
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Improving the effectiveness of SQL learning practice: a data-driven approach / Cagliero, Luca; DE RUSSIS, Luigi;
Farinetti, Laura; Montanaro, Teodoro. - STAMPA. - 1(2018), pp. 980-989. ((Intervento presentato al convegno 42nd
IEEE Computer Society International Conference on Computers, Software & Applications (COMPSAC 2018),
Symposium on Computer Education & Learning Technologies (CELT) tenutosi a Tokyo (Japan) nel July 23-27, 2018.

Original

Improving the effectiveness of SQL learning practice: a data-driven approach

ieee

Publisher:

Published
DOI:10.1109/COMPSAC.2018.00174

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2709321 since: 2018-06-26T14:27:47Z

IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by PORTO@iris (Publications Open Repository TOrino - Politecnico di Torino)

https://core.ac.uk/display/234923021?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Improving the effectiveness of SQL learning practice:
a data-driven approach

Luca Cagliero, Luigi De Russis, Laura Farinetti

Politecnico di Torino
Torino, Italy

{luca.cagliero, luigi.derussis@laura.farinetti}@polito.it

Teodoro Montanaro

Istituto Superiore Mario Boella
Torino, Italy

montanaro@ismb.it

Abstract—Most engineering courses include fundamental

practice activities to be performed by students in computer labs.
During lab sessions, students work on solving exercises with the
help of teaching assistants, who often have a hard time for
guaranteeing a timely, optimized, and “democratic” support to
everybody.

This paper presents a learning environment to improve the
experience of the lab sessions participants, both the students and
the teaching assistants. In particular, the environment was
designed, implemented, and experimented in the context of a
database course. The application designed to support the
learning environment stores all the events occurring during a
SQL practice lab, i.e., task progression, query submissions, error
feedback, assistance requests and interventions, and it provides
information useful both for use on-the-fly and for later analysis.
Thanks to the analysis of these data, the application dynamically
provides teaching assistants with a graphical interface
highlighting where assistance is most needed, by considering
different factors such as the progression rate, the percentage of
correct solutions, and the difficulties in solving the current
exercise. Furthermore, the stored data allow teachers later on to
analyze and to interpret the behavior of the students during the
lab, and to have insights on their main mistakes and
misconceptions.

After describing the environment, the interfaces, and the
approaches used to identify the students’ teams that need timely
assistance, the paper presents the results of different analyses
performed using the collected data, to help the teacher better
understand students’ educational needs.

I. INTRODUCTION

Engineering curricula strongly rely on lab activities, where
student can test, practice, and improve their learning
achievements. Computer labs, specifically, require students to
solve programming tasks working alone or in a team, with the
support of teaching assistants in a controlled environment.

Large universities, with a high number of enrolled students
and a low teacher per student rate, often have to face a big
challenge to ensure everybody a valuable computer lab
experience. In our university, B.S. computer science courses
have an average number of 240 enrolled students, and each lab
session has about 80 participants. Computer labs have 40-60
computers, and in general only 2 or 3 teaching assistants are
available to help students during their tasks. In these
conditions, students’ experience is far from optimal, and this is
reflected by the progressive decrease of lab participation during
the course semester: the number of students that take part to the

last computer lab session is generally less than half of the
number of students that participated in the first one.

In such a context, students who have trouble in solving
their tasks are often stuck waiting to get the teacher assistants’
attention. On the other hand, teachers are often overwhelmed
by many assistance requests and sometimes cannot guarantee
adequate timely help to everybody. Besides, students’ attitude
can play an important role [1]: shy students tend not to ask for
help even if they are in trouble, while others keep calling for
assistance without even trying to solve problems
autonomously.

The research presented in the paper aims at providing
teaching assistants with an environment to support their task
during computer science lab sessions. Specifically, we
designed, implemented, and experimented a tool for SQL
practices in lab that:

• anonymously records students’ activities on all lab
workstations;

• records students’ requests for assistance, and teachers’
assistance events;

• interprets activities and assistance requests in order to
understand the performance level of the students, and
specifically to extract the “difficulty level” they
experience at any time;

• provides assistants with a dynamic comprehensive
overview of the difficulty levels of every workstation
with a simple “color status” interface, by suggesting
where assistance is most needed;

• provides assistants with a detailed graphical view for
each of the workstations, to highlight the reason why
assistance is needed (e.g., many wrong tentative
solutions, inactivity periods, …)

The idea behind this research is to provide teaching
assistants with an optimized, prioritized, and “democratic” way
for giving assistance to students, through an informed
environment where they can easily spot who is more in trouble
according to objective parameters (and not simply by raised
hands). This research, furthermore, has a second objective: the
recorded session data can be analyzed afterwards to extract
useful information about students’ behavior during SQL lab
sessions, and about the most common mistakes and
misunderstandings. Such an analysis provides an important
feedback that teachers can exploit in future classroom lectures.

