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Discontinuities, generalized solutions and
(dis)agreement in opinion dynamics

Francesca Ceragioli and Paolo Frasca

Abstract This chapter is devoted to the mathematical analysis of some continuous-

time dynamical systems defined by ordinary differential equations with discontinu-

ous right-hand side, which arise as models of opinion dynamics in social networks.

Discontinuities originate because of specific communication constraints, namely

quantization or bounded confidence. Solutions of these systems may or may not

converge to a state of agreement, where all components of the state space are equal.

After presenting three models of interest, we elaborate on the properties of their

solutions in terms of existence, completeness, and convergence.

1 Discontinuous consensus-seeking systems

This chapter studies some continuous-time dynamical systems defined by ordinary

differential equations with discontinuous right-hand side. The dynamics under con-

sideration have been proposed in the last fifteen years in the context of “consensus-

seeking” systems, which describe coordination phenomena in engineering, biology

and social sciences. Given this range of applications, the reader will not be surprised

that we are dealing with rather abstract representations of reality.

The most basic consensus-seeking system takes the following form. Let x be an

N-dimensional vector, where each component xi is associated to an individual i ∈
I = {1, . . . ,N} and evolves in time according to the ordinary differential equation
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ẋi(t) =
N

∑
j=1

ai j

(

x j(t)− xi(t)
)

i ∈ I . (1)

Since we assume that the interaction weights ai j are nonnegative, this dynamics

postulates that each individual is attracted by the other individuals with whom it

interacts. Under very mild assumptions on the interaction pattern, this dynamics

converges to a state of agreement where all components xi are equal.

Variations to this dynamics have been proposed in order to accommodate a

host of phenomena, including time- and state-dependent interactions ai j(t,x). An

interesting case of state-dependent interactions is the following, which is termed

bounded confidence in the literature. Two individuals are assumed to influence each

other if their states are closer than a certain threshold (that we choose to be 1 for

simplicity):

ẋi(t) =
N

∑
j=1

a(xi(t),x j(t))
(

x j(t)− xi(t)
)

i ∈ I (BC)

where a(y,z) =

{

1 if |y− z|< 1

0 if |y− z| ≥ 1.

This model, which is a continuous-time counterpart of the opinion dynamics studied

by Hegselmann & Krause [34], has been proposed by [8] and further considered

in [15]. Very similar models have been considered in [40, 35, 51, 19, 49]. We will

see that (BC) does not produce agreement, but clustering of individuals into groups

characterised by agreement within each group and disagreement between groups.

Another relevant phenomenon is quantization, which occurs both in engineering

and in social systems. In engineering, it can represent communication constraints,

where the state variable is communicated between individuals via a digital channel

with finite data rate, and thus constrained to take on discrete values. For the sake of

this analysis, we shall define the quantization of a real number simply by rounding it

to the closest integer: q(s) = ⌊s+ 1
2
⌋. In this context, an effective consensus-seeking

system is the following “quantized states” system studied in [14]:

ẋi(t) =
N

∑
j=1

ai j

(

q(x j(t))− q(xi(t))
)

i ∈ I . (QS)

Note that the right-hand side features the quantized values of both states x j and xi:

the presence of the quantized state q(xi) is crucial to ensure the “good” properties

of this dynamics, which will be discussed below.

In social systems, quantization may originate because the state variable is “com-

municated” as the display of an action or behavior, which can take on discrete values

only: for instance, the purchase of certain products. In this context, we have recently

proposed [16, 17] to investigate the following “quantized behaviors” model:
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ẋi(t) =
N

∑
j=1

ai j[q(x j(t))− xi(t)] i ∈ I = {1, . . . ,N} (QB)

Note that, in contrast with (QS), the right-hand side features the quantized value of

x j, but not of xi, which leads to more complex dynamics than (QS).

The reader can notice that the right-hand sides of equations (BC), (QS), (QB)

are discontinuous in the state variable. Since the study of these non-smooth systems

relies on relatively sophisticated instruments that might not always be accessible

to the non-specialists, we have included in this chapter an extended review of the

necessary mathematical machinery, which we hope can be of independent interest.

Nevertheless, readers are advised to consult the literature specific to the topic, for

instance the tutorial [21] and the books [4, 24], as well as more specific works about

stability [6] or generalized solutions [12]. Additional references are provided in the

following sections.

The rest of this paper is organized as follows. Section 2 defines some useful nota-

tion and summarizes well-known results from graph theory together with their con-

sequences for the consensus dynamics (1). Section 3 presents some notions of solu-

tions that are relevant in this context, namely those of Carathéodory and Krasovskii.

The section also contains results on existence and completeness of these solutions

for a general class of piece-wise affine systems and specifically for the three dynam-

ics at hand. Section 4 deals with equilibria (again, declined according to the relevant

notions of solutions) and describes the sets of equilibria for our three dynamics. Sec-

tion 5 deals with convergence of their trajectories. We provide two kinds of results:

on the one hand, sufficient conditions to reach agreement, and on the other hand,

general statements about convergence to the equilibria (or to their proximity).

Owing to the survey purpose that we set us for this paper, we have avoided re-

porting the details of some proofs that can be easily found in the literature. Further-

more, we restrict our presentation to assume symmetric interactions, namely such

that ai j = a ji for all i, j in I . We made this choice for simplicity of exposition, even

though most results can be extended to non-symmetric interactions.

