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Abstract
The continuous growth of modern cities and the request for better quality of life, coupled with the increased availability of 
computing resources, lead to an increased attention to smart city services. Smart cities promise to deliver a better life to their 
inhabitants while simultaneously reducing resource requirements and pollution. They are thus perceived as a key enabler to 
sustainable growth. Out of many other issues, one of the major concerns for most cities in the world is traffic, which leads to a 
huge waste of time and energy, and to increased pollution. To optimize traffic in cities, one of the first steps is to get accurate 
information in real time about the traffic flows in the city. This can be achieved through the application of automated video 
analytics to the video streams provided by a set of cameras distributed throughout the city. Image sequence processing can 
be performed both peripherally and centrally. In this paper, we argue that, since centralized processing has several advan-
tages in terms of availability, maintainability and cost, it is a very promising strategy to enable effective traffic management 
even in large cities. However, the computational costs are enormous, and thus require an energy-efficient High-Performance 
Computing approach. Field Programmable Gate Arrays (FPGAs) provide comparable computational resources to CPUs and 
GPUs, yet require much lower amounts of energy per operation (around 6 × and 10× for the application considered in this 
case study). They are thus preferred resources to reduce both energy supply and cooling costs in the huge datacenters that 
will be needed by Smart Cities. In this paper, we describe efficient implementations of high-performance algorithms that 
can process traffic camera image sequences to provide traffic flow information in real-time at a low energy and power cost.

Keywords Smart city · Image processing · Background subtraction · Lucas–Kanade · High-level synthesis · Field 
programmable gate array · Graphical processing unit

1 Introduction

Cities are seeing massive urbanization worldwide, thus 
increasing the pressure on infrastructure to sustain private 
and public transportation. Adding intelligence to tradi-
tional traffic management and city planning strategies is 
essential to preserve and even improve quality of life for 
citizens under this enormous increase of population. Traf-
fic causes increased delays, thus reducing the opportunity 
for city dwellers to earn money by performing productive 
activities. It also poses health hazards due to pollution and 

accidents. Several public and private entities (ranging from 
public transportation providers, to city planners, to traffic 
light control, to taxi and car sharing providers, to individual 
drivers) can profit from the widespread availability of real-
time information about traffic flows.

The main aim of this paper is to present a computer vision 
application, which operates in the Smart city context. This 
application will provide cost-effective and scalable real time 
analysis of traffic in cities that can then be harnessed by 
other smart city services and applications (e.g., intelligent 
traffic management tools) to reduce traffic-related impacts on 
the quality of life of citizens. Videos obtained from cameras 
can provide reliable information about the traffic flow on 
roads. The basic idea, as shown in Fig. 1 is that the cameras 
acquire the images, which are then processed using image-
processing algorithms. After that, the data are stored in a 
database and accessed on demand.
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However, the use of cameras poses some disadvantages. 
The first major drawback is the breach of privacy. Citi-
zens usually feel uncomfortable and insecure when their 
movements are being monitored and they tend to oppose 
any such system. To overcome this disadvantage, the end 
users of our application are not given the raw data. Rather 
they are provided with only the result of the processing of 
the images recorded by the cameras. This ensures both the 
protection of personal information and the value of data.

Another difficulty in the use of such systems is the huge 
effort required to compute and process data by image anal-
ysis algorithms. For instance, cameras should be deployed 
every 50 m or so to obtain a density that can provide com-
plete information for a city. A big city with an urban area 
of 360 km2 would require the use of about 100,000 active 
cameras. This can be supported only by extreme parallel 
computing techniques.

Two commonly used accelerators in the field of paral-
lel computing are Graphical Processing Units (GPUs) and 
Field Programmable Gate Arrays (FPGAs). They provide a 
good solution to achieve high computational power. Both 
options have their advantages and disadvantages. GPUs 
are power hungry, whereas developing complex applica-
tions for FPGAs using Hardware Description Languages 
(HDL) is difficult and time consuming. With the introduc-
tion of techniques such as High-Level Synthesis (HLS), 
the effort of programming FPGAs has been significantly 
reduced and their low energy consumption makes them a 
great candidate for such large scale applications.

One more point to keep in mind when planning for such 
systems is that cities tend to grow. Therefore, our system 
architecture is designed to be scalable, i.e., to allow cam-
eras to be added as needed. Scaling the number of cameras 
is crucial to make this system practical.

The rest of the paper is organized as follows. Section 2 
discusses the previous work in this field. Sections 3 and 4 
give an overview of the application and explain the selec-
tion of specific image processing algorithms. Section 5 
discusses the application constraints, whereas Sect.  6 

discusses the Hardware computation performance and 
costs. The work is concluded in Sect. 7.