The remainder of the paper is organized as follows. Section
II provides a discussion on the related works. Section III
describes the designed environment, with a focus on the SQL
lab experiment and on the teaching assistant interface, while

Section IV reports the analysis of the collected data, focusing
both on students’ experience and behavior during the lab, and
on educational aspects related to the database course topics.
Finally, Sections V draws the conclusions and highlights
challenges and future perspectives of this work.

II. RELATED WORK

Supporting students in learning the SQL language is an
established learning problem. For example, Mitrovic [2]
proposed a tutoring system for guided SQL learning. The
architecture of the proposed system is focused on a constraint-
based model, which supports students in learning from errors
by providing them with targeted hints. The SQLator Web-
based interactive tool for learning SQL has been proposed in
[3]. SQLator integrates an advanced function, based on a
heuristic algorithm, to allow users to evaluate the correctness
of their query formulation. In [4] the authors investigated the
use of iconic metaphors in a higher level query language
similar to SQL. The goal was to help users to learn and
comprehend the relational data model.

More recently, the focus has moved to the proposal of new
learning analytics environments able to collect significant user-
generated data [5]. Learner-generated data can be used by
professionals for the discovery of significant information. For
example, the knowledge extracted from data acquired during
SQL learning practices can help teachers and students to
manage and monitor the teaching-learning process [6]. The
learning environment proposed in this paper focuses on
improving the interaction between students and teaching
assistants during assisted SQL practices in lab. Unlike [5] and
[6], the proposed environment relies on online monitoring and
evaluation of the progress status of the SQL-based practice. It
fosters effective student-teacher interactions based on the
generation of specific alarms and on the graphical reporting of
sequences of key activities performed by the students.
Parallel efforts have been devoted to quantitatively evaluating
the difficulties in learning the SQL language [7] [8] and to
categorizing the most common semantic mistakes in writing
SQL queries [9] [10]. Unlike the above-mentioned work, the
focus of this research is neither on categorizing common
mistakes nor on evaluating the complexity of SQL queries, but
to support both students and teachers during SQL practice in
lab. To analyze students’ interaction with the proposed learning
environment, we categorized SQL query errors based on the
categorization given in [9].

III. EDUCATIONAL CONTEXT AND EXPERIMENT SETTING

The educational context for which the environment was
designed, implemented, and experimented is the course on
databases of the second year of the B.S. curriculum in
Engineering and Management. This course has about 650
enrolled students, one of its main focuses is on the SQL
language, and the lab activities involve SQL query exercises.

The environment was then designed to support students in
practicing SQL queries with the Oracle DBMS [11]. It was
tested in this specific course, but a database course is present in
all the curricula in Engineering, and therefore is it highly
reusable, with a potential number of 4,000 students every year.

During the 90-minutes weekly lab sessions, students are
divided in 6 groups. The computer lab has 43 workstations

with one or two working students (sometimes even three), and
three teaching assistants provide students’ support.

The lab session involved in this experiment was the second
one, so that most students were already familiar with the type
of practice to be completed. The task was to perform 13 SQL
query exercises of medium complexity. Past years’ experience
showed that practically nobody was able to complete all the
exercises, and most of the teams finish 6 or 7 of them. In these
cases, students are strongly encouraged to finish the task later
in autonomy.

A. Learning environment rationale and description

The developed learning environment, whose architecture
will be detailed in subsection II.B, has been designed to
support and record the students’ activities while solving the 13
proposed SQL exercises. Students’ interface (see Figure 1)
proposes one exercise at a time, with the problem statement,
the associated database schema and the table representing the
correct results. The students enter their tentative query and the
Oracle DBMS executes it, providing the feedback that is
shown to the learners. Besides the Oracle message (useful for
understanding query errors), when the query is syntactically
correct the environment compares the expected result with the
executed result.

Fig. 1. Students’ interface.

In addition, the interface allows teams to send a help
request to the teaching assistants. The request will be displayed
as an orange bell close to the requesting workstation icon (see
subsection II.C) on the assistant interface.

The environment stores a number of event-related data in
its database during each lab session, and precisely for every
workstation:

• the text of every query submission, with the relative
timestamp and the associated exercise identifier;

• the associated feedback message (i.e., correct query,
Oracle message in case of syntactical error, application
error in case of result error);

• the progressive number of the current exercise attempt
(e.g., attempt 3 for exercise number 5);

• the requests for assistance, with the relative timestamp;

• the timestamps relative to the start and the end of every
assistance intervention.

Thanks to these data, it is possible to extract useful
information for interpreting the status of the students’ teams,
and specifically for understanding how confident and
performant they are, and whether they need extra support.

Each workstation is dynamically assigned a color status
(green, yellow, or red) that reflects the positive/negative
performance according to a number of factors computed from
the collected data:

1) The current exercise number, compared to the modal
value of the current exercise numbers of all the
workstations; this factor takes into account the relative
progress of the students, and identifies the teams that
are far slower than the average, i.e., that are potentially
in trouble.

