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DOWNTIME ESTIMATION AND ANALYSIS OF LIFELINES 

AFTER AN EARTHQUAKE 

 

Omar Kammouh 1 Gian Paolo Cimellaro 2 Stephen A. Mahin3 

ABSTRACT 

This paper provides an empirical probabilistic model for estimating the downtime of lifelines following 

earthquakes. Generally, the downtime of infrastructure varies according to several factors, including the 

characteristics of the exposed structure, the earthquake intensity, and the amount of available human 

resources. Having so many variables makes the process of estimating the downtime even harder. Therefore, it 

is necessary to have a simple and practical model to estimate the downtime of infrastructure systems. To do 

so, a large database has been collected from literature, which includes damage data for many earthquakes that 

took place in the last century. The database has been used to create restoration curves for four types lifelines: 

Water distribution network, Gas network, Power system, and Telecommunication network. Different 

restoration curves have been developed based on several criteria, such as the earthquake magnitude, 

development level of the affected country, and countries with enough data. The restoration curves have been 

presented in terms of probability of recovery and time; the longer is the time after the disaster, the higher is 

the probability of the infrastructure to recover its functions. 

Keywords: Lifelines, Downtime, Restoration curves, Infrastructures, Seismic resilience, Recovery. 

 

1. INTRODUCTION 

Estimating the infrastructure downtime following an earthquake is a subject on which scientists and 

policy makers have recently focused their attention.  The downtime can be defined as the time required to 

achieve a recovery state after a disastrous event; therefore, it is strictly linked to the indirect losses of the 
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damaged infrastructure [1]. Downtime is usually caused by the construction repair of the damaged structure 

and the arrangements needed to mobilize resources. Comerio (2005) defined downtime as the sum of rational 

and irrational components [2]. The rational components include construction costs and repair time, while the 

irrational components consider the time needed to mobilize resources and make decisions. 

The downtime is an essential parameter to estimate resilience. Several attempts have been made recently 

to quantify the disaster resilience considering the downtime. Some of these studies tackled the engineering 

resilience on the country level [3, 4] and some on the local level [5-7]. In engineering, resilience is defined as 

“the ability of social units (e.g. organizations, communities) to mitigate hazards, contain the effects of 

disasters when they occur, and carry out recovery activities in ways to minimize social disruption and mitigate 

the effects of further earthquakes" [8-11]. Under this context, downtime is the time span between the moment 

the earthquake occurs (t0), when the functionality Q(0) drops to Q(1), and the time when the functionality of 

the utility is completely restored (t1) [8, 12, 13] (Figure 1). Some of the factors that can possibly affect the 

downtime include: the structural inspection, the assessment of damage, the finance planning, the bidding 

process, the repair effort, and the engineering consultation [14, 15]. 

One of the first attempts to evaluate the disruption time following a disaster event was done by Basöz and 

Mander (1999) [16]. In their work, they developed downtime fragility curves for the transportation lifeline. 

The fragility curves were later integrated in the highway transportation lifeline module of HAZUS. Another 

downtime estimation methodology was developed based on a modified repair-time model [17]. This 

methodology estimates the downtime of only the rational structural components of a system, due to the 

uncertainty involved in the process. In addition, the Federal Emergency Management Agency (FEMA) has 

introduced the Performance Assessment Calculation Tool (PACT). PACT is an electronic calculation tool, and 

repository of fragility and consequence data, that calculates and accumulates losses. It includes a series of 

utilities used to specify building properties and update or modify fragility and consequence information in the 

referenced databases. PACT is considered the companion to FEMA P-58, a significant 10-year project funded 

by FEMA to develop a framework for performance-based seismic design and risk assessment of buildings 

[18]. Almufti and Willford (2013) have proposed the Resilience-based Earthquake Design Initiative (REDiTM) 

based on the results coming from PACT [19]. The goal was to provide owners and other stakeholders a 

framework for implementing resilience-based earthquake design and achieving higher performances. 
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Moreover, a performance-based earthquake engineering method to estimate the downtime of infrastructures 

using fault trees was introduced in [20]. This method is applicable only when the downtime is mostly 

controlled by the non-structural systems damage. It assumes that the restoration starts immediately after the 

event and the damaged components are repaired in parallel. 

Another concern regarding the downtime evaluation is the infrastructure interdependencies. This is a 

subject on which most of current research effort is placed, mainly because of its complexity and uncertainty. 

Critical infrastructure systems are highly interconnected and mutually interdependent where damage to one 

infrastructure can produce cascading failures on other systems [21]. For instance, telecommunication and 

water systems require continuous supply of energy to maintain their normal functions, while the power 

infrastructure needs the water and various telecommunication services to generate and deliver electricity. 

Although the presence of interdependencies can significantly improve the operational efficiency of 

infrastructure, recent worldwide events have shown that interdependencies can increase systems vulnerability. 