2  Related work

A lot of work has been carried out on smart cities in the last 
20 years [1]. For some reviewers, smart cities are still con-
fusing [2]. Definitions range from information and commu-
nication technology (ICT) networks in city environments [3] 
to various ICT attributes in a city [4]. Some relate the term 
with indexes such as the level of education of citizens or in 
terms of financial security [5], while others thinks about it 
in terms of urban living labs [6]. All of these implications 
are alternative schools of thought and most researchers point 
towards the complexity and scale of the smart city domain 
[7].

The monitoring of roads for security and traffic manage-
ment purposes is one of the main topics in this domain. 
Modern smart cities measure the traffic so that they can opti-
mize the utilization of the roads and streets by taking actions 
which can improve traffic flow. Video-based approaches 
have been researched to monitor the flow of vehicles to 
obtain rich information about vehicles on roads (speed, type 
of vehicle, plate number, color, etc.) [8].

Vision-based traffic monitoring applications have seen 
many advances thanks to several research projects that were 
aimed at improving them. In 1986, the European automotive 
industry launched the PROMETHEUS European Research 
Program [9]. It was a pioneer project which intended to 
improve traffic efficiency and reduce road fatalities [10]. 
Later, the Defense Advanced Research Projects Agency 
introduced the VSAM project to create an automated video 
understanding technology which can be used in urban and 
battlefield surveillance applications of the future [11]. 
Within this structural framework, a number of advanced 
surveillance techniques were demonstrated in an end-to-end 
testbed system which included tracking from moving and 
stationary camera platforms and real-time moving object 
detection as well as multi-camera and active camera control 
tracking techniques. The cooperative effort of these two pio-
neering projects remained active for about two decades. As a 
result, new European frameworks evolved to cover a variety 
of visual monitoring systems for road safety and intelligent 
transportation. In the early 2000s, the ADVISOR project was 
implemented successfully to spot abnormal user behaviors 
and develop a monitoring system for public transportation 
[12–14].

There are several methods which can extract and classify 
raw images of vehicles. These methods are chiefly feature-
based and require hand-coding for detection and classifica-
tion of specific features of each kind of vehicle. Tian et al. 
[15] and Buch et al. [8] surveyed some of these methods. In 

Fig. 1  Application overview
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the fields of intelligent transportation systems and computer 
vision, intelligent visual surveillance plays a key role [16]. 
An important early task is foreground detection, which is 
also known as background subtraction. Many applications 
such as object recognition, tracking, and anomaly detection 
can be implemented based on foreground detection [17, 18].

An application was proposed in the Artemis Arrowhead 
Project [19] that can detect patterns of pedestrians and vehi-
cles. According to the authors, based on this information, 
the application can also extract a set of parameters such as 
the density of vehicles and people, the average time during 
which the elements remain stationary, the trajectories fol-
lowed by the objects, etc. Subsequently, these parameters 
are offered as a service to external parties, such as public 
administrations or private companies that are interested in 
using the data to optimize the efficiency of existing systems 
(e.g., traffic control systems or streetlight management) or 
develop other potential applications that can take advantage 
of them (e.g., tourism or security).

Many existing systems, which are concerned about pri-
vacy of the citizens, employ some sort of censorship so that 
human or AI users are not able to see and inadvertently rec-
ognize any person in the camera footage. This can be done 
either in the form of a superimposed black box, which blocks 
out the eyes or face of the person, masking each person in 
each frame or blocking images of certain places altogether 
[20–25]. However, this approach cannot achieve full privacy. 
Most of the time we do not require any sort of informa-
tion related to individuals while working with applications 
related to computer vision. Thus, the developer should be 
aware of the information being collected either advertently 
or inadvertently and of what are the real requirements for 
the application [26].

Extraction and categorization of vast amounts of data 
require expensive and sophisticated software. Processing the 
live feed for even a single camera requires a dedicated CPU 
[27]. More performance requires computer accelerators. The 
most commonly used computer accelerator in this domain is 
the Graphical Processing Unit (GPU). GPUs provide higher 
memory bandwidth, higher floating point throughput and a 
more favorable architecture for data parallelism than pro-
cessors. Due to these properties, they are used in modern 
high-performance computing (HPC) systems as accelerators 
[28]. However, the main drawback of HPC systems based 
on GPU accelerators is that they consume large amount of 
power [29].

