
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance and energy-efficient implementation of a smart city application on FPGAs / Arif, Arslan; Barrigon, Felipe A.;
Gregoretti, Francesco; Iqbal, Javed; Lavagno, Luciano; Lazarescu, Mihai Teodor; Ma, Liang; Palomino, Manuel; Segura,
Javier L. L.. - In: JOURNAL OF REAL-TIME IMAGE PROCESSING. - ISSN 1861-8200. - ELETTRONICO. - 17(2020),
pp. 729-743.

Original

Performance and energy-efficient implementation of a smart city application on FPGAs

springer

Publisher:

Published
DOI:10.1007/s11554-018-0792-x

Terms of use:
openAccess

Publisher copyright

Copyright Springer. The final publication is available at link.springer.com

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2710367 since: 2020-07-02T01:28:25Z

Springer Verlag

Vol.:(0123456789)1 3

Journal of Real-Time Image Processing
https://doi.org/10.1007/s11554-018-0792-x

SPECIAL ISSUE PAPER

Performance and energy‑efficient implementation of a smart city
application on FPGAs

Arslan Arif1 · Felipe A. Barrigon2 · Francesco Gregoretti1 · Javed Iqbal1 · Luciano Lavagno1 ·
Mihai Teodor Lazarescu1 · Liang Ma1 · Manuel Palomino2 · Javier L. L. Segura2

Received: 1 February 2018 / Accepted: 17 May 2018
© The Author(s) 2018

Abstract
The continuous growth of modern cities and the request for better quality of life, coupled with the increased availability of
computing resources, lead to an increased attention to smart city services. Smart cities promise to deliver a better life to their
inhabitants while simultaneously reducing resource requirements and pollution. They are thus perceived as a key enabler to
sustainable growth. Out of many other issues, one of the major concerns for most cities in the world is traffic, which leads to a
huge waste of time and energy, and to increased pollution. To optimize traffic in cities, one of the first steps is to get accurate
information in real time about the traffic flows in the city. This can be achieved through the application of automated video
analytics to the video streams provided by a set of cameras distributed throughout the city. Image sequence processing can
be performed both peripherally and centrally. In this paper, we argue that, since centralized processing has several advan-
tages in terms of availability, maintainability and cost, it is a very promising strategy to enable effective traffic management
even in large cities. However, the computational costs are enormous, and thus require an energy-efficient High-Performance
Computing approach. Field Programmable Gate Arrays (FPGAs) provide comparable computational resources to CPUs and
GPUs, yet require much lower amounts of energy per operation (around 6 × and 10× for the application considered in this
case study). They are thus preferred resources to reduce both energy supply and cooling costs in the huge datacenters that
will be needed by Smart Cities. In this paper, we describe efficient implementations of high-performance algorithms that
can process traffic camera image sequences to provide traffic flow information in real-time at a low energy and power cost.

Keywords Smart city · Image processing · Background subtraction · Lucas–Kanade · High-level synthesis · Field
programmable gate array · Graphical processing unit

1 Introduction

Cities are seeing massive urbanization worldwide, thus
increasing the pressure on infrastructure to sustain private
and public transportation. Adding intelligence to tradi-
tional traffic management and city planning strategies is
essential to preserve and even improve quality of life for
citizens under this enormous increase of population. Traf-
fic causes increased delays, thus reducing the opportunity
for city dwellers to earn money by performing productive
activities. It also poses health hazards due to pollution and

accidents. Several public and private entities (ranging from
public transportation providers, to city planners, to traffic
light control, to taxi and car sharing providers, to individual
drivers) can profit from the widespread availability of real-
time information about traffic flows.

The main aim of this paper is to present a computer vision
application, which operates in the Smart city context. This
application will provide cost-effective and scalable real time
analysis of traffic in cities that can then be harnessed by
other smart city services and applications (e.g., intelligent
traffic management tools) to reduce traffic-related impacts on
the quality of life of citizens. Videos obtained from cameras
can provide reliable information about the traffic flow on
roads. The basic idea, as shown in Fig. 1 is that the cameras
acquire the images, which are then processed using image-
processing algorithms. After that, the data are stored in a
database and accessed on demand.

 * Arslan Arif
 arslan.arif@polito.it

1 Politecnico Di Torino, Turin, Italy
2 ACCIONA Infrastructure S.A., Madrid, Spain

http://orcid.org/0000-0002-0912-5008
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0792-x&domain=pdf

 Journal of Real-Time Image Processing

1 3

However, the use of cameras poses some disadvantages.
The first major drawback is the breach of privacy. Citi-
zens usually feel uncomfortable and insecure when their
movements are being monitored and they tend to oppose
any such system. To overcome this disadvantage, the end
users of our application are not given the raw data. Rather
they are provided with only the result of the processing of
the images recorded by the cameras. This ensures both the
protection of personal information and the value of data.

Another difficulty in the use of such systems is the huge
effort required to compute and process data by image anal-
ysis algorithms. For instance, cameras should be deployed
every 50 m or so to obtain a density that can provide com-
plete information for a city. A big city with an urban area
of 360 km2 would require the use of about 100,000 active
cameras. This can be supported only by extreme parallel
computing techniques.

Two commonly used accelerators in the field of paral-
lel computing are Graphical Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs). They provide a
good solution to achieve high computational power. Both
options have their advantages and disadvantages. GPUs
are power hungry, whereas developing complex applica-
tions for FPGAs using Hardware Description Languages
(HDL) is difficult and time consuming. With the introduc-
tion of techniques such as High-Level Synthesis (HLS),
the effort of programming FPGAs has been significantly
reduced and their low energy consumption makes them a
great candidate for such large scale applications.

One more point to keep in mind when planning for such
systems is that cities tend to grow. Therefore, our system
architecture is designed to be scalable, i.e., to allow cam-
eras to be added as needed. Scaling the number of cameras
is crucial to make this system practical.

The rest of the paper is organized as follows. Section 2
discusses the previous work in this field. Sections 3 and 4
give an overview of the application and explain the selec-
tion of specific image processing algorithms. Section 5
discusses the application constraints, whereas Sect. 6

discusses the Hardware computation performance and
costs. The work is concluded in Sect. 7.

2 Related work

A lot of work has been carried out on smart cities in the last
20 years [1]. For some reviewers, smart cities are still con-
fusing [2]. Definitions range from information and commu-
nication technology (ICT) networks in city environments [3]
to various ICT attributes in a city [4]. Some relate the term
with indexes such as the level of education of citizens or in
terms of financial security [5], while others thinks about it
in terms of urban living labs [6]. All of these implications
are alternative schools of thought and most researchers point
towards the complexity and scale of the smart city domain
[7].