The level of interdependencies between systems can determine how long a dependent system can stay 

inoperable. The Lifelines Council of San Francisco completed a study on the interdependencies of the city’s 

infrastructure systems [22]. They evaluated the infrastructures’ performance following a hypothetical major 

earthquake with a magnitude of 7.9. The study suggests that some of the lifelines were closely coupled and 

interdependent with the performance and restoration of the other lifelines. The interdependency was 

responsible for a significant recovery delay when the infrastructures have only experienced a moderate 

damage. 

Generally, several factors are involved in the downtime estimation, such as the characteristics of the 

exposed structure, the earthquake intensity, and the amount of human force that is assigned to recover the 

damaged structure. With these factors, the process of estimating the downtime becomes harder. Therefore, it is 

crucial to have a simple model for estimating the downtime of infrastructures [15]. The aim of this study is to 

develop a probabilistic model to evaluate the downtime of lifelines following a seismic event. Four different 

types of lifelines are analyzed in this work, namely power, water, gas, and telecommunication. First, a large 

database has been collected from a wide range of literature. The database contains real restoration data for 

many seismic events that occurred in the last century. Probabilistic restoration functions have been 

constructed using the gamma distribution, which has been selected because of its good fit to the empirical 
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data. For each of the four lifelines, a group of fragility curves has been developed based on several factors, 

such as the earthquake magnitude, development level of the affected country, and countries with enough data. 

The restoration curves have been presented in terms of probability of recovery and time; the longer is the time 

after the disaster, the higher is the probability of the infrastructure to recover its functionality.  

2. DOWNTIME DATA ANALYSIS AND INTERPRETATION 

Figure 2 shows the location of all 32 earthquakes considered in this study. Approximately, 90% of the 

earthquakes analyzed in this research took place along the Ring of Fire of the Pacific Ocean, a string of 

volcanoes and seismic activity sites. The other 10% of the earthquakes took place along the Alpide belt, a line 

that passes through the Mediterranean region, Turkey, Iran, and northern India.  The database was gathered 

from renowned authors and official institutions, and belongs to earthquakes that have occurred after the 60's, 

because there was little or no reliable information about the damage caused by earlier earthquakes. 

Table 1 lists all the earthquakes considered in this work along with the year in which they occurred, the 

country they hit, and their intensity in terms of Richter magnitude. Several other damaging earthquakes that 

occurred around the same period have also been collected but not included in this study because no 

engineering damage reports could be obtained for those events. Nevertheless, the events included in this study 

are sufficient to provide useful illustrations for the recovery behavior of the examined lifelines.  

Figure 3 shows the distribution of the analyzed earthquake in terms of location. Most of the collected 

data belong to earthquakes that took place in the USA, Japan, and South America. This is because damage 

data are continuously collected and reported by the competent authorities in these regions, mainly to allow this 

data to be used by scholars to improve community resilience.  

Data related to infrastructure damage caused by earthquakes is reported in the literature in both 

qualitative and quantitative forms. The challenge faced during the data collection process was to have a 

normalized database that can be combined and used in the downtime analysis. It has been decided that only 

scholarly publications reporting numerical data were to be considered. Reports with exclusively qualitative 

data have not been considered in the analysis, which mainly improved the quality of the developed curves. 

Another reason why qualitative data has been excluded is because such data reflects only the degree of 

damage of the infrastructures, and not the restoration function or the recovery speed. For instance, countries 
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that already have a restoration plan and allocate enough resources to the recovery process would bounce back 

to a functional state in a short time regardless of how severely their infrastructures were damaged. Moreover, 

transforming the infrastructures damage into restoration time would require several assumptions that cannot 

be verified and could make the results biased. Since the objective of this research is to have a tool to estimate 

the downtime of infrastructures for a given location and a given earthquake magnitude, only documents 

reporting the actual time needed to restore the infrastructure service have been examined. The restoration time 

and the restoration speed of the infrastructures depend on several factors, such as the size of the infrastructure, 

the interdependency with other systems, the allocated financial and human resource for restoration, the level 

of initial damage suffered by the infrastructure, etc. Although these factors can vary among countries and even 

regions, the authors decided not to extrapolate restoration curves related to these parameters due to the paucity 

of data. Splitting the available data based on these factors would result in unreliable outputs as the data sets 

would be very small to carry out a probabilistic study. Instead, other parameters are considered in the study, 

such as the earthquake magnitude, development level of the affected country, and countries with enough data. 

The normalization of the raw data was not necessary as it is expressed in the same scale and can be combined 

(i.e., number of days required to restore the service). The normalization of data would be necessary if the 

qualitative damage data was considered because qualitative and linguistic terms vary between reports and 

include intrinsic subjectivity. 

