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Abstract Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very
ample line bundleOS(h) such that h1

(
S,OS(h)

) = 0.We show that such an S supports
families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich bundles
for arbitrary large p. Moreover, we show that S supports stable Ulrich bundles of rank
2 if the genus of the general element in |h| is at least 2.

Keywords Vector bundle · Ulrich bundle

Mathematics Subject Classification Primary 14J60; Secondary 14J26 · 14J27 ·
14J28

1 Introduction and notation

Throughout the whole paper we will work on an algebraically closed field k of char-
acteristic 0 and P

N will denote the projective space over k of dimension N . The word
surface will always denote a projective smooth connected surface.

If X is a smooth variety, then the study of vector bundles supported on X is an
important tool for understanding its geometric properties. If X ⊆ P

N , then X is
naturally polarised by the very ample line bundle OX (h) := OPN (1) ⊗ OX : in this
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G. Casnati

case, at least from a cohomological point of view, the simplest bundles F on X are
the ones which are Ulrich with respect to OX (h), i.e. such that

hi
(
X,F(−ih)

) = h j (X,F(−( j + 1)h)
) = 0

for each i > 0 and j < dim(X).
The existence of Ulrich bundles on each variety is a problem raised by D. Eisenbud

and F.O. Schreyer in [19] (see [10] for a survey on Ulrich bundles). There are many
partial results (e.g. see [2,3,7–9,11–13,15,17,18,26–28,31]). Nevertheless, all such
results and those ones proved in [20] seem to suggest that Ulrich bundles exist at
least when X satisfies an extra technical condition, namely that X is arithmetically
Cohen–Macaulay, i.e. projectively normal and such that

hi
(
X,OS(th)

) = 0

for each i = 1, . . . , dim(X) − 1 and t ∈ Z. When X is not arithmetically Cohen–
Macaulay, the literature is very limited (e.g. see [9] and [14]).

Now let S ⊆ P
N be a surface and set pg(S) := h2

(
S,OS

)
, q(S) := h1

(
S,OS

)
,

whence χ(OS) := 1 − q(S) + pg(S) = 0. Thanks to the Enriques–Kodaira clas-
sification of surfaces, we know that κ(S) ≤ 1 and K 2

S ≤ 0 (see [6], Theorem X.4
and Lemma VI.1). In what follows we will denote by Pic(S) the Picard group of S:
it is a group scheme and the connected component Pic0(S) ⊆ Pic(S) of the identity
is an abelian variety of dimension q(S) parameterising the line bundles algebraically
equivalent to OS .

In this paper we first rewrite the proof of Proposition 6 of [10], in order to be able
to extend its statement to a slightly wider class of surfaces.

Our modified statement is as follows: recall that OS(h) is called special if
h1

(
S,OS(h)

) �= 0, non-special otherwise.

Theorem 1.1 Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very
ample non-special line bundle OS(h).

IfOS(η) ∈ Pic0(S)\{OS } is such that h0(S,OS(KS ±η)
) = h1

(
S,OS(h±η)

) =
0, then for each general C ∈ |OS(h)| and each general set Z ⊆ C of h0

(
S,OS(h)

)

points, there is a rank 2 Ulrich bundle E with respect to OS(h) fitting into the exact
sequence

0 −→ OS(h + KS + η) −→ E −→ IZ |S(2h + η) −→ 0. (1)

As pointed out in [10], Proposition 6, when S is a bielliptic surface then each very
ample line bundle OS(h) is automatically non-special and there always exists a non-
trivial OS(η) ∈ Pic0(S) of order 2 satisfying the above vanishings: thus the bundle
E defined in Theorem 1.1 is actually special, i.e. c1(E) = 3h + KS . We can argue
similarly if S is either anticanonical, i.e. | − KS| �= ∅, or geometrically ruled.

A condition forcing the indecomposability of a coherent sheaf F on an n–
dimensional variety X is its stability. Recall that the slope μ(F) and the reduced
Hilbert polynomial pF (t) ofF with respect to the very ample polarisationOX (h) are

μ(F) = c1(F)hn−1/rk(F), pF (t) = χ(F(th))/rk(F).
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Ulrich bundles on non-special surfaces with pg = 0

The coherent sheaf F is called μ–semistable (resp. μ–stable) if for all subsheaves G
with 0 < rk(G) < rk(F) we have μ(G) ≤ μ(F) (resp. μ(G) < μ(F)).

The coherent sheafF is called semistable (resp. stable) if for allG as above pG(t) ≤
pF (t) (resp. pG(t) < pF (t)) for t 	 0.

On an arbitrary variety we have the following chain of implications

F is μ − stable ⇒ F is stable ⇒ F is semistable ⇒ F is μ-semistable.

Nevertheless, when we restrict our attention to Ulrich bundles, the two notions of
(semi)stability and μ–(semi)stability actually coincide.