The monitoring of roads for security and traffic manage-
ment purposes is one of the main topics in this domain.
Modern smart cities measure the traffic so that they can opti-
mize the utilization of the roads and streets by taking actions
which can improve traffic flow. Video-based approaches
have been researched to monitor the flow of vehicles to
obtain rich information about vehicles on roads (speed, type
of vehicle, plate number, color, etc.) [8].

Vision-based traffic monitoring applications have seen
many advances thanks to several research projects that were
aimed at improving them. In 1986, the European automotive
industry launched the PROMETHEUS European Research
Program [9]. It was a pioneer project which intended to
improve traffic efficiency and reduce road fatalities [10].
Later, the Defense Advanced Research Projects Agency
introduced the VSAM project to create an automated video
understanding technology which can be used in urban and
battlefield surveillance applications of the future [11].
Within this structural framework, a number of advanced
surveillance techniques were demonstrated in an end-to-end
testbed system which included tracking from moving and
stationary camera platforms and real-time moving object
detection as well as multi-camera and active camera control
tracking techniques. The cooperative effort of these two pio-
neering projects remained active for about two decades. As a
result, new European frameworks evolved to cover a variety
of visual monitoring systems for road safety and intelligent
transportation. In the early 2000s, the ADVISOR project was
implemented successfully to spot abnormal user behaviors
and develop a monitoring system for public transportation
[12–14].

There are several methods which can extract and classify
raw images of vehicles. These methods are chiefly feature-
based and require hand-coding for detection and classifica-
tion of specific features of each kind of vehicle. Tian et al.
[15] and Buch et al. [8] surveyed some of these methods. In

Fig. 1 Application overview

Journal of Real-Time Image Processing

1 3

the fields of intelligent transportation systems and computer
vision, intelligent visual surveillance plays a key role [16].
An important early task is foreground detection, which is
also known as background subtraction. Many applications
such as object recognition, tracking, and anomaly detection
can be implemented based on foreground detection [17, 18].

An application was proposed in the Artemis Arrowhead
Project [19] that can detect patterns of pedestrians and vehi-
cles. According to the authors, based on this information,
the application can also extract a set of parameters such as
the density of vehicles and people, the average time during
which the elements remain stationary, the trajectories fol-
lowed by the objects, etc. Subsequently, these parameters
are offered as a service to external parties, such as public
administrations or private companies that are interested in
using the data to optimize the efficiency of existing systems
(e.g., traffic control systems or streetlight management) or
develop other potential applications that can take advantage
of them (e.g., tourism or security).

Many existing systems, which are concerned about pri-
vacy of the citizens, employ some sort of censorship so that
human or AI users are not able to see and inadvertently rec-
ognize any person in the camera footage. This can be done
either in the form of a superimposed black box, which blocks
out the eyes or face of the person, masking each person in
each frame or blocking images of certain places altogether
[20–25]. However, this approach cannot achieve full privacy.
Most of the time we do not require any sort of informa-
tion related to individuals while working with applications
related to computer vision. Thus, the developer should be
aware of the information being collected either advertently
or inadvertently and of what are the real requirements for
the application [26].

Extraction and categorization of vast amounts of data
require expensive and sophisticated software. Processing the
live feed for even a single camera requires a dedicated CPU
[27]. More performance requires computer accelerators. The
most commonly used computer accelerator in this domain is
the Graphical Processing Unit (GPU). GPUs provide higher
memory bandwidth, higher floating point throughput and a
more favorable architecture for data parallelism than pro-
cessors. Due to these properties, they are used in modern
high-performance computing (HPC) systems as accelerators
[28]. However, the main drawback of HPC systems based
on GPU accelerators is that they consume large amount of
power [29].

To overcome the power inefficiency of GPU-based HPC
systems, modern field programmable gate arrays (FPGAs)
can be used. FPGA devices require less operating power and
energy per operation while providing reasonable processing
speed as compared to GPUs [30]. When comparing them
with multi-core CPUs, especially with regards to data center
applications, it was observed that the performance gap keeps

widening between the two. In summary, FPGAs are known
to be more energy efficient than both CPUs and GPUs [31].
Acknowledging these capabilities, Microsoft, Baidu and
Amazon now also use FPGAs as accelerators rather than
GPUs in their data centers [32].

FPGAs are, however, complex to program. Hardware
description languages (HDL) such as Verilog or VHDL are
commonly used for this task. A technique called high-level
synthesis (HLS) provides the capability to program FPGAs
through the use of high-level languages, e.g., C, C++,
OpenCL or SystemC, consequently reducing the design time
debugging and analysis [33, 34].

3 The application

The main goal of the application described in this paper is
to extract data from video surveillance cameras and make
it available to different services. The objective is to provide
real-time information which can be used to optimize, for
example, the street lighting and traffic light systems installed
in cities. The application will analyze the images recorded
by the cameras installed in cities and will apply a set of
algorithms to detect the presence of people and vehicles and
to compute the density of traffic at each specific location.

For this purpose, cameras are installed on roads (Fig. 2).
Their parameters such as height from ground, angle of eleva-
tion, and road parameters such as width, are already assumed
to be available for processing, as shown in Fig. 3, together
with other constants such as the minimum value for detect-
ing a change of speed.

In most places, cameras cannot be positioned directly
above a road. Most of the times they will have a prospec-
tive view, as shown in Fig. 2. So we need input values to
map the road with respect to the camera pixels (Fig. 4).
We need three types of information. (1) Whether a pixel
covers a road area, (2) how much area each pixel covers
and (3) how much distance each pixel covers in the direc-
tion of the camera. The presence or absence of the road

Fig. 2 Camera view

 Journal of Real-Time Image Processing

1 3

allows us to apply the algorithm only on the part of the
camera frame that we are interested in and hence save
computational resources. The area value is used to find
the percentage of the road occupied by moving objects.
Finally the distance is used to compute the velocity of
the vehicles. All of them can be calculated from camera
resolution, aperture, focal length and height over the road.
Another important thing to note here is that, as we move
away from the camera, the distance represented by one
pixel increases. Therefore, the distance value for each
pixel is different. It is calculated once for each stationary
camera and then used repeatedly to save time and com-
putational resources.

Figure 5 shows the general workflow of the image
analysis module in detail. Two configuration files con-
taining road and camera parameters are used as inputs,
in addition to the image to be analyzed. This module can
be instantiated, as many times as needed, once for each
descriptor that is desired, so that it is possible to detect
many kinds of objects at the same time.

