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Abstract 

Introduction  

The oncologic adequacy of laparoscopy in digestive surgery is still 

controversial, especially in some technically demanding operations like Total 

Mesorectal Excision (TME). Even if standard robotic platforms, i.e. the da Vinci 

Surgical System, can improve dexterity and manouvrability of surgical 

instruments, there is no evidence supporting its use in digestive and rectal cancer 

surgery. The only multi-centre prospective RCT (ROLARR trial) suggests that 

robotic TME has no advantages compared to laparoscopic TME in terms of 

clinical and oncologic outcomes. A possible explanation of this lack of real 

advantages is that the articulation is possible only on the tip of the instrument. The 

opportunity to have a robotic platform with modular flexibility on the whole 

length of the arm could overcome technical limitations, improving results and 

allowing standardization and diffusion of the procedures. 

Methods 

The 7FP STIFF FLOP project was financed by the European Commission in 

order to develop a STIFFness controllable Flexible and Learn-able manipulator 

for surgical operations. Engineers were inspired by the tentacles of an octopus. A 

prototype was realized, consisting of multiple soft, pneumatically actuated three-

chamber segments. Additional chambers are integrated within the segments to 

allow their stiffening, employing an approach based on the concept of granular 



Soft and flexible robotic arm in digestive surgery 
3 

 

jamming. The STIFF-FLOP segments are actuated using pressure regulators and 

the stiffening chambers are interfaced via valves, applying a vacuum to the 

granules in the chambers. Sensors are embedded in the STIFF-FLOP modules to 

measure interaction forces (between the robot and its environment) and the 

robot’s configuration. A newly developed user interface, based on a Delta robot 

design, is used to move and position the tip of the STIFF-FLOP arm inside the 

abdomen. Signals obtained from sensors are fed back to the user interface console 

providing the operator with force feedback. The entire soft robot is equipped with 

a 4 mm in diameter centre-free lumen, which allows the passage of the electrical 

wires needed for the laparoscopic miniaturized optic system positioned at the tip 

of the robot. 

Phantom test 

The prototype was tested in order to assess learnability and satisfaction of the 

operators. The test was designed as a spatial motion task, consisting of  

movements between predefined target points clockwise and counter clockwise in 

a 3D phantom of the abdominal cavity. The participants  were asked to conclude 

the task for the first time with the STIFF-FLOP prototype (SF1), then to repeat the 

task using conventional laparoscopic instrumentation (LAP) and finally to  

perform  the  task  once  more with the STIFF-FLOP arm (SF2). Surface EMG 

signals from the forearm muscles were recorded during the test.  

Results 

SF1 took a longer time than the other tasks, i.e. 36.4% more than LAP 

(p=0.0071). However, from SF1 to SF2 there was a 32.1% time reduction   

(p=0.0232). EMG  amplitude analysis  showed a higher overall average muscle 

activity during LAP. Moving from LAP to SF2  there was a 25.9% reduction in  

average  muscle activity (p=0.0128).  



 

Cadaver test 

The main objective of the test was to validate the compatibility of the system 

with human anatomy for laparoscopic TME and to determine whether the soft 

robot could represent a potential improvement compared to standard rigid 

laparoscopic instrumentation. The study was performed on two cadavers prepared 

according to the method described by Thiel. 

Results 

The use of the STIFF-FLOP camera allowed the surgeon to clearly visualize 

the inferior mesenteric vessels and the autonomic nerves that were subsequently 

spared from injury. The ability to smoothly follow the sacral curve due to the 

flexibility of the manipulator allowed the surgeons to perform a very precise 

dissection of the posterior part of the mesorectum. The same procedure was 

performed on both human cadavers, demonstrating the ease of use of the system. 

Completion times of the procedure were 165 and 145 min, respectively. No 

intraoperative complications were recorded. No technical failures were registered. 

Conclusion 

The STIFF FLOP flexible robotic arm is an intuitive technology that can be 

easily learned. The prolonged use of the STIFF FLOP manipulator is more 

comfortable than standard laparoscopic instrumentation and can be used for a long 

time without exhaustion. The system is compatible with human anatomy and 

allows to perform a standard surgical abdominal operation. The STIFF FLOP arm 

seems to improve visualization of the operatory field especially in narrow spaces 

like the pelvis. 
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Chapter 1 

History and State of the Art of 

Robotic Surgery 

1.1 History 

Robotic surgery represents a technological phenomenon. The diffusion of 

surgical robotic platforms increased during the last 10 years, between consensus 

and criticism among surgeons. The term robotic surgery, even if currently used, is 

actually not correct and should be replaced by "telepresence surgery". In this type 

of surgery the surgeon is physically separated from the patient. He can't see the 

patient under direct vision, but only through an artificial image generated by a 

stereoscopic camera introduced in patient's abdomen or thorax [1]. The concept of 

telepresence surgery was developed for the first time for military purposes, to 

minimize combat deaths [2]. On the battlefield, 90% of all deaths occur before the 

soldier reaches a medical facility [3, 4], so US Army tried to produce a platform 

allowing surgeons to immediately operate wounded soldier from a remote secure 



 

location [5]. The first prototype was designed for open surgery: 2 cameras were 

placed above the patient in the operatory room projecting an image to the surgeon, 

who could operate through a console connected to a 2 arms telerobot reproducing 

his movements [6]. Once the feasibility of telemanipulation was showed, the 

potential of  surgical robotic arms with degrees of freedom similar to human 

hands and easily manipulated by an intuitive console was thought as a possible 

technical solution to the limitations of conventional laparoscopy. Rigid 

laparoscopic instruments offer only four of the six degrees of freedom required for 

the free handling of objects in space. At the beginning of the 1990s Buess and 

coworkers designed and developed a master-slave manipulator system called 

ARTEMIS (Advanced Robotic Telemanipulator for Minimally Invasive Surgery) 

for laparoscopic surgery as a prototype. The system consisted of two robotic arms 

holding two steerable laparoscopic instruments. These two work units were 

controlled from a console equipped with two master arms operated by the 

surgeon. The placement of ligatures and sutures and the handling of catheters 

were possible in phantom models and the surgical practicability of the system was 

demonstrated in animal experiments [7-9]. The development of the system was 

abandoned for lack of investments as it was not clear at that stage of development, 

the real worth of such an effort. 

In 1989, Yulun Wang founded his own company with funding from the U.S. 

government and private industry. Computer Motion Inc.
®

 launched AESOP
®

 

(Automated Endoscopic System for Optimal Positioning) [10], a robotic telescope 
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manipulator, and the robotic surgical system ZEUS
®

 [11]. Food and Drug 

Administration (FDA) approved for use AESOP in 1994 and ZEUS in 2001 to 

assist in the control of blunt dissectors, retractors, graspers, and stabilizers during 

laparoscopic and thoracoscopic surgery. ZEUS had three robotic arms mounted on 

the operating table. One robotic arm called AESOP was a voice-activated robot 

used to hold the endoscope; the other two arms of ZEUS were the extension of the 

left and right arms of the surgeon. Surgeons sat at a console and wore special 

glasses that created a three-dimensional image. After FDA approval the 

possibilities of remote telepresence surgery were tested by J. Marescaux, who 

performed a transatlantic cholecystectomy using ZEUS surgical System [12-14]. 

