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Abstract. The knowledge of the nuclear matrix elements (NME) entering in the expression of 

the half-life of the neutrinoless double beta decay is fundamental for neutrino physics. 

Information on the nuclear matrix elements can be obtained by measuring the absolute cross 

section of double charge exchange nuclear reactions. The two processes present some 

similarities, the initial and final-state wave functions are the same and the transition operators 

are similar. The experimental measurements of double charge exchange reactions induced by 

heavy ions present a number of challenging aspects, since such reactions are characterized by 

very low cross sections. Such difficulties are discussed for the measurement of the 
116Cd(20Ne,20O)116Sn reaction at 15 AMeV.  

1. Introduction 

The physics of neutrinoless double beta (0νββ) decay has fundamental implications on particle 

physics, cosmology and fundamental physics. In particular it is considered one of the most promising 

ways to probe the Majorana or Dirac nature of neutrino and to have access to its effective mass. 

Furthermore, the observation of 0νββ would signal that the total lepton number is not conserved. For 

these and other fundamental implications, this physics case is presently one of the most important 

researches Beyond the Standard Model and might guide the way towards a Grand Unified Theory of 

http://creativecommons.org/licenses/by/3.0
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fundamental interactions. Since the 0νββ decay process involves nuclei, its analysis necessarily 

implies nuclear structure items. The 0νββ decay rate can be expressed as a product of three 

independent factors: the phase-space factor, the Nuclear Matrix Element (NME) and a term containing 

the effective neutrino masses. Thus, even if the decay rate will be measured, the knowledge of the 

NME is mandatory to extract information on the neutrino masses.  

The evaluation of the NMEs is presently limited to state of the art model calculations based on 

different approaches (QRPA, shell-model, IBM etc.) [1-4]. However, significant differences in the 

obtained values are still found, due to the ambiguities in the models and the lack of strong constraints. 

Moreover, possible common approximations can correspond to systematic uncertainties. 

The possibility of using heavy-ion induced Double Charge Exchange (DCE) reactions as tools to have 

experimentally driven information on the NMEs is at the basis of the NUMEN [5,6] and the NURE [7-

8] projects. Despite the two processes are mediated by different interactions, there are some important 

similarities between them: i) the initial and final state wave functions in the two processes are the 

same, ii) the transition operators are similar, in both cases Fermi, Gamow-Teller and rank-two tensor 

components are present, iii) a large linear momentum (~100 MeV/c) is available in the virtual 

intermediate channel, iv) the two processes are non-local and are characterized by two vertices 

localized in a pair of valence nucleons, v) they take place in the same nuclear medium, vi) a relevant 

off-shell propagation through virtual intermediate channels is present. 

The description of NMEs extracted from DCE and 0νββ presents the same degree of complexity, with 

the advantage for DCE to be “accessible” in laboratory. However a simple relation between DCE cross 

sections and ββ-decay half-lives is not trivial and needs to be explored. 

In this context, an experimental campaign has started at the INFN-Laboratori Nazionali del Sud in 

Catania using the MAGNEX large acceptance magnetic spectrometer [9] focused on DCE reactions 

involving the nuclei of interest for 0νββ decay. These reactions represent an important experimental 

challenge since they are characterized by very low cross-sections and require a high energy resolution 

to distinguish the transitions in the region of the ground state. Both constraints are guaranteed by the 

use of the MAGNEX spectrometer, a tool with high performance and flexibility. In particular, the 
116Cd(20Ne,20O)116Sn DCE reaction at 15 AMeV was recently measured for the first time. Some details 

about the experimental issues of this measurement are discussed in this paper.   

 

2. Heavy-ion double charge exchange reactions 

 

Due to the possibility to obtain information on the NMEs of ββ processes, the experimental study of 

nuclear transitions where the nuclear charge is changed by two units leaving the mass number 

unvaried was explored in the past. A large effort was done to study pion double charge exchange 

reactions (π+,π-) [10-11]. A factorization of the cross section in terms of a nuclear structure part, which 

is related to the nuclear matrix element, and a reaction part has been deduced in these cases [12-13]. 

However, suggestions that pion double charge exchange might be used to probe 0νββ decay NMEs 

were abandoned, due to the large differences in the momentum transfers and in the nature of the 

operators, as reported in [14]. Early studies of heavy-ion induced DCE reactions were also 

inconclusive. The reason was the lack of zero-degree data and the poor yields in the measured energy 

spectra and angular distributions, due to the very low cross sections involved, ranging from about 5–

40 nb/sr [15] to 10 μb/sr [16]. Actually, this wide range of observed cross sections has never been 

deeply discussed. An additional complication in the interpretation of the data was due to possible 

contributions of multi-nucleon transfer reactions leading to the same final states [17]. 

