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Bivariate macromodeling with guaranteed uniform
stability and passivity

Stefano Grivet-Talocia
Dept. Electronics and Telecommunications, Politecnico di Torino

e-mail stefano.grivet@polito.it

Abstract—This paper extends the well-established macromod-
eling flows based on rational fitting and passivity enforcement
to the bivariate case, where the model response depends on
frequency and on some additional design parameter. We propose
a black-box model identification algorithm that is able to guar-
antee uniform stability and passivity throughout the parameter
range. The resulting models, which can be cast as parameterized
SPICE subnetworks, may be used to construct parameterized
component libraries for design optimization, what-if analyses and
fast parametric sweeps in frequency or time domain.

I. INTRODUCTION

Macromodeling flows based on rational fitting with passivity
constraints are now well established [1]. Black-box macro-
models provide compact reduced-order equivalents of complex
interconnect or electromagnetic structures, thus enabling very
fast and reliable frequency- or time-domain simulations using
off-the-shelf circuit solvers. One of the key reasons for this
success is the availability of robust model identification algo-
rithms, which are able to enforce model stability and passivity
while matching with excellent accuracy the response of the
original system.

Bivariate and more generally multivariate macromodeling
is a very interesting approach for making the compact models
scalable and flexible, by including in the model equations the
explicit closed-form dependence on some additional design
parameter, such as a geometrical size, an electrical parameter,
or even temperature or bias in case of linearized models of
active devices [2]. The availability of parameterized macro-
models would allow fast design optimization, what-if analyses,
and parametric sweeps based on reduced-order equivalents,
thus avoiding the need to regenerate the model for every
geometrical configuration that needs to be evaluated during
a design process.

Several approaches have been proposed for the multivariate
extension of standard macromodeling flows [3]–[7]. Unfor-
tunately, none of the existing solutions has been proven to
be robust enough to grant routine applicability in industry
design flows. With this paper, we propose an algorithm for
the extraction of bivariate macromodels from sets of scattering
responses obtained from some electromagnetic solver. The
proposed algorithm is able to guarantee uniform stability
and passivity throughout the parameter range, using a robust
formulation. Various examples confirm the excellent numerical
properties of the produced models, and confirm that the
proposed scheme has a very good potential for opening new
scenarios in automated design flows.

II. FORMULATION

Let us consider an interconnect or a component with 𝑃
electrical ports, whose response depends on frequency 𝑠 = j𝜔
and on some additional parameter 𝜗 ∈ Θ ⊂ ℝ. As illustrative
examples, we may consider 𝜗 to be the width of a signal
conductor, or the permittivity of a dielectric substrate, or the
length of a via stub. We denote as H̆(𝑠;𝜗) the “true” scattering
matrix of the structure, which can be computed, e.g., via an
electromagnetic field solver at a finite set of points (𝑠𝑘, 𝜗𝑚)
in the frequency and parameter space. Our objective is to
construct a reduced-order model whose scattering response
H(𝑠;𝜗) matches this data through

H(𝑠𝑘;𝜗𝑚) ≈ H̆(𝑠𝑘;𝜗𝑚), 𝑘 = 1, . . . , 𝑘, 𝑚 = 1, . . . , �̄�.
(1)

In addition, we seek a procedure that is able to enforce uniform
stability and passivity of the model throughout the parameter
range ∀𝜗 ∈ Θ, which can be summarized in the following
Bounded Realness conditions [9]

1) H(𝑠;𝜗) regular for Re {𝑠} > 0,
2) H∗(𝑠;𝜗) = H(𝑠∗;𝜗),
3) I𝑃 −HH(𝑠;𝜗)H(𝑠;𝜗) ≥ 0 for Re {𝑠} > 0,

where H is the Hermitian transpose, and I𝑃 is the identity
matrix of size 𝑃 . Condition 1 implies stability, condition 2
implies a real impulse response, and condition 3 implies
passivity.

As proposed in [3], [4], we adopt the following model
structure

H(𝑠;𝜗) =
N(𝑠, 𝜗)

D(𝑠, 𝜗)
=

∑�̄�
𝑛=0

∑ℓ̄
ℓ=1 R𝑛,ℓ 𝜉ℓ(𝜗)𝜑𝑛(𝑠)

∑�̄�
𝑛=0

∑ℓ̄
ℓ=1 𝑟𝑛,ℓ 𝜉ℓ(𝜗)𝜑𝑛(𝑠)

, (2)

where R𝑛,ℓ ∈ ℝ
𝑃×𝑃 and 𝑟𝑛,ℓ ∈ ℝ are the real-valued model

coefficients. Two separate sets of basis functions are used
in (2). Frequency dependence is captured by the standard
partial fraction basis functions adopted in Vector Fitting:
𝜑0(𝑠) = 1 and 𝜑𝑛(𝑠) = (𝑠 − 𝑞𝑛)

