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 Introduction 

Estimating the downtime infrastructures is a subject on which scientists and policy makers 

have recently put much attention. The downtime can be defined as the time required to achieve 

a recovery state after a disastrous event; therefore, it is strictly linked with the indirect losses of 

the damaged infrastructure. Furthermore, the downtime is also an essential parameter to esti-

mate resilience. In engineering, resilience  is defined as “the ability of social units (e.g. organ-

izations, communities) to mitigate hazards, contain the effects of disasters when they occur, and 

carry out recovery activities in ways to minimize social disruption and mitigate the effects of 

further earthquakes" [1-3]. Under this context, downtime is the time span between the moment 

that the earthquake hits (t0 = 0), when the functionality Qi(t) drops to Qi(0), until the time when 

the functionality of the utility is completely restored [3] (Figure 1). Some of the factors that can 

affect the downtime are: the structural inspection, the assessment of damage, the finance plan-

ning, the bidding  process, the repair effort, and the engineering consolation [4]. 

One of the first attempts to evaluate the disruption time following an event was done by 

Basöz and Mander (1999) [5]. In their work, they developed downtime fragility curves for the 

transportation lifeline. The fragility curves were later integrated in the highway transportation 

lifeline module of HAZUS. Another downtime estimation methodology was developed based 

on a modified repair-time model [6]. This methodology estimates the downtime of only the 

rational structural components of a system due to the uncertainty involved in the process. In 

addition, the Federal Emergency Management Agency (FEMA) has introduced the electronic 
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tool PACT, which estimates the required repair time of buildings based on the damaged 

structural and non-structural components as well as on the building’s contents. PACT is 

considered the companion to FEMA P-58, a significant 10-year project funded by FEMA to 

develop a framework for performance-based seismic design and risk assessment of buildings 

[7]. Moreover, Almufti and Willford (2013) have suggested a modified downtime methodology 

based on the results coming from PACT. All details can be found in the REDi rating system 

report [8]. Also, a performance-based earthquake engineering method to estimate the downtime 

of infrastructures using fault trees has been introduced [9]. This method is applicable only when 

the downtime is mostly controlled by the non-structural systems damage. It also assumes that 

the restoration starts immediately after the event and the damaged components are repaired in 

parallel.  Generally, several factors are involved in the downtime estimation, such as the 

characteristics of the exposed structure, the earthquake intensity, and the amount of human 

force that is assigned to recover the damaged infrastructure. With all of these factors, the 

process of estimating the downtime becomes even harder. Therefore, it is crucial to have a 

simple model for estimating the downtime of infrastructures. The aim of this study is to develop 

a probabilistic model to evaluate the downtime of lifelines following a seismic event.  

Four different types of lifelines are studied in this work (power, water, gas, and telecom-

munication). First, a large database has been collected from a wide range of literature. The 

database contains real data on a number of seismic events that occurred in the last century as 

well as on the downtimes of the affected infrastructures. Fragility restoration functions have 

been obtained using the gamma distribution, which has been selected because of its fit with the 

distribution of the collected data. For each of the lifelines, a group of fragility curves has been 

derived in accordance with the earthquake magnitude, and they have been presented in terms 

of probability of recovery and time; the longer is the time after the disaster, the higher is the 

probability of the infrastructure to recover its functionality. 

 

 
Figure 1: Resilience concept 

 



 DOWNTIME DATABASE OF LIFELINES 

Table 1 lists all the earthquakes considered in this work along with the year in which they 

occurred, the country they hit, and their intensity according to Richter scale of magnitude. A 

number of other damaging earthquakes that occurred during the same period have been col-

lected, but not included in this study because no engineering damage reports could be obtained 

for those events. Nevertheless, the events included in this study are sufficient to provide some 

useful illustrations for the recovery behaviour of the examined lifelines. 