A priori, it is not clear whether the bundles constructed in Theorem 1.1 are stable.
In Sect. 4 we deal with their stability as follows. The sectional genus of S with respect
toOS(h) is defined as the genus of a general element of |h|. By the adjunction formula

π(OS(h)) := h2 + hKS

2
+ 1.

Notice that the equality π(OS(h)) = 0 would imply the rationality of S (e.g. see [1]
and the references therein), contradicting q(S) = 1. Thus π(OS(h)) ≥ 1 in our setup.

Theorem 1.2 Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very
ample non-special line bundle OS(h).

If π(OS(h)) ≥ 2, then the bundle E constructed in Theorem 1.1 from a general set
Z ⊆ C ⊆ S of h0

(
S,OS(h)

)
points is stable.

Once that the existence of Ulrich bundles of low rank is proved, one could be
interested in understanding how large a family of Ulrich bundles supported on S can
actually be. In particular we say that a smooth variety X ⊆ P

N is Ulrich–wild if it
supports families of dimension p of pairwise non-isomorphic, indecomposable, Ulrich
bundles for arbitrary large p.

The last result proved in this paper concerns the Ulrich–wildness of the surfaces
we are dealing with.

Theorem 1.3 Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very
ample non-special line bundle OS(h). Then S is Ulrich–wild.

In Sect. 2 we list some general results on Ulrich bundles on polarised surfaces.
In Sect. 3 we prove Theorem 1.1. In Sect. 4 we first recall some easy facts about the
stability of Ulrich bundles, giving finally the proof of Theorem 1.2. In Sect. 5 we prove
Theorem 1.3.

Finally, the author would like to thank the referee for her/his comments which have
allowed us to improve the whole exposition.

2 General results

In general, an Ulrich bundle F on X ⊆ P
N collects many interesting properties (see

Sect. 2 of [19]). The following ones are particularly important.
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G. Casnati

• F is globally generated and its direct summands are Ulrich as well.
• F is initialized, i.e. h0

(
X,F(−h)

) = 0 and h0
(
X,F) �= 0.

• F is aCM, i.e. hi
(
X,F(th)

) = 0 for each i = 1, . . . , dim(X) − 1 and t ∈ Z.

Let S be a surface. The Serre duality for F is

hi
(
S,F) = h2−i (S,F∨(KS)

)
, i = 0, 1, 2,

and the Riemann–Roch theorem is

h0
(
S,F) + h2

(
S,F) = h1

(
S,F)

+ rk(F)χ(OS) + c1(F)(c1(F) − KS)

2
− c2(F).

(2)

Proposition 2.1 Let S be a surface endowed with a very ample line bundle OS(h).
If E is a vector bundle on S, then the following assertions are equivalent:

1. E is an Ulrich bundle with respect to OS(h);
2. E∨(3h + KS) is an Ulrich bundle with respect to OS(h);
3. E is an aCM bundle and

c1(E)h = rk(E)
3h2 + hKS

2
,

c2(E) = c1(E)2 − c1(E)KS

2
− rk(E)(h2 − χ(OS)); (3)

4. h0
(
S, E(−h)

) = h0
(
S, E∨(2h + KS)

) = 0 and Equalities (3) hold.

Proof See [14], Proposition 2.1. 
�
The following corollaries are immediate consequences of the above characteriza-

tion.

Corollary 2.2 Let S be a surface endowed with a very ample line bundle OS(h).
If OS(D) is a line bundle on S, then the following assertions are equivalent:

1. OS(D) is an Ulrich bundle with respect to OS(h);
2. OS(3h + KS − D) is an Ulrich bundle with respect to OS(h);
3. OS(D) is an aCM bundle and

D2 = 2(h2 − χ(OS)) + DKS, Dh = 1

2
(3h2 + hKS); (4)

4. h0
(
S,OS(D − h)

) = h0
(
S,OS(2h + KS − D)

) = 0 and Equalities (4) hold.

Proof See [14], Corollary 2.2. 
�
Recall that a rank 2 Ulrich bundle E on S is special if c1(E) = 3h + KS .
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Ulrich bundles on non-special surfaces with pg = 0

Corollary 2.3 Let S be a surface endowed with a very ample line bundle OS(h).
If E is a vector bundle of rank 2 on S, then the following assertions are equivalent:

1. E is a special Ulrich bundle with respect to OS(h);
2. E is initialized and

c1(E) = 3h + KS, c2(E) = 5h2 + 3hKS

2
+ 2χ(OS).

Proof See [14], Corollary 2.4. 
�

3 Existence of rank 2 Ulrich bundles

We start this section by recalling some facts on the classical Picard variety of a surface.

Lemma 3.1 Let S be a surface endowed with a very ample line bundle OS(h).
Let C ∈ |h| be general and let i : C → S be the inclusion map. Then the morphism

i∗ : Pic0(S) → Pic0(C) is injective.