3.1 Implementation model

Two types of implementation are possible for this system
on the basis of the location of computational and storage
units. One is decentralized, where each camera has its own
processing unit. The other is centralized, where all the pro-
cessing by a set of closely situated cameras is done on one
single server.

3.1.1 Decentralized architecture

Figure 6 represents the decentralized architecture version of
the application. Due to the high computational requirements,
a dedicated CPU would be needed for each camera installed
in the monitored scenario. Once the image (which must be
processed in real time) is captured, the pre-processing unit
associated to that camera processes the signal for detecting
the elements present in the image. Afterwards, it sends a
picture with some metadata to the central processing unit in
which all of the information are processed and stored to be
offered to the customers within a cloud architecture.

3.1.2 Centralized architecture

On the other hand, Fig. 7 depicts an architecture in which
one processing unit is used by a number of cameras. The
idea is to combine the processing unit with the central data-
base where all the data are offered to the customer. This

Fig. 3 Road parameters w.r.t camera

Fig. 4 Video frame vs ground reality

Fig. 5 General workflow of image analysis module

Fig. 6 Decentralized model

Journal of Real-Time Image Processing

1 3

means that no camera has a dedicated processing unit
attached, which dramatically increases the amount of data
to be processed centrally in real time.

After analyzing both options, the second alternative is
considered more appropriate because of the costs of imple-
mentation, application software management, maintenance
costs to resolve hardware failures, improved safety, etc. In
Fig. 8, the scheme for the proposed solution is presented. A
major factor for choosing a centralized system would be the
achievable energy efficiency using latest generation FPGA
devices, which are very power-efficient but too expensive to
be deployed in a decentralized architecture.

Most of the operations carried out in image processing are
pixel based, with no or very few dependencies on other pixel
output values. This provides a very good basis for a parallel
implementation of image-processing algorithms that work
on each pixel either simultaneously or in a pipelined fash-
ion (Fig. 9). In this way, we can reduce the frame process-
ing time and hence we can achieve a real time processing
frequency, which is about 25 fps for the target application.

3.2 Proposed architecture

We target to provide an energy-efficient architecture by
sharing numerous reconfigurable accelerators. To provide a
scalable approach, the architecture should be tailored to the

needs of the HPC applications as well to the characteristics
of the hardware platform. Energy-efficient heterogeneous
COmputing at exaSCALE (ECOSCALE) is a project under
the H2020 Eurpeon research framework. The main goal of
this project is to provide a hybrid MPI + OpenCL program-
ming environment, a hierarchical architecture, a runtime sys-
tem and middleware, and a shared distributed reconfigurable
FPGA-based acceleration [35].

ECOSCALE offers a hierarchical heterogeneous archi-
tecture with the purpose of achieving exascale performance
in an energy-efficient manner. It proposes to adopt two key
architectural features to achieve this goal: UNIMEM and
UNILOGIC. UNIMEM was first proposed by the EURO-
SERVER project [36] and provides efficient uniform access,
including low-overhead ultra-scalable cache coherency,
within each partition of a shared Partitioned Global Address
Space (PGAS). UNILOGIC, which is first being proposed by
ECOSCALE, extends UNIMEM to offer shared partitioned
reconfigurable resources on FPGAs. The proposed HPC
design flow, supported by implementation tools and a run-
time software layer, partitions the HPC application design
into several nodes. These nodes communicate through
a hierarchical communication infrastructure as shown
in Fig. 10. Each Worker node (basically, an HPC board)
includes processing units, programmable logic, and memory.
Within a PGAS domain (several Worker nodes), this archi-
tecture offers shared partitioned reconfigurable resources
and a shared partitioned global address space which can be
accessed through regular load and store instructions by both
the processors and the programmable logic. A key goal of
this architecture is to be transparently programmable with a
high-level language such as OpenCL.

4 Implemented algorithms

As discussed before, computational accelerators must be
used to extract the required information from videos with
sufficient performance and energy efficiency. The computing
power of the hardware accelerators will focus on the vision

Fig. 7 Centralized model

Fig. 8 From decentralized to centralized architecture

Fig. 9 Overview of parallelism in image-processing algorithms

 Journal of Real-Time Image Processing

1 3

algorithms for recognition and measurement of traffic, as
they are the most expensive part of the application. Two
approaches which are best suited for our application have
been identified for processing the images streamed from
fixed cameras.

The algorithms are coded in the OpenCL language.
OpenCL is a programming language for parallel architec-
tures which is built upon C/C++ and thus can be easily
learned and ported [37]. The basic advantage of OpenCL is
that it can exploit the architectural features of accelerators
more easily than C or C++. It provides the programmer with
a clear distinction between different kinds of memory, such
as global DRAM, local on-chip SRAM and private register
files. This allows programmers to optimize code much better
than with the flat memory models of Java C and C++.

4.1 Vehicular density on the roads

Algorithm 1 is based on a background subtraction and object
tracking method. One popular implementation was made
available by Laurence Bender et al. as part of the SCENE
package [38], available in the SourceForge repository
(Fig. 11). The algorithm performs motion detection prin-
ciple by calculating the change in the corresponding pixel
values with respect to the reference stationary background.
The portion of the road where movement is detected gives
an idea about the amount of traffic. Moreover, the algorithm
also constantly updates the reference background image (in
case a moving object is now at rest).

Our chosen algorithm takes four frames (images) as
input, including the reference stationary background, the
frame under the consideration, the preceding frame and the

Fig. 10 Hierarchical partition-
ing (tasks, memory, communi-
cation) of an HPC application
[35]

…

Logical Shared Memory

Memory MemoryMemory

L0 Par��on (PGAS)

Tn-2 TnTn-1

Logical Shared Memory

Memory MemoryMemory

L0 Par��on (PGAS)

T1 T3T2

L0 Communica�on
(Shared address space)

to higher levels

Fig. 11 Output of the back-
ground subtraction algorithm
[38]

Journal of Real-Time Image Processing

1 3

succeeding frame. For each pixel, it performs a weighted
difference on the corresponding pixels of three consecutive
frames. If this difference is zero, it implies that there is no
movement in the corresponding pixel, hence no update is
needed for the total moving area or the reference back-
ground. On the other hand, non-zero values corresponds
to some change in the consecutive video frames around the
pixel. The value can be a positive or a negative number
according to the direction of movement with respect to
the camera. If the absolute of this value is larger than the
threshold set for movement detection and some change is
also detected in the current frame pixel w.r.t. the reference
background, then the global accumulator of the moving
area is updated by adding the area of the road occupied by
the current pixel. If the weighted difference is less than the
threshold for N − 1 frames, then the algorithm updates the
reference background pixel with the current pixel. N is the
minimum number of frames required to declare the pixel
to be part of the stationary background. The value of N can
be set according to the application.