Table 1: Summary of the analyzed earthquakes 

Earthquake Year Country Magnitude Reference 
Loma Prieta 1989 USA 6.9 [10] 

Northridge  1994 USA 6.7 [11] 

Kobe  1995 Japan 6.9 [12]  

Niigata  2004 Japan 6.6 [13] 

Maule  2010 Chile 8.8 [14] 

Darfield  2010 New Zealand 7.1 [15]  

Christchurch  2011 New Zealand 6.3 [16] 

Napa  2014 USA 6 [17] 

Michoacán  1985 Mexico 8.1 [18]  

Off-Miyagi  1978 Japan 7.4 [19] 

San Fernando  1971 USA 6.6 [20]  

The Oregon Resilience Plan   2013 USA 9 [21] 

LA Shakeout Scenario 2011 USA 7.8 [22] 

Tohoku  2011 Japan 9 [23] 

Niigata  1964 Japan 7.6 [24] 

Illapel  2015 Chile 8.4 [25] 

Nisqually  2001 USA 6.8 [26] 

Kushiro-oki  1993 Japan 7.8 [27] 

Hokkaido Toho-oki  1994 Japan 8.2 [27] 

Sanriku  1994 Japan 7.5 [27] 

Alaska  1964 USA 9.2 [28] 

Luzon  1990 Philippines 7.8 [29] 

El Asnam  1980 Algeria 7.1 [30] 

Tokachi-oki  1968 Japan 8.3 [31] 

Kanto  1923 Japan 7.8 [32] 

Valdivia  1960 Chile 9.5 [33] 

Nihonkai-chubu  1983 Japan 7.8 [34] 

Bam  2003 Iran 6.6 [35] 

Samara  2012 Costa Rica 7.6 [36] 

Arequipa  2001 Peru 8.4 [33] 

Izmir  1999 Turkey 7.4 [37] 

Chi-Chi  1999 Taiwan 7.6 [38] 

Alaska 2002 USA 7.9 [39] 

 

Table 2 lists the complete database used to create the restoration curves of each lifeline. 

The different earthquakes are listed in a random order. It is notable that each earthquake has 

caused damage to multiple infrastructures at the same time. For instance, in the city of Loma 

Prieta, the earthquake caused damage to two power plants, ten water systems, five gas stations, 

and six telecommunication systems. However, the affected infrastructures needed different 

times to recover even when the infrastructures are of similar types. For example, the two power 

plants that were affected by the Loma Prieta earthquake needed 2 and 0.5 days respectively to 



recover. In addition, there were some cases where either the damage information was not avail-

able or no damage was recorded. Such cases are marked with a dash (-) inside the table. 

Table 2: The number of affected infrastructures and the corresponding downtime for each lifeline 

Earthquakes 

Lifelines affected 

     Power      Water      Gas     Telecom. 

No. DT (days) 

No

. DT (days) No. DT (days) No. 

DT 

(days) 

Loma Prieta 2 (2), (0.5) 10 

(14), (4), (3), 

(1.5), (2), (1), 

(3), (3), (7),  (4) 

5 

(30), (16), 

(11), (10), 

(10) 

6 

(3), (4), 

(0.1), (3), 

(3), (1.5) 

Northridge  3 (3), (0.5), (2) 6 
(7), (2), (58), 

(12), (67), (46) 
4 

(7), (30), (5), 

(4) 
3 (1), (2), (4) 

Kobe  5 
(8), (3), (2), (5), 

(6) 
3 (0.5), (8), (73) 3 

(84), (11), 

(25) 
3 (1), (5), (7) 

Niigata  4 (11), (4), (1) 3 (14), (28), (35) 3 
(28), (35), 

(40) 
- - 

Maule  6 
(14), (1), (3) 

(10), (14) 
4 

(42), (4), (16), 

(6), 
2 (10), (90) 4 

(17), (7), 

(3), (17) 

Darfield  3 (1), (2), (12) 2 (7), (1) 1 (1) 3 (9), (2), (3) 

Christchurch  3 (14), (0.16) 1 (30) 2 (14), (9) 2 (15), (9) 

