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ABSTRACT 
 

The capacity of a community to react and resist to an emergency situation is strictly related to the 

proper functioning of its own infrastructure systems.  This paper proposes a simulation oriented 

approach to evaluate the resilience of large scale water distribution networks. The case study 

used in this research is the water network of a large scale virtual city. The water network is 

modeled using the software EPANET 2.0 with the help of an integrated Matlab toolbox. The 

network consists of 16000 junctions and 19000 water pipes buried under the road network of the 

city. A series of earthquake scenarios is applied to the water network and the damage induced by 

the earthquakes has been determined using fragility function. The failure of the system occurs 

when the water flow and the water pressure go below a certain threshold. The resilience of the 

network is then evaluated using two indices: (1) the number of users without water, (2) the drop 

in the total water supply. 
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ABSTRACT 
 
 The capacity of a community to react and resist to an emergency situation is strictly related to the 

proper functioning of its own infrastructure systems.  This paper proposes a simulation oriented 

approach to evaluate the resilience of large scale water distribution networks. The case study used 

in this research is the water network of a large scale virtual city. The water network is modeled 

using the software EPANET 2.0 with the help of an integrated Matlab toolbox. The network 

consists of 16000 junctions and 19000 water pipes buried under the road network of the city. A 

series of earthquake scenarios is applied to the water network and the damage induced by the 

earthquakes has been determined using fragility function. The failure of the system occurs when 

the water flow and the water pressure go below a certain threshold. The resilience of the network 

is then evaluated using two indices: (1) the number of users without water, (2) the drop in the total 

water supply. 

 

Introduction 

 

 The resilience of a community is defined by the ability of its physical and non-physical 

infrastructure) to return to an ordinary level within a reasonable time following a disaster [1]. 

Cimellaro, Reinhorn et al (2010), define the resilience index R as a measure of a system’s 

capability to sustain a level of functionality over a period of time called the Control Time (TLC), 

which usually corresponds to the system life cycle [2]. Recently, much effort has been done to 

develop new procedures to assess the resilience of existing communities [2-8]. Some work 

focused mostly on the assessment of the restoration time of infrastructure [9, 10]. Nevertheless, 

more work is still needed to define intrinsic countermeasures for communities to improve their 

resilience response against events like earthquakes.  
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 In this context, virtual cities can be a good tool to assess the reliability of infrastructures 

and their interdependency; therefore, the use of a virtual city, namely IDEAL CITY, is adopted 

in this paper. IDEAL CITY is an under-development virtual city which consists of 890,000 

inhabitants. The objective of this virtual city is to integrate all critical infrastructures of a virtual 

community within the same model. Then, a seismic event will be applied to study several 

complex aspects, such as the interdependency among the infrastructures. Currently, the 

numerical models of the water network distribution, sewer plant, electric plant, road lines, and 

buildings have already been built and integrated in the virtual city.  

 In this paper, IDEAL CITY is used to evaluate the effect of a seismic event on the water 

distribution network. Multiple earthquake scenarios have been applied considering the time at 

which the earthquake happens (striking time). For each scenario, two resilience indices have 

been evaluated. The first one is based on the number of people suffering the outage of water 

supply and the second considers the drop in the total water available. 

 

Resilience of Water Network Distribution 

 

 Currently, a standard procedure to evaluate the resilience of water networks is missing in 

the literature. A high serviceability of a water distribution network implies a high water supply 

with acceptable water pressure. Generally, the water supply depends on the customer request and 

on the water pressure in the pipes. The damage induced by an earthquake causes a reduction of 

the pressure and consequently this causes a reduction in the water supply. 