−1 for 𝑛 > 0, where 𝑞𝑛 are
fixed “basis poles”, which are either real or occur in complex
conjugate pairs (so that condition 2 above is automatically
satisfied [1], [8]). Parameter dependence is embedded through
the basis functions 𝜉ℓ(𝜗) (in this work, first-kind Chebychev
polynomials). As a result, both model poles (the zeros of the
denominator D(𝑠, 𝜗)) and residues are parameter-dependent.
Due to this fact, a direct least-squares fit based on (1) is not
able to guarantee that the model poles are stable, or that the



model is passive for any arbitrary parameter value 𝜗 in the
range of interest.

Let us assume first that the model is stable ∀𝜗 and that
we want to check and enforce its uniform passivity. For any
fixed 𝜗, we can construct the Hamiltonian matrix M(𝜗) or
the Skew-Hamiltonian/Hamiltonian (SHH) pencil (M(𝜗),K)
depending on the preferred state-space or descriptor real-
ization [1], [10], and find the corresponding set of (finite)
eigenvalues {𝜇𝑖(𝜗)}. We then define the (continuous) function

𝜓(𝜗) = min
𝑖

1

𝜌(𝜗)
∣Re {𝜇𝑖(𝜗)} ∣ (3)

where 𝜌 is the maximum eigenvalue magnitude. This function
can be interpreted as the normalized distance of the Hamilto-
nian eigenspectrum from the imaginary axis. If 𝜓(𝜗) = 0, then
there exist some purely imaginary eigenvalues 𝜇𝑖(𝜗) = j𝜔𝑖(𝜗)
whose frequencies 𝜔𝑖(𝜗) delimit the frequency bands where
the model is locally non-passive [1]. Conversely, if 𝜓(𝜗) > 0,
then there are no imaginary eigenvalues and the model is
locally passive for that value of 𝜗.

We perform a bivariate passivity check by running an adap-
tive sampling process on 𝜓(𝜗), supported by the observation
that if 𝜓(𝜗) > 0, a small perturbation 𝜗 + 𝛿𝜗 will lead to
a small perturbation on the Hamiltonian eigenspectrum and
on consequently on 𝜓(𝜗 + 𝛿𝜗). A simple adaptive bisection
process starting from an initial set of samples 𝜗𝑚 uniformly
distributed in Θ is setup, with the objective of tracking all the
subintervals where 𝜓(𝜗) = 0. Once the bisection is complete,
we have a precise knowledge of all areas in the frequency-
parameter plane (𝜔, 𝜗) where the model is not passive. Local
subsampling within these areas leads to the points (�̄�𝜈 , 𝜗𝜈)
where the largest singular value �̄�𝜈 of the model response
H(j�̄�𝜈 , 𝜗𝜈) attains the local maximum. We then setup a
singular value perturbation scheme that perturbs the model
(numerator) coefficients

R𝑛,ℓ → R𝑛,ℓ +ΔR𝑛,ℓ (4)

and corrects this singular value to be less than one. One should
note that this scheme is a straightforward extension to the bi-
variate case of the original singular value perturbation scheme
documented in [11]. Full details of the adaptive sampling
process and related bivariate singular value perturbation are
available in [12].

We now address condition 1 above, related to stability,
which implies that all zeros of the denominator D(𝑠, 𝜗) are
stable. Let us assume that we are able to enforce D(𝑠, 𝜗) to be
a Positive Real (PR) function (we recall that PR conditions [9]
are similar to the BR conditions above, but with condition 3
replaced by H(𝑠;𝜗) +HH(𝑠;𝜗) ≥ 0 for Re {𝑠} > 0). Since
D(𝑠, 𝜗) is scalar, this reduces to enforcing the real part of
D(𝑠, 𝜗) to be nonnegative. In practice, for enhanced numerical
robustness, we formulate a strict PR constraint as

Re {D(𝑠, 𝜗)} > 0 for Re {𝑠} > 0, ∀𝜗 ∈ Θ. (5)

If (5) holds true, then the inverse of the denominator D−1(𝑠, 𝜗)
is also a PR function, without poles for Re {𝑠} > 0. The
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Fig. 1. Comparison between scattering responses of the passive parameterized
model, evaluated at the same parameter values available in the raw dataset.
Only one half (odd-numbered) of these responses were used for model
identification, the other responses were used for validation only.
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Fig. 2. Sweep of the parameterized model poles (refined by a factor 4 with
respect to the raw parameter samples used for model identification). All poles
are stable.