Proof Let OS(η) ∈ Pic0(S)\{ OS }. The cohomology of the exact sequence

0 −→ OS(η − h) −→ OS(η) −→ i∗OS(η) −→ 0

yields the exact sequence

H0(S,OS(η)
) −→ H0(C, i∗OS(η)

) −→ H1(S,OS(η − h)
)
.

Since OS(η) ∈ Pic0(S)\{ OS }, it follows that h0
(
S,OS(η)

) = 0. The Kodaira
vanishing theorem implies h1

(
S,OS(η − h)

) = 0. We deduce h0
(
C, i∗OS(η)

) = 0,
hence i∗OS(η) � OC . 
�

Now, let S be a surface with pg(S) = 0 and q(S) = 1. Then Pic0(S) is an elliptic
curve: in particular Pic0(S) contains three pairwise distinct non-trivial divisors of order
2 whose restrictions to C are still non-trivial and pairwise non-isomorphic, thanks to
Lemma 3.1 above.

In order to prove Theorem 1.1 we will make use of the Hartshorne–Serre corre-
spondence on surfaces. We recall that a locally complete intersection subscheme Z of
dimension zero on a surface S is Cayley–Bacharach (CB for short) with respect to a
line bundle OS(A) if, for each Z ′ ⊆ Z of degree deg(Z) − 1, the natural morphism
H0

(
S, IZ |S(A)

) → H0
(
S, IZ ′|S(A)

)
is an isomorphism.

Theorem 3.2 Let S be a surface and Z ⊆ S a locally complete intersection subscheme
of dimension 0.

Then there exists a vector bundle F of rank 2 on S fitting into an exact sequence of
the form

0 −→ OS −→ F −→ IZ |S(A) −→ 0, (5)

if and only if Z is CB with respect to OS(A + KS).
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G. Casnati

Proof See Theorem 5.1.1 in [23]. 
�
WenowproveTheorem1.1 stated in the introduction.Aswe already noticed therein,

its proof for hKS = 0 coincides with the one of Proposition 6 in [10] because in this
case the vanishing h1

(
S,OS(h ± η)

) = 0 follows immediately from the Kodaira
vanishing theorem as we will show below in Corollary 3.4.

Proof of Theorem 1.1 Recall that by hypothesis pg(S) = h1
(
S,OS(h)

) = 0 and
q(S) = 1. It follows that χ(OS) = 0 and

h2
(
S,OS(h)

) = h0
(
S,OS(KS − h)

) ≤ h0
(
S,OS(KS)

) = 0,

thus S ⊆ P
N , where

N := h0
(
S,OS(h)

) − 1 = h2 − hKS

2
− 1 ≥ 4, (6)

because q(S) = 0 for each surface S ⊆ P
3.

Let C := S ∩ H ∈ |h| be a general hyperplane section and let i : C → S be the
inclusion morphism. The curve C is non-degenerate in P

N−1 ∼= H ⊆ P
N . Indeed the

exact sequence

0 −→ IS|PN (1) −→ OPN (1) −→ OS(h) −→ 0

implies h0
(
P
N , IS|PN (1)

) = h1
(
P
N , IS|PN (1)

) = 0. Thus, the exact sequence

0 −→ IS|PN (1) −→ IC|PN (1) −→ IC|S(h) −→ 0

implies h0
(
P
N , IC|PN (1)

) = 1, because IC|S(h) ∼= OS . Finally the exact sequence

0 −→ IH |PN (1) −→ IC|PN (1) −→ IC|H (1) −→ 0

and the isomorphism IH |PN (1) ∼= OPN yields h0
(
C, IC|H (1)

) = 0.
It follows the existence of a reduced subscheme Z ⊆ C ⊆ S of degree N +1 whose

points are in general position inside H ∼= P
N−1. Thus Z is CB with respect toOS(h),

hence there exists Sequence (5) with OS(A) ∼= OS(h − KS), thanks to Theorem 3.2.
LetOS(η) ∈ Pic0(S)\{OS }be such thath0(S,OS(KS±η)

) = h1
(
S,OS(h±η)

) =
0 and set E := F(h + KS + η). The bundle E fits into Sequence (1) and satisfies
Equalities (3). If we show that h0

(
S, E(−h)

) = h0
(
S, E∨(2h + KS)

) = 0, then we
conclude that E is Ulrich thanks to Proposition 2.1 above. Notice that the second
vanishing is equivalent to h0

(
S, E(−h − 2η)

) = 0 because c1(E) = 3h + KS + 2η.
The vanishing h0

(
S,OS(KS ± η)

) = 0 implies

h0
(
S, E(−h)

) ≤ h0
(
S, IZ |S(h + η)

)
, h0

(
S, E(−h − 2η)

) ≤ h0
(
S, IZ |S(h − η)