To overcome the power inefficiency of GPU-based HPC 
systems, modern field programmable gate arrays (FPGAs) 
can be used. FPGA devices require less operating power and 
energy per operation while providing reasonable processing 
speed as compared to GPUs [30]. When comparing them 
with multi-core CPUs, especially with regards to data center 
applications, it was observed that the performance gap keeps 

widening between the two. In summary, FPGAs are known 
to be more energy efficient than both CPUs and GPUs [31]. 
Acknowledging these capabilities, Microsoft, Baidu and 
Amazon now also use FPGAs as accelerators rather than 
GPUs in their data centers [32].

FPGAs are, however, complex to program. Hardware 
description languages (HDL) such as Verilog or VHDL are 
commonly used for this task. A technique called high-level 
synthesis (HLS) provides the capability to program FPGAs 
through the use of high-level languages, e.g., C, C++, 
OpenCL or SystemC, consequently reducing the design time 
debugging and analysis [33, 34].

3  The application

The main goal of the application described in this paper is 
to extract data from video surveillance cameras and make 
it available to different services. The objective is to provide 
real-time information which can be used to optimize, for 
example, the street lighting and traffic light systems installed 
in cities. The application will analyze the images recorded 
by the cameras installed in cities and will apply a set of 
algorithms to detect the presence of people and vehicles and 
to compute the density of traffic at each specific location.

For this purpose, cameras are installed on roads (Fig. 2). 
Their parameters such as height from ground, angle of eleva-
tion, and road parameters such as width, are already assumed 
to be available for processing, as shown in Fig. 3, together 
with other constants such as the minimum value for detect-
ing a change of speed.

In most places, cameras cannot be positioned directly 
above a road. Most of the times they will have a prospec-
tive view, as shown in Fig. 2. So we need input values to 
map the road with respect to the camera pixels (Fig. 4). 
We need three types of information. (1) Whether a pixel 
covers a road area, (2) how much area each pixel covers 
and (3) how much distance each pixel covers in the direc-
tion of the camera. The presence or absence of the road 

Fig. 2  Camera view



 Journal of Real-Time Image Processing

1 3

allows us to apply the algorithm only on the part of the 
camera frame that we are interested in and hence save 
computational resources. The area value is used to find 
the percentage of the road occupied by moving objects. 
Finally the distance is used to compute the velocity of 
the vehicles. All of them can be calculated from camera 
resolution, aperture, focal length and height over the road. 
Another important thing to note here is that, as we move 
away from the camera, the distance represented by one 
pixel increases. Therefore, the distance value for each 
pixel is different. It is calculated once for each stationary 
camera and then used repeatedly to save time and com-
putational resources.

Figure 5 shows the general workflow of the image 
analysis module in detail. Two configuration files con-
taining road and camera parameters are used as inputs, 
in addition to the image to be analyzed. This module can 
be instantiated, as many times as needed, once for each 
descriptor that is desired, so that it is possible to detect 
many kinds of objects at the same time.

3.1  Implementation model

Two types of implementation are possible for this system 
on the basis of the location of computational and storage 
units. One is decentralized, where each camera has its own 
processing unit. The other is centralized, where all the pro-
cessing by a set of closely situated cameras is done on one 
single server.

3.1.1  Decentralized architecture

Figure 6 represents the decentralized architecture version of 
the application. Due to the high computational requirements, 
a dedicated CPU would be needed for each camera installed 
in the monitored scenario. Once the image (which must be 
processed in real time) is captured, the pre-processing unit 
associated to that camera processes the signal for detecting 
the elements present in the image. Afterwards, it sends a 
picture with some metadata to the central processing unit in 
which all of the information are processed and stored to be 
offered to the customers within a cloud architecture.

3.1.2  Centralized architecture

On the other hand, Fig. 7 depicts an architecture in which 
one processing unit is used by a number of cameras. The 
idea is to combine the processing unit with the central data-
base where all the data are offered to the customer. This 

Fig. 3  Road parameters w.r.t camera

Fig. 4  Video frame vs ground reality

Fig. 5  General workflow of image analysis module

Fig. 6  Decentralized model
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means that no camera has a dedicated processing unit 
attached, which dramatically increases the amount of data 
to be processed centrally in real time.

After analyzing both options, the second alternative is 
considered more appropriate because of the costs of imple-
mentation, application software management, maintenance 
costs to resolve hardware failures, improved safety, etc. In 
Fig. 8, the scheme for the proposed solution is presented. A 
major factor for choosing a centralized system would be the 
achievable energy efficiency using latest generation FPGA 
devices, which are very power-efficient but too expensive to 
be deployed in a decentralized architecture.