2) The percentage of correctly solved exercises: the
students’ interface, in fact, allows students to skip an
exercise and to proceed to the next one; this factor
takes into account the unsuccessful attempts and it is
related to the perceived complexity of the exercises. A
low percentage of correctly solved exercises definitely
identifies teams that need extra support.

3) The time devoted to the current exercise; this factor is
useful for timely identifying teams that have problems
in solving a specific exercise.

4) The number of unsuccessful query submissions for the
current exercise; like the previous one, this factor
identifies problems related to a specific exercise,
independently of the performance in the previous ones.

The color status depends on the values of these factors,
combined in three components that are independently
evaluated as “Good (G)”, “Average (A)” and “Bad (B)” and
then weighted to produce a single value mapped to one of the
three colors. The three components are:

A. Current exercise status. It depends on factors 3) and 4)
and specifically is:

• GA (Good) if ((t < 5 min) AND (NA < 4) OR
(NA < 1)), i.e., the current exercise status is
considered good if the team has been working on
it for less than 5 minutes and the unsuccessful
query submissions (NA=number of attempts) are
less than 4, or if there are not query submissions
yet (inactivity);

• AA (Average) if ((5 min <= t <= 8 min) AND
(NA >= 1)), i.e., the current exercise status is
considered average if the team has been working
on it for more than 5 minutes but less than 8, and
the unsuccessful query submissions are at least 1
(to ignore the case of inactivity);

• BA (Bad) if (t > 8 min) AND (NA >= 1), i.e. the
current exercise status is considered average if
the team has been working on it more than 8
minutes, and the unsuccessful query submissions
are at least 1;

Timing has been chosen by considering the average
time required for solving the proposed exercises,
thanks to the experience of previous years’ lab
sessions. The results discussed in Section IV will be
used for an optimized timing choice in future

experiments, according to actual students’ average
behavior for each exercise.

B. Past exercises status. It depends on factor 2) and
specifically is:

• GB (Good) if (SE > 85%), where SE =
percentage of correctly solved exercises, i.e., the
past exercise status is considered good if the
team has correctly solved more than 85% of the
proposed exercises;

• AB (Average) if (70% <= SE <= 85%), i.e., the
past exercise status is considered average if the
team has correctly solved between 70% and 85%
of the proposed exercises;

• BB (Bad) if (SE < 70%), i.e., the past exercise
status is considered average if the team has
correctly solved less than 70% of the proposed
exercises.

C. Temporal progression status. It depends on factor 1)
and specifically is:

• GC (Good) if (NCE > modal value +1), where
NCE = number of current exercise, i.e., the
temporal progression status is considered good if
the team is progressing quicker than most of the
other teams;

• AC (Average) if (NCE = modal value ± 1), i.e.,
the temporal progression status is considered
average if the team is progressing like most of
the other teams;

• BC (Bad) if (NCE < modal value - 1), i.e., the
temporal progression status is considered bad if
the team is progressing slower than most of the
other teams.

“Good”, “average” and “bad” statuses are assigned a
coefficient of 0.8, 0.5 and 0.2, respectively. For the first two
exercises only coefficient A (CA) is considered, while for the
other exercises CA weights for 50%, coefficient B (CB) for 20%
and coefficient C (CC) for 30%.

The final comprehensive coefficient CT is then calculated as
CT = 0.5 * CA + 0.2 * CB + 0.3 * CC, and the color status is
Green if CT >= 0.55, Yellow if 0.45 < CT < 0.55, and Red if CT
<= 0.45.

Values and thresholds have been chosen through
simulation, and validated during the experiment.

B. The environment architecture

The developed application is structured in two parts, one
running on each computer in the computer lab (client) and the
other running on a dedicated central server.

The client is the only interface towards the students. It is
composed of a Web application linked to a local database with
the SQL exercises to be completed by the students and their
progression (see Figure 1). The client contains and presents to
the students the exercises to be performed during a session and
allow them to execute the SQL queries as well to see the
results (or the errors) of their operations. The client interacts
with the central server for saving data (i.e., results, timestamps,
errors, etc.) and for asking for the help of the teaching
assistants. For the lab experiment described in the following
subsection III.D, the client was developed as a PHP application

connected to the Oracle DBMS that was already running on
each computer.

The central server, instead, provides a set of REST APIs to
collect the data coming from each client, and a graphical
interface for the teacher assistants. The server, therefore, can
handle multiple requests and it is agnostic with respect to the
specific exercise that are shown in the client interface. The user
interface provided for the teaching assistants is illustrated in
the following subsection III.C. In the lab experiment described
in the paper, the server is implemented as a PHP application
connected to a MySQL server. Finally, the data analysis
reported and discussed in the following was extracted from the
server.

