDA 3 9.7774 0.8524 0.1441
TOPIC 7 9.8841 0.8460 0.1748

Boolean-TF RPC 4 6.4926 0.6979 0.4214
En-LDA 20 6.4127 0.6618 1.2558
TOPIC 5 6.4640 0.6618 0.4832

D2

TF-IDF
RPC 6 9.0370 0.6214 0.4638

En-LDA 20 8.8447 0.5274 0.6617
TOPIC 10 8.9436 0.5530 0.6118

TF-Entr RPC 5 9.4955 0.7198 0.3293
En-LDA 20 9.5718 0.6060 0.4374
TOPIC 7 9.4555 0.7008 0.3556

LogTF-IDF RPC 7 9.4280 0.6213 0.4601
En-LDA 19 9.4052 0.5095 0.5345
TOPIC 11 9.4108 0.6016 0.4895

LogTF-Entr RPC 3 10.1156 0.7787 0.2142
En-LDA 5 10.1365 0.8172 0.1762
TOPIC 7 10.2031 0.8751 0.1258

Boolean-TF RPC 7 6.6159 0.3956 0.8756
En-LDA 20 7.3124 0.5366 0.7986
TOPIC 18 6.5699 0.3205 1.3262

D3

TF-IDF
RPC 5 7.5937 0.6728 0.3924

En-LDA 20 7.3124 0.5366 0.7986
TOPIC 9 7.4389 0.5966 0.5586

TF-Entr RPC 7 8.6670 -0.586 1.9340
En-LDA 17 8.7483 -0.0428 2.6406
TOPIC 9 8.7109 -0.0811 2.169

LogTF-IDF RPC 4 7.8130 0.7350 0.3088
En-LDA 19 7.5663 0.5688 0.7740
TOPIC 13 7.5614 0.5989 0.6396

LogTF-Entr RPC 13 9.1759 -0.0690 2.5600
En-LDA 17 9.2942 -1847 2.8132
TOPIC 5 8.7880 0.0774 1.6090

Boolean-TF RPC 6 3.9200 0.5007 0.6562
En-LDA 20 3.6822 0.2954 1.4030
TOPIC 16 3.7309 0.3016 1.3112

value found by the RPC method (practically equal in D1 using
TF-IDF), which tends to find a very small number of topics.
Instead, TOPIC is comparable with En-LDA (which tends to
create many clusters, sometimes even taking the upper bound
of the possible K values as the optimal solution) using the last
value of K and as weighting function the Boolean-TFglob. This
weight finds a greater number of topics to describe the corpus,
finding a very fine-grained topics model for the dataset.
Figure 5 shows a subset of most representative topic de-
scriptions obtained with the TF-IDF weighting schema and K
equal to 10. It is easy to interpret and assign a representative
label to each topic that actually describes the main categories
originally present in the dataset. These topics are also the
bigger ones represented in figure 4, meaning that LDA is
able to well identify and split the document into coherent
and cohesive clusters. The remaining clusters identified by the
LDA model includes words describing more specifically a sub-



Fig. 4. Comparison of t-SNE representations for dataset D1

Fig. 5. Word cloud representation of a subset of topic, dataset D1, TF-IDF
weighting schema, K = 10

topic, thus they are not shown in the word cloud representation.
With respect to the computational and time costs, TOPIC

outperforms En-LDA. Calculating En-LDA indices is com-
putationally very expensive, and the number of iterations
explodes with the growth in documents vocabulary and the
cardinality of the corpus. Furthermore En-LDA needs to be
computed for all the topics in the given set, having to find the
entropy minimum among all the possible K possibilities. RPC,
instead, requires a computational time comparable to the one
required by TOPIC in the wort case.

V. CONCLUSION AND FUTURE WORKS

This paper presents a self-tuning data analytics system
that effectively mines textual data collections. The proposed
framework, TOPIC, includes ad-hoc auto-selection strategies
to streamline the analytics process and off-load the parameter
tuning from end-user. TOPIC features a distributed imple-
mentation in Apache Spark supporting parallel and scalable
processing. Possible extensions of the current work are (i)
the design of a self-learning strategy able to suggest good
configurations which yield higher quality knowledge without
performing the analytics task and (ii) the improvement of the
characterization of the topics’ semantic description to perform
better modeling for a given data collection.

REFERENCES

[1] E. Di Corso, T. Cerquitelli, and F. Ventura, “Self-tuning techniques for
large scale cluster analysis on textual data collections,” in Proceedings
of the 32nd Annual ACM Symposium on Applied Computing, Marrakesh,
Morocco, April 3rd-7th, 2017, pp. 1–6.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,”
Journal of machine Learning research, vol. 3, no. Jan, pp. 993–1022,
2003.

[3] M. Shi, J. Liu, D. Zhou, M. Tang, and B. Cao, “WE-LDA: A word
embeddings augmented LDA model for web services clustering,” in 2017
IEEE International Conference on Web Services, ICWS 2017, Honolulu,
HI, USA, June 25-30, 2017, 2017, pp. 9–16.

[4] S. Wang, X. Zhao, B. Li, B. Ge, and D. Tang, “Integrating extractive and
abstractive models for long text summarization,” in IEEE International
BigData Congress. IEEE, pp. 305–312.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in OSDI’04, 2004, pp. 10–10.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in NSDI’12,
2012, pp. 2–2.

[7] W. Zhang, Y. Cui, and T. Yoshida, “En-lda: An novel approach to
automatic bug report assignment with entropy optimized latent dirichlet
allocation,” Entropy, vol. 19, no. 5, p. 173, 2017.

[8] W. Zhao, J. J. Chen, R. Perkins, Z. Liu, W. Ge, Y. Ding, and W. Zou,
“A heuristic approach to determine an appropriate number of topics in
topic modeling,” BMC bioinformatics, vol. 16, no. 13, p. S8, 2015.

[9] E. Di Corso, F. Ventura, and T. Cerquitelli, “All in a twitter: Self-tuning
strategies for a deeper understanding of a crisis tweet collection,” in
IEEE BigData 2017, Boston, MA, USA, 2017, pp. 3722–3726.

[10] T. Cerquitelli, E. Di Corso, F. Ventura, and S. Chiusano, “Data miners’
little helper: Data transformation activity cues for cluster analysis on
document collections,” in Proceedings of the 7th International Confer-
ence on Web Intelligence, Mining and Semantics, ser. WIMS ’17. New
York, NY, USA: ACM, 2017, pp. 27:1–27:6.

[11] T. Cerquitelli, E. Di Corso, F. Ventura, and S. Chiusano, “Prompting
the data transformation activities for cluster analysis on collections of
documents,” in Proceedings of SEBD 2017, 2017, pp. 226–234.

[12] P. Nakov, A. Popova, and P. Mateev, “Weight functions impact on LSA
performance,” in EuroConference RANLP’2001 (Recent Advances in
NLP, 2001, pp. 187–193.

[13] M. Hoffman, F. R. Bach, and D. M. Blei, “Online learning for latent
dirichlet allocation,” in Advances in Neural Information Processing
Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010, pp.
856–864. [Online]. Available: http://papers.nips.cc/paper/3902-online-
learning-for-latent-dirichlet-allocation.pdf

[14] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity mea-
sures: a large-scale study in the orkut social network,” in Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. ACM, 2005, pp. 678–684.
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