poles of D−1(𝑠, 𝜗) are the zeros of D(𝑠, 𝜗) and correspond
to the parameter-dependent poles of our bivariate model. We
conclude that (5) is a sufficient (although not necessary)
condition for the uniform stability of the model. This condition
is enforced by applying the above-described passivity enforce-
ment process to the denominator D(𝑠, 𝜗) alone, considered as
an immittance (admittance or impedance) function so that PR
is equivalent to passivity. The process is further facilitated by
starting with an almost-stable D(𝑠, 𝜗), obtained by embedding
the inequality constraint (5) in the initial model identifica-
tion stage, here formulated through a standard Generalized
Sanathanan-Koerner iteration [13]. More details on the pro-
posed stability-constrained model construction are available
in [14], where also the parameterized SPICE synthesis of the
bivariate model is discussed.

III. NUMERICAL RESULTS

We illustrate the performance of proposed parameterized
macromodeling scheme by applying it to a 2-port single-
layer 1.5-turn integrated square inductor, parameterized by
its sidelength 𝜗 ∈ Θ = [1.02, 1.52] mm. Original scattering
responses were computed through a field solver over 𝑘 = 477
samples covering a frequency band up to 12 GHz (courtesy of
Prof. Madhavan Swaminathan, Georga Institute of Technology,
Atlanta, USA) over �̄� = 11 linearly spaced samples in the
parameter space. Only the 6 (odd-indexed) parameter samples
were used for model identification, while the remaining 5 were
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Fig. 3. Hamiltonian spectral distance 𝜓(𝜗) from the imaginary axis, plotted
for the initial model (Iteration 1) and the final model after passivity enforce-
ment (Iteration 5). The final model is passive, since 𝜓(𝜗) > 0 for all 𝜗 in
its range.
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Fig. 4. Results of passivity check performed in the initial model. Yellow
dots depict the frequencies of the purely imaginary Hamiltonian eigenvalues
obtained from the SHH pencil at the corresponding parameter values (the
latter resulting from the adaptive sampling on 𝜓(𝜗), see Fig. 3. Red lines
highlight the frequency bands where passivity violations are located. Black
dots are the local singular value maxima computed in the non-passive bands.
These are the points that are perturbed in the passivity enforcement loop.

used for self-validation. Model identification using �̄� = 6
poles and degree ℓ = {3, 2} polynomials for parameterization
of numerator and denominator, respectively, led to a worst-case
approximation error between final passive model and original
data of 𝜀 = 0.7×10−3 among all responses and all frequency
points. Only 1.8 s were needed for initial model estimation,
while passivity enforcement required 18 s, mostly spent on
iterative computation of Hamiltonian eigenvalues.

Figure 1 compares the model responses to the original data,
confirming the excellent accuracy throughout the parameter
range, whereas Fig. 2 confirms that the model is uniformly
stable by plotting the poles trajectories obtained by a fine
sweep of the parameter in its range, and superimposing all
poles in the same panel. We remark that uniform stability
does not require the explicit determination of the poles at
any parameter value, since it is enforced implicitly by the PR
constraint on the model denominator.

Figure 3 (blue line) depicts the normalized distance of the
Hamiltonian eigenvalues from the imaginary axis 𝜓(𝜗) at the
initial passivity enforcement step (iteration 1), showing that
there are two subintervals where this distance vanishes, indi-
cating the presence of passivity violations. Such violations are
depicted in Fig. 4, which collects those imaginary Hamiltonian
eigenvalues arising from the adaptive parameter bisection loop
(yellow dots), the corresponding passivity violation regions
(obtained by slices in the parameter range, the red lines),
and the location of the local singular value maxima that are
perturbed (black squares). After 5 iterations all imaginary

eigenvalues are removed, all singular values are uniformly
below one, and the Hamiltonian spectral distance 𝜓(𝜗) is
uniformly positive (red line in Fig. 3).

IV. CONCLUSION

This paper introduced a novel algorithm for the extraction of
black-box bivariate models from a set of sampled scattering
responses over frequency and parameter space, obtained by
a field solver. Assuming a Generalized Sanathanan-Koerner
form, and leveraging on a strong theoretical result that relates
model stability to the positive realness of its denominator, our
scheme is able to enforce global (uniform) stability by embed-
ding positive realness constraints in the model identification
step. Model passivity is then enforced by an adaptive-sampling
driven perturbation of its coefficients, based on singular value
perturbation.

The proposed scheme provides the first truly black-box
algorithm that is able to guarantee stability and passivity
in addition to a well-controlled accuracy. The resulting pa-
rameterized models are easily cast as parameterized SPICE
subcircuits, thus enabling component library generation for
automated design optimization and fast parametric sweeps.
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