Most of the operations carried out in image processing are 
pixel based, with no or very few dependencies on other pixel 
output values. This provides a very good basis for a parallel 
implementation of image-processing algorithms that work 
on each pixel either simultaneously or in a pipelined fash-
ion (Fig. 9). In this way, we can reduce the frame process-
ing time and hence we can achieve a real time processing 
frequency, which is about 25 fps for the target application.

3.2  Proposed architecture

We target to provide an energy-efficient architecture by 
sharing numerous reconfigurable accelerators. To provide a 
scalable approach, the architecture should be tailored to the 

needs of the HPC applications as well to the characteristics 
of the hardware platform. Energy-efficient heterogeneous 
COmputing at exaSCALE (ECOSCALE) is a project under 
the H2020 Eurpeon research framework. The main goal of 
this project is to provide a hybrid MPI + OpenCL program-
ming environment, a hierarchical architecture, a runtime sys-
tem and middleware, and a shared distributed reconfigurable 
FPGA-based acceleration [35].

ECOSCALE offers a hierarchical heterogeneous archi-
tecture with the purpose of achieving exascale performance 
in an energy-efficient manner. It proposes to adopt two key 
architectural features to achieve this goal: UNIMEM and 
UNILOGIC. UNIMEM was first proposed by the EURO-
SERVER project [36] and provides efficient uniform access, 
including low-overhead ultra-scalable cache coherency, 
within each partition of a shared Partitioned Global Address 
Space (PGAS). UNILOGIC, which is first being proposed by 
ECOSCALE, extends UNIMEM to offer shared partitioned 
reconfigurable resources on FPGAs. The proposed HPC 
design flow, supported by implementation tools and a run-
time software layer, partitions the HPC application design 
into several nodes. These nodes communicate through 
a hierarchical communication infrastructure as shown 
in Fig. 10. Each Worker node (basically, an HPC board) 
includes processing units, programmable logic, and memory. 
Within a PGAS domain (several Worker nodes), this archi-
tecture offers shared partitioned reconfigurable resources 
and a shared partitioned global address space which can be 
accessed through regular load and store instructions by both 
the processors and the programmable logic. A key goal of 
this architecture is to be transparently programmable with a 
high-level language such as OpenCL.

4  Implemented algorithms

As discussed before, computational accelerators must be 
used to extract the required information from videos with 
sufficient performance and energy efficiency. The computing 
power of the hardware accelerators will focus on the vision 

Fig. 7  Centralized model

Fig. 8  From decentralized to centralized architecture

Fig. 9  Overview of parallelism in image-processing algorithms
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algorithms for recognition and measurement of traffic, as 
they are the most expensive part of the application. Two 
approaches which are best suited for our application have 
been identified for processing the images streamed from 
fixed cameras.

The algorithms are coded in the OpenCL language. 
OpenCL is a programming language for parallel architec-
tures which is built upon C/C++ and thus can be easily 
learned and ported [37]. The basic advantage of OpenCL is 
that it can exploit the architectural features of accelerators 
more easily than C or C++. It provides the programmer with 
a clear distinction between different kinds of memory, such 
as global DRAM, local on-chip SRAM and private register 
files. This allows programmers to optimize code much better 
than with the flat memory models of Java C and C++.

4.1  Vehicular density on the roads

Algorithm 1 is based on a background subtraction and object 
tracking method. One popular implementation was made 
available by Laurence Bender et al. as part of the SCENE 
package [38], available in the SourceForge repository 
(Fig. 11). The algorithm performs motion detection prin-
ciple by calculating the change in the corresponding pixel 
values with respect to the reference stationary background. 
The portion of the road where movement is detected gives 
an idea about the amount of traffic. Moreover, the algorithm 
also constantly updates the reference background image (in 
case a moving object is now at rest).

Our chosen algorithm takes four frames (images) as 
input, including the reference stationary background, the 
frame under the consideration, the preceding frame and the 

Fig. 10  Hierarchical partition-
ing (tasks, memory, communi-
cation) of an HPC application 
[35]

…

Logical Shared Memory
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(Shared address space)

to higher levels

Fig. 11  Output of the back-
ground subtraction algorithm 
[38]
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succeeding frame. For each pixel, it performs a weighted 
difference on the corresponding pixels of three consecutive 
frames. If this difference is zero, it implies that there is no 
movement in the corresponding pixel, hence no update is 
needed for the total moving area or the reference back-
ground. On the other hand, non-zero values corresponds 
to some change in the consecutive video frames around the 
pixel. The value can be a positive or a negative number 
according to the direction of movement with respect to 
the camera. If the absolute of this value is larger than the 
threshold set for movement detection and some change is 
also detected in the current frame pixel w.r.t. the reference 
background, then the global accumulator of the moving 
area is updated by adding the area of the road occupied by 
the current pixel. If the weighted difference is less than the 
threshold for N − 1 frames, then the algorithm updates the 
reference background pixel with the current pixel. N is the 
minimum number of frames required to declare the pixel 
to be part of the stationary background. The value of N can 
be set according to the application.