Nowadays these experimental limitations are almost overcome, as we demonstrated in a pioneering 

experiment performed at the INFN-LNS laboratory. In particular, we studied the DCE reaction 
40Ca(18O,18Ne)40Ar at 15 AMeV, with the aim to measure the cross section at zero degrees [18]. The 

key elements in the experiment were the high resolution Superconducting Cyclotron (CS) beams and 

the use of MAGNEX, a modern high resolution and large acceptance magnetic spectrometer 

characterized by high resolution in energy, mass and angle [19-20]. The high-order solution of the 

equation of motion is the key feature of MAGNEX, which guarantees the above mentioned 

performances and its relevance in the research of heavy-ion physics [21-25]. In this experiment we 
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have shown that high resolution and statistically significant experimental data can be measured for 

DCE processes and that precious information towards NME determination could be at our reach. 

 

3. The NUMEN and NURE projects 

 

To move towards nuclei candidates for 0νββ decay important experimental limits need to be 

overcome. The challenge is to measure a rare nuclear transition under a very high rate of heavy ions 

produced by the beam-target interaction. The exploration of nuclei of interests for 0νββ is particularly 

stimulating as well as challenging. We consider that:  

a) The Q-value for DCE reactions on nuclei of interest for 0νββ is normally more negative than in the 

case of 40Ca explored in ref. [18]. This could strongly reduce the cross section at very forward angles. 

b) The (18O,18Ne) reaction is particularly advantageous, due to the large value of the B(GT) strengths. 

However, this reaction is of β+β+ kind, while most of the research on 0νββ is in the opposite side. None 

of the reactions of β-β- kind looks like as favourable as the (18O,18Ne). For example, the (18Ne,18O) 

requires a radioactive beam, which cannot be available with comparable intensity. The proposed 

(20Ne,20O) has smaller B(GT), so a sensible reduction of the yield is expected; 

d) In some cases gas or implanted targets are necessary, e.g. 136Xe or 130Xe, which are normally much 

thinner than solid state ones, with a consequent reduction of the collected yield; 

e) In some cases the energy resolution (about half MeV) is not enough to separate the ground from the 

excited states in the final nucleus. Thus, the coincident detection of γ-rays from the de-excitation of 

the populated states is mandatory, but at the price of the collected yield. 

As a consequence, the present limits of beam power (~100 W) for the CS accelerator and acceptable 

rate for the MAGNEX focal plane detector (few kHz) allow us to concentrate on only few cases, 

which are planned in the NURE project [7-8] (e.g. 116Cd, 130Te, 76Ge). In order to start a systematic 

exploration of all the nuclei of interest for 0νββ decay, an upgraded set-up, able to work with at least 

two orders of magnitude more luminosity than the present, is necessary. This goal can be achieved by 

a substantial change in the technologies implemented in the beam extraction [26], in the control of the 

beam induced radioactivity, in the detection of the ejectiles [27-30] and in the power dissipation of the 

thin targets [31]. In addition, the project demands for an enhancement of the maximum accepted 

magnetic rigidity, preserving the geometry and field uniformity of the magnetic field [32-35] in order 

to keep the high-precision of the present trajectory reconstruction. 

Finally, the development of a specific theory program to allow an accurate extraction of nuclear 

structure information from the measured cross sections is an important pillar of the NUMEN project. 

Relying on the use of the DWBA approximation for the cross section, the theory is focused on the 

development of microscopic models for DCE reactions, employing several approaches (QRPA, shell 

model, IBM) for inputs connected to nuclear structure quantities. We are also investigating the 

possible link between the theoretical description of the 0νββ decay and DCE reactions. 

 

4. First experimental measurements on the 20Ne + 116Cd system  

 

We performed the first experimental investigation of the (20Ne,20O) DCE reaction on a 116Cd target, 

which is a candidate for the 0νββ decay. This is the first measurement of such a reaction, there are no 

data available in literature. A 20Ne10+ cyclotron beam at 15 AMeV was delivered by the CS of INFN-

LNS and impinged on a 116Cd rolled target of 1370 μg/cm2 thickness. The thickness was carefully 

chosen in order to obtain an energy resolution which allows to distinguish the transition to the residual 
116Sn ground state from its first excited state at 1.293 MeV. The MAGNEX spectrometer was placed at 

forward angles including zero degree in the full acceptance mode (~50 msr). The total covered angular 

range was 0° ≤ θlab ≤ 8°.  

