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Use of higher-order Legendre polynomials for multilayered plate
elements with node-dependent kinematics

E. Carrera∗, E. Zappino, A. Pagani, G. Li, A.G. de Miguel

MUL2 Group, Department of Mechanical and Aerospace Engineering, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract

In the present work, higher-order Legendre polynomials are adopted as shape functions of

p-version plate finite elements (FEs) and used in combination with node-dependent kinematics

(NDK) to construct computationally efficient global-local FE models for the analysis of multilay-

ered plates. The use of higher-order Legendre polynomials enables the elements to accommodate

the complex structural deformations with a fewer number of variables in the FE model. Derived

from Carrera Unified Formulation (CUF), NDK can integrate plate kinematics based on Equiva-

lent Single Layer (ESL) models and Layer-wise (LW) models to obtain global-local models using

no ad hoc coupling. The combination of Legendre-type shape functions and NDK shows excellent

rates of convergence, which can lead to FE model with high accuracy in the refined local area

with a reduction in the computational efforts. The capabilities of the proposed approach are in-

vestigated through numerical examples concerning the solution accuracy and the computational

effort.

Keywords: laminated plate, Carrera Unified Formulation, Legendre polynomials,

node-dependent kinematics, finite element

1. Introduction

Composite laminated structures have attracted significant attention in the engineering field in

the recent decades due to their outstanding structural efficiency. Due to the complex arrangement

of these materials, conventional simulation tools soon reach their limits, which has boosted the

demands for structural analysis methods to capture their mechanical responses accurately.5

Towards the accurate analysis of thin-walled laminated structures, a variety of 2D theories
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have been proposed and extensively implemented in numerical models. Classical Plate Theory

(CPT) [1] is the simplest 2D model, which is based on Kirchoff-Loves hypothesis. First-order

Shear Deformation Theory (FSDT) [2] takes the transverse shear effects into account but can

only approximate the shear stresses through the thickness of a plate as constants. A series of10

Higher-Order Theories (HOT) [3, 4, 5] have been suggested to improve the solution accuracy. Fol-

lowing this line, Carrera Unified Formulation [6] was introduced to derive refined plate and shell

models for the analysis of laminated thin-walled structures. Various theories can be integrated

to formulate refined kinematics based on either Equivalent Single Layer (ESL) or Layer-wise

(LW) approach through the arbitrary sets of thickness functions. By making use of the so-called15

Fundamental Nucleus (FN), the corresponding governing equations can be derived in a unified

and compact form [7]. In the CUF framework, a variety of 2D models constructed with different

kinematic assumptions were introduced in the last years by Cinefra and Valvano [8], Cinefra et

al. [9, 10, 11] and Carrera et al.[12].

In numerical analyses with finite elements (FE), a local refinement is often necessary to20

improve the numerical accuracy in the area with strong local effects such as stress concentration.

Different approaches can be followed for this matter. A h-version approach [13, 14] increases

the mesh refinement to capture local responses in detail, whereas a p-version refinement [15,

16, 17, 18] adopts shape functions with higher-order polynomials to approximate the structural

deformation. The h-p-version approach uses these two methods in combination [19, 20, 21, 22].25

Note that in these refinement methods, the kinematic assumption is invariant over the whole FE

model.

The coupling of FE models with different kinematics has been discussed by many researchers.

The three field formulations [23] enforce the displacement compatibility at domain interfaces

with Lagrange multipliers. Various approaches have been developed based on this method, as30

presented by Aminpour et al. [24] who adopted a spline method, by Prager [25] who introduced

an interface potential, as well as the eXtended Variational Formulation (XVF) suggested by

Blanco et al. [26, 27, 28]. Application of a “multi-line” method was reported by Carrera and

Pagani [29, 30]. A superimposed zone can also be used to bind the global and the local model. In

Arlequin method, Lagrange multipliers are used to impose the compatibility in the overlapped35

area, as suggested by Dhia [31] and Dhia and Rateau [32]. Coupling of CUF-based 2D models

with Arlequin method is reported by Biscani et al. [33, 34]. Differently, s-version refinement

[35] superimposes additional elements on the global mesh, in which homogeneous boundary

conditions were imposed on the borders of the overlapped zone. Based on the idea of overlapped
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displacement field, the mathematical assumption can also be enriched locally in specific layers,40

as discussed in [36, 37, 38, 39].