Intuitive Surgical Inc.
®

 developed a telepresence surgery device suitable for 

minimally invasive surgery: the da Vinci System, that was tested for the first time 

in humans in 1997. FDA approved the da Vinci in July of 2000, requiring 

surgeons perform telerobotic operations within the same operating room as the 

patient. 

Competition between Intuitive Surgical Inc. and Computer Motion Inc. began 

to increase, as the market became ready to adopt surgical robotic technology. 

After several legal proceedings for patent infringement from both sides, in March 

2003 the two companies announced that they were merging into one company 

combining their strengths in operative surgical robotics, telesurgery, and operating 

room integration, to better serve hospitals, doctors and patients. The ZEUS 

http://www.intuitivesurgical.com/
http://www.allbusiness.com/banking-finance/financial-markets-investing-securities/7044289-1.html
http://sec.edgar-online.com/intuitive-surgical-inc/8-k-current-report-filing/2003/03/07/Section10.aspx


 

Robotic Surgical System was then discontinued and the da Vinci System 

remained the only surgical platform available on the market. The system includes 

three main features: a console/slave system providing intuitive control of seven 

degrees of freedom laparoscopic instruments, a stereoscopic vision system and a 

system architecture composed of redundant sensors to warrant maximum safety in 

operations. To facilitate telepresence surgery, the computer console purposely 

isolates the surgeon from his environment. As the surgeon inserts his head into the 

viewing area he descends into the virtual 3D operative field and, whenever he 

removes his eyes from the binoculars, an infrared beam deactivates the robotic 

tower. The surgeon's fingers are inserted into freely moving rings that convert the 

3D motions of the surgeon's hands into electrical signals. The computer translates 

these electrical signals into computer commands directing the robotic instruments 

to perform identical 3D movements. Robotic tower positioning and robotic 

instruments changing require the presence of an assistant surgeon at the operatory 

table. Several technological improvements have been developed during the last 15 

years. The da Vinci Si introduced 3D HD vision and an integrated fourth arm. The 

da Vinci Si was launched in April 2009 and introduced several enabling features, 

including enhanced high-definition 3D vision and dual-console capability to 

support training and collaboration during minimally invasive surgery. The fourth 

generation of Intuitive robots is the da Vinci Xi. It combines the functionality of 

the previous system with the flexibility of a mobile platform. The surgical cart can 

be placed at any position around the patient allowing for four-quadrant access and 
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redesigned thinner arms offer greater range of motion. The scope can be placed on 

any of the four arms, allowing more flexibility in surgical site identification. With 

these improvements docking is faster and conflict among arms significantly 

reduced. 

The main drawbacks to this technology are the steep learning curve, shorter for 

experienced laparoscopic surgeons, and the high cost of the device. One of the 

greatest technical problem is the loss of tactile, or haptic, sensation (ability to 

“feel” the tissue). In laparoscopic surgery surgeons handle tissues with lap 

instrumentation directly feeling intrinsic resistance or pathologic features. Besides 

technological improvements, lack of precise tactile feedback remains a critical 

issue concerning this kind of technology. 

Figure 1 The da Vinci Xi surgical system 



 

1.2 State of the Art in Digestive Surgery 

Laparoscopic surgery represents a revolution for surgeons and patients. 

Several trials clearly showed feasibility and safety of the technique and short term 

functional and oncologic results are comparable to open surgery for the majority 

of abdominal cancers. Post-operative course is dramatically shortened and 

cosmetic results significantly better. Laparoscopic surgery requires high technical 

skills and learning curves are very long. After 25 years of laparoscopic and 15 

years of robotic surgery the question is: does robotic surgery represent a 

revolution for surgeons and patients? Concerning general surgery the answer is: 

may be for surgeons, probably not for patients. Surgical stress, post-operative 

course, functional and oncologic outcomes and cosmetic results are comparable. 

Unfortunately evidence from literature is quite weak, so it is very difficult to 

precisely establish the real impact of robotic surgery on public health, besides its 

high costs. 

1.2.1 Minimally invasive Esophagectomy 

Robot assisted minimally invasive esophagectomy (RAMIE) has been 

reported to be safe and feasible with good short term oncologic results by several 

groups [15], but randomized controlled trials are still lacking. In large reported 

series, it seems that some complications occur more often after RAMIE than after 

Minimally Invasive Esophagectomy (MIE) or open surgery [16], but the level of 

evidence is very low and this moment no conclusion can be drawn. Pulmonary 

complications could be reduced by shortening operating time, which is actually 
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quite long compared to operating times of the teams very experienced in MIE 

[17]. The main technical advantage advocated by experts is the possibility to 

perform an accurate lymphadenectomy of the upper mediastinum, that is very 

uncomfortable both in MIE and open surgery [18]. 

1.2.2 Minimally invasive antireflux surgery 

Since 2001, several papers have been published on robot assisted hiatal hernia 

repair and antireflux surgery, including 5 RCTs [19-23]. General consensus 

among all publications is that there is no advantage in using the da Vinci robot in 

primary hiatal hernia and antireflux surgery. Operating time and costs are 

significantly higher with no differences in post-operative outcome, complication 

rate, conversion rate, quality of life, duration of hospital stay or post-operative 

morbidity. In experts' opinion robotic technology might only be beneficial for 

large and giant hiatal hernia repair and in redo antireflux surgery, but further 

studies are needed to show it [24]. 

1.2.3 Minimally invasive radical gastrectomy 

Robotic gastrectomy for cancer is considered to have little benefit compared 

with laparoscopic surgery, at least for the current indications of minimally 

invasive surgery for gastric cancer. It represents a safe and feasible alternative to 

laparoscopic surgery, but the real benefits remain unclear and should be 

investigated using well-designed prospective studies before the indications for 

robotic surgery for the treatment of gastric cancer are expanded [25]. 



 

Concerning robot assisted bariatric surgery, literature is controversial with a 

low level of evidence. No conclusions can be drawn about the real advantages of 

robotic platform both in sleeve gastrectomies and gastric bypass. Despite the lack 

of data there has been a steady increase in the number of surgeons using robot to 

perform weight loss surgical procedures [26], and it's hopefull that more high 

quality papers will be published to better define the correct indications. 

1.2.4 Minimally invasive hepatic and pancreatic surgery 

There are no prospective studies investigating the impact of robotic surgery in 

hepatic resections. Therefore, it is difficult to draw any definitive conclusions at 

this time with regard to overall efficacy and benefits in both immediate (length of 

stay, postoperative pain, morbidity, mortality, and cost-effectiveness) and long-

term (quality of life, oncologic recurrence) patient outcomes [27]. Existing data 

are promising and warrant further investigation, especially for major 

hepatectomies. 