Napa  1 (2) 6 

(20), (0.9), 

(0.75), (2,5), 

(12),  (11) 

1 (1) - - 

Michoacán  4 (4), (1), (3), (7) 4 
(30), (14), (40), 

(45) 
- - 1 (160) 

Off-Miyagi  2 (2), (1) 1 (12) 3 (27), (3), (18) 1 (8) 

San Fernando  1 (1) - - 2 (10), (9) 1 (90) 

The Oregon Resil. Plan   1 (135) 1 (14) 1 (30) 1 (30) 

LA Shakeout Scenario 1 (3) 1 (13) 1 (60) - - 

Tohoku Japan  7 
(45, (3), (8), (2), 

(2), (40) 
8 

(47), (47), (1), 

(26), (7), (1), 
(47), (47) 

6 

(54), (2), (30), 

(35), (13), 
(18) 

3 
(49), (21), 

(49) 

Niigata  2 (24) 3 (15), (4), (10) 2 (180), (2) - - 

Illapel  1 (3) 1 (3) - - - - 

Nisqually  3 (2), (6), (3) -  - - - - 

Kushiro-oki  1 (1) 3 (6), (3), (5) 2 (22), (3) - - 

Hokkaido Toho-oki  1 (1) 3 (9), (3), (5) - - - - 

Sanriku  1 (1) 3 (14), (12), (5) - - - - 

Alaska  3 (2), (0.75), (1) 5 
(14), (5), (1), 

(7), (14) 
3 

(1), (5), (2), 

(14) 
2 (1), (21) 

Luzon  3 (7), (2), (3) 3 (14), (14), (10) - - 3 
(5), (1), 

(0.4) 

El Asnam  - - 1 (14) - - - - 

Tokachi-oki  1 (2) -  2 (30), (20) - - 

Kanto  2 (7), (5) 1 (42) 2 (180), (60) 1 (13) 

Valdivia  1 (5) 1 (5) - - - - 

Nihonkai-chubu  1 (1) 1 (30) 1 (30) - - 

Bam  1 (4) 3 (14), (10) - - 1 (1) 

Samara  1 (1) 1 (2) - - 1 (1) 

Arequipa  1 (1) 3 (32), (34) - - - - 

Izmit  1 (1) 2 (5), (29) 1 (1) 1 (10) 

Chi-Chi  3 (4), (14), (19) 1 (9) 1 (14) 1 (10) 

Alaska 2002 2 (2), (0.5) 10 

(14), (4), (3), 

(1.5), (2), (1), 

(3), (3), (7), (4) 

1 
(3) 

 
6 

(3), (4), 

(0.1), (3), 

(3), (1.5) 

Note: No = the number of affected infrastructures; DT = the downtime in days. 

 METHODOLOGY 

The main challenge faced in this work is to illustrate the gathered data in the form of res-

toration curves. Typically, the procedure followed for constructing restoration curves is similar 

to that of fragility curves. The restoration process is one of the most uncertain variables in the 

resilience analysis; therefore, it is necessary to approach it in probabilistic terms. This is done 



by performing a statistical analysis to the raw data, trying to fit it to a statistical distribution. 

Nevertheless, choosing the right distribution can be a hard task due to the high number of dis-

tributions that exist in the literature.  

After some investigations, the gamma distribution was found to be the optimal fit to most 

of the database; hence, it is used to build the restoration curves. The probability distribution 

(PDF) of the gamma distribution is given by:   

1 /1
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( )
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where Г(.) denotes the gamma distribution, α is the shape parameter, which allows the 

gamma distribution to take variety of shapes, β is the scale parameter whose effect is to stretch 

(greater than one) or squeeze the distribution (less than one). It is important to note that the 

exponential distribution is a special case of the gamma distribution function when the shape 

parameter α is set equal to 1. To obtain the values of α and β, it is first necessary to compute 

the mean and the standard deviation µD and σD. The mean value µD denotes the average value 

of a database consisting of n entries, and it is defined by:  
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On the other hand, the standard deviation σD is the dispersion of a random variable of the 

database with respect to the mean value. The value of the standard deviation is obtained with 

the following formula: 
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After obtaining both µD and σD, the parameters α and β can be estimated using Equations 