Some techniques that can be used in global-local analyses are also provided in commercial

software. Rigid Beam Element (RBE) and Multi-Point Constraints (MPCs) adopt linear func-

tions to relate the displacements of the dependent and the independent nodes. A super-element

can be built through grouping and condensing the degrees of freedom of a set of elements, and45

special treatment in the matrix operations is required. Shell-to-solid coupling employs a set of

internally defined distribution coupling constraints to connect the edge nodes on a 2D model to

those on a 3D model. Submodeling supports arbitrary mesh refinement, whereas it is a two-step

in-series technique. Note that in the aforementioned global-local methods, usually two sets of

FE mesh grids are needed to realize the local kinematic refinement.50

The concept of Node-dependent Kinematics (NDK) was proposed for the local kinematic

refinement of FE models, which can be used to formulate global-local models. The idea is that

by relating the definition of thickness functions to the FE nodes, the kinematics can be refined

locally on the chosen nodes. The nodal kinematics can be averaged and smeared over the in-

plane domain of a 2D element naturally through the shape functions. Such an approach makes55

it possible to carry out the local kinematic refinement by merely increasing the kinematic order

defined on the desired nodes without changing the mesh. Thus, one set of versatile FE mesh

grids can be used to build a variety of global-local models without using any additional coupling

approach. Carrera et al. [40] suggested NDK for refined 1D models first, then further applied

to the modeling of laminated beams [41] and plates [42, 43, 44]. This technique was also used to60

model local structural features such as embedded piezoelectric skins and patches on composite

plates [45] and beams [46]. In these works, it has been demonstrated that global-local models

constructed with NDK can account for detailed local effects with fewer computational costs.

Szabó and Babuška [47] and Szabó et al. [18] introduced a series of hierarchical shape func-

tions based on Legendre polynomials for the p-version elements. Such type of functions can trace65

back to [48, 49, 50]. The hierarchical functions for a quadrilateral domain were recently used for

the refinement of cross-section kinematics on beam models by Pagani et al. [51] and Carrera et

al. [52], and named as Hierarchical Legendre Expansions (HLE). To further exploit the numerical

efficiency of HLE, in the present work, the authors introduce a novel class of 2D FE models for

the global-local analysis of multilayered plates, which are based on a combination of NDK with70

a p-refinement scheme adopting higher-order Legendre polynomials. In the proposed method,

the polynomial degree p will be treated as an input parameter of the FE model. In the following
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sections, the theoretical basis is briefly explained, and the governing equations are derived from

the Principle of Virtual Displacements (PVD). The efficiency of the proposed modeling approach

is explored through several numerical cases on composite plates.75

2. Preliminaries

X
Y

Z

1

2

3

h/2

b

a

h/2

Figure 1: Notation of a plate model for laminated structures.

The reference system and notation of a multilayered plate model are as shown in Figure 1.

The strain and stress components can be arranged as:

εTp = {εxx, εyy, εxy}, εTn = {εxz, εyz, εzz}. (1)

σTp = {σxx, σyy, σxy}, σTn = {σxz, σyz, σzz}. (2)

where the subscript p and n indicate the in-plane and out-of-plane components, respectively.