Algorithm 1 Background Subtraction algorithm
Require: Four grayscale images image−1 , image0 , image1

and imagebg & Count array
Ensure: imageout, Updated imagebg and Count array &

Total Area with Movement
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: PIX = (j ∗WIDTH) + i
4: lat = 0
5: if PIX is on ROAD then
6: center ← PIX
7: left ← PIX − 10
8: right ← PIX + 10
9: lat ← Abs(sum of weighted difference of left , right

and center pixels of all three images)
10: end if
11: if (lat< threshold) & (Count[PIX] ≥ N) then
12: imagebg[center] ← image0[center]
13: else
14: Count[PIX]++
15: end if
16: if ((image0[center] - imagebg[center]> Background

threshold) & (lat> threshold)) then
17: imageout[center] ← image0[center]
18: Increment Area with Movement
19: else
20: imageout[center] ← 0
21: end if
22: end for
23: end for

4.2 Vehicular velocity on the roads

Since the background subtraction module can only find
the area occupied by moving objects on the roads, another
method is needed to measure the velocity of vehicles, based

on the Lucas–Kanade algorithm for optical flow [39]. An
implementation of the Lucas–Kanades optical flow algo-
rithm developed by Altera [40] in OpenCL with a 52 × 52
window size is shown in Fig. 12.

A window size of N × N means that the optical flow for
one pixels is computed with respect to the neighboring N/2
pixels on each side of that pixel, i.e., the pixel under consid-
eration is in the center of a matrix of pixels having (N+1)
rows and columns. For each pixel in the window, a partial
derivative with respect to its horizontal (Ix) and vertical (Iy)
neighbors is computed. The size of the window is a compro-
mise between true negative and false positive change detec-
tion. Therefore, it should be chosen by an expert with respect
to area covered by each pixel and other parameters. In this
paper, we use a 15 × 15 window.

A pyramidal implementation [41] is used to refine the
optical flow calculation and the iterative Lucas–Kanade opti-
cal flow computation is used for the core calculations. For
each pixel, computed partial derivatives within the window
and the difference among the pixel values in the current and
next frames are used to calculate the velocity of each moving
object (it is zero if the area covered by the pixel is station-
ary). The magnitude is the speed of the object, whereas the
sign shows whether it moves towards the camera or away
from it.

In our implementation of the algorithm (Algorithm 2),
the optical flow is computed for all the pixels of the image
(in this case for a 1280 × 720 resolution). Two images using
8 bits per pixel are compared with a window size of 15.
Moreover, the obtained values are mapped to a single color
representing both relative velocity and direction, as shown
in Fig. 13.

To calculate the average velocity of traffic with the opti-
cal flow algorithm one needs to know the distance between
the camera and the recorded objects. To avoid expensive
and complex solutions for a real-time depth measurement,
an approximation for calculating the distance corresponding
to each pixel of the image is used based on static camera
parameters, such as road plane inclination, camera orienta-
tion and field of view.

In addition to the capabilities summarized above, addi-
tional features for user interaction are included in the
application. For example, a module for defining the target
areas where the recognition is performed and setting up the
parameters of the different cameras has been developed. All
these parameters can be given as an input in the configura-
tion file.

 Journal of Real-Time Image Processing

1 3

Algorithm 2 Lucas-Kanade algorithm
Require: two frames of images image0 and image1 and

other coefficients
Ensure: vopt
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: G2×2 ← 0
4: b2×1 ← 0
5: for wj = −wy to wy do
6: for wi = −wx to wx do
7: center ← Pos(i+ wi, j + wj)
8: left ← Pos(i+ wi − 1, j + wj)
9: right ← Pos(i+ wi + 1, j + wj)
10: up ← Pos(i+ wi, j + wj − 1)
11: down ← Pos(i+ wi, j + wj + 1)
12: im0

val ← image0[center]
13: im1

val ← image1[center]
14: δI ← d(im0

val, im
1
val)

15: im0
left ← image0[left]

16: im0
right ← image0[right]

17: Ix ← (im0
right − im0

left)/2
18: im0

up ← image0[up]
19: im0

down ← image0[down]
20: Iy ← (im0

down − im0
up)/2

21: G ← G+ g2×2(Ix, Iy)
22: b ← b+ f2×1(δI, Ix, Iy)
23: end for
24: end for
25: G ← inverse(G)
26: vopt[j][i] ← G× b
27: end for
28: end for

5 Application constraints

As discussed before, we are dealing with live video stream-
ing in our application. The cameras that we are using pro-
duce 25 frames per second (fps) with an image resolution of
1280 × 720 pixels. These frames are given as input to both
image-processing algorithms explained in section IV, one
for moving object detection and one for speed estimation. A
sample frame from one of the cameras is shown in Fig. 14.

5.1 Background subtraction algorithm

The background subtraction algorithm needs three consecu-
tive frames and a reference stationary background image to
distinguish between moving and stationary objects. After
the computation of one set of frames, the next frame is fed
to the kernel and the oldest one is removed from the set. The
result is shown in Fig. 15.

Here the static areas are detected as background and con-
verted to black, while pixels where movements have been
detected are shown as gray-scale pixels of the original frame.
We also compute the portion of the road that is occupied by

Fig. 12 Altera’s implementation
of Lucas–Kanade algorithm
[40]

Fig. 13 Lucas–Kanade’s disparity map

Fig. 14 Sample frame

Journal of Real-Time Image Processing

1 3

moving objects. In this set of frames, it is equal to 11.2 m 2
on the side where traffic is coming towards the camera, and
it is 6.55 m 2 on the side where traffic is moving away from
the camera.

5.2 Lucas–Kanade algorithm

In our implementation of the Lucas–Kanade Algorithm, for
each set of calculations, we need two consecutive image
frames and a set of input parameters depending on the
road conditions and camera angles. Similar to background
subtraction, each new frame replaces the older one. The
graphical output from these images is shown in Fig. 16. The
stationary regions are represented by white pixels, while
moving objects are mapped to colors according to their
speed and direction.

A interesting result is the speed of moving objects (vehi-
cles) on the road. For the current frame as reference. The
average velocity coming towards the camera is about 118
km/h while the velocity moving away is − 67 km/h. The
direction of the vehicles is evident also from the color in
Fig. 16, in accordance with the encoding shown in Fig. 13.