(4) and (5). 
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Afterwards, the restoration curves for each lifeline have been created using the software 

MATLAB® (Guide 1998). The restoration curves developed for different damage states within 

the same sample should not intersect in order to describe meaningful results. Intersection of 

restoration curves may occur when each curve corresponding to a specific damage state is fitted 

independently of one another [40]. So in order to avoid the intersection of the restoration curves 

corresponding to different damage states, the same standard deviation has been assumed, as 

suggested in the method described in [41], where the parameters of the distribution functions 

representing different states of damage are simultaneously estimated by means of the maximum 

likelihood method. In that method, the parameters to be estimated are the median of each fra-

gility curve and one value of the standard derivation that is assumed the same for all fragility 

curves.   



 RESTORATION CURVES 

Restoration curves were developed for the power, water, gas, and telecommunications sys-

tems based on the quantitative data obtained from the collected earthquakes. The curves are 

plotted based on the number of days required to restore full service to customers that lost service 

immediately after the earthquake (horizontal axis), and the likelihood that the utility will be 

completely restored to the customers (vertical axis). The restoration curves of the studied infra-

structures are presented in Figure 2. The collected data has been classified into four groups of 

Richter magnitude scale (strong 6-6.9, Major 7-7.9, Severe 8-8.9, and Violent 9-9.9), and this 

has led to obtaining four independent restoration curves for each lifeline. It is important to note 

that more groups with a smaller magnitude range could have been created; however, in this 

study, the database was not large enough, and therefore it was preferred to limit the number of 

groups to only four. 

The restoration curves of the lifelines are characterized by a similar behaviour. The only 

difference lies in the restoration rate. The power system seems to have the shorter downtime as 

the curves reach the probability of 100% just 60 days after the event, unlike the other infra-

structures, which needed at least 100 days to achieve a restoration probability of 100%. This 

result is expected because all lifelines need power to function, and thus the power system is 

always the first to recover. The telecommunication system, on the other hand, is heavily de-

pendent on the power network, which delays its restoration until the power system is recovered. 

This behaviour is shown in Figure 4, where the restoration probability of the telecommunication 

system did not reach 100% even after 100 days. Lastly, the gas and the water systems are almost 

identical where both of them reach a restoration probability of 100% after 100 days. 

 
Figure 2: Restoration curves of the four lifelines 

 

 



 CONCLUDING REMARKS 

Downtime estimation is one of the most ambiguous aspects in the resilience engineering. 

Estimating the resilience of infrastructure due to earthquakes has been studied in the past; 

however, none of the studies highlighted a clear procedure to estimate the disruption time of 

damaged systems. This paper provides an empirical model for estimating the downtime of 

damaged infrastructures following earthquakes. This model is based on a large set of database 

for earthquake events that occurred over the last few decades. Different types of statistical 

distribution have been tested, and the gamma distribution has been chosen as it has the best fit 

to the collected data. Four main lifelines were considered in this work (power, water, gas, and 

telecommunication). For each of them, a group of four restoration curves have been derived. 

The restoration curves were presented in terms of the number of days required to restore full 

service to customers (horizontal axis), and the likelihood that the utility will be completely 

restored to the customers (vertical axis). 

Given that such models are still missing in literature, this work will provide a very useful 

tool to estimate the downtime of infrastructures when struck by earthquakes. It will also allow 

evaluating the infrastructures’ resilience as the downtime is a key parameters in the resilience 

estimation process. Future work will be oriented towards extending the database to include 

more earthquakes. In addition, special attention will be given to the infrastructure 

interdependency, which will increase the accuracy of the restoration curves. Other lifelines such 

as the transportation system will also be analyzed once satisfactory data of a considerable 

amount of earthquakes is collected. 
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