2 Preliminaries

Notation. Given a subset S of RN , we denote by S its topological closure, by ∂S its

border, and by coS its closed convex hull. We let 0= (0, . . . ,0)⊤, 1=(1, . . . ,1)⊤ and

ei, i = {1, . . . ,N}, the vectors of the canonical basis of RN . We call consensus point

a point of the form α1 with α ∈ R. The N-dimensional identity matrix is denoted

by I and ‖ · ‖ denotes the Euclidean norm both for vectors and matrices. Given the

vector x ∈ R
N , we denote its average by xave =

1
N

1⊤x = 1
N ∑N

i=1 xi. When x = x(t)

we shall write xave(t) =
1
N ∑N

i=1 xi(t). The notation q(x) with x ∈ R
N will denote the

vector whose i-th componenet is q(xi).
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Graph theory. A weighted (undirected) graph G = (I ,E ,A) consists of a node

set I = {1, . . . ,N}, an edge set E ⊂ I ×I , and a symmetric adjacency matrix

A ∈ R
N×N
+ such that ai j > 0 if (i, j) ∈ E , and ai j = 0 if ( j, i) 6∈ E . We assume no

self-loops in the graph, that is aii = 0 for all i ∈ I . Nodes (vertices) are referred

to as agents or individuals, edges as links. Let di := ∑N
j=1 ai j be the degree of node

i ∈ I . Let D = diag(A1) be the diagonal matrix whose diagonal entries are the

degrees of each node. Let L = D−A be the Laplacian matrix of the graph G . Note

that by construction L1 = 0 and by symmetry 1⊤L = 0⊤. In case the graph is state

dependent, we write G (x),E (x),A(x),D(x),L(x).
Given an edge (i, j), we shall refer to i and to j as the tail and the head of the

edge, respectively. A path is an ordered list of edges such that the head of each

edge is equal to the tail of the following one. The graph G is said to be connected

if for any i, j ∈ I there is a path from i to j in G . If the graph is connected, then

the eigenvalue 0 of the Laplacian matrix L has algebraic multiplicity 1. The vector

x− xave1 is the projection of x on the subspace orthogonal to 1: consequently, if we

denote by λ∗ the smallest non-zero eigenvalue of L, one has

(x− xave1)⊤L(x− xave1)≥ λ∗ ‖x− xave1‖2 ∀x ∈R
N .

Convergence to agreement. Using the Laplacian matrix, dynamics (1) can be

compactly rewritten as

ẋ =−Lx. (2)

Its key properties, descending from the properties of the Laplacian that we recalled

above, are summarized by the following well-known result and illustrated in Fig-

ure 1.

Theorem 1 (Real consensus). If the graph underlying (1) is connected and the ad-

jacency matrix A is symmetric, then for any solution x(t) of (1) the following prop-

erties hold true:

1. (contractivity and boundedness) co{xi(t), i ∈ I } ⊆ co{xi(0), i ∈ I };

2. (average preservation) xave(0) = xave(t);
3. (equilibria) x∗ is an equilibrium point of (1) if and only if x∗ is a consensus point;

4. (average consensus) limt→+∞ x(t) = xave(0)1.

3 Generalized solutions and basic properties of the dynamics

In this section we summarize some notions which are essential in order to deal with

systems whose right-hand side is discontinuous with respect to the state variable.

Let us consider the Cauchy problem

ẋ = f (x) x(0) = x0 (3)
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Fig. 1 Evolution of a solution of (1) from random initial conditions on a cycle graph on 25 nodes.

where x0 ∈R
N and f : RN →R

N is measurable and locally bounded. We will denote

by ∆ f the subset of R
N where f is discontinuous. When facing system (3), one

should first of all choose which type of generalized solution is the most suitable

for the system of interest. We shall consider Carathéodory solutions and Krasovskii

solutions.

3.1 Carathéodory solutions

The notion of solution nearest to the classical one is that of Carathéodory solution.

Definition 1 (Carathéodory solution). Let I ⊂ R be an interval with 0 ∈ I and let

x0 ∈ R
N . An absolutely continuous function ϕ : I →R

N is a Carathéodory solution

of equation (3) on I with initial condition x0 if ϕ(0) = x0 and if it satisfies (3) for

almost all t ∈ I or, equivalently, if it is a solution of the integral equation

ϕ(t) = x0 +
∫ t

0
f (ϕ(s))ds.

We say that a local Carathéodory solution corresponding to the initial condition

x0 ∈R exists if there there exist a neighbourhood I(x0) of x0, an interval of the form

[0,T ) and an absolutely continuous function ϕ : [0,T )→ I(x0) such that ϕ(0) = x0

and ϕ(t) is a Carathéodory solution of (3) on [0,T ).

Note that in the models we are considering the set ∆ f of discontinuity points

of the vector field f (x) has a particularly simple structure, as it can be locally rep-

resented as the union of a finite number of hyperplanes. This observation is made

rigorous by the following assumption.

Assumption 1 (On the discontinuity set) For any x0 ∈ ∆ f there exists a neighour-

hood I(x0) of x0 and m affine functions s1, . . . ,sm : I(x0)→R
N defined by



6 Francesca Ceragioli and Paolo Frasca

sℓ(x) = p⊤ℓ x− cℓ ℓ ∈ {1, . . . ,m}

with pℓ ∈R
N and cℓ ∈ R, such that sℓ(x0) = 0 for all ℓ ∈ {1, . . . ,m} and

∆ f ∩ I(x0) = {x ∈ I(x0) : s1(x) = 0}∪ . . .∪{x ∈ I(x0) : sm(x) = 0}.