Algorithm 1 Background Subtraction algorithm
Require: Four grayscale images image−1 , image0 , image1

and imagebg & Count array
Ensure: imageout, Updated imagebg and Count array &

Total Area with Movement
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: PIX = (j ∗WIDTH ) + i
4: lat = 0
5: if PIX is on ROAD then
6: center ← PIX
7: left ← PIX − 10
8: right ← PIX + 10
9: lat ← Abs(sum of weighted difference of left , right

and center pixels of all three images)
10: end if
11: if (lat< threshold) & (Count[PIX] ≥ N) then
12: imagebg[center ] ← image0[center ]
13: else
14: Count[PIX]++
15: end if
16: if ((image0[center ] - imagebg[center ]> Background

threshold) & (lat> threshold)) then
17: imageout[center ] ← image0[center ]
18: Increment Area with Movement
19: else
20: imageout[center ] ← 0
21: end if
22: end for
23: end for

4.2  Vehicular velocity on the roads

Since the background subtraction module can only find 
the area occupied by moving objects on the roads, another 
method is needed to measure the velocity of vehicles, based 

on the Lucas–Kanade algorithm for optical flow [39]. An 
implementation of the Lucas–Kanades optical flow algo-
rithm developed by Altera [40] in OpenCL with a 52 × 52 
window size is shown in Fig. 12.

A window size of N × N means that the optical flow for 
one pixels is computed with respect to the neighboring N/2 
pixels on each side of that pixel, i.e., the pixel under consid-
eration is in the center of a matrix of pixels having (N+1) 
rows and columns. For each pixel in the window, a partial 
derivative with respect to its horizontal ( Ix ) and vertical ( Iy ) 
neighbors is computed. The size of the window is a compro-
mise between true negative and false positive change detec-
tion. Therefore, it should be chosen by an expert with respect 
to area covered by each pixel and other parameters. In this 
paper, we use a 15 × 15 window.

A pyramidal implementation [41] is used to refine the 
optical flow calculation and the iterative Lucas–Kanade opti-
cal flow computation is used for the core calculations. For 
each pixel, computed partial derivatives within the window 
and the difference among the pixel values in the current and 
next frames are used to calculate the velocity of each moving 
object (it is zero if the area covered by the pixel is station-
ary). The magnitude is the speed of the object, whereas the 
sign shows whether it moves towards the camera or away 
from it.

In our implementation of the algorithm (Algorithm 2), 
the optical flow is computed for all the pixels of the image 
(in this case for a 1280 × 720 resolution). Two images using 
8 bits per pixel are compared with a window size of 15. 
Moreover, the obtained values are mapped to a single color 
representing both relative velocity and direction, as shown 
in Fig. 13.

To calculate the average velocity of traffic with the opti-
cal flow algorithm one needs to know the distance between 
the camera and the recorded objects. To avoid expensive 
and complex solutions for a real-time depth measurement, 
an approximation for calculating the distance corresponding 
to each pixel of the image is used based on static camera 
parameters, such as road plane inclination, camera orienta-
tion and field of view.

In addition to the capabilities summarized above, addi-
tional features for user interaction are included in the 
application. For example, a module for defining the target 
areas where the recognition is performed and setting up the 
parameters of the different cameras has been developed. All 
these parameters can be given as an input in the configura-
tion file.
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Algorithm 2 Lucas-Kanade algorithm
Require: two frames of images image0 and image1 and

other coefficients
Ensure: vopt
1: for j = 0 to HEIGHT − 1 do
2: for i = 0 to WIDTH − 1 do
3: G2×2 ← 0
4: b2×1 ← 0
5: for wj = −wy to wy do
6: for wi = −wx to wx do
7: center ← Pos(i+ wi, j + wj)
8: left ← Pos(i+ wi − 1, j + wj)
9: right ← Pos(i+ wi + 1, j + wj)
10: up ← Pos(i+ wi, j + wj − 1)
11: down ← Pos(i+ wi, j + wj + 1)
12: im0

val ← image0[center ]
13: im1

val ← image1[center ]
14: δI ← d(im0

val, im
1
val)

15: im0
left ← image0[left ]

16: im0
right ← image0[right ]

17: Ix ← (im0
right − im0

left)/2
18: im0

up ← image0[up]
19: im0

down ← image0[down]
20: Iy ← (im0

down − im0
up)/2

21: G ← G+ g2×2(Ix, Iy)
22: b ← b+ f2×1(δI, Ix, Iy)
23: end for
24: end for
25: G ← inverse(G)
26: vopt[j][i] ← G× b
27: end for
28: end for

5  Application constraints

As discussed before, we are dealing with live video stream-
ing in our application. The cameras that we are using pro-
duce 25 frames per second (fps) with an image resolution of 
1280 × 720 pixels. These frames are given as input to both 
image-processing algorithms explained in section IV, one 
for moving object detection and one for speed estimation. A 
sample frame from one of the cameras is shown in Fig. 14.