We can also find the speed in any specific lane of the
road, by dividing the pictures in separate lanes instead of two
parts as we did in Fig. 14. This can be achieved, if required,
by minor adjustments in the input configuration file.

Note that the processed images or data extracted from
them contain no personal information, thus we can safely say
that we have achieved the objective of personal data integrity
and we are not forwarding any sort of personal or privileged
information to any third party.

6 Implementation results and algorithm
optimization

After testing the basic functionality of the algorithms, we
optimized them to get the maximum efficiency with a mini-
mum use of resources in the smallest amount of computa-
tional time. Performance analysis was carried out using RTL
simulation on a virtual board including a Virtex 7 FPGA
from Xilinx and then on real hardware, using the Amazon
Web Services(AWS) Elastic Compute Cloud (Amazon
EC2). The available resources on these boards are shown
in Table 1. Note that to complete RTL simulations (for Vir-
tex 7) in a reasonable amount of time, we used an image
resolution of 1280 × 4 and we extrapolated the simulation
results to the real image size. On AWS, on the other hand,
the complete frame was used to verify the results. For high
level synthesis, we used SDAccel v2016.4 and 2017.1 from
Xilinx.

Moreover, simulations were carried out for a single com-
pute unit and then a suitable number of compute units that
could fit on the FPGA were used for each algorithm. In
contrast to a CPU or GPU, an FPGA does not have a fixed
architecture but the HLS tool generates a custom computa-
tion and memory architecture from each application. The

Fig. 15 Output of background subtraction

Fig. 16 Output of Lucas–Kanade algorithm

Table 1 Target FPGAs and
boards

Target device name ADM-PCIE-7V3:1ddr:3.0 AWS-F1:4ddr-xpr-2pr:4.0
FPGA part (Xilinx) Virtex-7 XC7VX690T-2 Virtex UltraScale+ xcvu9p-2-i

Clock frequency 200 MHz 250 MHz
Memory bandwidth 9.6 GB/s 11.25 GB/s
BRAMs 2940 4320
URAMs – 960
DSPs 3600 6840
FFs 866,400 2,364,480
LUTs 433,200 1,182,240

 Journal of Real-Time Image Processing

1 3

term “compute unit” (CU) refers to a specialized hardware
architecture (processing core) for a given application. The
designer can use multiple parallel CUs (within the available
resources) to boost the performance of each application.

The application needs to process 25 frames per second
to meet the requirement of real time video processing. This
means that each kernel iteration (processing one frame)
should be completed in a maximum time of 40 m.

6.1 Background subtraction algorithm

The initial implementation of the background subtraction
algorithm was faster than the optical flow algorithm, but
still did not match the real time requirements. The bottleneck
for this algorithm was global memory access. To solve this
issue, a line buffer was introduced. The kernel fetches all the
pixel values required for each work group and stores them in
a line buffer in local memory. This fetching is implemented
using the OpenCL asynchronous work group copy operation,
which is implemented as a burst read operation from DRAM
to on-chip memory (much faster than single transfers). The
same mechanism is used for burst writes. This reduces the
kernel execution time by a factor of 5 but increases BRAM
utilization. The results are good but still the desired pipelin-
ing of work items is not achieved due to the read/modify/
writes required to update global variables such as the total
moving area.

In the second version, local buffers are also used for
the standard background image, the array accounting for
the number of frames with a slight change and the global

accumulator of the moving area which were causing the bot-
tleneck in the first place. In this way, we are able to achieve
the expected performance, a speed gain of more than 70x

Table 2 Kernel execution time and resource utilization (per compute
unit) of background subtraction algorithm

Implementation version Time (ms) Resource utilization

Per frame BRAM DSP FF LUT

Basic 7313.112 5 3 14,447 35,019
Optimized v.1 1467.108 22 5 10,979 31,700
Optimized v.2 103.8096 24 5 9165 15,978
Virtex 7 (3 CU) 34.6032 72 15 27,495 47,934
UltraScale+ (3 CU) 27.8082 65 15 18,723 17,859

Fig. 17 Line buffers for Lucas–Kanade

Fig. 18 Basic vs final implementation of Lucas Kanade

Table 3 Kernel execution time and resource utilization (per compute
unit) of Lucas–Kanade algorithm

Implementation
version

Time (ms) Resource utilization

Per frame BRAM DSP FF LUT

Basic 44,209.98 31 56 21,367 37,080
Optimized v. 1 14,883.876 122 51 18,410 24,613
Optimized v. 2 3751.2 182 52 51,025 100,777
Optimized v. 3 207.313 178 175 35,683 36,072
Virtex 7 (6 CU) 34.5522 1068 1050 214,098 216432
UltraScale+ (6

CU)
 39.4512 1386 576 274,770 246,786

Journal of Real-Time Image Processing

1 3

from the basic implementation and more than 14x from our
first optimized version. The extra resources consumed are
only two BRAMs.

However, the best time that we achieved using Hardware
emulation was 103 ms per frame, hence not sufficient to
achieve 25 fps. For this purpose, we need to use at least three
parallel compute units, which multiplies all the resources by
a factor of 3 as shown in Table 2. This still uses only about
12% of the resources of a Virtex 7 FPGA, which can thus
processes frames from five cameras. The results obtained
from AWS EC2 board show an increase in performance
which was expected as Ultrascale+ is a newer generation
FPGA than Virtex 7. These results are shown in the last row
of Table 2.

6.2 Lucas–Kanade algorithm

The basic implementation of the Lucas–Kanade Algorithm is
even more costly than the background subtraction algorithm.
Three main opportunities for optimizing were global memory
access, avoiding repeated calculations for the same pixel and
optimizing trigonometric calculations for the output colors.

The first optimized version of the kernel uses a line
buffer for burst reading and writing of the image data from
global to local memory (similar to what we have seen in
the background subtraction algorithm). For Lucas–Kanade
this line buffer is about five times larger than what we used
in background subtraction because more neighboring pixels
are required for computation. This can be easily seen by the
increase in the number of BRAMs (about four times) in the
first version as compared to the basic implementation.

Since the partial derivative calculated for a pixel in the
window is also required by the next 14 windows (using a

sliding window as shown in Fig. 17), in the second opti-
mized version we removed this repetitive computation by
calculating it only once and reusing it (Line Buffer 2 in
Fig. 17). In this way, we not only saved computations per
work group, but also were able to split the loop nest (line 4
and 5 of Algorithm 2) into two single loops as shown in Fig
18. This reduces the iterations from 225 (15 × 15) to 30 (15
+ 15). A work-group size of 1280 was also used, as it avoids
not only the repetitive fetching of neighbors among work
groups (along the width of image) but also eliminates repeti-
tive calculations for each WG. This gives us a performance
boost of 4 × but also requires a lot more resources (Table 3).