Under Assumption 1, the neighbourhood I(x0) of x0 is partitioned in 2m sectors

Sb(x0) defined by the signs of the functions s1, . . . ,sm, indexed by means of b ∈
{−1,1}m, and defined in the following way1:

Sb(x0) = {x ∈ I(x0) : sℓ(x)< 0 if bℓ =−1 and sℓ(x)≥ 0 if bℓ = 1, ℓ= 1, . . . ,m}.

Assumption 2 (On the discontinuous vector field) The parts Sb(x0) are defined

so that the vector field f (x) is continuous on Sb(x0) for all b ∈ {−1,1}m.

Without Assumption 2, the choice of the representation of the discontinuity hy-

perplanes by means of pℓ and cℓ would not be unique, since the orientation of the

normal vector is arbitrary. Assumption 2 makes sure that the choice of the repre-

sentation is consistent with the functions a(·, ·) and q(·) in equations (BC), (QS),

(QB).

Under Assumptions 1 and 2, the vector field f (x) has 2m limit values as x → x0,

namely

f b(x0) = lim
x∈Sb,x→x0

f (x).

Example 1 (BC dynamics with 3 individuals). Consider dynamics (BC) with N = 3

and x0 = (0,1,2)⊤. Clearly, point x0 lies at the intersection of the two planes of dis-

continuity x2−x1−1= 0 and x3−x2−1= 0, namely defined by the normal vectors

p1 = (−1,1,0)⊤ and p2 = (0,−1,1)⊤. In the sectors S(1,1),S(−1,1),S(1,−1),S(−1,−1),

we respectively identify the four limit values of the vector field

f (1,1)(x0) =





0

0

0



 f (−1,1)(x0) =





1

−1

0





f (1,−1)(x0) =





0

1

−1



 f (−1,−1)(x0) =





1

0

−1



 .

This situation is represented in Figure 2.

Under Assumptions 1 and 2, the study of existence and completeness of Cara-

théodory solutions can be relatively simple. Nevertheless one can not expect to have

local existence in general: the negative example is given by the following proposi-

tion [33, 13], illustrated in the fourth diagram of Figure 3.

1 It would be more precise to write Sb(x0, I(x0)) instead of Sb(x0), as it depends on I(x0). Note

however that if I(x0) and I′(x0) are two distinct neighbourhoods of x0, then the sets Sb(x0, I(x0))
and Sb(x0, I

′(x0)) coincide on I(x0)∩ I′(x0). Hence neglecting I(x0) from the notation brings no

ambiguity.
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Fig. 2 Representation of the limit values of the vector field at a discontinuity point where two

hyperplanes intersect, namely dynamics (BC) at point (0,1,2)⊤.

Proposition 1 (Non-existence of Carathéodory solutions). Let x0 ∈ ∆ f and as-

sume m = 1 in Assumption 1. If p⊤1 f (−1)(x0) > 0 and p⊤1 f (1)(x0) < 0, then there

exists no Carathéodory solution of (3) with initial condition x0.

An example of this situation is given by dynamics (QS).

Example 2 (Non-existence in QS dynamics). Consider dynamics (QS) over an undi-

rected path graph with N = 3 whose adjacency matrix A has all non-null entries

equal to 1 and the initial condition x̄0 = (1,3/2,2)⊤. The right-hand side of the sys-

tem is clearly discontinuous at x̄0. There exists a neighbourhood I(x̄0) of x̄0 such

that ∆ f ∩ I(x̄0) = {x ∈ R
N : x2 − 3/2 = 0} and we thus define s1(x) = x2 − 3/2 =

(0,1,0)x−3/2. We get that f (−1)(x̄0) = (0,1,−1)⊤ and f (1)(x̄0) = (1,−1,0)⊤, then

(0,1,0) f (1)(x̄0) =−1 < 0 and (0,1,0) f (−1)(x̄0)> 0. By applying Proposition 1 we

conclude that there are no Carathéodory solutions issuing from x̄0.

�
�✒ ❅

❅❘ ❄
�

�✠
�

�✠
❅
❅❘ �

�✒
❅

❅■

Fig. 3 Representations of the possible orientations of the vector fields in the neighborhood of a

discontinuity hyperplane.

Instead, the following result provides a sufficient condition for the existence of

local Carathéodory solutions. It is inspired by the concept of directional continuity

in [44] but it allows also for solutions lying on the discontinuity set: this case, which

can be particularly subtle to be treated, is simplified here by the discontinuity being

a union of hyperplanes. Informally, the sufficient condition requires that, for each

discontinuity point, at least one among the “pieces” of the vector field either pulls
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away from the discontinuity surface in its own sector, or is parallel to a discontinuity

hyperplane.

Theorem 2 (Sufficient condition for Carathéodory solutions). Assume that As-

sumptions 1 and 2 hold. Assume that for any x0 ∈ ∆ f there exists b̃ ∈ {−1,1}m such

that

1. [p⊤ℓ f b̃(x0)] b̃ℓ ≥ 0 for all ℓ ∈ {1, . . . ,m};

2. if there exists ℓ̄∈{1, . . . ,m} such that [p⊤
ℓ̄

f b̃(x0)] b̃ℓ̄ = 0, then there exists a neigh-

borhood J(x0) such that, for all x ∈ J(x0)∩ ∂Sb̃, both [p⊤
ℓ̄

f (x)] b̃ℓ̄ = 0 and the

restriction f |(J(x0)∩∂Sb̃)\{x0} is continuous.

Then, there exists a local Carathéodory solution issuing from x0.