 In this paper, a 24-hour demand pattern is defined according to the customer request in 

the virtual city. Two serviceability functions F1(t) and F2(t)are presented. The first is related to 

the number of people without water while the second measures the ratio between water supply 

and water demand. The mathematical equation of the first performance measure is: 
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where ni
e (t) is the number of people connected to node i (i.e., who get their demand from the 

water supply provided by node i) suffering insufficient pressure; ntot is the total number of people 

within the water distribution network; i is the generic node, N is the total number of nodes. The 

number of people without water at given node following a disaster event is assumed to be 

proportional to the water supply reduction at the same node:  
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where ni is the total number of people connected to the node i; wi
Lost is the volume of water lost at 

node i; wi is the water demand at node i under normal operating conditions. The water loss and 

water demand at a given time step following a disaster event are computed as follows: 
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 Qdemand is the water demand at node i, Qi is the available water flow (water supply) at 

node i, t is a generic time step. The second performance function F2(t) is related to the water 

demand and is given by the following formula: 
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where Qdemand,tot is the total water demand in the city. The recovery time TR is assumed to last 24 

hours (Figure 1). The Control Time Tc is considered equal to TR in attempt to get a normalized 

value of resilience. In this specific case, resilience index for each scenario is equal to the average 

value of the serviceability. 

 
Figure 1. Functionality of Water Distribution Network (adapted from [2]). 

 

For each serviceability function, a resilience index is computed as the area below the function for 

the defined control time [2]:  
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IDEAL CITY: Virtual City for Resilience Analyses 

 

Virtual city applications allow performing resilience analyses as information and data on the 

infrastructure are readily available. Currently, IDEAL CITY (Figure 2) is under development. It 

is a virtual city containing 890000 residents. The area is about 120 km2 divided into 10 districts 

inspired by the real subdivision of the city of Turin. The inhabitants have been assigned to the 

districts in a way to create different population densities. Data and information about the city 

infrastructure are provided as separate layers in a GIS environment using “ArcGIS” software 

[11]. 
 

 
Figure 2. IDEAL CITY: 3D representation ArcGIS” software [11]. 

 



Model Description, Assumption and Calibration 

 

The water network analyzed in this study is based on the urban water network of the city of 

Turin. Elevations of the grounds have been obtained from Google Maps[12].  

Several assumptions had to be made to build the water network model. The geometry of the 

water network is assumed to overlap with the transportation network of the city as it was not 

possible to get the exact map of the water network due to security reasons. The water network 

model (Figure 3) has been built using the epanet-matlab toolkit, which allows controlling Epanet 

using MATLAB and Epanet 2.0  ([13], [14], [15]). 

 

 The EPANET model comprises 19654 ductile iron pipes (1,285,007 m of total length) 

with a Darcy-Weisbach roughness coefficient equal to 0.26 mm, 14996 nodes, 9 valves, 38 

pumps, 19 reservoirs, and 26 tanks. Nodes are situated 1.2 m below the ground surface. Ground 

elevations range between 207.76m and 340.68 m above sea level. Water sources are aquifer 

(82%) and other sources such as rivers and surface water (18%) with an average total daily 

demand of 353.38Ml/day. 

 

 The water demand at each node (junction) depends on the number of people who are 

served by that node. In fact, in the model, the nodes are connected to the households and not to 

the population. Therefore, it is first necessary to find the population density per each unit volume 

of household, which also depends on the district as the population density is not the same among 

all districts. This is done using the following formula: 
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where Pj is the household population density in district j (number of people per a unit volume of 

a household located in district j), Pej is the number of people in district j, Vj is the total volume of 

the households located in district j. 

 

 
Figure 3. Global view of the water network: 19604 pipes. 



 

 The water network is considered as a mesh in the model as the result of pipes 

intersection. Each mesh element (closed shaped) is assigned a demand based on the total volume 

of household located inside: 
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where qj,w is the water demand of the mesh element w in district j, is the city water supply per 

inhabitant (equal to 315 l/capita/days) [16], Vw is the volume of the households within mesh 

element w.   

 

 The total water demand per mesh element qj,w is distributed equally among the adjoining 

nodes (Figure 4a). In other words, the water demand for each node is the sum of the demand 

contribution of the adjoining mesh elements (Figure 4b): 
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where qi is the water demand at node i, qw,j if the water demand of the mesh element w which is 

located in district j, nw,i is the number of mesh elements adjoining node i, ni,w is the number of 

the nodes adjoining mesh w. 

 

 
Figure 4 (a) Water demand qj,w for the mesh element w, (b) Water demand for the i-node. 

 

 The calibration of a WDN of such a size brings on several difficulties. It is a fundamental 

issue to ensure an accurate and realistic simulation for both the flow velocity and the pressure. 