C. The teaching assistant interface

The server provides a graphical interface for the teaching
assistants, depicted in Figures 2 and 3. The goal of this
interface is twofold: from the one hand, it shows how the
laboratory is going, according to the metrics previously
described (subsection III.A); on the other hand, it allows the
teaching assistants to immediately catch any problems in the
lab and act consequently. This second part is particularly
important in a lab crowded by students, in which multiple
requests may happen simultaneously and frequently. The user
interface, developed as a Web application, is responsive so that
the teaching assistants can check the progress of the lab from a
computer, a tablet or a smartphone, without being stuck in a
specific position in the lab.

Fig. 2. Teaching assistant interface – map of the laboratory with the status
of each workstation.

Figure 2 shows the main page of the teaching assistants’
interface. It represents the map of the laboratory with the color
status associated to each computer available in the lab. When a
student asks for help through the client interface, an orange bell
appears on the map, as for the pcopi44 computer in figure. In
this way, a teaching assistant, with a quick glance at the overall
status of the lab, can decide to autonomously intervene in case
of a “red” status, as she can also immediately see any request
for assistance coming from the students. In the figure, the
white color indicates a non-used workstation.

Figure 3, instead, depicts the detail page associated to each
computer in the map, pc10 in this case. The page shows four
information:

1) Whether the students has requested any help, as
indicated by the bell on the top of the page; if the bell is

orange, then the student requested help for the current
exercise.

2) The progression of the exercises. Completed and
correctly executed exercises are in green, not correctly
finished exercises are in red, while exercises still to do are
indicated in white. In the case depicted in Figure 3, the team
already completed 8 exercises, two of which are not correct.
The progression bar also highlights the current modal value of
the lab, shown by a black vertical line (located between
exercise 5 and 6, in figure).

3) The number of times the student received any help
(zero, in this case).

4) The possibility, for the teaching assistant, to intervene
on the current exercise (the “Start” button on the bottom of the
picture). To have precise data about assistance interventions,
in fact, the teaching assistant could use this modality.

Fig. 3. Teaching assistant interface – detail of a single workstation.

D. The lab experiment and the feedback

The experiment, which took place in early November 2017,
consisted of six 90-minutes lab sessions (in three different days
of the same week) and involved five teaching assistants (three
simultaneously in each session). Different students participated
to each session, to accommodate in the 43-workstations lab all
the interested students. The total number of students involved
in the experiment was 370, because participation to labs is
optional (even tough highly encouraged). The total number of
participating team of students, i.e., the total number of used
workstation, was 205. Table 1 resumes students’ participation
in each of the lab sessions, and the number of teams.

TABLE I. SUMMARY OF EXPERIMENT PARTICIPATION

Lab session Students’ teams Students
1 35 50
2 43 95
3 25 39
4 37 79
5 26 35
6 39 72

The experiment was performed without any major issue

and all the participants (students and teaching assistants) were
able to use the tool and take advantage of the teaching
environment.

After the experiment, we interviewed the teaching
assistants, and the feedback was largely positive. After an
initial adjustment to the new learning environment, they
noticed an improvement of the service to the students, being
less distracted by raised hands, and aware, thanks to the

interface, of the actual and objective difficulties of the working
teams. They judged the new learning environment more
dynamic and efficient, and also more “democratic”: in fact, the
interface updates the total number of requests from all
workstations, allowing the assistants to give priority to students
who have not been assisted yet.

They also reported that more than one third of the
interventions were not initiated by a specific help request, but
were consequence of the color status (red or yellow) of the
workstations in the interface, thus providing a punctual and
timely support to students that are potentially in trouble. This is
an advantage of this environment with respect to traditional
ones, were very little support is given to students that make no
specific requests, mainly because it is difficult to understand
the actual situation of a team by simply passing behind their
back and looking at what they are doing.

The color status of the workstation helped the assistants
also to prioritize help requests, processing first the ones that
have an associated red color.

Besides, the teaching assistants reported a generally curious
and positive attitude of the students towards the new learning
environment, also confirmed by the sample interviews we did
with the students at the end of each lab session.

On the other hand, the assistants complained about some
delays in switching on and off the bell signal (help request),
and they did not like to have to press the “start intervention”
and “stop intervention” buttons on their interface every time
they gave support (to record these events), especially because it
was very easy to forget. These aspects will be considered in the
next version of the learning environment.

Finally, they suggested that the application should display
the list of workstations in order of assistance priority,
considering not only the color status but also the timestamp of
the help request (which presently is ignored). In case of many
quasi-simultaneous help requests, in fact, they could not decide
quickly were to go first.

About the students’ feedback, from their point of view
there was no major difference with respect to the traditional
environment. The interface for query submission was slightly
different than the Oracle’s one and somebody complained
about it because it was not familiar. The query text area was
too small, but it will be enlarged in the next version of the
interface. On the other hand, the interface included the
expected table output to compare quickly with their solution
output, and this feature was considered very helpful.

The approach for handling the “help requests” was highly
appreciated, as soon as they realized that they did not need to
spend much time attracting assistant’s attention, but they could
send a request and wait while keeping working on their tasks.