)
.
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The exact sequence

0 −→ IC|S −→ IZ |S −→ IZ |C −→ 0 (7)

and the isomorphisms IC|S ∼= OS(−h) and IZ |C ∼= OC (−Z) imply

h0
(
S, IZ |S(h ± η)

) ≤ h0
(
C,OC (−Z) ⊗ OS(h ± η)

)

because h0
(
S,OS(±η)

) = 0. Thanks to the general choice of the points in Z , the
Riemann–Roch theorem on C and the adjunction formulaOC (KC ) ∼= i∗OS(h + KS)

on S give

h0
(
C,OC (−Z) ⊗ OS(h ± η)

) = h0
(
C, i∗OS(h ± η)

) − deg(Z)

= h2+1−π(OS(h)) − deg(Z)+h1
(
C, i∗OS(h ± η)

)=h0
(
C, i∗OS(KS ∓ η)

)
.

The exact sequence

0 −→ OS(−h) −→ OS −→ OC −→ 0 (8)

implies the existence of the exact sequence

H0(S,OS(KS ∓ η)
) −→ H0(C, i∗OS(KS ∓ η)

)

−→ H1(S,OS(KS − h ∓ η)
) ∼= H1(S,OS(h ± η)

)
.

Thus the hypothesis onOS(KS ±η) andOS(h±η) forces h0
(
C, i∗OS(KS ∓η)

) = 0.

�

It is natural to askwhen the vanishings h1
(
S,OS(KS±η)

) = h1
(
S,OS(h±η)

) = 0
actually occur. We list below some related result.

Corollary 3.3 Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very
ample non-special line bundle OS(h).

Then S supports Ulrich bundles of rank r ≤ 2.

Proof Since each direct summand of an Ulrich bundle is Ulrich as well, it follows
from Theorem 1.1 that it suffices to prove the existence of OS(η) ∈ Pic0(S)\{ OS }
such that h0

(
S,OS(KS ± η)

) = h1
(
S,OS(h ± η)

) = 0.
Let P be the Poincaré line bundle on S ×Pic(S). Recall that (e.g. see [29], Lecture

19), if p : S×Pic(S) → Pic(S) is the projection on the second factor and L ∈ Pic(S),
then the restriction of P to the fibre p−1(L) ∼= S is isomorphic to the line bundle L.
The line bundle P is thus flat on Pic(S).

Let P0 be the restriction of P to S × Pic0(S), A ⊆ S a divisor, s : S × Pic(S) → S
the projection on the first factor. The line bundle P0 ⊗ s∗OS(A) is flat over Pic0(S)

and parameterizes the line bundles on S algebraically equivalent to OS(A). Thus
the semicontinuity theorem (e.g. see Theorem III.12.8 of [22]) applied to the sheaf
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P0⊗s∗OS(A) and themap p0 : S×Pic0(S) → Pic0(S) imply that for each i = 0, 1, 2
and c ∈ Z the sets

V i
A(c) := { η ∈ Pic0(S) | hi (S,OS(A ± η)

)
> c },

are closed inside Pic0(S). In particular V := V1
h (0) ∪ V0

KS
(0) is closed.

By definition OS ∈ Pic0(S)\V �= ∅. Thus for each general OS(η) ∈ Pic0(S), the
hypothesis h0

(
S,OS(KS ±η)

) = h1
(
S,OS(h±η)

) = 0 is satisfied and the statement
is then completely proved. 
�

Notice that the above result guarantees the existence of an Ulrich bundle E with
c1(E) = 3h + KS + 2η fitting into Sequence (1). Such bundle is special if and only if
OS(η) has order 2. It is not clear if such a choice can be done in general. Anyhow in
some particular cases we can easily prove an existence result also for special Ulrich
bundles: we start from Beauville’s result for bielliptic surfaces, i.e. minimal surfaces
S with pg(S) = 0, q(S) = 1 and κ(S) = 0 (see Proposition 6 of [10]).

Corollary 3.4 Let S be a bielliptic surface endowed with a very ample line bundle
OS(h).

Then OS(h) is non-special and S supports special Ulrich bundles of rank 2.

Proof If κ(S) = 0, then KS is numerically trivial, hence h − KS ± η is ample for
each choice of OS(η) ∈ Pic0(S), thanks to the Nakai criterion. Thus the vanishing
h1

(
S,OS(h ± η)

) = 0 follows from the Kodaira vanishing theorem: in particular
OS(h) is non-special.

We can find OS(η) ∈ Pic0(S)\{ OS,OS(±KS) } of order 2, because there are
three non-trivial and pairwise non-isomorphic elements of order 2 in Pic0(S). Thus
h0

(
S,OS(KS ± η)

) = 0 because KS ± η is not trivial by construction, hence the
statement follows from Theorem 1.1. 
�

The surface S is anticanonical if | − KS| �= ∅: in particular pg(S) = 0. The
ampleness of OS(h) implies hKS < 0 in this case.