Proof. If p⊤ℓ f b̃(x0) b̃ℓ > 0 for all ℓ ∈ {1, . . . ,m}, then the vector field points into the

interior of Sb̃ and a local solution can be easily constructed as in [44]. In the case

of condition 2, i.e. when the vector field f (x) is parallel to one of the discontinuity

hyperplanes in a neighbourhood of x0 except, possibly, in x0, one can still construct

a sequence of Euler polygonal chains that lie on the hyperplane and converge to a

Carathéodory solution. �

Condition 2 in Theorem 2 is a relaxation of [13, Assumption (H3)], which is made

possible by the fact that discontinuities are (locally) hyperplanes. A simple applica-

tion of Theorem 2 is the following.

Example 3 (BC dynamics with 3 individuals–Continued). Consider again dynam-

ics (BC) with N = 3 and x0 = (0,1,2)⊤, as illustrated in Figure 2. We observe that

in the four sectors around x0,

p⊤1 f (1,1)(x0)(1) = 0 and p⊤2 f (1,1)(x0)(1) = 0

p⊤1 f (−1,1)(x0)(−1) = (−2)(−1)> 0 and p⊤2 f (−1,1)(x0)(1) = (1)(1)> 0

p⊤1 f (1,−1)(x0)(1) = (1)(1)> 0 and p⊤2 f (1,−1)(x0)(−1) = (−2)(−1)> 0

p⊤1 f (−1,−1)(x0)(−1) = (−1)(−1)> 0 and p⊤2 f (−1,−1)(x0)(−1) = (−1)(−1)> 0.

Then, Theorem 2 implies local existence. Actually, one can see that in this case

four solutions originate from x0, one for each sector: they are shown in Figure 4 as

functions of time.

More in general, we can prove existence of Carathéodory solutions of (BC) for

any initial condition. Carathéodory solutions of (BC) were studied in [7] where

existence and uniqueness of solutions were proved for almost all initial condition.

Here we prove2 existence for all initial conditions and we remark that in general we

do not have uniqueness. The proof is a verification of the assumptions of Theorem 2,

where we see that the sole strictly positive case suffices.

Corollary 1 (Existence for BC). For any initial condition there exists a local Ca-

rathéodory solution of (BC).

2 Even though the corollary is new, it could have been deduced by inspecting the proofs in [7].
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Fig. 4 Evolutions of the four solutions of (BC) that originate from x0 = (0,1,2)⊤.

Proof. We denote by f (x) the right-hand side of (BC) and observe that ∆ f = {x ∈
R : ∃ i, j ∈I such thatxi−x j = 1}. We first consider x0 ∈∆ f in the case x0i−x0 j = 1

for only one pair of indices i, j ∈ I . In this case m = 1 in Assumption 1, s1(x) =
xi − x j − 1 = (ei − e j)

⊤x− 1, and as b is either −1 or 1,

S(−1)(x0) = {x ∈ R
N : xi − x j − 1 < 0},

( f (−1)(x0))i = ∑h 6= j:|x0h−x0i|<1(xh − xi)− 1,

( f (−1)(x0)) j = ∑h 6=i:|x0i−x0 j |<1(xh − x j)+ 1,

as well as

S(1)(x0) = {x ∈ R
N : xi − x j − 1 ≥ 0},

( f (1)(x0))i = ∑h 6= j:|x0i−x0i|<1(xh − xi),

( f (1)(x0)) j = ∑h 6=i:|x0i−x0 j |<1(xh − x j).

We then get (ei−e j)
⊤ f (−1)(x0)=

[

∑h 6= j:|xh−xi|<1(xh − xi)−∑h 6=i:|xh−xi|<1(xh − xi)
]

−
2 and (ei − e j)

⊤ f (1)(x0) =
[

∑h 6= j:|xh−xi|<1(xh − xi)−∑h 6=i:|xh−xi|<1(xh − xi)
]

.

If
[

∑h 6= j:|xh−xi|<1(xh − xi)−∑h 6=i:|xh−xi|<1(xh − xi)
]

> 0, then [(ei−e j)
⊤ f (1)(x0)](1)>

0 and condition 1 of Theorem 2 is verified and a Carathéodory solution enter-

ing S(1) exists. If
[

∑h 6= j:|xh−xi|<1(xh − xi)−∑h 6=i:|xh−xi|<1(xh − xi)
]

≤ 0 then [(ei −
e j)

⊤ f (−1)(x0)] = [(ei −e j)
⊤ f (1)(x0)]−2 < 0 and [(ei−e j)

⊤ f (−1)(x0)](−1)> 0, so

that a Carathéodory solution issuing from x0 and entering S(−1) exists.

In case m > 1 in Assumption 1, i.e. x0i − x0 j = 1 for more than one pair

(i, j), one starts by considering the set S(1,1,...,1) and the vector f (1,1,...,1)(x0). If

[p⊤ℓ f (1,1,...,1)(x0)](1)> 0 for all ℓ∈ {1, . . . ,m} then condition 1 of Theorem 2 is ver-



10 Francesca Ceragioli and Paolo Frasca

ified. Otherwise there exists ℓ̄ ∈ {1, . . . ,m} such that [p⊤
ℓ̄

f (1,1,...,1)(x0)](1) ≤ 0. In

this case we consider the set S(1,...,−1,...,1) and the vector f (1,...,−1,...,1)(x0). From the

previous step we know that for ℓ= 1, . . . , ℓ̄−1 one has [p⊤ℓ f (1,...,−1,...,1)(x0)](1)> 0

and [p⊤
ℓ̄

f (1,...,−1,...,1)(x0)](−1) = [p⊤
ℓ̄

f (1,1,...,1)(x0)− 2](−1) > 0. Now, if for ℓ =

ℓ̄+1, . . . ,m one has [p⊤ℓ f (1,...,−1,...,1)(x0)](1)> 0, then condition 1 is satisfied, other-

wise one goes on with the same procedure. We remark that if [p⊤
ℓ̄

f (1,1,...1)(x0)]≤ 0,

then [p⊤
ℓ̄

f b(x0)]≤ 0 for all b ∈ {−1,1}m. The procedure stops after at most m steps,

having checked all the sectors, returning a certificate for condition 1. ⊓⊔

Regarding (QB), the following corollary of Theorem 2 is proved in [17]: in this

case, condition 2 of Theorem 2 needs to be applied.