Both students and teaching assistants, finally, think that this
environment can be effectively applied to other database
courses, at least for all the labs involving SQL query exercises.

IV. ANALYSIS OF STUDENTS’ BEHAVIOR

In this section, we analyze the data generated from the
interaction between the teams of students and the learning
environment. The aim of the analysis is to study the behavior
of the students in solving exercises with different complexity.
This information can be exploited for multiple purposes. On
the one hand, teachers can understand the main students’

difficulties and misconceptions. On the other hand, they can
revise and improve the content of the practices based on the
data collected during the past experiences. Specifically, the
research questions we are addressing are:

1. Are the duration and complexity of the practice
appropriate for the current level of knowledge of the
students?

2. Are the exercises proposed in the most suitable order?
3. In what situations are students most frequently asking

for assistance?
4. What is the impact of assistance interventions on

students’ activities?

To analyze the interaction between the students and the
environment, we collected data about the time at which teams
accessed each exercise (eventually multiple times), the
submissions of solutions for each exercise, the correctness of
the submitted solutions, and the most common mistakes.
Hereafter, we will separately analyze data related to the
following aspects:

a. The number of accesses to the interface for submitting
solutions to the proposed exercises.

b. The number of attempts made by the teams of students
to solve each exercise and the correctness of the
submitted solutions.

c. The SQL queries submitted by the teams.
d. The time spent in solving each exercise.
e. The number of requests for assistance.
f. The temporal progression of the students’ activities.

A. Number of accesses to each exercise

 We analyzed the distribution of teams’ accesses to the
proposed exercises. In the guided practice, the exercises were
proposed in order of increasing level of complexity. Although
the students were recommended to solve the exercises in
sequential order, the interface allowed them to move backward
and forward, eventually reconsidering some of the previously
accessed exercises.

Fig. 4. Teams’ accesses to SQL exercises.

 The bars in Figure 4 show the number of teams who made a
single access to each exercise. The overlapped line indicates,
for each exercise, the number of students who performed
multiple accesses.
 The total number of teams interacting with the learning
environment was 205. The majority of the students tried to
solve the exercises from 1 to 5; approximately half of them
solved exercises 6 and 7 as well, while only a few of them
accessed exercises from 8 to 13. The number of students who

accessed the exercises more than once is maximal for exercises
from 1 to 4, while it drops for exercises from 7 on because
most students spent all of their time in solving the previous
ones.
The results confirm that an average-level student would need
more than the available 90 minutes to complete the practice.
Most students solved all the simplest exercises plus a selection
of two or three more complex ones (based on their
preferences). Since some exercises were addressed only by few
students, they were encouraged to solve the remaining
exercises as home practice.

B. Number of query submissions

After accessing each exercise, teams submit their solution.
The bars in Figure 5 show, for each exercise, the number of
teams that submitted at least one solution (either correct or
incorrect), while the overlapped line highlights the portion of
teams who have submitted a correct solution through the
environment. The success rate (i.e., the percentage of teams
that submitted a correct solution) is above 70% for exercises 1,
3, and 6, while it is below 50% for all the other exercises.
Notice that since the success rate is influenced by the number
of attempts made, exercises with few attempts (e.g., exercises
from 8 to 13) have relatively high rates even if their level of
complexity is fairly high.

Fig. 5. Teams’ submitted solutions (total vs. correct).

We analyzed also the statistics about the number of
attempts separately for each team (see the chart in Figure 6).
Specifically, for each exercise we first counted the total
number of attempts, the total number of incorrect answers, as
well as the fraction of incorrect answers associated with
syntactical errors (Oracle messages). Then, we averaged all the
counts over the students involved in the lab sessions.

Fig. 6. Average number of attempts/errors per teams.

The results show that the involved students have made, on
average, from 4 to 7 attempts per exercise for the first 7
exercises, and only 2 or 3 attempts for the subsequent exercises
(mainly due to the lack of time). The average number of errors
was approximately equal to the average number of attempts for
exercises from 8 on, because most of the students did not
succeed by the end of the practice. Conversely, the average
number of syntactical errors is fairly high (between 4 and 6) in
the first 5 exercises while it becomes less significant (between
1 and 3) from exercise 6 on. This result confirms that students
got more experienced while solving exercises.

C. Students’ SQL query analysis

We recorded all the queries (6,571 in total) submitted by
the students during the lab sessions, for later analysis. The
situation here is different from other studies such as [9] and
[10], where the analysis regarded queries executed during
exam sessions, and only final results (at the best of students’
effort) are recorded. In our case every attempt is recorded, also
the initial ones, when the student simply tries to understand
how to proceed to the solution with a trial and error approach.
This is demonstrated by a percentage of incorrect queries equal
to 85% and a mean time between query submissions that
frequently is less than one minute.

Even though the main contribution of the collected data is
in the remainder of the analysis where the focus is on students’
step-to-step progress toward the solution, the teacher can
anyway extract meaningful knowledge about the major
misconceptions and misunderstanding hidden in query errors.