Corollary 3.5 Let S be an anticanonical surface with q(S) = 1 and endowed with a
very ample line bundle OS(h).

Then OS(h) is non-special and S supports special Ulrich bundles of rank 2.

Proof If A ∈ | − KS|, then ωA ∼= OA by the adjunction formula. We have
h1

(
A,OS(h ± η) ⊗ OA

) = h0
(
A,OS(−h ∓ η) ⊗ OA

)
, for each OS(η) ∈ Pic0(S).

On the one hand, if h0
(
A,OS(−h ∓ η) ⊗ OA

)
> 0, then −hC ≥ 0 for some

irreducible component C ⊆ A. On the other hand OS(h) is ample, hence hC > 0.
The contradiction implies h0

(
A,OS(−h ∓ η) ⊗ OA

) = 0, hence the cohomology
of the exact sequence

0 −→ OS(h + KS ∓ η) −→ OS(h ∓ η) −→ OS(h ∓ η) ⊗ OA −→ 0

and the Kodaira vanishing theorem yield h1
(
S,OS(h ∓ η)

) = 0. In particular OS(h)

is non-special. Finally hKS < 0, hence h0
(
S,OS(KS ± η)

) = 0.
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Ulrich bundles on non-special surfaces with pg = 0

The statement then follows from Theorem 1.1 by taking any non-trivial OS(η) ∈
Pic0(S) of order 2. 
�

Recall that a geometrically ruled surface is a surface S with a surjective morphism
p : S → E onto a smooth curve such that every fibre of p is isomorphic to P

1. If S
is geometrically ruled, then pg(S) = 0 and q(S) is the genus of E (see [22], Chapter
V.2 for further details).

Remark 3.6 Let S be a geometrically ruled surface on an elliptic curve E so that
pg(S) = 0 and q(S) = 1. Thanks to the results in [22], Chapter V.2, we know
the existence of a vector bundle H of rank 2 on E such that h0

(
E,H) �= 0 and

h0
(
E,H(−P)

) = 0 for each P ∈ E and S ∼= P(H). Then p can be identified with
the natural projection map P(H) → E . The group Pic(S) is generated by the class ξ

of OP(H)(1) and by p∗ Pic(E). If we set OE (h) := det(H) and e := − deg(h), then
e ≥ −1 (see [30]). Moreover, KS = −2ξ + p∗h.

There exists an exact sequence

0 −→ OE −→ H −→ OE (h) −→ 0. (9)

The symmetric product of Sequence (9) yields

0 −→ H(−h) −→ S2H(−h) −→ OE (h) −→ 0. (10)

Sequence (9) splits if and only if H is decomposable. Thus, if this occurs, then
S2H(−h) contains OE as direct summand, whence

h0
(
S,OS(−KS)

) ≥ h0
(
E,OE

) = 1. (11)

because h0
(
S,OS(−KS)

) = h0
(
E, S2H(−h)

)
, thanks to the projection formula.

Assume that H is indecomposable. Then either OE (h) = OE or OE (h) �= OE . In
the first case the cohomology of Sequences (9) and (10) again implies Inequality (11).

If OE (h) �= OE , then Lemma 22 of [4] implies that S2H(−h) is the direct sum of
the three non-trivial elements of order 2 of Pic(E), hence h0

(
S,OS(−KS)

) = 0.
We conclude that a geometrically ruled surface on an elliptic curve is anticanonical

if and only if e ≥ 0.

Thanks to the above remark and Corollary 3.5, we know that each geometrically
ruled surface S with q(S) = 1 and e ≥ 0 supports special Ulrich bundles of rank 2
with respect to each very ample line bundle OS(h). We can extend the result also to
the case e = −1.

Corollary 3.7 Let S be a geometrically ruled surface with q(S) = 1 and endowed
with a very ample line bundle OS(h).

Then OS(h) is non-special and S supports special Ulrich bundles of rank 2.

Proof We have to prove the statement only for e = −1. IfOS(h) = OP(H)(aξ + p∗b),
then deg(b) > −a/2 (see [22], Proposition V.2.21). Thus the Table in Proposition 3.1
of [21] implies that h1

(
S,OS(h ± η)

) = 0 for each η ∈ Pic0(S).
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Again the statement follows from Theorem 1.1 by taking any non-trivial OS(η) of
order 2. 
�
Remark 3.8 When g = 1, the corollary above extend Propositions 3.1, 3.3 and The-
orem 3.4 of [2] to the range e ≤ 0.

Recall that an embedded surface S ⊆ P
N is called non-degenerate if it is not

contained in any hyperplane.

Corollary 3.9 Let S ⊆ P
4 be a non-degenerate non-special surface with pg(S) = 0.