Laparoscopic surgery has been relatively slow to be adopted in pancreatic 

surgery. This is mainly true for pancreatico-duodenectomy (PD), an operation 

requiring high surgical skills both in dissection and reconstruction steps. On the 

other side, laparoscopic distal pancreatectomy (DP) gained large consensus and is 

currently performed by several pancreatic surgeons. Robotic surgery may assist 

the surgeon in overcoming many of the obstacles to the widespread application of 

laparoscopic pancreatic surgery. Only few series of robot assisted PD and DP 
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from high volume centres have been published with encouraging results [28], but 

high quality prospective data are not available. 

1.2.5 Minimally invasive colo-rectal surgery 

Robotic colon resections can be performed safely, with good short-term post-

operative outcomes [29]. There is only a randomized study comparing 

laparoscopic and robotic right hemicolectomy [30]. Estimated blood loss, 

conversion rate, length of stay, surgical complications, postoperative pain, 

resection margins and lymph node clearance were similar. However, the robotic 

group was associated with a significantly longer operative time, and an 

approximately 16% higher total hospital cost. A meta-analysis including this 

study and 6 retrospective series showed reduced estimated blood loss, reduced 

postoperative complications, longer operative time and a significantly faster 

recovery of bowel function in the robotic group. There were no differences in the 

length of hospital stay, conversion rate to open surgery, anastomotic leak or 

bleeding [31]. Robotic left colectomy and sigmoid resections have been only 

investigated by retrospective studies [32-36], showing good short-term results 

with a low level of evidence. In conclusion there is no evidence that robot assisted 

colon resections present significant advantages compared to laparoscopic 

technique. 

The situation is relatively similar for rectal surgery. Even if many surgeons 

consider robotic platform a very useful tool in rectal cancer surgery, there is no 



 

evidence in literature confirming this suggestion. A pilot RCT including only 36 

patients concluded that meso-rectal excision was performed safely and effectively 

using the da Vinci Surgical System and the perioperative outcomes were 

acceptable [37], but it was underpowered. Two meta-analyses revealed a 

significant difference in favour of laparoscopic procedures regarding costs and 

operating time and in favour of robotic surgery concerning morbidity rate, 

although no benefits were documented when analysing exclusively randomized 

trials [38]. Furthermore robotic surgery had lower conversion rate to open 

surgery, a shorter time to first flatus and better recovery in voiding and sexual 

function [39]. Case series, comparative and multi-centre studies have revealed that 

implementation of robotic technology is feasible, effective and safe for rectal 

cancer [40]. However, the only multi-centre prospective RCT (ROLARR trial) 

[41] comparing robotic and laparoscopic rectal resections failed to demonstrate 

the superiority of robotic approach. The study compared robotic and laparoscopic 

rectal anterior resections and abdomino-perineal excision for cancer and enrolled 

466 patients. The primary outcome was conversion to open laparotomy. 

Secondary end points included intraoperative and postoperative complications, 

circumferential resection margin positivity (CRM+) and other pathological 

outcomes, quality of life (36-Item Short Form Survey and 20-item 

Multidimensional Fatigue Inventory), bladder and sexual dysfunction 

(International Prostate Symptom Score, International Index of Erectile Function, 

and Female Sexual Function Index) and oncological outcomes. Conversion rate 
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was 12.2% in lap group and 8.1% in robotic group, showing no significant 

differences. No statistically significant differences were found in all tested 

outcomes. Authors conclude that robotic-assisted laparoscopic surgery, when 

performed by surgeons with varying experience with robotic surgery, does not 

confer an advantage in rectal cancer resection. There are three others RCTs 

comparing laparoscopic and robotic rectal resections registered on 

clinicaltrial.gov and coordinated by three Asian University Centres [42, 43, 44]. 

Data will be available in 2018 and 2019. 

1.2.6 Minimally invasive hernia repair 

There is a moderate interest and diffuse scepticism among surgeons in robotic 

inguinal hernia repair by trans-abdominal approach. Currently in the published 

literature the vast majority of experience in robotic inguinal hernia repair has been 

done by urologists, who have dealt with this clinical entity while performing 

robotic assisted radical prostatectomy. They have done this without reporting an 

increase in morbidity rates when compared to robotically assisted radical 

prostatectomy alone [45]. There still does not exist a reported case series of 

robotic inguinal hernia repair from a general surgery standpoint [46]. 

1.3 In Closing 

The concept of tele-presence surgery has been developed and moved to 

minimally invasive surgery, in order to overcome technical limitations of 

conventional laparoscopy. The only robotic platform for surgery commercially 



 

available today is the da Vinci system, that widely spread in the US, Europe and 

Asia despite the extremely high costs. Even if robot assisted surgery represents a 

fascinating technology, after 15 years of practice a scientific validation is 

mandatory. As explained above, at least for digestive surgery procedures, 

literature is scarce and with a very low level of evidence. Nowadays, the only 

conclusion the surgical community can draw is that the da Vinci robot is very 

expensive, but adds no benefit to conventional laparoscopy. For general surgeons 

skilled in laparoscopic techniques, robotic procedures are considered time 

consuming, with short term outcome comparable to laparoscopic operations as 

shown by the few RCTs published. The marketing strategies of Intuitive have a 

huge impact on media, so that patients are attracted by this technology and search 

for "robotic" hospitals and surgeons. It is difficult to predict if National Health 

Systems could sustain the costs of robotic surgery, especially considering the real 

advantages provided by the da Vinci. At the same time there is no discussion that 

the future of surgery is in large areas of interest linked to the development of 

specific robotic systems to aid the surgical action. Flexible robotic arms or 

miniaturized robotic platforms represent ongoing challenges in the development 

of new systems and will probably enhance the advantages of robotic technology in 

the surgical field. More than on robots to facilitating current surgical indications, 

we should concentrate on robots allowing organ sparing surgery performed in a 

minimally invasive way. In order to achieve this, miniaturization, flexibility and 

sensoring are the three challenges we have to face. 
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Chapter 2 

A new Surgical Soft Robotic arm 

2.1 Nature inspired concept 

The lack of evidence of a real benefit in using a "stiff" robotic technology, 

pushed to find a different solution, taking inspiration from nature. The project, 

called STIFF-FLOP (STIFFness controllable Flexible and Learn-able Manipulator 

for surgical OPerations), was funded by the European Commission within the 

Seventh Framework Programme. The concept of a soft and flexible robotic arm 

was inspired by the octopus. This strange animal has no rigid structures in his 

body and the softness of its tentacles allow to squeeze 

and pass through narrow holes. At the same time 

tentacles can elongate, bend and stiffen, by means of a 

complex neuro-muscular network. The possibility to 

include all these features in a robotic arm could really Figure 2 The STIFF-FLOP logo 



 

improve surgical performances, but requires the development of new hardware 

and software concepts, materials, sensors, actuators and control schemes.  