Fig. 7. Oracle reported error analysis – actual mistakes w.r.t. attempts and

distraction errors.

Fig. 8. Oracle reported error analysis – mistakes categories.

81% of the incorrect queries were associated to an Oracle
compiler error, i.e., the syntax of the query was wrong. In the
remaining 19%, the SQL syntax was correct but the result was
not the expected one, in the sense that the output table was
different. In the last category, most errors were related to
problem statement misunderstanding and the consequent use of
the wrong input tables, in the use of an incorrect aggregate

functions (e.g., SUM instead of COUNT), or in the use of
wrong keywords in the predicates (e.g., AND between two
conditions on the same attribute).

About the Oracle reported syntax errors, the analysis
showed the categories in Figures 7 and 8.

Figure 7 shows that most of query errors (64%) are simply
trial and error inputs: either they are an incomplete attempt or
they are affected by severe lack of attention (e.g. misspelled
table names, commas forgotten or inserted where not needed,
wrong data formats, misspelled keywords, and so on).

The actual mistakes, analyzed in Figure 8, comprehend
several categories. The most frequent errors are related to
misconceptions about the structure of nested subqueries,
followed by the group by construct and by problems with the
attributes (such as domain inconsistencies or name ambiguity).
Condition errors regard confusion between the WHERE and
the HAVING statements. The “other” category includes
miscellaneous errors such as string comparison errors or NULL
value management.

The teacher used this analysis in the classroom right after
the session lab, to discuss with the students the most frequent
mistakes and to tailor the following exercise sessions to the
actual needs of the students.

D. Time spent in solving each exercise

The time spent for solving each exercise is correlated with
the number of attempts made to solve it. However, since the
problem solving strategies adopted by the students can vary
significantly based on their background, we measured and
analyzed the amount of time dedicated to each exercise.
Specifically, and separately for each exercise, we computed the
dedicated time as the gap between the timestamp at which a
team accessed the current exercise and the timestamp at which
it accessed the next one. Notice that since exercises do not need
to be solved sequentially, we considered as the next exercise
the one with the closest access time (independently of the
exercise number).

As shown in Figure 9, time spent for solving each exercise
on average ranges between 10 and 20 minutes for exercises
from 1 to 5, between 5 and 10 minutes for exercises from 6 to
8, while it is below 5 minutes for exercises from 9 to 13.

The results confirm that teams spent most of their time in
solving the first 5 exercises, while addressing only a subset of
the subsequent ones. Exercises from 3 to 5 took significantly

more time than expected, since students performed several
attempts before submitting a correct solution.

Fig. 9. Average time devoted to each exercise.

E. Number of requests for assistance

If teams encounter any problem in solving an exercise, they
could ask for the intervention of a teaching assistant. Figure 10
plots, for each exercise, (a) on the left-hand side, the number of
requests for assistance and (b) on the right-hand side, the
percentage of teams that asked for it, with respect to the
number of teams that actually worked on that exercise (refer to
Figure 4 for the number of working teams).

The first 5 exercises were accessed by approximately the
same number of teams. Therefore, a decreasing trend in the
number of assistance requests for the first four exercises
indicates an increasing confidence of the students on the SQL
syntax, thus a learning progression. Exercise number 5 is an
exception, and the large number of requests is related to its
perceived higher complexity; this result is coherent with the
highest number of query errors (see Figure 6) and the average
time devoted to solve it (see Figure 9). Assistance requests for
exercises from 6 on are very few, due to the fact that students
had less time to work on them.

Figure 10 shows also that a large percentage of active
teams asked for and received assistance. More than 45% of
teams received assistance (one intervention or more) for the
first exercise, even if the percentage decreases in the
following ones, it remains quite high for all the exercises
addressed by a significant number of teams. This result shows
a “democratic” approach in students’ assistance, which has
been facilitated by the learning environment.

Fig. 10. (a) Number of assistance request and (b) percentage of teams that asked for (and received) assistance

F. Temporal progression of students’ activities

We analyzed the temporal evolution of teams’ interaction
with the environment. Figures 10 to 12 plot the sequences of
the key activities performed by three sample teams showing
representative behaviors. Specifically, they indicate for each
exercise the access time, the time when a correct or incorrect
submissions was done, and the requests for assistance. To gain
insight into the advanced functionalities of the environment,
the color status associated with the team during all lab sessions
is also shown in the horizontal bar at the bottom of the figures.

Team 1. The team whose activity is shown in Figure 10
represents an example of team able to work autonomously and
with fairly high proficiency. The team correctly solved
exercises from 1 to 4 by spending less than 5 minutes per
exercise. It made one or two attempts per exercise not
requesting any assistance. Then, it encountered problems while
solving exercises from 5 to 8. In particular, exercise 5 appears
to be critical for most of the students. The team spent on
average 20 minutes each for solving exercises 5 to 8 and they
made several attempts per exercise. At the end, they solved
correctly exercises 6 and 7 without requesting any helps, while
for solving exercise 8 they asked for assistance.