Then S supports special Ulrich bundles of rank 2.

Proof The cohomologyof Sequence (8) tensored byOS(h) implies h1
(
C, i∗OS(h)

) =
0. In particular such surfaces are sectionally non-special (see [24] for details). Non-
special and sectionally non-special surfaces are completely classified in [24] and [25].
They satisfy q(S) ≤ 1 and, if equality holds, then they are either quintic scrolls over
elliptic curves, or the Serrano surfaces (these are very special bielliptic surfaces of
degree 10: see [32]). The results above and Sect. 4 of [14] yields the statement. 
�
Remark 3.10 Linearly normal non-special surface S ⊆ P

4 with pg(S) = 0 satisfy
3 ≤ h2 ≤ 10 (see [24] and [25]). If h2 ≤ 6, such surfaces are known to support Ulrich
line bundles: see [27] for the case q(S) = 0 and [10], Assertion 2) of Proposition 5
for the case q(S) = 1.

4 Stability of Ulrich bundles

We start this section by recalling the following result: see [13], Theorem 2.9 for its
proof.

Theorem 4.1 Let X be a smooth variety endowed with a very ample line bundle
OX (h).

If E is an Ulrich bundle on X with respect toOX (h), the following assertions hold:

1. E is semistable and μ–semistable;
2. E is stable if and only if it is μ–stable;
3. if

0 −→ L −→ E −→ M −→ 0

is an exact sequence of coherent sheaves with M torsion free and μ(L) = μ(E),
then both L and M are Ulrich bundles.

We now prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2 Assume that E is not stable: then it is not μ–stable, thanks
to Theorem 4.1. In particular there exists a line subbundle OS(D) ⊆ E such that
μ(E) = μ(OS(D)). Again Theorem 4.1 implies that OS(D) is Ulrich.

On the one hand, if OS(D) is contained in the kernel K ∼= OS(h + KS + η) of the
map E → IZ |S(2h + η) in Sequence (1), then h0

(
S,OS(h + KS + η − D)

) �= 0. On
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the other hand, Equality (4) and Inequality (6) imply

(h + KS + η − D)h = −h2 − hKS

2
= 1 − N ≤ −3,

whence h0
(
S,OS(h + KS + η − D)

) = 0.
We deduce thatOS(D) � K, hence the composite mapOS(D) ⊆ E → IZ |S(2h +

η) is non-zero, i.e.
h0

(
S, IZ |S(2h + η − D)

) �= 0. (12)

Nevertheless, π(OS(h)) ≥ 2 by hypothesis, then

(h + η − D)h = −h2 + hKS

2
= 1 − π(OS(h)) ≤ −1,

hence h0
(
S, IC|S(2h + η − D)

) = h0
(
S,OS(h + η − D)

) = 0.
Thus the cohomology of Sequence (7) tensored by OS(2h + η − D) yields

h0
(
S, IZ |S(2h + η − D)

) ≤ h0
(
C, IZ |C ⊗ OS(2h + η − D)

)
,

hence

h0
(
S, IZ |S(2h + η − D)

) ≤ max{ 0, h0(C, i∗OS(2h + η − D)
) − N − 1 }, (13)

for a general choice of Z inside C . If i∗OS(2h + η − D) is special, then the Clifford
theorem and the second Equality (4) imply

h0
(
C, i∗OS(2h + η − D)

) ≤ (2h + η − D)h

2
+ 1 = N + 3

2
≤ N , (14)

because N ≥ 4 (see Inequality (6)). If i∗OS(2h+η−D) is non-special, the Riemann–
Roch theorem on C and the second Equality (4) return

h0
(
C, i∗OS(2h + η − D)

) = N + 2 − π(OS(h)) ≤ N , (15)

because π(OS(h)) ≥ 2.
We obtain h0

(
S, IZ |S(2h + η − D)

) = 0 by combining Inequalities (13), (14)
and (15). This equality contradicts Inequality (12), hence the bundle E is necessarily
stable. 
�
Remark 4.2 If π(OS(h)) = 1, then S is a geometrically ruled surface embedded as
a scroll by OS(h) ∼= OS(ξ + p∗b) over an elliptic curve, thanks to [1], Theorem A
(here we are using the notation introduced in Remark 3.6).

Moreover (h + η − D)h = 0, hence the argument in the above proof does not lead
to any contradiction whenOS(D) ∼= OS(h+η). Such a line bundle is actually Ulrich,
because one easily checks that it satisfies all the conditions of Corollary 2.2.

In [16], via a slightly different but similar construction, we are able to show the
existence special stable Ulrich bundles of rank 2 on elliptic scrolls.
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Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a very ample
non-special line bundle OS(h). Let

c1 := 3h + KS + 2η, c2 := 5h2 + 3hKS

2
,

where OS(η) ∈ Pic0(S)\{ OS } satisfies

h0
(
S,OS(KS ± η)

) = h1
(
S,OS(h ± η)

) = 0.