5.1  Background subtraction algorithm

The background subtraction algorithm needs three consecu-
tive frames and a reference stationary background image to 
distinguish between moving and stationary objects. After 
the computation of one set of frames, the next frame is fed 
to the kernel and the oldest one is removed from the set. The 
result is shown in Fig. 15.

Here the static areas are detected as background and con-
verted to black, while pixels where movements have been 
detected are shown as gray-scale pixels of the original frame. 
We also compute the portion of the road that is occupied by 

Fig. 12  Altera’s implementation 
of Lucas–Kanade algorithm 
[40]

Fig. 13  Lucas–Kanade’s disparity map

Fig. 14  Sample frame



Journal of Real-Time Image Processing 

1 3

moving objects. In this set of frames, it is equal to 11.2 m 2 
on the side where traffic is coming towards the camera, and 
it is 6.55 m 2 on the side where traffic is moving away from 
the camera.

5.2  Lucas–Kanade algorithm

In our implementation of the Lucas–Kanade Algorithm, for 
each set of calculations, we need two consecutive image 
frames and a set of input parameters depending on the 
road conditions and camera angles. Similar to background 
subtraction, each new frame replaces the older one. The 
graphical output from these images is shown in Fig. 16. The 
stationary regions are represented by white pixels, while 
moving objects are mapped to colors according to their 
speed and direction.

A interesting result is the speed of moving objects (vehi-
cles) on the road. For the current frame as reference. The 
average velocity coming towards the camera is about 118 
km/h while the velocity moving away is − 67 km/h. The 
direction of the vehicles is evident also from the color in 
Fig. 16, in accordance with the encoding shown in Fig. 13.

We can also find the speed in any specific lane of the 
road, by dividing the pictures in separate lanes instead of two 
parts as we did in Fig. 14. This can be achieved, if required, 
by minor adjustments in the input configuration file.

Note that the processed images or data extracted from 
them contain no personal information, thus we can safely say 
that we have achieved the objective of personal data integrity 
and we are not forwarding any sort of personal or privileged 
information to any third party.

6  Implementation results and algorithm 
optimization

After testing the basic functionality of the algorithms, we 
optimized them to get the maximum efficiency with a mini-
mum use of resources in the smallest amount of computa-
tional time. Performance analysis was carried out using RTL 
simulation on a virtual board including a Virtex 7 FPGA 
from Xilinx and then on real hardware, using the Amazon 
Web Services(AWS) Elastic Compute Cloud (Amazon 
EC2). The available resources on these boards are shown 
in Table 1. Note that to complete RTL simulations (for Vir-
tex 7) in a reasonable amount of time, we used an image 
resolution of 1280 × 4 and we extrapolated the simulation 
results to the real image size. On AWS, on the other hand, 
the complete frame was used to verify the results. For high 
level synthesis, we used SDAccel v2016.4 and 2017.1 from 
Xilinx.

Moreover, simulations were carried out for a single com-
pute unit and then a suitable number of compute units that 
could fit on the FPGA were used for each algorithm. In 
contrast to a CPU or GPU, an FPGA does not have a fixed 
architecture but the HLS tool generates a custom computa-
tion and memory architecture from each application. The 

Fig. 15  Output of background subtraction

Fig. 16  Output of Lucas–Kanade algorithm

Table 1  Target FPGAs and 
boards

Target device name ADM-PCIE-7V3:1ddr:3.0 AWS-F1:4ddr-xpr-2pr:4.0
FPGA part (Xilinx) Virtex-7 XC7VX690T-2 Virtex UltraScale+ xcvu9p-2-i

Clock frequency 200 MHz 250 MHz
Memory bandwidth 9.6 GB/s 11.25 GB/s
BRAMs 2940 4320
URAMs – 960
DSPs 3600 6840
FFs 866,400 2,364,480
LUTs 433,200 1,182,240
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term “compute unit” (CU) refers to a specialized hardware 
architecture (processing core) for a given application. The 
designer can use multiple parallel CUs (within the available 
resources) to boost the performance of each application.