The analysis of the evolution of the color status
complements the information provided by the graph.
Specifically, it highlights an application-driven intervention
made by the teaching assistants on exercise 5. Before that
exercise, the color status was green. Due to the numerous
incorrect attempts, the color status first changed from green to
yellow and then from yellow to red. Consequently, the
application raised an alarm thus suggesting an intervention by
the teaching assistant. Therefore, even though the team did not
explicitly make a request for assistance on exercise 5, the
application has recognized and properly handled the critical
situation.

Team 2. The second example (Figure 11) shows a team
who demonstrated high proficiency (8 solved exercises vs. an
average of 5), but that needed assistance in three cases.
Specifically, after solving exercise 1 the team performed
several incorrect attempts for exercise 2. Thus, it requested for
assistance, which allowed them to overcome the issue.
Similarly, they spent 15 minutes while trying to solve exercise
3. Due to the high number of incorrect attempts, a call for
assistance is raised by the application. Finally, exercise 5 was
solved thanks to the voluntary request for assistance.

Team 3. The last example, shown in Figure 12, refers to a
team demonstrating fairly low proficiency, low autonomy, and
a negative attitude in the interaction with the environment. The
team performed accesses to only four exercises, it correctly
solved only two of them and requested for assistance twice
during the practice. Specifically, the first request for assistance
was submitted while solving exercise 1. Contextually, the color
status changed from green to red. After the assistance, they
succeeded in solving the first two exercises, but then they
requested again assistance for exercises 3 and 4.

By extending the analysis to all the teams, we are able to
extract interesting information about both students’ behavior
and specific lab content characteristics.

a) How frequent were the requests for assistance
submitted? To which exercises are the requests most
correlated?
The position of the orange squares revealed the
exercises for which students asked for assistance. The
distance between these indicators reflects the attitude
of the teams to work autonomously. The comparison
between the results achieved for many students may
highlight recurrent issues on specific exercises.

b) Were the assistances helpful for solving the exercises?

The closeness between the orange squares related to a
request for assistance and any green circle (successful
attempt) referring to the same exercise indicates to
what extent the assistance intervention was helpful.
The correlation between the orange squares and the
green circles associated with the subsequent exercises
could be deemed as interesting as well, because the
knowledge provided by the assistance could help to
solve the next exercises.

G. Discussion

The learner-generated data acquired and stored were used
to analyze the interactions of the teams with the learning
environment. The analyses allowed us to answer the research
questions posed at the beginning of the section.

1. Are the duration and complexity of the practice
appropriate for the current level of knowledge of the
students?
The teacher can analyze the temporal sequence of
teams’ activities to estimate the duration and
complexity of the SQL practice. Specifically, the
positions of the requests for assistance and of the
incorrect attempts allow teachers to easily identify the
most critical exercises. The average percentage of
solved exercises per team indicates the feasibility of
the practice in terms of duration.
The SQL practice proposed to the students in this
experiment was too long according to the scheduled
time (13 exercises in 90 minutes), but the complexity
of the proposed exercises was fair.

2. Are the exercises proposed in the most suitable order?
The temporal sequence of attempts indicates the
preferred order according to teams’ preferences.
The exercises of the SQL practice were sorted in
order of increasing complexity. Based on the achieved
results, the relative position of exercise 5 appeared to
be inappropriate, as most teams spent a significantly
higher amount of time compared to that devoted to
subsequent exercises (e.g., exercises 6 and 7).

Fig. 11. Temporal sequence of the activities of the sample Team 1.

Fig. 12. Temporal sequence of the activities of the sample Team 2.

Fig. 13. Temporal sequence of the activities of the sample Team 3.

3. In what situations are students most frequently asking
for assistance?
The correlation between requests for assistance and
exercises clearly comes out from the activity graphs
(see, for example, Figures 10 to 12). Furthermore, the
temporal distance between the consecutive requests
indicates the attitude of the team to work
autonomously. In our analysis, we identified three
different team categories: (i) the teams working
autonomously and with high profitability (i.e., many
solved exercises and few requests for assistance), (ii)
the teams needing frequent helps and working with
fairly high profit (i.e., many solved exercises but
many requests for assistance), and (iii) the teams with
low profitability and autonomy (i.e., few solved
exercises and many requests for assistance).

4. What is the impact of assistances on students’
activities?
The influence of the assistance on the teams’ results
can be analyzed by measuring the correlation between
requests’ and correct submission times. The assistance
may help teams to solve not only the current exercise,
but also the subsequent ones. In the examples in
Figure 10 to 12, we identified several situations in
which the benefits from assistance are not limited to
the current exercise, but can be associated with the
exercises addressed immediately after.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a learning environment to
improve the effectiveness of teaching assistance during
computer science labs. Specifically, we designed,
implemented, and tested a distributed, Web-based tool to
support six guided practices of an undergraduate database
course. Each practice consists of writing a set of queries in
SQL language on the Oracle DBMS. The aim of this research
activity was twofold:

1) The proposed environment provides teaching assistants
with a clear picture of the ongoing status of each
student team by storing and on-the-fly reporting the
most significant indicators of teams’ performance.
Online monitoring teams’ activities allows assistants to
easily identify the teams who need for immediate help
and to give the right priority to explicit teams’
requests.