If π(OS(h)) ≥ 2, then the coarse moduli spaceMs
S(2; c1, c2) parameterizing isomor-

phism classes of stable rank 2 bundles on S with Chern classes c1 and c2 is non-empty
(see Theorem 1.2). The locusMs,U

S (2; c1, c2) ⊆ Ms
S(2; c1, c2) parameterizing stable

Ulrich bundles is open as pointed out in [13].

Proposition 4.3 Let S be a surface with pg(S) = 0, q(S) = 1 and endowed with a
very ample non-special line bundle OS(h).

If π(OS(h)) ≥ 2, then there is a component US(η) of dimension at least h2 −K 2
S in

Ms,U
S (2; c1, c2) containingall the points representing the stable bundlesE constructed

in Theorem 1.1.

Proof Let us denote byHS the Hilbert flag scheme of pairs (Z ,C)whereC ∈ |OS(h)|
and Z ⊆ C is a 0–dimensional subscheme of degree N + 1. The general C ∈ |OS(h)|
is smooth and its image via the map induced by OS(h) generate a hyperplane inside
P
N . Thus the set HU

S ⊆ HS of pairs (Z ,C) corresponding to sets of points Z in a
smooth curve C ⊆ P

N which are in general position in the linear space generated by
C is open and non-empty.

We have a well–defined forgetful dominant morphismHS → |OS(h)| whose fibre
over C is an open subset of the (N + 1)–symmetric product of C . In particular HU

S
is irreducible of dimension 2N + 1. Let (Z ,C) represent a point of HU

S : the Ulrich
bundles associated to such a point via the construction described in Theorem 1.1
correspond to the sections of

Ext1S
(IZ |S(h − KS),O

) ∼= H1(S, IZ |S(h)
)∨

.

By definition ofHU
S , we have h

0
(
C, IZ |C (h)

) = 0, hence the cohomology of the exact
sequence

0 −→ IZ |C (h) −→ OC (h) −→ OZ (h) −→ 0

and the Riemann–Roch theorem for OC (h) yield h1
(
C, IZ |C (h)

) = deg(Z) −
χ(OC (h)) = 1. Sequence (7), the isomorphism IC|S ∼= OS(−h) and the hypoth-
esis q(S) = 1 and pg(S) = 0 finally return h1

(
S, IZ |S(h)

) = 2, because
h0

(
C, IZ |C (h)

) = 0 by definition.
Thus we have a family E of Ulrich bundles of rank 2 with Chern classes c1 and c2

parameterised by a vector bundle on HU
S .
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If π(OS(h)) ≥ 2, then the bundles in the family are also stable for a general
choice of Z . Since stability is an open property in a flat family (see [23], Proposition
2.3.1 and Corollary 1.5.11), it follows the existence of an irreducible open subset
Hs,U

S ⊆ HU
S ⊆ HS of points corresponding to stable bundles.

Thus, we have a morphism Hs,U
S → Ms,U

S (2; c1, c2) whose image parameterizes
the isomorphism classes of stable bundles constructed in Theorem 1.1. In particular
such bundles, correspond to the points of a single irreducible component US(η) ⊆
Ms,U

S (2; c1, c2).
Theorems 4.5.4 and 4.5.8 of [23] imply that dim(US(η)) ≥ 4c2 − c21 − 3χ(OS).

Taking into account the definitions of c1 and c2, simple computations finally yield
dim(US(η)) ≥ h2 − K 2

S . 
�
If we have some extra informations on the surface S, then we can describe US(η)

as the following proposition shows.

Proposition 4.4 Let S be an anticanonical surface with pg(S) = 0, q(S) = 1 and
endowed with a very ample line bundle OS(h).

If π(OS(h)) ≥ 2, then US(η) is non-rational and generically smooth of dimension
h2 − K 2

S .

Proof Thanks to Corollary 3.5 we know that OS(h) is non-special. Let A ∈ | − KS|:
the cohomology of

0 −→ OS(KS) −→ OS −→ OA −→ 0

tensored with E ⊗ E∨ yields the exact sequence

0 −→ H0(S, E ⊗ E∨(KS)
) −→ H0(S, E ⊗ E∨) −→ H0(A, E ⊗ E∨ ⊗ OA

)
.

Since E is stable (see Theorem 1.2), then it is simple, i.e. h0
(
S, E ⊗ E∨) = 1 (see

[23], Corollary 1.2.8), hence the map

H0(S, E ⊗ E∨) −→ H0(A, E ⊗ E∨ ⊗ OA
)

is injective. We deduce that h2
(
S, E ⊗ E∨) = h0

(
S, E ⊗ E∨(KS)

) = 0.
Thus E corresponds to a smooth point of US(η) and dim(US(η)) = h2−K 2

S , thanks
to Corollary 4.5.2 of [23]. Finally, being q(S) = 1, then US(η) is irregular thanks to
[5] as well. 
�

Remark 3.6 and the above proposition yield the following corollary.