Recovery in the context of this work means returning full service to the population (i.e. the number of 

users served before and after the disaster event is the same, regardless of the state of the infrastructure). Table 

2 lists the complete database used to create the restoration curves of the lifelines. The different earthquakes 

are listed in a random order. It is notable that each earthquake has caused damage to multiple infrastructure 

systems at the same time. For instance, in the city of Loma Prieta, the earthquake caused damage to two 

power plants, ten water systems, five gas stations, and six telecommunication systems. The affected 

infrastructures needed different times to recover even when the infrastructures are of similar types. For 

example, the two power plants that were affected by the Loma Prieta earthquake needed 2 and 0.5 days 

respectively to recover. There were some cases where either the damage information was not available or no 

damage was recorded. Such cases are marked with a dash (-) inside the table. In total, the number of affected 

infrastructure units analyzed in this paper are: 63 power systems; 84 water systems; 47 gas systems; and 34 
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Telecommunication systems. In the following, the raw data of three selected earthquakes is presented to show 

how the restoration times of the damaged infrastructures were extracted from the source text. The raw data of 

the rest of the earthquake events can be found in the references reported in Table 2. 

2.1 Valdivia 1960, Chile [23] 

The Valdivia earthquake was the strongest shaking ever recorded, with a magnitude of 9.5 on the Richter 

scale and an intensity of XI to XII on the Mercalli scale. This earthquake shocked all South America and 

destroyed the Chilean city of Valdivia. More than 5.000 people died and more than 2 million people were 

forced to leave their homes. The shock was so strong that new lakes were formed and some rivers shifted their 

course. After the big shake, a huge tsunami devastated all the coastline of Valdivia city, destroying houses, 

bridges, boats and ports. Despite the power of the earthquake, the Chilean utilities of the region performed 

quite well, mainly due to the preparation of the country to this kind of hazards. One electrical system was 

affected by the earthquake, and it took five days to recover its function. The water system was also affected 

and it fully recovered after exactly 50 days. As for the gas and telecommunication infrastructures, no damage 

was reported as the two systems functioned normally after the earthquake. 

2.2  El-Asnam 1980, Algeria [24] 

An earthquake of magnitude 7.1 and a focal depth of 15 km struck the city of El-Asnam in northern 

Algeria on the 10th of October 1980. 23.5% of the buildings of the city collapsed during the 1980 quake. More 

than 6.500 people died after the shock and 9.000 were injured. This event was an example of a poor post-

earthquake study. Only information regarding the downtime of the water system was reported. The water 

system remained inoperative for two weeks following the deadly earthquake. 

2.3 Niigata 1964, Japan [25] 

On June 16, 1964, Japan was jarred by the strongest earthquake to hit the country since the Kanto 

Earthquake in 1923. The shake, which measured 7.7 on the Richter scale, was felt in over two-third of the 

main Japanese island of Honshu, but the most affected region was the Niigata prefecture. The earthquake 

destroyed more than 8.000 houses, disrupted all public utilities, severely interrupted all the communication 

systems, and put out of commission almost all the land, sea, and air transport facilities. The region of Niigata 
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stayed with partial power supply for 24 days until the power system was recovered. The earthquake affected 

three water systems in the city, and they took 15, 4, and 10 days to recover, respectively. Two gas systems 

were damaged by the quake; the first was heavily affected, and it remained inoperative for 6 full months, 

while the second was slightly damaged, and it took only 2 days to recover. No major damage in the 

telecommunication infrastructure was recorded as no drop in service was experienced by the users. 

3. METHODOLOGY 

The main challenge faced in this work is to illustrate the gathered data in the form of restoration curves. 

Typically, real data is complex to handle because they are exposed to a series of errors that vary in nature and 

magnitude. In this paper, the collected restoration raw data are fitted with a statistical distribution. Choosing 

the right distribution can be a difficult task due to the relevant number of distributions available in literature. 

To characterize new raw data with a distribution, four questions need to be asked. The first question is 

whether the data is discrete or continuous. The second is whether the data is symmetric or if there is 

asymmetry in the distribution. The third question relates to the presence of upper or lower limits on the data. 

The last question deals with the possibility of observing extreme values in the distribution. Answering these 

questions can be fundamental in fitting the right distribution.  

Different distribution families that satisfy the characteristics of the infrastructure restoration process have been 

selected. The parameters of the distributions have been estimated using the maximum likelihood estimation 

method. The distribution with the optimal fit has been identified (1) visually using the probability paper visual 

test, and (2) statistically using the Kolmogorov-Smirnov (K-S) and Chi-Square tests for Goodness-of-fit. In 

the following, the statistical distribution selection procedure is discussed in detail.  

3.1 Parameters estimation  

Different methods for estimating the parameters of a distribution can be used; among these are the 

method of moments and the method of maximum likelihood [26, 27]. In this work, the method of maximum 

likelihood is used to estimate the parameters of the distributions. The likelihood of a set of data is the 

probability of obtaining that particular set of data given the chosen probability distribution model. This 

expression contains the unknown model parameters. The values of these parameters that maximize the sample 

likelihood are known as the Maximum Likelihood Estimator MLEs [28]. Unlike to the method of moments, 
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the maximum likelihood method derives the point estimator of a parameter directly. The maximum likelihood 

estimate (MLE) of a parameter possesses many desirable properties. In particular, for a large sample size, the 

maximum likelihood estimator is often considered to provide the best estimate of a parameter [27]. 