The pipes diameters, the positions of the valves, pumps, reservoirs and tanks, have been 

determined with the following constraints in mind (Figure 5): 
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 40m Pressure 80m                    (11) 



 
Figure 5. Calibrated WDN 

 

The calibration procedure adopted in this paper is iterative. Future work will be oriented to apply 

a systematic parametric calibration for large scale water networks [17-19]. 

 

Seismic Hazard and Earthquake Damage of Pipes 

 

The seismic hazard is evaluated through a probabilistic approach (PSHA, Probabilistic Seismic 

Hazard Analysis) according to the Italian code [20, 21]. The hazard is expressed as the 

occurrence probability of a seismic event of specific features within a certain period of time. The 

corresponding ground motion (peak ground acceleration PGA) is said to have a P probability of 

exceedance in T years, return period [21]. In this work, the return period assessed is 2475 years 

with a probability of exceedance of 2% in 50 years.  

 According the attenuation law by Sabetta and Pugliese [22], the PGV value is influenced 

by the soil local condition and it is a function of M and R: 
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where a, b, e1, e2, are parameters determinate through multiple non-linear regression, h is a 

function of the depth, σ is the standard deviation of logarithm of PGV, S1 and S2 depends on 

geological soil conditions, M and R are respectively the magnitude and the epicenter distance of 

the scenario earthquake resulting from the seismic hazard evaluation. 

 In our case study the PVG value is 35.84cm/s and it is assumed as constant across the 

entire region of interest. 

 

Vulnerability Analysis of Water Pipes 

 

The reliability of a water pipe network is strictly connected with the concept of vulnerability of 



its elements. Herein, focus is given to the pipes, the most important component in a pipe network 

because it is the most challenging part to inspect and replace. 

 The seismic vulnerability of the buried pipelines discussed in the American Lifelines 

Alliance (ALA 2001) [23] is adopted in this work. Vulnerability functions are entirely empirical 

and are based on reported damage from historical earthquakes. Damage is expressed in terms of 

pipe repair rate RR, defined as the number of repairs per 1,000 m of pipe length exposed to a 

particular level of seismic demand. 

 

 0.00187 1RR PGVK               (13) 

 

where K1is a coefficient that depends on the pipe material, pipe diameter, joint type, and soil 

condition. Once the repair rate is known, the failure probability 𝑃𝑓,𝑗 of a pipeline is evaluated 

through the Poisson exponential probability distribution, as follows: 
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where L is the length of pipe and e-RR∙L is the probability of zero breaks along the pipe. In this 

paper three different K1 are considered in order to investigate the influence of pipe material on 

the failure probability Pf,j: K1 = {0.5;0.8; 1}. 

 The seismic wave propagation induces strains to the pipes due to the soil-pipe interaction: 

strains could produce damage if the pipe strength is exceeded. When pipe damage occurs, the 

pipe is assumed to break in the middle. 

 A demand driven analysis DDA is carried out in standard procedure by the software 

EPANET. The DDA procedure fixes the demand at the nodes of the network. When a pipe 

damage occur, pressure drops at some nodes. The water supply is affected by the pressure drop, 

thus a pressure driven analysis PDA is carried out to take into account the dependence of water 

supply on pressure. 

 Pipe damage is modeled with EPANET2.0 as follows: the pipe is divided into two equal 

parts and two reservoirs are added at their endpoints in order to simulate the water leakage 

through the crack (Figure 6). The reservoirs have a total head equal to the elevation of the middle 

point of the pipe (as the pipe breaks in the middle). A check valve is inserted so that water only 

flow towards the reservoirs. 

 
Figure 6: Pipe break simulation in EPANET 2.0 [24]. 