The application needs to process 25 frames per second 
to meet the requirement of real time video processing. This 
means that each kernel iteration (processing one frame) 
should be completed in a maximum time of 40 m.

6.1  Background subtraction algorithm

The initial implementation of the background subtraction 
algorithm was faster than the optical flow algorithm, but 
still did not match the real time requirements. The bottleneck 
for this algorithm was global memory access. To solve this 
issue, a line buffer was introduced. The kernel fetches all the 
pixel values required for each work group and stores them in 
a line buffer in local memory. This fetching is implemented 
using the OpenCL asynchronous work group copy operation, 
which is implemented as a burst read operation from DRAM 
to on-chip memory (much faster than single transfers). The 
same mechanism is used for burst writes. This reduces the 
kernel execution time by a factor of 5 but increases BRAM 
utilization. The results are good but still the desired pipelin-
ing of work items is not achieved due to the read/modify/
writes required to update global variables such as the total 
moving area.

In the second version, local buffers are also used for 
the standard background image, the array accounting for 
the number of frames with a slight change and the global 

accumulator of the moving area which were causing the bot-
tleneck in the first place. In this way, we are able to achieve 
the expected performance, a speed gain of more than 70x 

Table 2  Kernel execution time and resource utilization (per compute 
unit) of background subtraction algorithm

Implementation version Time (ms) Resource utilization

Per frame BRAM DSP FF LUT

Basic 7313.112 5 3 14,447 35,019
Optimized v.1 1467.108 22 5 10,979 31,700
Optimized v.2 103.8096 24 5 9165 15,978
Virtex 7 (3 CU) 34.6032 72 15 27,495 47,934
UltraScale+ (3 CU) 27.8082 65 15 18,723 17,859

Fig. 17  Line buffers for Lucas–Kanade

Fig. 18  Basic vs final implementation of Lucas Kanade

Table 3  Kernel execution time and resource utilization (per compute 
unit) of Lucas–Kanade algorithm

Implementation 
version

Time (ms) Resource utilization

Per frame BRAM DSP FF LUT

Basic 44,209.98 31 56 21,367 37,080
Optimized v. 1 14,883.876 122 51 18,410 24,613
Optimized v. 2 3751.2 182 52 51,025 100,777
Optimized v. 3 207.313 178 175 35,683 36,072
Virtex 7 (6 CU) 34.5522 1068 1050 214,098  216432
UltraScale+ (6 

CU)
 39.4512 1386  576  274,770  246,786
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from the basic implementation and more than 14x from our 
first optimized version. The extra resources consumed are 
only two BRAMs.

However, the best time that we achieved using Hardware 
emulation was 103 ms per frame, hence not sufficient to 
achieve 25 fps. For this purpose, we need to use at least three 
parallel compute units, which multiplies all the resources by 
a factor of 3 as shown in Table 2. This still uses only about 
12% of the resources of a Virtex 7 FPGA, which can thus 
processes frames from five cameras. The results obtained 
from AWS EC2 board show an increase in performance 
which was expected as Ultrascale+ is a newer generation 
FPGA than Virtex 7. These results are shown in the last row 
of Table 2.

6.2  Lucas–Kanade algorithm

The basic implementation of the Lucas–Kanade Algorithm is 
even more costly than the background subtraction algorithm. 
Three main opportunities for optimizing were global memory 
access, avoiding repeated calculations for the same pixel and 
optimizing trigonometric calculations for the output colors.

The first optimized version of the kernel uses a line 
buffer for burst reading and writing of the image data from 
global to local memory (similar to what we have seen in 
the background subtraction algorithm). For Lucas–Kanade 
this line buffer is about five times larger than what we used 
in background subtraction because more neighboring pixels 
are required for computation. This can be easily seen by the 
increase in the number of BRAMs (about four times) in the 
first version as compared to the basic implementation.

Since the partial derivative calculated for a pixel in the 
window is also required by the next 14 windows (using a 

sliding window as shown in Fig. 17), in the second opti-
mized version we removed this repetitive computation by 
calculating it only once and reusing it (Line Buffer 2 in 
Fig. 17). In this way, we not only saved computations per 
work group, but also were able to split the loop nest (line 4 
and 5 of Algorithm 2) into two single loops as shown in Fig 
18. This reduces the iterations from 225 ( 15 × 15 ) to 30 (15 
+ 15). A work-group size of 1280 was also used, as it avoids 
not only the repetitive fetching of neighbors among work 
groups (along the width of image) but also eliminates repeti-
tive calculations for each WG. This gives us a performance 
boost of 4 × but also requires a lot more resources (Table 3).