3.2 Fitting analysis 

Visual testing is the easiest and simplest way to test a distribution. This is done by comparing the histogram of 

the raw data to the distribution. To either accept or reject a distribution, the cumulative frequency of the 

empirical data is compared to the cumulative distribution function (CDF) of the theoretical distribution. 

Alternatively, one can use probability paper to check if a given distribution conforms to the empirical data 

[27]. A probability paper is usually constructed using a transformed probability scale in such a way to obtain a 

linear graph between the cumulative probabilities of the underlying distribution and the values of the random 

variable. The probability paper procedure has minimized our choices to only three distributions: The 

exponential, lognormal, and gamma distributions.  

When a particular distribution is determined to model a phenomenon using a given probability paper by 

simply visual inspection, the validity of the theoretical distribution can be verified statistically using 

goodness-of-fit tests. There are multiple tests to verify the goodness-of-fit in the literature, such as the 

Kolomogorov-Smirnov (or K-S), the chi-square, and the Anderson-Darling (or A-D). The latter, in particular, 

is useful when the tails of a distribution is important. Therefore, only the K-S and chi-square goodness-of-fit 

tests are performed in this paper and the results are presented in the following section. 

3.3 The distribution with optimal fit 

Dating back to 1967, The Kolmogorov-Smirnov test (K-S) is considered one of the oldest and most useful 

tests of fit for distributions [29]. The basic idea of the Kolmogorov-Smirnov test is to compare the 

experimental cumulative frequency with the CDF of an assumed theoretical distribution. If the maximum 

difference between the experimental and theoretical frequencies is larger than a certain value for a given 

sample size n, the theoretical distribution is not acceptable for modeling the underlying population; 

conversely, if the difference is less than a critical value, the theoretical distribution is acceptable at the defined 

significance level α [27]. Mathematically, it is represented as follows: 
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max | ( ) ( ) |n x X nD F x S x       (1) 

where Dn is a random variable, FX(x) is the CDF of the theoretical distribution, Sn(x) is the stepwise empirical 

cumulative frequency function. For a significance level α, the K-S test compares the observed maximum 

difference nD  with the critical value nD
, which is defined for a significance level α, as follows: 

( ) 1n nP D D          (2) 

In this paper, the K-S test analysis for only two data sets is presented. Table 3 shows the data sets considered 

in the analysis, extracted from Table 2. Both sets correspond to the events with an earthquake magnitude 

within the range EM 6-6.9.  

Figure 4 shows the cumulative step function of (a) the water distribution infrastructure, and (b) the power 

network infrastructure for the data corresponding to EM 6-6.9. The Gamma, exponential, and lognormal 

cumulative distributions functions are plotted against the stepwise function for each data set to visualize the 

distribution fit. As we can see in the figure, it is very hard to rely on visual interpretation to choose the 

distribution with the best fit; therefore, the goodness-of-fit testing is necessary, 

Table 4 shows the goodness-of-fit tests for the two data sets. For both infrastructures, all theoretical 

distributions are acceptable as the value of nD  is always lower that the critical value nD  for a significance 

level 0.05  . From the table. the gamma distribution yields the best results (i.e. lowest nD ). 

Similarly, the Chi-square goodness of fit test has been performed to consolidate our distribution choice. The 

Chi-square goodness-of-fit test compares the observed frequencies n1, n2, …, nk of k values (or in k intervals) 

of the variate with the corresponding theoretical frequencies e1, e1,…, ek calculated from the assumed 

theoretical distribution model. The assumed theoretical distribution is an acceptable model if the following 

equation is satisfied:  

2

1 ,

1

( )k
i i

f

i i

n e
c

e





      (3) 
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where 1 , fc   is the critical value of the chi-square distribution at the cumulative probability of 1  , 

1f k   is the number of degrees-of-freedom (d.o.f.), where f must be reduced by one for every unknown 

parameter that must be estimated. 

Figure 5 shows the frequency histogram plot of the downtime data corresponding to (a) the water distribution 

infrastructure, and (b) the power network infrastructure for earthquake magnitudes EM 6-6.9. The probability 

density function (PDF) of the Gamma, exponential, and lognormal theoretical distributions are displayed and 

compared against the empirical data points. Table 5 shows the goodness-of-fit tests for the two downtime data 

sets. For the water distribution system, the chi-square test results ( 2

f ) for the three theoretical distributions 

are below the maximum threshold ( 1 , fC  ). This signifies that all three distributions can be used to model the 

downtime data. For the power network, however, only the gamma distribution is acceptable because the chi-

square tests for the exponential and lognormal distributions exceed the given threshold for a 5% significance 

level α. 