2.2 Actuation 

The new surgical arm should include the following characteristics: it should 

be thin, flexible, have multiple degrees of freedom, with the possibility of 

elongating for reaching all areas of the surgical field and the capability to stiffen 

on demand. A modular structure is proposed: each module is able to provide all 

the functionalities in terms of movements and stiffening capabilities. Multiple 

modules can be combined in order to realize complex behavior: this would allow 

to hold, for example, an organ with the proximal module and to use the distal one 

to perform a delicate surgical task. The technical solution chosen to realize the 

robotic arm is based on the physical phenomenon of granular jamming. It consists 

in a sort of phase change of the granular matter when an external stimulus occurs: 

temperature, shear stress, or an increase of the density of the system (i.e., 

compacting the granules) [47]. In robotic applications, a flexible membrane 

containing granular matter is vacuumed to increase granular density and induce 

jamming. The vacuum level modifies the density, so that the particles can behave 

like a liquid or a solid. A stiffening mechanism based on granular jamming was 

selected because it can be easily integrated in soft membrane built modules and 

undergo shape modifications. Furthermore, granular jamming-based stiffening 

mechanisms provide variable stiffness range, fast activation, easy fabrication, and 

typically limited production costs. Due to these characteristics, granular jamming 
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has been integrated into medical and robotic devices such as grippers [48], 

manipulators [49], locomotion robots [50], variable stiffness endoscopes [51], and 

variable stiffness joints [52]. The combination of pneumatic actuation for 

obtaining bending and elongation and granular jamming for varying the stiffness 

represents the final solution adopted. The flexibility of fluidic chambers enables 

the possibility to bend the manipulator in each direction, while the granular 

jamming-based mechanism allows the transition from completely floppy and 

highly squeezable to stiff structures, which are able to produce relatively high 

forces [53]. 

The prototype of module consists in an elastomeric cylinder containing three 

fluidic chambers equally spaced in a radial arrangement. In order to limit the 

radial expansion of the chamber when inflated, the cylinder is surrounded by a 

crimped sheath, allowing an effective and controllable motion of the actuator. 

When the pressure changes in the chambers, the actuator is able to perform 

different movements. If only one or two chambers are actuated, the result is a 

bending. When all the three chambers are actuated at the same time, the result is a 

pure elongation of the module (Figure 3). The 3 stiffening chambers are 

composed of a latex membrane filled with coffee powder and are inserted between 

the fluidic chambers. Coffee powder was used since it has been demonstrated in 

previous studies to perform well as a granular material [54]. Jamming is induced 

by increasing density in the flexible membrane because of the applied vacuum. 



 

 

By controlling the vacuum level, the stiffness can be tuned. A modular 

architecture has been pursued, in order to obtain the higher flexibility and 

versatility.  

In the initial prototype every segment had a diameter of 24 mm. Prototypes with 

two and three segments, respectively, were created and several large-scale human 

abdominal cavity models were manufactured for testing the system (Figure 4). 

The final model was a realistic representation of the abdomen whose proportions 

were derived by multiple CT scan reconstructions (Figure 4C). 

Figure 3 STIFF-FLOP segment design 
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Figure 4 2:1 scale human abdomen models. A: project of a 2D model with sensors embedded for 

preliminary tests. B: Setting of the manufactured model for tests. C: 3D human abdomen model with 

realistic representation of bones and viscera derived from a CT reconstruction 

   

Once functionality was proven in the ex vivo setting, a thinner prototype capable 

of passing through a standard 15-mm trocar cannula was developed for 

experiments in human cadavers (see Chapter 4). 

A B 

C 



 

2.3 Sensors 

The use of a soft robotic manipulator for surgical purposes implies safety issues. 

When the arm is introduced through narrow spaces, it will inevitably contact with 

the internal organs. Thus a sensor which can measure the interaction forces 

between the robot and the organs is mandatory for improving the safety of 

steering a flexible robot. Usually multi axial force sensors are made of metal 

components and employ strain gauges driven by electrical circuitry. These  

sensors  make the robotic arm vulnerable to magnetic or electrical fields, routinely 

employed during laparoscopic operation (coagulation streams). Furthermore this 

class of sensors does not allow the passing through of cables and tubes needed for 

a fully-functional surgical device. To overcome the lack of body contact sensing, 

a new sensor was developed, able to provide the contact location along the sensor 

outer surface and the direction and magnitude of the normal contact force [55] 

This new sensor is based on a fibre optic sensing approach [56-59], which is safe 

and easily compatible with intra-operative imaging systems. A ring-shaped multi-

axis force sensor (Figure 4) has been designed and implemented allowing the 

passage of cables and pipes for pneumatic actuation from the base to the tip of the 

robotic arm. 
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Figure 5 STIFF-FLOP arm with integrated sensors [55] 

 

Sensors were embedded in the STIFF-FLOP modules to measure interaction 

forces (between the robot and its environment) and the robot’s configuration. In 

each segment of the arm a three-axis force/torque (F/T) sensor and a three degrees 

of freedom bending sensor were integrated.  

 



 

2.4 Control 

A newly developed user interface, based on a Delta robot design [60-61], is used 

to move and position the tip of the STIFF-FLOP arm (Fig. 5). The visual feedback 

is warranted by a standard laparoscopic camera. Signals obtained from the F/T 

sensors are fed back to the user interface console providing the operator with 

force feedback, effectively resisting the operator’s motion when the robot is in 

physical contact with the environment.  

 

             Figure 6 Input device, based on a delta robot design 
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Chapter 3 

Phantom tests 

Part of the work described in this chapter has been also previously published in: 

Shafti A, Andorno F, Marchese N, Arolfo S, Aydin A, Elhage O, Noh Y, 

Wurdemann HA, Arezzo A, Dasgupta P, Althoefer K. Comfort and learnability 

assessment of a new soft robotic manipulator for minimally invasive surgery. 

Conf Proc IEEE Eng Med Biol Soc. 2015: 4861-4 

3.1 Surgeon's perspective: need of objective tests 

The development process of the prototype described in the previous chapter is 

fascinating from a purely scientific point of view, but the aim of the project is to 

realize a useful tool able to improve surgical performances in minimally invasive 

surgery. Since the first prototype of 24 mm in diameter was available, ex vivo 

tests sessions performed by expert and novice surgeons were organized, in order 

http://www.ncbi.nlm.nih.gov/pubmed/26737382
http://www.ncbi.nlm.nih.gov/pubmed/26737382


 

to assess learnability and satisfaction. The purpose was to test how easy it was for 

participants to use STIFF-FLOP the first time they encountered it and how 

comfortable did they find its use. This kind of test is purely qualitative and 

extremely influenced by the experience and the background of surgeons. Its only 

utility is to give an initial and generic approval rating among surgeons, but the 

lack of measurable outcomes makes it useless for scientific purposes. Usually, 

studies investigating comfort and ergonomics in surgical activities are built on 

video monitoring and questionnaires. One of the most used index is the Borg  

scale. The Borg RPE scale is a scale for ratings of perceived exertion (RPE). It is 

a tool for estimating exertion, breathlessness and fatigue during physical work 

[62]. Even this method is subjective, while comfort and efforts involved in a task 

should be assessed objectively, in order to provide referable and trusted results. 