Corollary 2 (Existence for QB). For any initial condition there exists a local Ca-

rathéodory solution of (QB).

We emphasize that Carathéodory solutions may not be unique, as shown in Ex-

ample 3. Another example of non-uniqueness is given by (QB).

Example 4. Consider the discrete behaviour dynamics (QB) over the undirected path

graph with N = 2 whose adjacency matrix A has non-null entries equal to 1 and the

initial condition x̄0 = (1/2,1/2)⊤. The right-hand side of the system is clearly dis-

continuous at x̄0. There are two solutions issuing from this point which correspond

to the limit values of f (x) when restricted to the two sets S(−1,1) = {x∈R
2 : xi− 1

2
<

0, i = 1,2} and S(1,1) = {x ∈ R
2 : xi − 1

2
≥ 0, i = 1,2}. These solutions converge to

(0,0)⊤ and (1,1)⊤, respectively. Their trajectories are the line segments joining the

initial condition with the points (0,0)⊤ and (1,1)⊤; see Figure 5.

✻

✲

③

③

O

③

�
�
�
�

�
�

�
�

�
��✒

�
��✠

x2

x11/2

1/2

Fig. 5 Lack of unicity in dimension 2 for dynamics (QB), see Example 4.
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3.2 Krasovskii solutions

In order to cope with non-existence of solutions, other generalized solutions have

been introduced in the literature. In the context described here, Krasovskii solutions

can be easily and successfully used.

Definition 2 (Krasovskii solutions). Let I ⊂ R be an interval with 0 ∈ I and let

x0 ∈ R
N . An absolutely continuous function ϕ : I → R

N is a Krasovskii solution of

(3) with initial condition x0 if ϕ(0) = x0 and if for almost all t ∈ I it satisfies the

differential inclusion

ϕ̇(t) ∈ K f (ϕ(t)), (4)

where

K f (x) =
⋂

δ>0

co{ f (y) : y such that ‖x− y‖< δ}.

We say that a local Krasovskii solution corresponding to the initial condition x0 ∈
R

N exists if there exist a neighbourhood I(x0) of x0, an interval of the form [0,T ) and

an absolutely continuous function ϕ : [0,T ) → I(x0) such that such that ϕ(0) = x0

and ϕ(t) is a Krasovskii solution of (3) on [0,T ).

The following existence theorem is an immediate consequence of [4, Theorem 3,

page 98], as the vector field f (x) is measurable and locally bounded.

Theorem 3. For any initial condition x0 ∈ R
N there exists a local Krasovskii solu-

tion of (3).

We underline that any Carathéodory solution is also a Krasovskii solution. An-

other type of generalized solutions often adopted for discontinuous systems are Fil-

ippov solutions ([24]). Under Assumptions 1 and 2, Krasovskii solutions coincide

with Filippov solutions (see [33]) .

3.3 Completeness of solutions

Besides local existence, we are interested in solutions that are defined on unbounded

intervals. The following condition is well-known: its proof is included for complete-

ness and tutorial purposes.

Proposition 2 (Prolongation by boundedness). Let (3) be a system that admits

local Carathéodory (Krasovskii) solutions for every initial condition in R
N . Let ϕ :

[0,T )→ R
N be a Carathéodory (Krasovskii) solution of (3). If ϕ(t) is bounded on

[0,T ), then it can be continued over [0,T ′) with T ′ > T.

Proof. Assume by contradiction that there exists an initial condition x0 whose corre-

sponding maximal Carathéodory (Krasovskii) right solution has domain [0,T ) with

T < +∞ and let {tn} be a sequence such that tn > 0 and lim tn = T . Since x(t) is
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bounded also the sequence {x(tn)} is bounded and thus there exists a subsequence

x(tnk
) converging to a point x∗. Since x(t) is continuous this implies that there ex-

ists limt→T x(t) = x∗ ∈ R
N . One can then pose a new Cauchy problem with initial

condition x(T ) = x∗ and then continue the Carathéodory (Krasovskii) solution on

an interval [T,T ′). We then get to a contradiction as the interval [0,T ) is not max-

imal for the considered Carathéodory (Krasovskii) solution with initial condition

x(0) = x0. ⊓⊔

This fact is useful because boundedness is easily established in our examples.

Proposition 3 (Boundedness). Any Krasovskii solution of (BC), (QS), (QB) de-

fined on an interval of the form [0,T ) is bounded.