Corollary 4.5 Let S be a geometrically ruled surface with q(S) = 1, e ≥ 0 and
endowed with a very ample line bundle OS(h).

If π(OS(h)) ≥ 2, then US(η) is non-rational and generically smooth of dimension
h2.
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5 Ulrich–wildness

Let S be a surface with pg(S) = 0 and q(S) = 1. Moreover π(OS(h)) ≥ 1 because
S is not rational, as pointed out in the introduction.

We will make use of the following result.

Theorem 5.1 Let X be a smooth variety endowed with a very ample line bundle
OX (h).

If A and B are simple Ulrich bundles on X such that h1
(
X,A ⊗ B∨) ≥ 3 and

h0
(
X,A ⊗ B∨) = h0

(
X,B ⊗ A∨) = 0, then X is Ulrich–wild.

Proof See [20], Theorem 1 and Corollary 1. 
�
An immediate consequence of the above Theorem is the proof of Theorem 1.3.

Proof of Theorem 1.3 Recall that S is a surface with pg(S) = 0, q(S) = 1 and
endowed with a very ample non-special line bundle OS(h). We have π(OS(h)) ≥ 1,
χ(OS) = 0 and K 2

S ≤ 0.
If π(OS(h)) ≥ 2, then Theorems 1.1 and 1.2 yield the existence of a stable special

Ulrich bundle E of rank 2 on S.
The local dimension of Ms

S(2; c1, c2) at the point corresponding to E is at least
4c2 − c21 = h2 − K 2

S ≥ 1. Thus, there exists a second stable Ulrich bundle G � E of
rank 2 with ci (G) = ci , for i = 1, 2. Both E and G, being stable, are simple (see [23],
Corollary 1.2.8).

Due to Proposition 1.2.7 of [23] we have h0
(
F, E ⊗ G∨) = h0

(
F,G ⊗ E∨) = 0,

thus

h1
(
F, E ⊗ G∨) = h2

(
F, E ⊗ G∨) − χ(E ⊗ G∨) ≥ −χ(E ⊗ G∨).

Equality (2) with F := E ⊗ G∨ and the equalities rk(E ⊗ G∨) = 4, c1(E ⊗ G∨) = 0
and c2(E ⊗ G∨) = 4c2 − c21 imply

h1
(
F, E ⊗ G∨) ≥ 4c2 − c21 = h2 − K 2

S ≥ 3.

because surfaces of degree up to 2 are rational. We conclude that S is Ulrich–wild, by
Theorem 5.1.

Finally let π(OS(h)) = 1. In this case, S is a geometrically ruled surface on an
elliptic curve E thanks to Theorem A of [1] embedded as a scroll bay OS(h). Using
the notations of Remark 3.6 we can thus assume that OS(h) = OS(ξ + p∗b), where
deg(b) ≥ e + 3.

Assertion 2) of Proposition 5 in [10] yields that for each ϑ ∈ Pic0(E)\{ OE } the
line bundle L := OS(h + p∗ϑ) ∼= OS(ξ + p∗b + p∗ϑ) is Ulrich. It follows from
Corollary 2.2 that M := OS(2h + KS − p∗ϑ) ∼= p∗OE (2b + h − ϑ) is Ulrich too.

Trivially, such bundles are simple and h0
(
S,L ⊗ M∨) = h0

(
S,M ⊗ L∨) = 0

becauseL � M. SinceL⊗M∨ ∼= OS(ξ − p∗b− p∗h+2ϑ) and e = − deg(h) ≥ −1,
it follows from Equality (2) that

h1
(
S,L ⊗ M∨) ≥ −χ(L ⊗ M∨) = 2 deg(b) − e ≥ e + 6 ≥ 5.
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The statement thus again follows from Theorem 5.1. 
�
The following consequence of the above theorem is immediate, thanks to Corollar-

ies 3.4, 3.5, 3.7.

Corollary 5.2 Let S be a surface endowed with a very ample line bundle OS(h).
If S is either bielliptic, or anticanonical with q(S) = 1, or geometrically ruled with

q(S) = 1, then it is Ulrich–wild.

The following corollary strengthens the second part of the statements of Theorems
4.13 and 4.18 in [27].

Corollary 5.3 Let S ⊆ P
4 be a non-degenerate linearly normal non-special surface

of degree at least 4 with pg(S) = 0. Then S is Ulrich–wild.

Proof As pointed out in the proof of Corollary 3.9 the surface S satisfies q(S) ≤ 1
and if equality holds it is either an elliptic scroll or a bielliptic surface. Theorem 1.3
above and Sect. 5 of [14] yields that S is Ulrich–wild. 
�
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