That is why in our study, aside from timing, video monitoring and questionnaires, 

we relied mainly on our purpose-built electromyography (EMG) acquisition 

system to record muscle activity from participants. EMG refers to the collective 

electric signal from muscles, which is controlled by the nervous system and 

produced during muscle contraction. The signal represents the anatomical and 

physiological properties of muscles; in fact, an EMG signal is the electrical 

activity of a muscle’s motor units [63]. Changes in EMG signals reflect muscle 

activity during surgical tasks and represent an objective measure of fatigue. Thus 

it can be used to assess the comfort of the new soft robotic arm prototype. 
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3.2 Methods 

The aim of the tests was to assess the arm prototype built with 2 segments of 24 

mm in diameter for learnability and satisfaction. A spatial motion test  consisting  

of movements between predefined target points was designed. A 3D phantom of 

the abdominal cavity, whose proportions were derived by multiple CT scan 

reconstructions, was specifically designed and created (Figure 4C). The phantom 

was scaled 2:1 because the prototype tested was larger than the final laparoscopic 

size. Figures 7 and 8 show the test set up. Three points were marked in the 

phantom, the first one on the right iliac wing (A), the second one on the sacral 

promontory (B) and the third one on the distal part of the sacral concavity (C). 

Points A, B and C were located in a circular (diameter≈20cm) pattern, at 120 

degree intervals. 

Figure 7 Test setting; view of the abdomen model. Arrows indicates                

         marked points for the task 



 

A standard 0 degrees laparoscopic camera pointed on the pelvis was secured to 

the phantom with a Martin arm and connected to a standard laparoscopic tower. A 

5 mm trocar was secured to the phantom by means of a second Martin arm 

allowing a pivotal point mimicking a real laparoscopic operation. The trocar was 

used to introduce a standard laparoscopic grasper to perform the laparoscopic 

tasks. The STIFF-FLOP arm was secured as well to the phantom and introduced 

in the pelvis. Once the setup was completed the phantom was covered so that 

participants could only see the image of what they were doing on the monitor, like 

in a real minimally invasive operation.  

Figure 8 Test set-up 
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Every participant executed the first task with the STIFF-FLOP prototype, starting 

from the marked area to their right (point A) and moving on to the next points  in  

a clockwise direction (points B and C consecutively). At each point, the 

participants had to press a button on the controller 2 times. They were then asked  

to repeat the task in a counter clockwise direction (A to C to B). The same task  

was then repeated using a conventional laparoscopic tool (grasper). The 

participants would move the tool to the same marked areas and in the same 

directions as before. At each marked area they now had to open and close the 

laparoscopic grasper 2 times, to mimic the button-press action on the controller. 

Once the laparoscopic task was finished, the participants were asked to perform 

the STIFF-FLOP task once more. Number of trials per participants is limited to 

this as the study involves learnability and  how fast the user can adapt to the new 

tool during the first encounter. Time spent on each task was recorded. The  

camera view for each participant was recorded for the duration of all tasks. 

Surface EMG signals from the flexor and extensor muscle groups in the forearm  

were recorded during the test. 

At the beginning of the study, participants were asked to perform 3 sets of 

maximum contractions on these muscles in a static position. This provides a 

measure of their maximum voluntary contraction (MVC) which can be used for  

normalisation during signal processing. Normalisation of the EMG signal to each 

participant’s MVC will allow a fair comparison between different participants of 

different ages, muscle sizes and skin types.  



 

 

EMG signals and elapsed time were recorded concurrently when the participants 

performed the tasks: MVC, 1st STIFF-FLOP trial (SF1), Laparoscopic trial (LAP) 

and the 2nd STIFF-FLOP trial (SF2). Figure 10 shows the custom built surface  

EMG acquisition system being used during the laparoscopic tasks. 

Figure 10 EMG aquisition during the test 

Figure 9 EMG setting and aquisition  

          during laparoscopic task 
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The participants finally filled a questionnaire about their experience. This  

involved  statements  regarding ease of use, exhaustion during use and ergonomity 

to be rated from 1 to 5, with 1 meaning “strongly disagree” to 5 meaning 

“strongly  agree”.  These  are  to  provide  a  subjective assessment  of  the  system  

to  use  alongside  the  objective results  from  the  EMG  measurements. 

 

  Figure 11 Questionnaire 

The tests were performed at the Sherman Education Centre, Guy’s Hospital, 

London. Ethical approval  was  previously  obtained  for  these tests (reference 

number BDM/13/14-123). 



 

EMG signal acquisition was achieved by means of a 6 channel circuit specifically 

designed and built for this study. After a series of specific filters, the signal was 

passed on to the analogue input ports of a Bitalino microcontroller system, which 

sampled the signal at 1 kHz and transmitted it wirelessly using Bluetooth to a  

nearby computer. The computer was then able to display the signal and record it 

in real-time. Recommendations from SENIAM (Surface ElectroMyoGraphy for 

the Non-Invasive Assessment of Muscles – SENIAM.org) were used during 

system design and use. The signal recorded on the computer was a raw EMG 

signal. During the MVC task, the maximum absolute value of the raw EMG signal 

was identified and used to normalise the signal. The signal is then high-pass 

filtered using a 4th order Butterworth filter with a cut-off frequency of 20Hz to 

remove any remaining effect of the participant’s arm movement and other 

artefacts. In order to acquire a linear signal envelope, the sliding root mean square 

method was used. Root mean square (rms) is defined as the square root of the  

mean of the squares of a sampled signal and is a measure of the signal’s power. 

The  sliding rms is done by selecting a small window of the signal and calculating 

the rms value for it. The window is then advanced slightly forward and the rms is 

calculated again. Employing an appropriate window length will result in a time  

varying rms for the signal, which can be used as a linear envelope. A 200 msec 

window was used for this procedure. Apart from the amplitude analysis, a 

frequency domain analysis was also performed on the signals. The median 

frequency (MF) of the signal spectrum was defined as the point in the frequency 
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spectrum that divides it into two parts of equal power. If the MF is obtained as a 

function of time it will effectively describe the shift in EMG frequency throughout 

a certain task. A time varying MF can be obtained by calculating the MF for 

smaller sliding windows of the signal. To compare different participants we 

looked at the variation of their muscles’ MF while they were performing the 

prescribed tasks. During an isometric contraction, a decrease in the median 

frequency would represent fatigue. For our experiments, we were particularly 

interested to extract the firing rate from the recorded signals. When comparing 

two participants, the one with less variation in their firing rate, was assumed to 

move the tool in a more steady and more controlled manner. The coefficient of 

variation (CV) was used to assess this. The CV is defined as the ratio of the 

standard deviation to the average of the data and it is used as a measure of 

dispersion. All variables were analyzed using the t-test; all reported p-values were 

two-sided, at the conventional 5% significance level. 