In conclusion, among the three, the gamma distribution was found to be the optimal fit, having passed the 

goodness-of-fit tests for the remaining data sets. Hence, it is hereafter used to build the restoration curves. The 

restoration curves for each lifeline have been created using the distribution fitter toolbox in MATLAB® [30], 

which uses the maximum likelihood estimation method to estimate the parameters of the theoretical 

distribution.  

 

4. RESULTS: THE RESTORATION CURVES 

Restoration curves were developed for the power, water, gas, and telecommunications systems using the 

collected downtime data. The variables considered to plot the curves are: (i) the number of days required to 

restore full service to customers (horizontal axis) and (ii) the probability that the utility is completely restored 

to the customers (vertical axis). To provide a better understanding of the restoration process, the collected data 

has been divided based on different categories, as follows: 

1) Earthquake magnitude (EM): Although it is not the only parameter, the earthquake intensity plays a 

primary role in defining the infrastructure damage and the downtime. This classification assumes that the 
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earthquake magnitude is fully correlated with the induced damage. The collected data has been classified 

into four groups of Richter magnitude scale (strong 6-6.9; Major 7-7.9; Severe 8-8.9; and Violent 9-9.9). 

For each lifeline, a group of restoration curves considering the four EM ranges have been developed.  

2) First world countries vs developing countries: developing restoration curves for each single country is not 

feasible due to the relatively small amount of available data. As an alternative, the data was divided based 

on the level of development of countries. Countries were classified as either first world countries or 

developing countries. For each group, lifelines restoration curves have been created. 

3) Countries with large database: it is interesting to see how specific countries are performing in terms of 

disaster recovery. Restoration curves for the US, Japan, and countries in South America have been 

developed since a large portion of the collected data belong to these three regions. 

4.1 Category 1: Earthquake magnitude 

Figure 6 shows the restoration curves for the four lifelines based on the earthquake magnitude. The 

intensity of the earthquake is a key parameter in defining the downtime, and this is shown in Figure 6 where 

most of the times the lifeline restoration rate follows the earthquake magnitude. 

The restoration curves of the lifelines are characterized by a similar behavior. The only difference lies in 

the restoration rate. The power system has a very high probability to recover within 60 days, unlike the other 

infrastructures that need at least 100 days to reach the same probability. This outcome is expected because all 

lifelines need power to function, and thus the power system is always the first to recover. The 

telecommunication system, on the other hand, is heavily dependent on the power network, and this delays its 

restoration until the power system is recovered. Similarly, the water system reaches a restoration probability 

close to 1 after approximately 100 days. Table 6 shows the distributional parameters used in the statistical 

analysis of each lifeline derived using the maximum likelihood estimation method. 

In standard fragility analysis, the fragility functions for the different damage states within the same data 

sample should not intersect. Intersection of fragility curves may occur when each curve corresponding to a 

specific damage state is fitted independently of one another [31]. In order to avoid the intersection of fragility 

curves corresponding to different damage states, the same standard deviation is usually assumed [31], where 

the parameters of the distribution functions representing different states of damage are simultaneously 
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estimated by means of the maximum likelihood method. In that method, the parameters to be estimated are the 

median of each fragility curve and one value of the standard deviation that is assumed the same for all fragility 

curves. In the loss analysis, however, the intersection of the functions could happen. Losses do not necessarily 

follow a specific pattern (i.e. it may cost more to repair a lower damage state). Restoration times are even 

more dependent on the invested resources (i.e. sever damage may be recovered quickly due to engagement of 

overwhelming resources, for example, using military resources to construct temporary bridges). This Justifies 

the intersection of the curves in Figure 6. 

4.2 Category 2: First world countries vs developing countries 

Table 7 classifies the countries according to their level of development. USA, Japan, and New Zealand have 

been considered as “first world countries” while the remaining countries have been grouped under 

“developing countries”. Figure 7 shows the restoration curves of the database grouped according to the level 

of development of the affected countries. For all infrastructures, the developed countries tend to have a higher 

recovery probability at a given downtime. This means that the developed counties are more likely to recover 

the lifelines in a shorter period. For both groups, the restoration curve of the power system reaches a high 

probability of recovery quicker than the other lifelines, usually because the functionality of the different 

lifelines is greatly dependent on the power network. Table 8 presents the statistical parameters of the 

theoretical distributions derived using the maximum likelihood estimation. 

4.3 Category 3: countries with large database (USA, Japan, and countries in South 

America) 

A large portion of the collected downtime data belongs to the three regions USA, Japan, and South America. 