The analysis of the second optimized version revealed
that the algorithm is not able to pipeline the inner loop
because of the trigonometric functions for the output
color encoding. These calculations were required only
for debugging. Since the information provided to end
users is purely average velocity on each lane, therefore
the Lucas–Kanade algorithm debug image is calculated
in a simpler way. For debugging, the most interesting part
of the image is the one that closest to the line of sight.
Hence, it is possible to use a linear pixel mapping, rather
than using trigonometric functions, which are expensive
to compute just for debugging and system monitoring

Table 4 Total resource
utilization for Virtex 7

Algorithm Compute units
(CU)

Total resources utilized

BRAM DSP FF LUT

Background subtraction 3 72 15 27,495 47,934
Lucas–Kanade 6 1068 1050 214,098 216,432
Total 9 1140 1065 241,593 264,366
Available – 2940 3600 866,400 433,200

Table 5 Total resource
utilization for UltraScale+
(AWS-EC2)

Algorithm Compute units
(CU)

 Total resources utilized

BRAM DSP FF LUT

Background subtraction 3 65 15 18,723 17,859
Lucas–Kanade 6 812 246 176,970 168,280
Total 13 877 261 195,693 186,139
Available – 4320 6840 2,364,480 1,182,240
% Utilization – 20.30% 3.81% 8.27% 15.74%

Table 6 Power consumption per frame for background subtraction

Parameters FPGA GPU CPU

Ultrascale+ Virtex 7

Device time (ms) 27.80 34.6 28.16 47.68
Device power (W) 4.55 2.760 26 10
Energy (mJ) 126.49 95.496 732.16 476.8

 Journal of Real-Time Image Processing

1 3

purposes on an FPGA. This resulted in a degraded depic-
tion of sideways motion, but overall improved the FPGA
execution time by 15× (Table 3). Hence, it shows that
floating point computations are FPGA’s weakest point. To
satisfy real-time requirements, we have to use six Com-
pute Units for the core calculations of the Lucas–Kanade
algorithm.

As we witnessed from background subtraction as well,
the results obtained from AWS EC2 for the Lucas–Kanade
algorithm are very comparable to the hardware emulation
results as shown in Fig. 18. In both cases performance
improved and the amount of available resources increase
significantly on a Virtex Ultrascale+ with respect to the
Virtex 7. Hence, we were able to feed the data from four
cameras in real-time to the EC2 board.

6.3 Total resource utilization and power
consumption

Summing up all the results discussed above, we achieved
our goal of real time calculation of the portion of the road
that is used by traffic and of average vehicular velocity.
Moreover, Table 4 shows that we have not exceeded our
resource utilization limit, while performing the full process-
ing of the data from one camera on a relatively old Virtex
7 FPGA. The results of actual Hardware implementation
on the Amazon EC2 cloud platform are shown in Table 5.

The final aspect to consider is what advantage we have
achieved in terms of power and energy consumption (per
computation) with respect to GPUs and CPUs. We are con-
sidering an NVIDIA GeForce GTX960 GPU. It has 2GB of
global memory and bandwidth of 112 GB/s with a maxi-
mum power consumption of 120 Watt. The CPU that we are
considering is an Intel Xeon E3-1241 (v3) with a clock fre-
quency of 3.5 GHz and maximum power consumption of 80
Watts. The power consumption for the FPGAs was estimated
using the Xilinx Power Estimator (XPE) tool while for the
GPU it was measured using NVIDIA System Management
Interface (NVIDIA-SMI).

As we can see from Tables 6 and 7, the FPGA is much
more energy efficient as compared to both CPU and GPU.
Moreover, the computation of Lucas Kanade is not possible
in real time using only a single CPU, as it takes around 6
s to process each frame. As we can see both, performance

and energy consumption, are much better than on a CPU and
energy consumption is much better than on a GPU.

7 Conclusion

This paper presents a high performance yet energy efficient
smart city application implementation. The application pro-
vides not only the velocity of the vehicles in real time but also
the density of traffic on roads. This information can be used
by different stake holders such as public transportation, taxis
and city planners. Real-time benefits of these data can save
time spent on roads and can help to reduce pollution where in
long run these data can be used for better planning of city and
road infrastructure. The computational capabilities and power
efficiency of FPGAs makes them a very suitable candidate
for applications that require large amounts of data process-
ing, especially in real time. Furthermore, high-level synthesis
provides an excellent platform for designers to exploit the
capabilities of FPGAs without the long design times entailed
by the use of in hardware description languages.

Acknowledgements This work is supported by the European Com-
mission through the H2020 ECOSCALE project (Project ID 671632).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

 1. Akçura, M.T., Avci, S.B.: How to make global cities: information
communication technologies and macro-level variables. Technol.
Forecast. Soc. Chang. 89, 68–79 (2014)

 2. Anderson, J., et al.: Getting smart about smart cities: understand-
ing the market opportunity in the cities of tomorrow (2012). http://
www.alcat elluc ent.com

 3. Allwinkle, S., Cruickshank, P.: Creating smart-er cities: an over-
view. J. Urban Technol. 18(2), 1–16 (2011)

 4. Anthopoulos, L., Fitsilis, P.: Using classification and roadmapping
techniques for smart city viability’s realization. Electr. J. e-Gov.
11(2), 326–336 (2013)

 5. Anthopoulos, L.G., Tsoukalas, I.A.: The implementation model of
a digital city. the case study of the digital city of Trikala, Greece:
e-Trikala. J e-Gov. 2(2), 91–109 (2006)

 6. Komninos, N.: Intelligent cities: innovation, knowledge systems,
and digital spaces. Taylor and Francis, Boca Raton (2002)

 7. Anthopoulos, L.G.: Understanding the smart city domain: a
literature review. In: Transforming city governments for suc-
cessful smart cities. Springer, Berlin, pp 9–21 (2015)

 8. Buch, N., Velastin, S.A., Orwell, J.: A review of computer
vision techniques for the analysis of urban traffic. IEEE Trans.
Intell. Transp. Syst. 12(3), 920–939 (2011)

 9. Williams, M.: The prometheus programme. In: Towards safer
road transport-engineering solutions, IEE colloquium on. IET,
London, pp 4-1 (1992)