3.2 Results 

A total of 25 participants were tested consisting of 8 experts and 17 novices.  

Experts were defined as those with combined number of laparoscopic and 

endoscopic procedures of at least 500. The rest of participants were categorised as 

novices. The first variable analyzed was time spent to conclude a task. SF1 took  

in average a longer time than the other tasks, i.e. 36.4% more than LAP 

(p=0.0071). However, from SF1 to SF2 there was in average a 32.1% reduction of  



 

time spent by participants (p=0.0232). Results follow the same pattern when 

looked at for novices and experts specifically, but times were generally longer for 

experts (Figure 12).  

 

Figure 12 Mean time spent on different tasks with standard deviation 

EMG  amplitude analysis  showed  a higher  overall average muscle activity  

during LAP. Moving from LAP to SF2 there was a 25.9% reduction in average 

muscle activity (p=0.0128). Results follow a similar trend in experts and novices, 

as showed in Figure 13. The EMG recording for one expert participant was 

corrupted and therefore 24 participants were included in the analysis for EMG 

results. Experts tended to perform directed procedures at lower paces to retain  

precision. This could explain differences in timing and muscle activity of the two 

groups. 

Figure 13 Average root mean square (RMS) EMG levels for 

               the flexor muscle  group  during  different  tasks  

              with standard  deviation 
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In case of frequency analysis for EMG, changes in median frequency were 

considered. CV was calculated for all participants and tasks as described above. 

Figure 14 shows the comparison for an average CV in median frequency for the 

flexor muscle. Results show small differences in average CV percentage, with it 

being slightly higher for all types of participants when working with the 

laparoscopic  device.  

 

However  the  differences  were about 5% in the case of novices and about 2% for 

experts. This makes the result less significant and is possibly more of a 

representation  of  the  expert  participants’ skills in keeping steady force levels 

rather than a result of the device used. The answers to the questionnaires, in  

particular questions most concerned with comfort and ergonomics are 

summarized in figure 15. Answers show that subjectively, most participants found  

no mental or physical exhaustion in using the new STIFF-FLOP manipulator. 

However, 40% of participants found it not so easy to use in its current state. 

Figure 14 EMG median frequency coefficient of variation (CV) of  

             flexor muscle group for different tasks with range 



 

 

Figure 15 Questionnaire results 

3.3 Final considerations 

Results showed how the new manipulator requires less fatigue in performing 

very simple surgical tasks compared with a laparoscopic tool. Furthermore, the 

new robotic arm took 32.1% less time to operate during the second attempt,  

showing its learnability. Despite these encouraging findings,  questionnaire 

suggested that many participants had issues with ease of use of the new 

manipulator. It must be noted, however, that this test involved a limited prototype 

of STIFF-FLOP only capable of general spatial motion: a very easy  task to be 

performed  with  a laparoscopic tool. Furthermore the 2:1 scaling of the phantom 

organ benefited the laparoscopic tool. Newer STIFF-FLOP prototypes  are able to 

perform complex tasks involving bending around organs and reaching  different 

areas with control which would be far more difficult to do with a conventional 

laparoscopic tool. Future experiments, described in the next Chapter,  tested a 

thinner prototypes in a 1:1 scale environment, providing a far higher margin of 

improvement in experience with the STIFF-FLOP arm. 
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Chapter 4 

Cadaver tests 

Part of the work described in this chapter has been also previously published in: 

Arezzo A, Mintz Y, Allaix ME, Arolfo S, Bonino M, Gerboni G, Brancadoro M, 

Cianchetti M, Menciassi A, Wurdemann H, Noh Y, Althoefer K, Fras J, Glowka 

J, Nawrat Z, Cassidy G, Walker R, Morino M. Total mesorectal excision using a 

soft and flexible robotic arm: a feasibility study in cadaver models. Surg Endosc. 

2016; 31(1):264-273 

4.1 Rationale and Methods 

The encouraging results on ex vivo tests described in the previous chapter 

pushed engineers to miniaturize the robotic arm prototype, in order to test its 

performance in a setting more similar to a real surgical situation. We didn't choose 

http://www.ncbi.nlm.nih.gov/pubmed/27338578
http://www.ncbi.nlm.nih.gov/pubmed/27338578


 

any animal models because the main goal of the test was to assess the capability 

to move in human narrow spaces (e.g. the pelvis) in order to perform one of the 

most challenging laparoscopic operation: Total Mesorectal Excision (TME). The 

animal showing an abdominal anatomy most similar to the human being is the pig. 

Unfortunately the pelvis of the pig is not so narrow and the anatomy of the rectum 

is slight different especially in vascularization. To obtain valuable data, the only 

possible model was represented by the human body, but of course no prototypes at 

this stage of development can be tested in a real surgical setting. At this phase of 

the experiments the cadaver represented the ideal model, so a 1-day session on 

human cadavers took place at the Institute for Medical Science and Technology 

(IMSaT), Dundee, Scotland. The aim of this session was to prove the feasibility of 

the use of the STIFF-FLOP camera robot whilst performing a minimally invasive 

laparoscopic TME. 

4.1.1 Setting 

The team of engineers installed the entire system, including the software and 

the STIFF-FLOP camera robot. The user interface, very smart and intuitive, was 

used to move and position the tip of the STIFF-FLOP arm inside the abdomen. In 

addition to the standard visual feedback from a laparoscopic camera, a real-time 

3D visualizer showing 3D views of the STIFF-FLOP modules was also available. 

Sensors embedded in the robotic arm warranted haptic feedback to the operator, 

thus facilitating all the tasks to be performed. The target of miniaturization was a 
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diameter of 15 mm, capable of passing through a standard 15-mm trocar cannula. 

This fully integrated thinner prototype consisted of miniature pneumatically 

actuated segments, a positioning device, and a camera at the tip. The consortium 

successfully managed to scale down the overall system dimensions to a 14.3-mm-

diameter soft robot, able to be inserted into the human body via a commercially 

available trocar port (Figure 

16). The entire soft robot was 

equipped with a 4 mm in 

diameter centre-free lumen, 

which allowed the passage of 

the electrical wires needed for 

the laparoscopic miniaturized 

optical system positioned at 

the tip of the robot. The 

employed MD-T1003L-65 

optics [Misumi New Taipei 

City, Taiwan (R.O.C.)] measured 

3.8 mm in diameter and 12 mm in length; the optics was integrated with an 

illumination system (four LEDs) and was connected via USB to a computer 

system. The STIFF-FLOP camera robot was attached to a rigid hollow shaft (10 

mm of diameter), which was secured to the operative table by means of an 

anthropomorphic arm with three ballshaped joints (KLS Martin GmbH & Co. KG, 

Figure 16      The thinner prototype (14.3 mm in                    

  diameter) compared to standard  

  laparoscopic instruments 



 

Freiburg, Germany). This arm could be manually adjusted during the operation 

for a proper positioning of the base of the STIFF-FLOP robot. The main objective 

of the test was to validate that the architecture of the system was compatible with 

human anatomy for laparoscopic TME and to determine whether the softness, 

flexibility, and dexterity of the soft robot-based optics could represent a potential 

improvement compared to standard rigid laparoscopic instrumentation. 