Data related to these countries was large enough to develop independent recovery curves, except for 

telecommunication infrastructure in the region of South America. Table 9 presents the parameters of the 

gamma distribution CDFs used for building the restoration curves. Figure 8 compares the restoration rate of 

the lifelines in the three regions, regardless of the earthquake intensity. The USA takes the lead in the 

recovery of all lifelines, while Japan comes second. Finally, countries in South America are the last to recover 

the infrastructure. South America generally experienced earthquakes of larger magnitudes in the history than 

the other countries, and this can be a possible factor for this result. 
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5. DISCUSSION 

The results presented above show some interdependencies and coupling behaviors among the lifelines. The 

power system was always the first infrastructure to recover its normal functions following the disaster, usually 

because all lifelines depend on the power system, and so right after the event it should restore as soon as 

possible. For the telecommunication system, the restoration process starts fast, but then the probability of 

restoration in the following days after the earthquake becomes less than that of the power system. This is 

probably due to the interdependency of the two systems; that is, if the power system is not fully restored, the 

telecommunication service will not be restored as well. The water and gas networks show a lower recovery 

rate, where both infrastructures are dependent on the power system for service transmission. In most cases, the 

gas distribution system is the utility that takes longer to be completely restored. One reason can be the 

mandatory tests and investigations required after a hazardous event, which force the utility to be closed for 

extra days.  

Generally, estimating the recovery delay caused by infrastructures interdependencies can be a challenging task 

due to the complexity involved in the process. In this work, the lack of information regarding systems 

interdependencies have prevented such an analysis.  

The downtime depends on several factors, such as the size of the infrastructure and the development level of 

the country (i.e. developed countries have higher degree of infrastructure interdependency). Identifying all 

variables that affect the downtime can be an approach for normalizing and estimating the dependent 

downtime. In our work, the interdependency of the analyzed infrastructures are embedded in the results and 

they are behind the introduced restoration curves. In addition, the work presented here is an empirical study 

based on a probabilistic analysis; therefore, parameters such as the interdependency can be considered as an 

intrinsic characteristic of the data. 

The main challenge faced while creating the database was to deal with different studies, with different 

analysis, and different formats. There is not yet an international standard to collect the performance of the 

utilities after hazardous events, and this led to exclude several studies because the damage data reported was 

not scaled and cannot be combined. That is, some data points were qualitative and biased, and consequently 
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they did not qualify to be included in the study. A standard procedure to analyze the performance of lifelines 

following natural disaster remains a need to improve community resilience.  

Data classification and categorization is another challenge faced in this paper. The collected data has been 

divided based on one criterion at a time. The considered criteria are: the earthquake magnitude, development 

level of the affected country, and countries with enough downtime data. For each of the three categories, a 

group of restorations curves has been developed for each infrastructure type. Distinguishing the data based on 

several criteria at once would lead to small data sets whose analysis would not be statistically defensible. 

Nevertheless, this will be considered in future research once enough data is gathered.  

6. CONCLUSIONS 

Downtime is one of the most difficult parameters to estimate in resilience engineering. Estimating the 

resilience of infrastructures due to earthquakes has been studied in the past; however, none of the studies 

highlighted a clear procedure to estimate the disruption time of damaged systems. This paper provides an 

empirical model for estimating the downtime of damaged infrastructures following an earthquake. The model 

uses a large database for earthquake events that occurred over the last few decades. Different types of 

statistical distributions have been tested and then the gamma distribution has been selected because of its good 

fit to the empirical data. Four main lifelines were considered in this work (power, water, gas, and 

telecommunication). For each of them, a group of restoration curves have been derived. The restoration curves 

were presented in terms of the number of days required to restore full service to customers (horizontal axis) 

and the probability that the utility will be completely restored to the customers (vertical axis). the longer is the 

time after the disaster, the higher is the probability of the infrastructure to recover its functions.  

Given that such a model is still missing in literature, this work provides a useful tool to estimate the 

downtime of infrastructures hit by earthquakes. It allows evaluating the infrastructures’ resilience, given that 

the downtime is a key parameter in the resilience estimation process. Future work will be oriented towards 

extending the database to include more earthquakes. In addition, special attention will be given to the 

infrastructure interdependency, which can increase the accuracy of the restoration curves. Other lifelines such 

as the transportation system will also be analyzed once satisfactory data is collected. 
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Fig.1. Resilience curve 
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Fig.2. Location of the earthquakes considered in the study 
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Fig.3. Distribution of the analyzed earthquakes by location 
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Fig.4. Cumulative frequencies with three theoretical CDF fitting distributions for (a) the water distribution 

infrastructure, and (b) the power network infrastructure for the data corresponding to EM 6-6.9  
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Fig.5. Histograms and PDF fitting distributions for (a) the water distribution infrastructure, and (b) the power 

network infrastructure for the data corresponding to EM 6-6.9  
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Fig.6. Restoration curves of the lifelines based on the earthquake magnitude 
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Fig.7. Restoration curves of the lifelines based on the level of development of the countries 
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Fig.8. Restoration curves of the lifelines of the USA, Japan, and countries in South America 
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Table 1. Summary of the analysed earthquakes 

Earthquake Year Country Magnitude Reference 

Loma Prieta 1989 USA 6.9 [32] 

Northridge  1994 USA 6.7 [33] 

Kobe  1995 Japan 6.9 [34] 

Niigata  2004 Japan 6.6 [35] 