Table 7 Power consumption per frame for Lucas–Kanade algorithm

Parameters FPGA GPU CPU

Ultrascale+ Virtex 7

Device time (ms) 37.31 36.34 42.68 5925.78
Device power (W) 8.0 8.385 75 10
Energy (mJ) 298.48 304.7 3201 59,257.8

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.alcatellucent.com
http://www.alcatellucent.com

Journal of Real-Time Image Processing

1 3

 10. Ulmer, B.: Vita-an autonomous road vehicle (ARV) for colli-
sion avoidance in traffic. In: Intelligent vehicles’ 92 symposium.
Proceedings of the IEEE, Detroit, MI, pp 36–41 (1992)

 11. Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins,
D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P.,
et al.: A system for video surveillance and monitoring. VSAM
Final Report, pp 1–68. Carnegie Mellon University (2000)

 12. Morris, B.T., Trivedi, M.M.: A survey of vision-based trajec-
tory learning and analysis for surveillance. IEEE Trans. Circuits
Syst. Video Technol. 18(8), 1114–1127 (2008)

 13. Morris, B.T., Trivedi, M.M.: Understanding vehicular traffic
behavior from video: a survey of unsupervised approaches. J.
Electron. Imaging 22(4), 041 113–041 113 (2013)

 14. Datondji, S.R.E., Dupuis, Y., Subirats, P., Vasseur, P.: A survey
of vision-based traffic monitoring of road intersections. IEEE
Trans. Intell. Transp. Syst. 17(10), 2681–2698 (2016)

 15. Tian, B., Morris, B.T., Tang, M., Liu, Y., Yao, Y., Gou, C.,
Shen, D., Tang, S.: Hierarchical and networked vehicle surveil-
lance in ITS: a survey. IEEE Trans. Intell. Transp. Syst. 16(2),
557–580 (2015)

 16. Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., Chen, C.:
Data-driven intelligent transportation systems: a survey. IEEE
Trans. Intell. Transp. Syst. 12(4), 1624–1639 (2011)

 17. Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey.
ACM Comput. Surv. CSUR 38(4), 13 (2006)

 18. Wang, K., Liu, Y., Gou, C., Wang, F.-Y.: A multi-view learning
approach to foreground detection for traffic surveillance applica-
tions. IEEE Trans. Veh. Technol. 65(6), 4144–4158 (2016)

 19. Jokinen, J., Latvala, T., Lastra, J.L.M.: Integrating smart city
services using arrowhead framework. In: Industrial Electron-
ics Society, IECON 2016-42nd annual conference of the IEEE.
IEEE, Florence, pp 5568–5573 (2016)

 20. Blažević, M., Brkić, K., Hrkać, T.: Towards reversible de-identi-
fication in video sequences using 3d avatars and steganography.
arXiv preprint arXiv :1510.04861 (2015)

 21. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by
de-identifying face images. IEEE Trans. Knowl. Data Eng.
17(2), 232–243 (2005)

 22. Rashwan, H.A., Solanas, A., Puig, D., Martínez-Ballesté, A.:
Understanding trust in privacy-aware video surveillance sys-
tems. Int. J. Inf. Secur. 15(3), 225–234 (2016)

 23. Raval, N., Srivastava, A., Lebeck, K., Cox, L., Machanavajjhala,
A.: Markit: Privacy markers for protecting visual secrets, In:
Proceedings of the 2014 ACM international joint conference
on pervasive and ubiquitous computing: adjunct publication.
ACM, Seattle, pp 1289–1295 (2014)

 24. Roesner, F., Molnar, D., Moshchuk, A., Kohno, T., Wang, H.J.:
World-driven access control for continuous sensing, In: Proceed-
ings of the 2014 ACM SIGSAC conference on computer and com-
munications security. ACM, Scottsdate, pp 1169–1181 (2014)

 25. Schiff, J., Meingast, M., Mulligan, D.K., Sastry, S., Goldberg,
K.: Respectful cameras: detecting visual markers in real-time
to address privacy concerns. In: Protecting privacy in video
surveillance. Springer, Berlin, pp 65–89 (2009)

 26. Chen, A.T.-Y., Biglari-Abhari, M., Kevin, I., Wang, K.: Trusting
the computer in computer vision: a privacy-affirming frame-
work. In: Computer vision and pattern recognition workshops
(CVPRW), 2017 IEEE conference. IEEE, pp 1360–1367 (2017)

 27. Engel, J.I., Martin, J., Barco, R.: A low-complexity vision-based
system for real-time traffic monitoring. IEEE Trans. Intell.
Transp. Syst. 18(5), 1279–1288 (2017)

 28. Weber, R., Gothandaraman, A., Hinde, R.J., Peterson, G.D.:
Comparing hardware accelerators in scientific applications:
A case study. IEEE Trans. Parallel Distrib. Syst. 22(1), 58–68
(2011)

 29. De Schryver, C., Shcherbakov, I., Kienle, F., Wehn, N., Marxen,
H., Kostiuk, A., Korn, R.: An energy efficient fpga accelera-
tor for Monte Carlo option pricing with the Heston model, In:
Reconfigurable computing and FPGAs (ReConFig), 2011 inter-
national conference. IEEE, Cancun, pp 468–474 (2011)

 30. Ovtcharov, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss, K.,
Chung, E.S.: Accelerating deep convolutional neural networks
using specialized hardware. Microsoft Research Whitepaper
2(11) (2015)

 31. Sundararajan, P.: High performance computing using FPGAs.
Xilinx white paper: FPGAs, pp 1–15 (2010)

 32. Ouyang, J., Lin, S., Qi, W., Wang, Y., Yu, B., Jiang, S.: SDA:
Software-defined accelerator for large-scale DNN systems. In: Hot
chips 26 symposium (HCS), 2014 IEEE. IEEE, Cupertino, pp.
1–23 (2014)

 33. Muslim, F.B., Ma, L., Roozmeh, M., Lavagno, L.: Efficient
FPGA implementation of OpenCL high-performance com-
puting applications via high-level synthesis. IEEE Access 5,
2747–2762 (2017)

 34. Coussy, P., Gajski, D.D., Meredith, M., Takach, A.: An introduc-
tion to high-level synthesis. IEEE Des Test Comput 26(4), 8–17
(2009)

 35. Ecoscale project. http://www.ecosc ale.eu/proje ct-descr iptio n.html.
Accessed 1 Nov 2018

 36. Durand, Y., Carpenter, P.M., Adami, S., Bilas, A., Dutoit, D.,
Farcy, A., Gaydadjiev, G., Goodacre, J., Katevenis, M., Marazakis,
M., et al.: Euroserver: energy efficient node for european micro-
servers. In: Digital system design (DSD), 2014 17th Euromicro
conference. IEEE, Verona, pp 206–213 (2014)