4.1.2 Operative Technique 

The surgical team (AA, YM, MEA) used two human cadavers previously 

selected. The study was performed on two cadavers made available at the Centre 

for Anatomy and Human Identification, University of Dundee, and prepared 

according to the method described by Thiel [64]. The Thiel embalming method 

for cadaver preservation is a technique, which relies on a mixture of salt 

compounds and very low amounts of volatile formaldehyde and formalin which 

effect fixation of tissue with a number of unique properties. Cadavers preserved 

with this method have no detectable odour and demonstrate a lifelike flexibility of 

body parts, excellent colour preservation of muscle, viscera, and vasculature, and 

superior antimicrobial preservation properties [65-66]. Due to this preservation of 

lifelike qualities, soft-embalmed cadavers are excellent models for training in 

surgical, diagnostic, and interventional procedures as well as a model for research 

and development of new surgical devices. In our experiment, the BMI for the 

cadavers were 25 and 28 kg/m
2
, respectively. Prior to starting the session, each 
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cadaver was positioned and safely secured to a mobile operating table, and all 

instrumentation was thoroughly checked. For the duration of surgery, the cadavers 

were strapped to a Maquet surgical table (Maquet Holding B.V. & Co. KG, 

Rastatt, Germany) and draped in standard surgery gowns in preparation for the 

surgical intervention (Figure 17).  

 

At the beginning of each test, four trocars were inserted: one 15-mm trocar on 

the median line about 2 cm above the umbilicus, through which the flexible 

STIFF-FLOP camera was inserted, and the other three 5/12-mm trocars in the left 

flank, right flank, and right iliac regions, respectively. At that point, the 

Figure 17 The beginning of the test after complete setting 

Standard 30° laparoscopic camera 

STIFF-FLOP arm 

Standard laparoscopic instruments 

 

 



 

consistence of both bowel and mesocolic fatty tissue was carefully checked. An 

additional 10-mm trocar was placed in the left upper quadrant, posterior to the 

STIFF-FLOP camera, to obtain an overview vision by means of a standard rigid 

30 degrees laparoscopic 10-mm camera (Figure 18). Two monitors were used to 

follow the procedure: one was connected to the rigid standard laparoscopic 

camera, while the other one was connected to the flexible STIFF-FLOP camera. 

The gross anatomy of the abdominal cavity and the compliance of the abdominal 

wall to the CO2 insufflation were evaluated. Camera images were recorded at a 

standard rate of 24 frames per second for subsequent analysis. 

 

Figure 18 Overview of the embalmed abdomed using a 30° laparoscopic camera. 

          The STIFF-FLOP arm was introduced and placed under direct vision 

The surgical operation was then initiated, using sharp scissor dissection and 

standard laparoscopic instruments. The dissection was carried out proximally in 

an infra-mesocolic dissection plane identifying the avascular plane caudal and 
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cranial to the inferior mesenteric artery. The inferior mesenteric artery (IMA) was 

then divided using standard titanium clips and scissors (Figure 19).  

 

Then the posterior mesorectum was identified and dissection was continued in the 

presacral avascular space to the level of the pelvic floor (Figure 20). 

 

Figure 20 Dissection of the posterior side of the mesorectum. STIFF-FLOP view (a) and                  

            Laparoscopic view (b) 

The left and right iliac vessels and ureters were identified at this point. The lateral 

dissection plane was then thinned out with anterior blunt traction and dissection. 

Figure 19 Identification (a), dissection (b) and division (c) of the inferior mesenteric artery.  

           Images are provided by the camera on the tip of the STIFF-FLOP arm 



 

The anterior dissection was then performed with sharp dissection posterior to 

Denonvilliers’ fascia. The seminal vesicles and the right and left ureters were 

identified and spared from injury. The anterior dissection plane was continued 

laterally, further thinning out the remaining lateral stalks, taking care to preserve 

the lateral pelvic nerve bundles. The lateral stalks were divided, moving the optics 

from one side to the other, over the rectum keeping the surgical field in the 

optimal line of vision. 

 

Figure 21Right (a), left (b) and anterior (c) dissection of the mesorectum. STIFF-FLOP view. 

 

The circumferential mobilization of the rectum was then completed. The integrity 

of the specimen and the mesorectal fascia was evaluated laparoscopically.

 

Figure 22 Completion of TME (a,b) and final aspect of the dissection 

a b c 
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4.2 Results 

Both cadavers were operated on the same day by a team of three surgeons. 

While one surgeon manipulated the STIFF-FLOP camera, the second surgeon 

performed the TME and the third surgeon was in charge of documentation using 

the standard laparoscope. The first step of the procedure included the medial 

dissection of the mesocolon of the sigmoid and descending colon, and the 

identification and division of the vessels (Figure 19). The use of the STIFF-FLOP 

camera allowed the surgeon to clearly visualize the inferior mesenteric vessels 

and the autonomic nerves that were subsequently spared from injury. After vessel 

division, the sigmoid mesocolon was completely dissected. Then, the instruments 

were moved down to the pelvis to start the TME under direct visualization of the 

STIFF-FLOP camera. The surgeons performed first the posterior dissection of the 

mesorectum down to the pelvic floor. The ability to smoothly follow the sacral 

curve due to the flexibility of the manipulator and the magnified vision provided 

by the STIFF-FLOP camera, allowed the surgeons to perform a very precise 

dissection of the posterior part of the mesorectum (Figures 20, 22). The 

mesorectal excision was then completed laterally on both right and left sides of 

the rectum as well as anteriorly (Fig.21). This step of the procedure was 

performed quite easily due to the flexibility of the modules that allowed the 

surgeons to achieve a magnified vision of the mesorectum and adjacent structures. 

The same procedure was performed on both human cadavers, demonstrating the 



 

ease of use of the system as well as its robustness of operation over many hours. 

A complete TME dissection was completed in both cadavers resecting the 

mesorectal fascia down to the pelvic floor. The STIFF-FLOP robotic optics 

assured a sufficient visualization of the surgical field in both cases, so that an 

intact mesorectum was obtained at completion of both cases. The STIFF-FLOP 

robotic arm was inserted with no perceivable difficulty, through a standard 15-mm 

trocar and without limitation of movement in and out. The camera was cleaned 

approximately twice for each procedure in the standard approach, i.e. the arm was 

taken out for cleaning. Manipulation of the input device was achieved easily 

following a few minutes of practice and understanding of the movements, using 

the images from the laparoscopic camera as a navigational aid. Following this 

minimal training, control of the STIFF-FLOP camera was achieved without 

difficulty. Completion times of the procedure were 165 and 145 min, respectively. 