Maule  2010 Chile 8.8 [36] 

Darfield  2010 New Zealand 7.1 [37] 

Christchurch  2011 New Zealand 6.3 [38] 

Napa  2014 USA 6 [39] 

Michoacán  1985 Mexico 8.1 [40] 

Off-Miyagi  1978 Japan 7.4 [41] 

San Fernando  1971 USA 6.6 [42] 

The Oregon Resilience Plan   2013 USA 9 [43] 

LA Shakeout Scenario 2011 USA 7.8 [44] 

Tohoku  2011 Japan 9 [45] 

Niigata  1964 Japan 7.6 [25] 

Illapel  2015 Chile 8.4 [46] 

Nisqually  2001 USA 6.8 [47] 

Kushiro-oki  1993 Japan 7.8 [48] 

Hokkaido Toho-oki  1994 Japan 8.2 [48] 

Sanriku  1994 Japan 7.5 [48] 

Alaska  1964 USA 9.2 [49] 

Luzon  1990 Philippines 7.8 [50] 

El Asnam  1980 Algeria 7.1 [24] 

Tokachi-oki  1968 Japan 8.3 [51] 

Valdivia  1960 Chile 9.5 [23] 

Nihonkai-chubu  1983 Japan 7.8 [52] 

Bam  2003 Iran 6.6 [53] 

Samara  2012 Costa Rica 7.6 [54] 

Arequipa  2001 Peru 8.4 [23] 

Izmir  1999 Turkey 7.4 [55] 

Chi-Chi  1999 Taiwan 7.6 [56] 

Alaska 2002 USA 7.9 [57] 
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Table 2. The number of affected infrastructures and the corresponding downtime for each lifeline 

Earthquakes 

Lifelines affected 

     Power      Water      Gas     Telecom. 

No. DT (days) No. DT (days) No. DT (days) No. DT (days) 

Loma Prieta 2 (2), (0.5) 10 

(14), (4), (3), (1.5), 

(2), (1), (3), (3), (7),  

(4) 

5 
(30), (16), (11), 

(10), (10) 
6 

(3), (4), (0.1), 

(3), (3), (1.5) 

Northridge  3 (3), (0.5), (2) 6 
(7), (2), (58), (12), 

(67), (46) 
4 (7), (30), (5), (4) 3 (1), (2), (4) 

Kobe  5 (8), (3), (2), (5), (6) 3 (0.5), (8), (73) 3 (84), (11), (25) 3 (1), (5), (7) 

Niigata  4 (11), (4), (1) 3 (14), (28), (35) 3 (28), (35), (40) - - 

Maule  6 
(14), (1), (3) (10), 

(14) 
4 (42), (4), (16), (6), 2 (10), (90) 4 

(17), (7), (3), 

(17) 

Darfield  3 (1), (2), (12) 2 (7), (1) 1 (1) 3 (9), (2), (3) 

Christchurch  3 (14), (0.16) 1 (3) 2 (14), (9) 2 (15), (9) 

Napa  1 (2) 6 
(20), (0.9), (0.75), 

(2,5), (12), (11) 
1 (1) - - 

Michoacán  4 (4), (10), (3), (7) 4 (30), (14), (40), (45) - - 1 (160) 

Off-Miyagi  2 (2), (1) 1 (12) 3 (27), (3), (18) 1 (8) 

San Fernando  1 (1) - - 2 (10), (9) 1 (90) 

The Oregon Resil. Plan   1 (135) 1 (14) 1 (30) 1 (30) 

LA Shakeout Scenario 1 (3) 1 (13) 1 (60) - - 

Tohoku Japan  7 
(45, (3), (8), (2), (2), 

(4) 
8 

(4.7), (47), (1), (26), 

(7), (1), (47), (47) 
6 

(54), (2), (30), 

(3.5), (13), (18) 
3 (49), (21), (49) 

Niigata  2 (24) 3 (15), (4), (10) 2 (180), (2) - - 

Illapel  1 (3) 1 (3) - - - - 

Nisqually  3 (2), (6), (3) - 
 

- - - - 

Kushiro-oki  1 
(1) 

 
3 (6), (3), (5) 2 (22), (3) - - 

Hokkaido Toho-oki  1 (1) 3 (9), (3), (5) - - - - 

Sanriku  1 (1) 3 (14), (12), (5) - - - - 

Alaska  3 (2), (0.75), (1) 5 
(14), (5), (1), (7), 

(14) 
3 (1), (5), (2), (14) 2 (1), (21) 

Luzon  3 (7), (20), (3) 3 (14), (14), (10) - - 3 (5), (10), (0.4) 

El Asnam  - - 1 (14) - - - - 

Tokachi-oki  1 (2) - - 2 (30), (20) - - 

Kanto  2 (7), (5) 1 (42) 2 (180), (60) 1 (13) 

Valdivia  1 (5) 1 (50) - - - - 

Nihonkai-chubu  1 (1) 1 (30) 1 (30) - - 

Bam  1 (4) 3 (14), (10) - - 1 (1) 