The analysis of the second optimized version revealed 
that the algorithm is not able to pipeline the inner loop 
because of the trigonometric functions for the output 
color encoding. These calculations were required only 
for debugging. Since the information provided to end 
users is purely average velocity on each lane, therefore 
the Lucas–Kanade algorithm debug image is calculated 
in a simpler way. For debugging, the most interesting part 
of the image is the one that closest to the line of sight. 
Hence, it is possible to use a linear pixel mapping, rather 
than using trigonometric functions, which are expensive 
to compute just for debugging and system monitoring 

Table 4  Total resource 
utilization for Virtex 7

Algorithm Compute units 
(CU)

Total resources utilized

BRAM DSP FF LUT

Background subtraction 3 72 15 27,495 47,934
Lucas–Kanade 6 1068 1050 214,098 216,432
Total 9 1140 1065 241,593 264,366
Available – 2940 3600 866,400 433,200

Table 5  Total resource 
utilization for UltraScale+ 
(AWS-EC2)

Algorithm Compute units 
(CU)

 Total resources utilized

BRAM DSP FF LUT

Background subtraction 3 65 15 18,723 17,859
Lucas–Kanade 6 812 246 176,970 168,280
Total 13 877  261  195,693  186,139
Available – 4320 6840 2,364,480 1,182,240
% Utilization – 20.30% 3.81% 8.27% 15.74%

Table 6  Power consumption per frame for background subtraction

Parameters FPGA  GPU CPU

Ultrascale+ Virtex 7

Device time (ms) 27.80 34.6 28.16 47.68
Device power (W) 4.55 2.760 26 10
Energy (mJ) 126.49 95.496 732.16 476.8
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purposes on an FPGA. This resulted in a degraded depic-
tion of sideways motion, but overall improved the FPGA 
execution time by 15×  (Table 3). Hence, it shows that 
floating point computations are FPGA’s weakest point. To 
satisfy real-time requirements, we have to use six Com-
pute Units for the core calculations of the Lucas–Kanade 
algorithm.

As we witnessed from background subtraction as well, 
the results obtained from AWS EC2 for the Lucas–Kanade 
algorithm are very comparable to the hardware emulation 
results as shown in Fig. 18. In both cases performance 
improved and the amount of available resources increase 
significantly on a Virtex Ultrascale+ with respect to the 
Virtex 7. Hence, we were able to feed the data from four 
cameras in real-time to the EC2 board.

6.3  Total resource utilization and power 
consumption

Summing up all the results discussed above, we achieved 
our goal of real time calculation of the portion of the road 
that is used by traffic and of average vehicular velocity. 
Moreover, Table 4 shows that we have not exceeded our 
resource utilization limit, while performing the full process-
ing of the data from one camera on a relatively old Virtex 
7 FPGA. The results of actual Hardware implementation 
on the Amazon EC2 cloud platform are shown in Table 5.

The final aspect to consider is what advantage we have 
achieved in terms of power and energy consumption (per 
computation) with respect to GPUs and CPUs. We are con-
sidering an NVIDIA GeForce GTX960 GPU. It has 2GB of 
global memory and bandwidth of 112 GB/s with a maxi-
mum power consumption of 120 Watt. The CPU that we are 
considering is an Intel Xeon E3-1241 (v3) with a clock fre-
quency of 3.5 GHz and maximum power consumption of 80 
Watts. The power consumption for the FPGAs was estimated 
using the Xilinx Power Estimator (XPE) tool while for the 
GPU it was measured using NVIDIA System Management 
Interface (NVIDIA-SMI).

As we can see from Tables 6 and 7, the FPGA is much 
more energy efficient as compared to both CPU and GPU. 
Moreover, the computation of Lucas Kanade is not possible 
in real time using only a single CPU, as it takes around 6 
s to process each frame. As we can see both, performance 

and energy consumption, are much better than on a CPU and 
energy consumption is much better than on a GPU.

7  Conclusion

This paper presents a high performance yet energy efficient 
smart city application implementation. The application pro-
vides not only the velocity of the vehicles in real time but also 
the density of traffic on roads. This information can be used 
by different stake holders such as public transportation, taxis 
and city planners. Real-time benefits of these data can save 
time spent on roads and can help to reduce pollution where in 
long run these data can be used for better planning of city and 
road infrastructure. The computational capabilities and power 
efficiency of FPGAs makes them a very suitable candidate 
for applications that require large amounts of data process-
ing, especially in real time. Furthermore, high-level synthesis 
provides an excellent platform for designers to exploit the 
capabilities of FPGAs without the long design times entailed 
by the use of in hardware description languages.
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