 

Under ideal operating conditions, the WDN pressures and velocities range between precise 

limits defined by the Italian prescriptions [25]. In the case of pipe damage, the pressure at some 

nodes drops. To take into account scenarios in which the demand is fully dependent on the 

pressure, a PDA is carried out: first, damaged pipes are introduced in the model and a standard 

DDA runs.  Then, nodes with pressure below value required to satisfy the demand, are converted 

in Emitter nodes. An Emitter is a node whose demand is proportional to a fractional power of the 

pressure according the follow equation: 

 
 i i i i i iQ C H z C p
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where 𝑄𝑖 is the actual demand flow; 𝐶𝑖 is the emitter coefficient; 𝐻𝑖 is the actual total head of 

the ith node; zi is the elevation of the ith node; 𝑝𝑖 is the actual pressure of the node; and α is the 

emitter exponent (0.5 if no other information are available). Emitter coefficient is evaluated as: 
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where Qdemand is the demand flow; 𝐻𝑟,𝑖 and 𝑝𝑟,𝑖 are respectively the total head and the pressure 

required to satisfy Qdemand. Herein 20 m of water column is assessed the minimum value to 

satisfy the demand at the nodes. The software runs again with emitters inserted. 

 

The PDA procedure is applied during the breakage. Three cases can occur: 

- Qi ≤ 0, the actual demand flow at the node is equal to zero, 

- 0≤ 𝑄𝑖≤ 𝑄𝑑𝑒𝑚𝑎𝑛𝑑,the actual demand flow is equal to Qi; 

- 𝑄𝑖≥ 𝑄𝑑𝑒𝑚𝑎𝑛𝑑, the actual demand flow is equal to 𝑄𝑑𝑒𝑚𝑎𝑛𝑑. 

EPANET software doesn’t allow any upper bound for the equation above mentioned and, 

moreover, negative flow values have no physical meaning: the PDA can be corrected in order to 

reach a more accurate solution. 

 

Definition of the event scenarios 

 

Resilience is a dynamic quantity characterized by a lack of certainty. Uncertainties are crucial 

both for risk management and resilience analysis [26]. A Monte Carlo method has been used to 

generate a large number of simulations in order to study the uncertainty through a Matlab code 

provided by Fragiadakis [27]. The code requires: pipe diameters, pipe lengths, start and end 

nodes, and the pipe failure probability. In addition, an importance factor has been assigned to 

each pipeline: “2” is assigned to main pipelines, “1.5” to the pipes within the districts, and “1” to 

the connection pipes between the districts. The number of scenarios NS considered is 5000 which 

yielded a stable distribution of the results (figure 7). 

 

 
Figure 7 Distribution of scenarios events. The total number of scenarios is 5000. K1= 0,5. 

 



Numerical results 

Serviceability functions F1(t) and F2(t) are evaluated for the 5000 simulation scenarios 

and for three values of K1. The simulations considered a random occurrence time of earthquake. 

For each of them, two resilience indices have been computed using equations (6). At each 

earthquake occurrence time, the mean value of the resilience indices has been computed with its 

standard deviation (Figure 8). Pipes with ductile material (low K1) show a more resilient 

behavior than pipes with fragile material (high low K1). The highest resilience indexes 

correspond to K1=0.5. 

It is clear that the resilience indicators are not very sensitive to the time at which the 

earthquake occurs. In addition, the value R follows the water demand pattern: it is lower when a 

damage occurs during a high water demand hour. 

Moreover, the resilience index RQ (referring to the variation of water supply) is more sensitive 

than the index R (referring to people suffering with water outage).  
 

 

Figure 8. Resilience indices R and RQ for three K1 values (pipe material). 

Concluding remarks 

Two resilience indices to measure the performance of a water distribution network after a 

earthquake are proposed. The methodology presented here considers the pipes as the only 

element of the WDN that can be affected by an earthquake. The methodology has been applied 

to a virtual city, namely IDEAL CITY. Two serviceability function are identified. The first F1(t) 

is related to the number of users suffering water outage while the second F2(t) is related to the 

reduction in the total water supply. Finally, resilience indices are evaluated as the area under the 

performance curves. The resilience two indices show different values but they both followed the 

daily water demand trend. 

The introduced methodology can serve as a decision making tool for water distribution 

systems in any community. Future work will aim at generalizing the methodology. Since water 

demand pattern, time control and recovery time affect the evaluation of resilience, future work 

will focus on a parametric study to understand the effect of each parameter on the resilience 

evaluation. The methodology will also be generalized to include the possibility of changing the 

seismic input and the geometry of the network. 
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