Samara  1 (1) 1 (2) - - 1 (1) 

Arequipa  1 (1) 3 (32), (34) - - - - 

Izmit  1 (10) 2 (50), (29) 1 (1) 1 (10) 

Chi-Chi  3 (40), (14), (19) 1 (9) 1 (14) 1 (10) 

Alaska 2002 2 (2), (0.5) 10 

(14), (4), (3), (1.5), 

(2), (1), (3), (3), (7), 

(4) 

1 
(3) 

 
6 

(3), (4), (0.1), 

(3), (3), (1.5) 

Note: No = the number of affected infrastructures; DT = the downtime in days. 
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Table 3. Downtime data points and corresponding frequencies for the water and power 

infrastructures with EM 6-6.9  

W
A

T
E

R
 

DT 

(days) 0.5 

0.

75 

0.

9 1 

1.

5 2 

2.

5 3 4 7 8 

1

0 

1

1 

1

2 

1

4 

1

5 

2

0 

2

8 

3

0 

3

5 

4

6 

5

8 

6

7 

7

3 

Freq. 1 1 1 1 1 3 1 4 1 2 1 1 2 2 2 1 1 1 1 1 1 1 1 1 

P
O

W
E

R
 

DT 

(days) 0.5 

0.

6 1 2 3 4 5 6 8 

1

1 

1

4 

             

Freq. 2 1 2 4 4 2 1 2 1 1 1              
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Table 4. Kolmogorov-Smirnov goodness-of-fit test for the water and power infrastructures for EM=6-6.9 

Theoretical distribution 

Water distribution network for EM=6-6.9 Power network for EM=6-6.9 

nD  
nD

 

( 0.05  , 24n  ) 

nD  
nD

 ( 0.05  , 11n  ) 

Gamma distribution 0.098 

0.245 

0.0745 

0.395 Exponential distribution 0.122 0.0811 

Lognormal distribution 0.216 0.0837 
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Table 5. Chi-square goodness-of-fit test for the water and power infrastructures for EM=6-6.9 

Theoretical distribution 

Water distribution system, EM=6-6.9 Power network, EM=6-6.9 

Chi-square 

2

f  

1f k   
1 , fC   

( 0.05  ) 

Chi-square 

2

f  

1f k 

 
1 , fC   

( 0.05  ) 

Gamma distribution 6.23 5 11.07 5.45 3 7.81 

Exponential distribution 7.8 4 9.48 13.98 2 5.99 

Lognormal distribution 10.51 5 11.07 15.08 3 7.81 
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Table 6. The distributional parameters derived for Category 1 restoration curves 

Note: M = the earthquake magnitude in Richter scale. 

                  Power system Water system 

Parameters M=6-6.9 M=7-7.9 M=8-8.9 M=9-9.9 M=6-6.9 M=7-7.9 M=8-8.9 M=9-9.9 

α 1.4319 0.94975 1.19011 0.627072 
0.74910

1 

0.90152

9 
1.02229 0.950171 

β 2.71367 5.84364 4.27133 17.3425 20.5155 27.2454 17.8171 19.805 

             Gas system Telecommunication system 

Parameters M=6-6.9 M=7-7.9 M=8-8.9 M=9-9.9 M=6-6.9 M=7-7.9 M=8-8.9 M=9-9.9 

α 1.57458 0.997162 3.2153 1.0926 
0.62230

6 
3.07575 0.475536 1.17455 

β 12.009 20.7863 5.90924 15.1473 16.1094 3.51134 92.0014 25.9674 
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Table 7. Classification of the countries based on their level of development 

First world countries developing countries 

USA Chile 

Japan Mexico 

New Zealand Philippines 

 Algeria 

 Chile 

 Iran 

 Costa Rica 

 Peru 

 Turkey 

 Taiwan 

 



33 

 

Table 8. The distributional parameters derived for Category 2 restoration curves 

 
                  Power system Water system 

Parameters First world countries Developing countries First world countries Developing countries 

α 0.883805 1.25039 0.845769 1.86575 

β 5.46925 7.35006 16.8706 11.963 

              Gas system Telecommunication system 

Parameters First world countries Developing countries First world countries Developing countries 

α 1.23635 1.50336 0.671797 0.546505 

β 14.0461 25.6092 18.7854 50.4214 
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Table 9. The distributional parameters derived for Category 4 restoration curves 

 
                  Power system Water system 

Parameters USA Japan South America USA Japan South America 

α 2.24621 0.931013 0.936271 0.774639 0.973 1.5892 

β 0.881828 6.71312 11.4201 15.4265 17.924 15.4952 

              Gas system Telecommunication system 

Parameters USA Japan South America USA Japan South America 

α 1.40685 1.36345 1.59156 0.535494 1.00736  0.497757 

β 7.26358 18.6439 29.3214 19.7517 18.9853 135.943 

 

  