Proof. Let m be any index in I such that xm(t) = min{xi(t), i ∈ I } and M any

index such that xM(t) = max{xi(t), i ∈ I }. In the cases of (BC) and (QS), it

is straighforward to verify that xm(t) is a non-decreasing function of time and,

similarly, that xM(t) is non-increasing. More delicate is the case of (QB), which

we verify in detail. Let qm(t) = q(xm(t)). We have to distinguish three cases. If

xm(t) ∈
(

qm(t)− 1
2
,qm(t)

]

, then ẋm(t) = ∑ j am j[q(x j(t))− xm(t)] ≥ 0, because by

definition xi(t) ≥ xm(t) for i ∈ I . If xm(t) ∈
(

qm(t),qm(t)+
1
2

)

, then xm(t) may

be decreasing as there may be other indices i such that q(xi(t)) = qm(t). Never-

theless, ẋm(t) ≥ 0 when xm(t) = qm(t) and then xm(t) remains lower bounded by

min{xm(0),qm(0)} The remaining case when xm(t) = qm(t)− 1
2

is more delicate

and specific to Krasovskii solutions. Indeed, there can exist an index ℓ such that

xℓ(t)= xm(t) but q(y)= qm(t)−1 for some points y in the neighborhood of xℓ, which

makes the (set-valued) right-hand side include negative values. In such a case, xm(t)
would be allowed to decrease, but this fact would in turn lead to the situation of the

second case. In conclusion, xm(t) is lower bounded by qm(0)−1 and similarly xM(t)
is upper bounded by qM(0)+ 1. ⊓⊔

Combining the previous two results we readily obtain the following

Corollary 3 (Completeness). Any Carathéodory solution of (QB) or of (BC), as

well as any Krasovskii solution of (QB), (QS) or (BC) is defined on [0,+∞).

This completeness result justifies the analysis of the limit behavior for the dynamics

of interest, which we shall undergo in Section 5. Before that, however, we turn our

attention to the study of equilibria.

4 Equilibria: agreement and beyond

In this section we recall the definitions of equilibria that are natural in our context,

we briefly discuss some counterintuitive facts about generalized equilibria, and then

we study the equilibria of systems (BC), (QB), and (QS).
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Equilibria are points where a solution can remain indefinitely3. In the context of

generalized solutions, this general definition leads to distinguish between Carathéo-

dory equilibria and Krasovskii equilibria.

Definition 3 (Equilibria). A point x∗ is a Carathéodory (Krasovskii) equilibrium

of (3) if the function ϕ(t)≡ x∗, t ≥ 0, is a Carathéodory (Krasovskii) solution of (3).

Carathéodory equilibria are characterized by the equation f (x) = 0 while Kra-

sovskii equilibria are characterized by the inclusion 0 ∈K f (x). Thanks to the mul-

tiplicity of solutions, there are examples of non-costant solutions issuing from an

equilibrium point.

Example 5 (Escaping from equilibria). Consider the bounded confidence system (BC)

with N = 2 and the initial condition x0 = (−1/2,1/2)⊤. Let us denote by f (x) the

vector field defined by the right-hand side of (BC). Clearly x0 is a discontinuity

point as x02 − x01 − 1 = 0 and m = 1 in Assumption 1. Let s1(x) = x2 − x1 − 1 =
(−1,1)x− 1. Note that f (x0) = 0, then x0 is a Carathéodory equilibrium point for

the system. On the other hand f (−1)(x0) = (1,−1) and [(−1,1) f (−1)(x0)](−1) =
(−2)(−1) = 2 > 0. A Carathéodory solution starts from x0, enters S(−1) and con-

verges to (0,0).

Being f (x) in (3) allowed to be discontinuous, there may be points which are at-

tractive for Carathéodory solutions without being Carathéodory equilibria: actually,

these pathological points are Krasovskii equilibria.

Example 6 (Attractive non-Carathéodory equilibria). Let us consider the quantized

behaviour system (QB) over an undirected 4-node path graph with adjacency matrix

A =









0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0









.

The point x0 = (0, 1
2
, 1

2
,1)⊤ is attractive for Carathéodory solutions issuing from

points in the set {x ∈ R
4 : −1/2 ≤ x1,x2 < 1/2, 1/2 ≤ x3,x4 ≤ 3/2)}. Point x0 can

not be a Carathéodory equilibrium, because q(x02) = 1 6= x01 = 0, even though it is

a Krasovskii equilibrium. A Carathéodory solution originating from x0 converges to

(1,1,1,1)⊤.

The following propositions concern equilibria of the systems under consider-

ation. For the dynamics (BC) the sets of Carathéodory and Krasovskii equilibria

coincide. The equilibria are precisely those states where individuals either agree or

are enough apart not to influence each other, as specified in the following simple

result already available in [8].

3 Note that this is a “weak” notion of equilibrium: in case of multiple solutions, we do not require

that all solutions remain at the equilibrium.
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Proposition 4 (Equilibria of BC). The set of Krasovskii equilibria of (BC) is

F = {x ∈ R
N : for every (i, j) ∈ I ×I , either xi = x j or |xi − x j| ≥ 1}.

In the case of the quantized states dynamics (QS) Carathéodory equilibria and

Krasovskii equilibria differ. Carathéodory equilibria are not necessarily consensus

points, but the quantizations of their states must agree. The following proposition

was proved in [14].

Proposition 5 (Equilibria of QS). The set of Carathéodory equilibria of (QS) is

D = {x ∈ R
N : ∃h ∈ Z such that h− 1

2
≤ xi < h+

1

2
, ∀ i ∈ I }.

The set of Krasovskii equilibria of (QS) is D .

In case of the quantized behaviours equation (QB) we do not have a character-

ization of the set of equilibria. On the one hand, we observe that consensus points

of the form h1 with h ∈ Z are Carathéodory equilibria. On the other hand, there

exist equilibria that are far from consensus and are attractive for some Carathéodory

solutions. An example is provided in the next result.