2) The environment collects learner-generated data
related to the interaction between student teams and the
environment. The offline analysis of these data allows
teachers to identify the most common mistakes and
misunderstanding of the students, possible flaws in the
structure and organization of the lab practices, as well
as the theoretical parts of the course that need for
major revision.

Future work will entail the analysis of the learner-generated
data acquired from the proposed environment by means of data
mining techniques. Specifically, unsupervised techniques, such
as time series analysis and clustering, can be integrated in the
proposed environment to gain insights into the behavior of the

students’ teams during learning practices. For example, they
can be exploited to identify groups of student teams with
similar misconceptions. On the other hand, supervised
techniques, such as classification and regression, can be
exploited to on-the-fly predict for each team interesting
learning indicators (e.g., the percentage of solved exercises, the
level of comprehension of a given topic, the need for future
assistance).

ACKNOWLEDGMENT

The authors would like to thank Luna Inguì for her
contribution in implementing the application, and the teaching
assistant, the tutors and all the students that participated in the
lab experiment.

REFERENCES
[1] H. Washizaki, Y. Sunaga, M. Shuto, K. Kakehi, Y. Fukazawa, S.

Yamato, M. Okubo, and B. Tenbergen, “Combinations of Personal
Characteristic Types and Learning Effectiveness of Teams”, in
Proceedings of the 41st IEEE Computer Software and Applications
Conference (COMPSAC), Turin, Italy, 4-8 July 2017. DOI:
10.1109/COMPSAC.2017.288.

[2] A. Mitrovic, “Learning SQL with a computerized tutor”, in Proceedings
of the twenty-ninth SIGCSE technical symposium on Computer science
education (SIGCSE '98), Daniel Joyce and John Impagliazzo (Eds.).
ACM, New York, NY, USA, 1998, pp. 307-311. DOI:
http://dx.doi.org/10.1145/273133.274318.

[3] S. Sadiq, M. Orlowska, W. Sadiq, and J. Lin, . 2004. “SQLator: an
online SQL learning workbench”, in Proceedings of the 9th annual
SIGCSE conference on Innovation and technology in computer science
education (ITiCSE '04). ACM, New York, NY, USA, 2004, pp. 223-
227. DOI: http://dx.doi.org/10.1145/1007996.1008055.

[4] L. Aversano, G. Canfora, A. De Lucia and S. Stefanucci,
"Understanding SQL through iconic interfaces," in Proceedings of 26th
Annual International Computer Software and Applications
(COMPSAC), Oxford, UK, 26-29 August 2002, pp. 703-708. DOI:
10.1109/COMPSAC.2002.1045084.

[5] V.A. Romero-Zaldivar, A. Pardo, D. Burgos, C.D. Kloos, "Monitoring
Student Progress Using Virtual Appliances: A Case Study", in
Computers & Education, No. 58, pp. 1058-1067, 2012.

[6] A. S. Figueira, A. S. Lino, S. S. Paulo, C. A. M. Santos, T. S. A.
Brasileiro and A. Del Pino Lino, “Educational data mining to track
student’s performance on teaching learning environment LabSQL”, in
Proceedings of the 10th Iberian Conference on Information Systems and
Technologies (CISTI), Aveiro, Portugal, 17-20 June 2015, pp. 1-6. DOI:
10.1109/CISTI.2015.7170395.

[7] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “A Quantitative Study of
the Relative Difficulty for Novices of Writing Seven Different Types of
SQL Queries”, in Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education (ITiCSE
'15), Vilnius, Lithuania, 04-08 July 2015, pp. 201-206. DOI:
http://dx.doi.org/10.1145/2729094.2742620.

[8] J. B. Smelcer, “User errors in database query composition”,
International Journal of Human-Computer Studies., Vol. 2, No. 4, April
1995, pp. 353-381. DOI: https://doi.org/10.1006/ijhc.1995.1017.

[9] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “Students’ Semantic
Mistakes in Writing Seven Different Types of SQL Queries”, in
Proceedings of the 2016 ACM Conference on Innovation and
Technology in Computer Science Education (ITiCSE '16), Arequipa,
Peru, 09-13 July 2016, pp. 272-277. DOI:
https://doi.org/10.1145/2899415.2899464.

[10] S. Brass and C. Goldberg., “Semantic errors in SQL queries: A quite
complete list”, in Journal of System and Software, Vol. 79, No. 5, May
2006, pp. 630-644. DOI: http://dx.doi.org/10.1016/j.jss.2005.06.028.

[11] Oracle DBMS, https://www.oracle.com/database/index.html