Neither intraoperative complications nor technical failures occured. 

4.2 Final Considerations 

The thinner prototype of the STIFF-FLOP arm allowed to perform an exciting test 

session on embalmed human cadavers, definitely confirming how surgery is not 

only feasible but also facilitated by this new technology. The wide range of 

movements of the flexible robotic arm and its possibility to stiffen and maintain a 

desired position granted an optimal visualization of the pelvis during the entire 

operation, overcoming the limitations of rigid laparoscopic instruments. The 
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importance of this test is mainly due to the demonstration that the potential of this 

technology is unlimited. Surgeons who performed the operation were amazed by 

the improved vision of the deep, narrow pelvis provided by the camera embedded 

on the STIFF-FLOP arm. Of course both surgeons and engineers are already 

thinking about the possibility to integrate 3 or 4 soft robotic arms in order to 

extend the range of movements and the flexibility to the operative arms. 

Enormous technical improvements are needed to reach this goal, especially 

regarding miniaturization of components, development of sensors and software 

for integration and control.  



 

Chapter 5 

Conclusions and future perspectives 

3.1 The paradigm shift in surgical robots development 

The STIFF-FLOP project has been an ambitious project that for the first time tried 

to introduce a new concept of robot in the surgical scenario. The idea of robotic 

surgery or telepresence surgery, as explained in the first chapter, is quite old and 

was born for completely different purposes. The vision of common people and 

many surgeons and engineers is a robot mimicking human movements in 

performing an operation. But researchers should not forget that the real goal is to 

realize a complex machine able to facilitate surgical tasks maintaining or 

improving oncologic results and minimizing surgical trauma for patients. If we 

focus carefully on this goal, probably we have to change our way of thinking. 

More than a robot created in image and likeness of surgeons, we should focus on 

robots able to do what a surgeon will never can do. To make an example, 
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engineers who created the widely used cleaning robots, did not think about an 

antropomorphic robot able to use the vacuum cleaner like an housewife, but 

designed a disc shaped vacuum cleaner capable of self moving due to the sensors 

embedded and the complex control software. Compared to an antropomorphic 

robot it's small, able to pass under beds and furnishings and over carpets, saves 

energy and has very good cleaning performances. In one word, it's smart. It is not 

perfect and will never clean like a woman, but no robot able to completely satisfy 

housewife's expectations will ever be created. The da Vinci surgical system could 

be compared to an antropomorphic cleaning robot with arms with many degree of 

freedom controlled by a master-slave console able to reach the most 

uncomfortable corners in the house. It is not smart. That's why nowadays 

engineers and surgeons should change their perspectives on "robotic" surgery. The 

new frontiers of the research should focus on the introduction of smart robotic 

solutions. 

3.1.1 Strengths of the STIFF-FLOP project 

The STIFF-FLOP project tried to open a track on this direction. The 

Consortium was composed by engineers and clinical partners, in order to 

modulate the technical choices on clinical demand. This collaboration is 

extremely important because accelerates the development of prototypes really 

usable and useful in a real surgical situation. The other important task of the 

project was dissemination of the concept among surgeons. Usually surgeons are 



 

not so happy when a revolutionary technology is proposed, because they are used 

to perform an operation in a certain way with good results and so they ask: "Why 

should I change?". This is mainly true for something they have never seen before, 

like a soft and flexible arm. Dissemination of the idea, information about the 

progresses in development and feedback from surgeons help to introduce a new 

technology in the medical community from the beginning, drastically reducing 

scepticism and rejection. 

3.1.2 Drawbacks of the STIFF-FLOP project 

At the beginning of the project all members were enthusiast and confident of 

realizing, within 3 years, a 3 arm integrated prototype and testing it in real 

surgical scenarios. Unfortunately only a prototype with 1 arm was tested on 

cadavers, as described in Chapter 4. Miniaturization of the components created 

many technical problems, especially in sensors embedding and control. Despite 

the results of the test have been encouraging, the impact of the technology on 

surgical community at this stage of development has been very poor. 

3.2 New robots for medical applications 

Even if the da Vinci surgical system represented an undoubted technological 

innovation, the time is now ripe to go further and looking for new ideas in robotic 

technology. Science Robotics published in July 2 interesting papers presenting 

new incredible robots. The first one is from Stanford and describes a new type of 
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soft pneumatic robots [67]. They have been inspired by nature: certain cells like 

fungal hyphae, developing neurons and trailing plants, navigate their environment 

not through locomotion but through growth. This type of navigation is 

characterized by extension from the tip of the body, length change of hundreds of 

percent, and active control of growth direction. This new class of robots mimics 

this behaviour, growing in length from the tip by means of pressurization of an 

inverted thin walled vessel. While growing, they actively control direction using 

onboard sensing of environmental stimuli, with a peak lengthening rate 

comparable to locomotion. These robots are capable to lengthen through 

constrained environments by exploiting passive deformations and form three-

dimensional structures. The potential of such a technology is huge. It could 

represent, for example, a revolution in flexible endoscopy. These robots could 

navigate the lumen of the viscera without pain and with theoretically no limits. 

Scaling down the components, robots could navigate blood stream, biliary tract, 

urinary tract and so on. 

The second paper comes from Harvard and demonstrates a battery-free 

wireless folding method for dynamic multi-joint structures, achieving addressable 

folding motions without the use of batteries, but using only basic passive 

electronic components on the device [68]. The method is based on 

electromagnetic power transmission and resonance selectivity for actuation of 

resistive shape memory alloy actuators without the need for physical connection 

or line of sight. This technology has been inspired by Japanese origami and allows 



 

to switch a robot from a folded to an unfolded shape. It could allow to introduce 

the folded robot into the human body from a small incision, then to unfold it to 

make the required task guided by the operator by means of an external master-

slave console. 

A group from the Massachusetts Institute of Technology published on Nature a 

paper presenting new hydrogel robots inspired to sea animals such as leptocephali 

[69]. Tissues and organs of these fascinating creatures are composed of active 

transparent hydrogels giving to them the capability to achieve agile motions and 

natural camouflage in water. Hydraulic actuations of hydrogels can give soft 

actuators and robots that are high-speed, high-force, anti-fatigue and optically and 

sonically camouflaged in water. These robots are able to swim, kick rubber-balls 

and even catch a live fish in water. The researchers declared they are focusing 

on the potential benefits of handling soft tissues and organs in biomedical 

situations: during surgery or helping organs do their job by replicating them. 

These are only some examples of potentially disruptive technologies, showing 

how researchers are exploring new frontiers of robotics. The paradigm of an 

antropomorphic mechanically actuated huge metallic robot is shifting to new 

shapes, materials and functions. The medical community should pay attention to 

these research fields, helping engineers to select a technology really able to 

overcome the technical limits of modern surgery. Only a constant collaboration 

will allow to realize smart robots for medical purposes, setting the term "robotic 

surgery" free from the current stereotype. 
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