Proposition 6 (Far-from-consensus equilibrium of QB). Consider (QB) with an

N-node path as underlying graph and all non-zero entries of the adjacency matrix

A equal to 1. Then, there exists a Krasovskii equilibrium x∗ such that

x∗N − x∗1 =

{

(N−2)2

4
if N is even

(N−1)(N−3)
4

if N is odd.

Proof. The equilibrium can be constructed as follows. We select k ∈ Z
N such that

k1 = 0 and

ki − ki−1 =

{

i− 2, 2 ≤ i ≤ N+2
2

N − i, N+2
2

< i ≤ N

and then we set
x∗1 = k2

x∗i =
ki−1+ki+1

2
, i = 2, . . . ,N − 1

x∗N = kN−1.

It can be easily verified (details in [17]) that x∗ is a Krasovskii equilibrium. �

5 Disagreement and distance from consensus

In the models (BC), (QS), (QB) we can not expect to have the same converge prop-

erties as (1): in fact they are interesting as they attempt to explain agreement and
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disagreement at the same time. For these models we point out occurrence of dis-

agreement, we give estimates of distance from consensus and, when possible, we

give sufficient conditions for convergence to consensus.

5.1 Bounded confidence dynamics

In general, the following is the strongest convergence result that has be given

about (BC). An example of evolution is in Figure 6.

Theorem 4 (Asymptotic behaviour [15]). Any Krasovskii solution of (BC) con-

verges to a point in F .

In the wake of this fact, much research (from [8] to [49]) has been devoted to un-

derstand to which point in F a solution converges. Since the interaction topology

is encoded in the state x by the definition of function a(·, ·), conditions should be

given in terms of the initial condition x(0). For instance, one can immediately ob-

serve that if G (x0) is a complete graph, then the dynamics converges to a consensus.

More general, though not necessary, conditions for consensus are stated in [51].

Theorem 5 (Sufficient condition for consensus). If x0 ∈R
N is such that

1. G (x0) is connected and

2. for any edge (i, j) ∈ E (x0) the set {k ∈I : (i,k) ∈ E (x0)and( j,k) ∈ E (x0)} has

cardinality not smaller than N
2
− 2,

then Krasovskii solutions issuing from x0 converge to the consensus point xave(0)1.

The previous conditions imply that initial values can not be too much spread. For ex-

ample, in the case of 10 agents, the distance among agents for G (x0) to be connected

can be as large as 9, but in order to satisfy the second condition of Theorem 5, it can

be at most 3. Other sufficient conditions for consensus may be found by applying

the methods in [47].

5.2 Quantized states dynamics

Convergence to the set of equilibria can also be proved for dynamics (QS), an ex-

ample of which is given in Figure 7.

Theorem 6 (Sufficient conditions for discrete consensus [14]). Any Krasovskii

solution ϕ(t) of (QS) is such that dist(ϕ(t),D)→ 0 as t →+∞.

We remark that the set D is not formed by consensus points, but points in D

are such that q(xi) = q(x j) for all i, j ∈ I . Thus the 2-norm distance of Krasovskii

solutions from consensus is, asymptotically, at most
√

N/2.
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Fig. 6 Evolution of a solution of (BC) from a random initial condition on 25 nodes.

The assumptions that L be symmetric and the interaction graph be undirected can

be lifted: recently, [50] has proved the same convergence property for more general

functions q and weaker connectivity. Namely, q only needs to be nondecreasing and

the graph can be directed and only needs to have a globally reachable node4.
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0

1
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4

5

6

7

t

x

Fig. 7 Evolution of a solution of (QS) on a cycle graph on 25 nodes from the same initial conditions

as Figure 6.

5.3 Quantized behaviour dynamics

For this system, a general proof of convergence to the equilibria is missing. How-

ever, some properties of solutions for large times can be established and are con-

firmed by simulations, see Figure 7.

4 We refer the reader to [23, Chapter 1] for the relevant definitions about directed graphs.
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Theorem 7 (Distance from consensus). If ϕ(t) is any Krasovskii solution of (QB)

and

M =

{

x ∈R
N : inf

α∈R
‖x−α1‖ ≤ ||A||

λ∗

√
N

2

}

,

then dist(ϕ(t),M)→ 0 as t →+∞.

Proof. First of all we observe that system (QB) can be written

ẋ =−Lx+A(q(x)− x) (5)

Let y(t) = x(t)−xave(t)1. Then ẏ(t) = ẋ(t)− ẋave(t)1. Consider the function V (y) =
1
2
y⊤y. We have that

∇V (y)⊤ẏ =y⊤ẏ

=(x− xave1)⊤[ẋ− ẋave1]

=(x− xave1)⊤ẋ− x⊤ẋave1+ xave1
⊤ẋave1

=(x− xave1)⊤ẋ− ẋavex⊤1+ ẋaveNxave

=(x− xave1)⊤ẋ− ẋaveNxave + ẋaveNxave

=(x− xave)
⊤ẋ.

As L1 = 0, we have

ẋ ∈−L(x− xave1)+AK (q(x)− x)⊆−L(x− xave1)+A(K q(x)− x).

For any v ∈ K q(x)− x, it holds ‖v‖ ≤
√

N
2

. Then, if v ∈ K q(x)− x is such that

ẏ =−L(x− xave1)+Av, we have

∇V (y)⊤ẏ =(x− xave1)⊤[−L(x− xave1)+Av]

=− (x− xave1)
⊤L(x− xave1)+ (x− xave1)

⊤Av

≤−λ∗‖x− xave1‖2 + ‖x− xave1‖‖A‖
√

N

2

≤‖x− xave1‖
[

−λ∗‖x− xave1‖+ ‖A‖
√

N

2

]

.