Usually when a measurement is performed at zero degree, the beam enters in the spectrometer and it is 

guided by the magnetic fields to a place in the focal plane region away from the detectors and finally 

collected by a faraday cup [18]. The fields are thus set in order to transport the 20Ne10+ ions towards the 

faraday cup position. However, when the beam passes through the 116Cd target a charge state 

distribution is originated. The maximum amount corresponds to the fully stripped 20Ne10+ (~ 99%) but 
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a sizeable amount of beam in the 9+ and 8+ charge states is also produced. These lower charge state 

components have a magnetic rigidity similar to that of the ejectiles of interest: 20F9+ for the Single 

Charge Exchange (SCE) and 20O8+ for DCE. Consequently, they enter in the FPD acceptance, causing 

a limitation in the detector tolerable rate. For this reason, a second target was placed downstream of 

the 116Cd to be used as a post-stripper material in order to minimize the amount of 20Ne9+ and 20Ne8+ 

beams. Different materials where tested and the final choice was a thick C foil of 987 μg/cm2. With 

this configuration the charge state distribution is ~ 99.1 % of 10+, ~ 9.0 ∙ 10-3 % of 9+ and ~ 2.0 ∙ 10-5 

% of 8+ [36]. This solution allowed only partially to reduce the background and thus a system of 

shields before the FPD entrance was also equipped to stop such ejectiles. 

Despite these experimental limitations, we were able to measure energy spectra and absolute cross 

sections for the DCE reaction channel. Moreover, we measured also other reaction channels (one- and 

two-proton transfer, one- and two-neutron transfer and single charge exchange), in order to estimate 

the role of the sequential multi-nucleon transfer routes on the diagonal DCE process. The data 

reduction and analysis are almost completed and the results will be published soon.   

 

Acknowledgments 

This project has received funding from the European Research Council (ERC) under the European 

Union’s Horizon 2020 research and innovation programme (grant agreement No 714625).  

 

 

References 

[1] Vergados J D, Ejiri H, and Simkovic F 2012 Rep. Prog. Phys. 75 106301 

[2] Vogel P 2012 Jour. of Phys. G: Nucl. and Part. Phys. 39 124002 

[3] Engel J and Menéndez J (2017) Rep. Prog. Phys. 80 046301 

[4] Dell’Oro S, Marcocci S, Viel M and Vissani F 2016 Adv. High Energy Phys. 2016 2162659 

[5] Cappuzzello F et al. 2015 J. Phys.: Conf. Ser. 630 12018  

[6] Agodi C et al. 2015 Nucl. Part. Phys. Proc. 265 28  

[7] Cavallaro M et al. 2017 PoS(BORMIO2017) 

[8] Cavallaro M 2017 PoS(NEUTEL2017) 031  

[9] Cappuzzello F et al. 2016 Eur. Phys. J. A 52 167 

[10] Fazely A, Liu L C 1986 Phys. Rev. Lett. 57 968 

[11] Wu H, Wang R and Zhao E 1992 Phys. Rev. C 45 1644 

[12] Mordechai S et al. 1988 Phys. Rev. Lett. 61 531 

[13] Auerbach N, Zamick L, Zheng D C 1989 Ann. Phys. 192 77 

[14] Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay, 2014. 

[15] Blomgren J et al. 1995 Phys. Lett. B 362 34 

[16] Drake D M et al. 1980 Phys. Rev. Lett. 45 1765 

[17] Dasso C H and Vitturi A 1986 Phys. Rev. C 34 743 

[18] Cappuzzello F et al. (2015) Eur. Phys. J. A 51 145 

[19] Cunsolo A et al. 2007 Eur. Phys. Jour.-Special Topics 150 343 

[20] Cappuzzello F et al. (2014) Nucl. Instr. Methods A 763 314 

[21] Cappuzzello F et al. (2015) Nature Communications 6 6743 

[22] Pereira D et al. (2012) Phys. Lett. B 710 426 

[23] Carbone D et al. (2014) Phys. Rev. C 90 064621 

[24] Carbone D (2015) Eur. Phys. J Plus 130 143 

[25] Soukeras V (2015) Phys. Rev. C 91 057601 

[26] Calabretta L et al. (2017) Modern Physics Letters A 32 17 

[27] Cortesi M et al. 2017 Review of Scientific Instruments 88 013303 

[28] Muoio A et al. 2016 EPJ Web of Conferences 117 10006 

[29] Carbone D et al. 2016 Results in Physics 6 863 

[30] De Geronimo G et al. 2013 IEEE Transactions on Nuclear Science 60 2314 

[31] Iazzi F et al. 2017 WIT Transactions on Engineering Sciences DOI: 10.2495/MC170071 

[32] Lazzaro A et al. 2008 Nucl. Instr. and Methods A 591 394 



5

1234567890 ‘’“”

XXII International School on Nuclear Physics, Neutron Physics and Applications IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1023 (2018) 012006  doi :10.1088/1742-6596/1023/1/012006

 
 
 
 
 
 

[33] Lazzaro A et al. 2008 Nucl. Instr. and Methods A 585 136 

[34] Lazzaro A et al. 2007 Nucl. Instr. and Methods A 570 192 

[35] Lazzaro A et al. 2009 Nucl. Instr. and Methods A 602 494 

[36] Shima K et al. 1992 Atom. Data and Nucl. Data Tables 51 2  

 