 37. L. Struyf, S. De Beugher, D. H. Van Uytsel, F. Kanters, T.
Goedemé: The battle of the giants: a case study of GPU vs FPGA
optimisation for real-time image processing. In: Proceedings
PECCS, vol 1. VISIGRAPP 2014, 112–119 (2014)

 38. Scene 1.0—background subtraction and object tracking with
TUIO. http://scene .sourc eforg e.net/. Accessed 1 Nov 2018

 39. Lucas, B.D., Kanade, T., et al.: An iterative image registration
technique with an application to stereo vision. In: Proceedings of
DARPA Image Understanding Workshop, April 1981, pp 121–130
(1981)

 40. Optical flow design example. https ://www.alter a.com/suppo rt/
suppo rt-resou rces/desig n-examp les/desig n-softw are/openc l/optic
al-flow.html. Accessed 1 Oct 2018

 41. Bouguet, J.-Y.: Pyramidal implementation of the affine Lucas–
Kanade feature tracker description of the algorithm. Intel Corp
5(1–10), 4 (2001)

 42. Yeshwanth, C., Sooraj, P.A., Sudhakaran, V., Raveendran, V.:
Estimation of intersection traffic density on decentralized archi-
tectures with deep networks. In: Smart cities conference (ISC2),
2017 international. IEEE, Wuxi, pp 1–6 (2017)

Arslan Arif has done his masters
from NUST Pakistan. Currently
he is pursuing his PhD degree
with Department of Electronics
and Telecommunication (DET)
Politecnico Di Torino, Italy. His
current research interests include
high-level synthesis (HLS), com-
putation accelerators (FPGA and
GPU) and internet of things
(IoT)

http://arxiv.org/abs/1510.04861
http://www.ecoscale.eu/project-description.html
http://scene.sourceforge.net/
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html
https://www.altera.com/support/support-resources/design-examples/design-software/opencl/optical-flow.html

 Journal of Real-Time Image Processing

1 3

Felipe A. Barrigon is a qualified
Electrician, Mechanical and Elec-
trical Engineer graduated at Car-
los III University in Madrid
(Spain). He currently works at
Agustin de Betancourt Founda-
tion as in-house researcher for
ACCIONA Construccin Technol-
ogy & Innovation Division, in the
field of new technologies devel-
opment for the civil engineering
sector, e.g. development of auto-
mated systems for tunneling guid-
ance and other underground con-
struction works. He is currently
involved in ECOSCALE project.

Francesco Gregoretti graduated
in 1975 from Politecnico di
Torino, Italy where is now a Pro-
fessor in Microelectronics. From
1976 to 1977, he was an Assis-
tant Professor at the Swiss Fed-
eral Institute of Technology in
Lausanne (Switzerland) and
from 1983 to 1985 Visiting Sci-
entist at the Department of Com-
puter Science of Carnegie Mel-
lon University, Pittsburgh
(USA). His main research inter-
ests have been in digital elec-
tronics, VLSI circuits,massively
parallel multi-microprocessor

systems for VLSI CAD tools and in image processing architectures.
More recently, his research has been focused to co-design methodolo-
gies for complex electronic systems, to methodologies for reduction of
electromagnetic emissions and power consumption of processing archi-
tectures by the use of asynchronous methodologies.

Javed Iqbal received the M.S.
degree in telecommunications
engineering from the Politecnico
di Torino, Torino, Italy, in 2014,
where he is currently pursuing
the PhD degree with the Depart-
ment of Electronics and Tele-
communications. His current
research interests include instru-
mentation and measurements,
statistical signal processing, con-
trol systems, and the design and
implementation of low-power
sensors for indoor human detec-
tion, localization, tracking, and
identification.

Luciano Lavagno received his
PhD in EECS from U.C. Berke-
ley in 1992. He co-authored four
books and over 200 scientific
papers. He was the architect of
the POLIS HW/SW co-design
tool. Between 2003 and 2014, he
was an architect of the Cadence
Cto- Silicon high-level synthesis
tool. Since 1993 he is a professor
with Politecnico di Torino, Italy.
His research interests include
synthesis of asynchronous cir-
cuits, HW/SW co-design, high-
level synthesis, and design tools
for wireless sensor networks.

Mihai Teodor Lazarescu Mihai
Teodor Lazarescu received his
PhD from Politecnico di Torino
(Italy) in 1998. He was Senior
Engineer at Cadence Design
Systems, founded several start-
ups and serves now as Assistant
Professor at Politecnico di
Torino. He coauthored more
than 40 scientific publications
and several books. His research
interests include sensing and
data processing for IoT, WSN
platforms, and high-level hard-
ware/software co-design and
highlevel synthesis.

Liang Ma received the M.S.
degree (with Hons.) from
Politecnico di Torino, Italy,
where he is currently pursuing
the PhD degree with the Depart-
ment of Electronics and Tele-
communications under the
supervision of Prof. L. Lavagno.
His research interests focus on
high-level synthesis, electronic
system level design and low-
power h igh -pe r fo r mance
computing.

Journal of Real-Time Image Processing

1 3

Manuel Palomino is a Telecom-
munication Engineer and Project
Manager (PMP) within Acciona
Technology and Innovation Divi-
sion. He joined Acciona Con-
struccin in 2009 and since then,
he has been involved in several
National and European R&D
Projects related to ICT and
Robotics such as MIROR,
CABLEBOT, TITAM, MEGA-
ROB and ECOSCALE.

Javier Luis Lopez Segura gradu-
ated in Physics at University of
Granada (1988). He currently
works at Acciona Construccin
ICT research group. His research
skills and interests include,
among others, Parallel comput-
ing, Computer vision, Artificial

Intelligence, SW, HW and embedded systems development, satellite
integration, and High energy Physics. Main projects completed:
HormiH: AI software for composite materials optimization, ENH: AI
software for optimization of No. of tests needed for characterization of
composite materials through multidimensional algorithms, BIOFER:
System design for control of biological reactors, LOAD and EDIANA:
Control and monitoring systems for fuel cells, solar panels and other
energy management systems in buildings, ACCES: design of embedded
RF-based guidance system for blind persons, MIROR: NDT system to
automate testing of fiber composites, BLAST: Test system designed to
test structures subjected to extreme TNT blasts to prevent terrorist
attacks. He is currently involved in ECOSCALE project