We conclude that dist(x(t),M)→ 0 as t →+∞, because otherwise V would decrease

unboundedly along solutions, which is forbidden by V being nonnegative. �

We remark that this result is tight in the following sense: on some graphs, the

estimate on the limit set is asymptotically tight for large networks in the sense of the

Euclidean distance from the consensus. More precisely, if the graph is a path with

N nodes and weights are uniform, for all points in the attractor M it holds true that
1√
N
‖x− xave‖ = O(N2) as N → ∞. At the same time, the equilibrium x∗ that was

constructed in the proof of Proposition 6 is such that (for odd N)
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1√
N
‖x∗− x∗ave‖=

1√
120

N2 + o(N2) as N → ∞.

Hence, the estimate of M can not be improved in general in terms of distance from

consensus. Details of these computations can be found in [17].

Even though not guaranteed in general, consensus is achieved on some topolo-

gies. An example of such result is the following.

Theorem 8 (Sufficient conditions for consensus). If the graph underlying sys-

tem (QB) is either complete or complete bipartite and its adjacency matrix A has

all non-null entries equal to 1, then all Krasovskii solutions of (QB) converge to a

consensus point.

The proof of this result, which can be found in [17], is based on showing that

maxi xi(t)−mini xi(t) is decreasing and converges to zero.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

t

x

Fig. 8 Evolution of a solution of (QB), assuming the same initial conditions and graph as Figure 7.

6 Discussion: the origins of disagreement in opinion dynamics

The dynamics analysed in this paper are meant to describe opinion dynamics in

social networks. In this context, the nodes of the graph are individuals, an edge be-

tween two nodes means that they socially interact and the i-th component of the

state represents the value of the i-th individual’s opinion. This graph-based model-

ing approach has a strong support in mathematical sociology [27, 43] as well as in

economics [36] and in the physics of complex systems [11, 32, 5].

The basic assumption in these models of opinion dynamics is that if an individ-

ual communicates with another, then his/her opinion is attracted by the other’s. If

one translates this assumption into a set of differential equations, then one gets sys-

tem (1), as already proposed in [1]. This dynamics asymptotically leads to consen-

sus, i.e. agreement of the individuals on the same opinion, except in case there are
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different groups of individuals which do not communicate with each other, i.e. the

communication graph has separated connected components. However, it has been

noted that agreement is rare in societies [28], even if individuals do communicate:

for this reason, more complex models have been elaborated with the aim of explain-

ing agreement and disagreement at the same time.

In this paper we have focused on a group of models involving different kinds of

threshold phenomena leading to discontinuities. Before going back to discuss their

features, it is important to mention that these are not the only possible explanations

for disagreement. In [29] disagreement is explained as the effect of obstinacy, that

is translated into the dependence of any individual’s opinion on its initial value.

Stubborness as the source of disagreement is also considered in other models, such

as [39, 42], also in connection with the occurrence of randomized asynchronous in-

teractions [2, 25, 45]. Another explanation has been proposed to be the presence of

contrarians [31] or of negative interactions, i.e. negative weights in the adjacency

matrix [3]. Similar dynamics on “signed graphs” may also feature randomized in-

teractions [46] or bounded confidence [18].

Going back to the models considered in this paper, we now try to summarize

their features in the opinion dynamics context, beginning with (BC). Bounded Con-

fidence dynamics allow for the existence of complete Carathéodory solutions for

every initial condition and all Krasovskii solutions are proved to converge to an

equilibrium. The structure of these equilibria is a set of separated clusters of individ-

uals sharing the same opinion. In [8, 15] it is proved that, due to robustness issues,

one can expect the opinion values of different clusters to be approximately twice the

threshold apart. The most recent results on this matter are probably those in [49].

Actually, a fine understanding of how the final opinions depend on the initial ones

is still missing. In this chapter, we have reported a sufficient condition for consen-

sus, which asks for the initial opinions to be already quite close to each other. Other

models that involve assumptions of bounded confidence include [22, 38, 9, 52, 26].

Consensus dynamics with quantization have first been studied with engineering

motivations, while seeking controlled dynamics that could lead to (approximate)

consensus despite the constraint of quantization [10, 41]. Proposed in this context

by [14], the quantized states dynamics (QS) does not allow for global existence

of Carathéodory solutions and thus requires to consider Krasovskii solutions: all

Krasovskii solutions converge to equilibria such that the quantized opinions are

equal. This is not exactly consensus, as individuals’ opinions may slightly differ, but

they agree on their quantized values. Consistently with its history, dynamics (QS)

better fits engineering applications than social dynamics5: we believe that a better

model of quantized social interactions is given by the quantized behavior dynam-

ics (QB), which we proposed in [16, 17]. This model allows for the existence of

complete Carathéodory solutions for every initial conditions, but Krasovskii solu-

tions are preferred to avoid the pathology of solutions converging to non-equilibrium

point. In general, a result of convergence to equilibria is missing, but a tight result

of convergence to a set is available. Remarkably, there can be equilibria very far

5 The discretization of the opinions in social systems has been observed by social scientists [30,

Chapter 10] and addressed in several models including [48, 37, 20].
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from consensus, in which the difference among different opinions of individuals is

proportional to N2.

Beyond the specific dynamics considered in this chapter, we believe that dynami-

cal models that involve discontinuities can be useful in the study of social dynamics:

we thus hope that the tools collected here can also be useful in the analysis of new

and richer models.
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