The strain vectors εp and εn can be obtained via the geometrical equations:80

εp = Dpu, εn = (Dnp +Dnz)u. (3)

in which Dp, Dnp and Dnz are the differential operator matrices, and their explicit expres-

sions are as follows:

Dp =


∂x 0 0

0 ∂y 0

∂y ∂x 0

 , Dnp =


0 0 ∂x

0 0 ∂y

0 0 0

 , Dnz =


∂z 0 0

0 ∂z 0

0 0 ∂z

 . (4)
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The stress components can be attained through the constitutive equations as follows:

σp = C̃ppεp + C̃pnεn, σn = C̃npεp + C̃nnεn. (5)

where C̃pp, C̃pn, C̃np, and C̃nn are material coefficient matrices defined in the global system

(x, y, z), and the original expressions of a single lamina in the material coordinate system (1, 2, 3)85

read:

Cpp =


C11 C12 C16

C12 C22 C26

C16 C26 C66

 , Cpn =


0 0 C13

0 0 C23

0 0 C36

 ,

Cnp =


0 0 0

0 0 0

C13 C23 C36

 , Cnn =


C55 C45 0

C45 C44 0

0 0 C33

 .
(6)

The material coefficients are characterized by Young’s moduli, the shear moduli, and the

Poisson ratios.

3. Carrera Unified Formulation (CUF) for refined 2D models

In the framework of CUF, the displacement field of a plate structure can be assumed to be:90

u(x, y, z) = F0(z)u0(x, y) +F1(z)u1(x, y) + · · ·+ FN (z)uN (x, y)

v(x, y, z) = F0(z)v0(x, y) +F1(z)v1(x, y) + · · ·+ FN (z)vN (x, y)

w(x, y, z) = F0(z)w0(x, y) +F1(z)w1(x, y) + · · ·+ FN (z)wN (x, y)

(7)

where the approximation functions Fτ (z) are also named as thickness functions. In a compact

form, Equation 7 can be written as follows for ESL models:

u(x, y, z) = Fτ (z)uτ (x, y) τ = 0, 1, ..., N (8)

in which Fτ (z) are defined on the domain through the whole thickness of the plate, which

means z ∈ [−h2 ,
h
2 ]. Alternatively, for LW models, the displacements can be written as:

uk(x, y, ζk) = F kτ (ζk)ukτ (x, y) τ = 0, 1, ..., N (9)

5



where k is the layer index, and −1 ≤ ζk ≤ 1 is the adimensional thickness coordinate. The95

continuity conditions will be enforced at the layer interfaces.

One can observe that the number of expansion terms is N + 1 which is introduced as an

input to the analysis. u
(k)
τ (x, y) represent the unknown primary variables which are the factors

corresponding to the expansion terms. The repeated indexes imply the application of Einstein’s

summation convention. Different from ESL models, in LW models the primary variables will be100

allocated to each layer. CUF provides a convenient and unified approach for the implementation

of a variety of approximation theories to construct refined 2D kinematics for the analysis of

multilayered structures, as described in Refs. [7, 8, 9].

3.1. ESL models based on Taylor expansions (TE)

In ESL models, Taylor series can be adopted as thickness functions by substituting Fτ =105

zτ (τ = 0, 1, · · · , N) into Equation 8, and the obtained thickness functions of the higher-order

model read:

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (10)

Especially, FSDT [2] can be obtained as a particular case of the complete linear model

(N = 1). Such type of theories based on Taylor expansions are the most commonly used in

numerical analyses due to their inherent simplicity and low computational costs, and mostly110

they can be adequate to give solutions for global responses like gross displacements, natural

frequencies, and buckling loads. The main limitation of TE when applied to the mechanical study

of laminated structures is that, due to the intrinsic heterogeneity of multilayered structures, the

obtained transverse shear stresses through the thickness might be discontinuous if no special

treatment is applied.115

3.2. LW models adopting Lagrange expansions (LE)

If F kτ are defined as Lagrange interpolation polynomials defined on layer k, as expressed

in Equation 11, an LE-type LW model can be obtained. ζkτ are located at the prescribed

interpolation points. ζk0 = −1 and ζkN = 1 in the natural reference system signifies the bottom

and top surface of the kth layer, respectively.120

F kτ (ζk) =

N∏
i=0,i6=s

ζk − ζki
ζkτ − ζki

(11)
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In LW models employing Lagrange expansions (LE), the displacements of each interpolation

point are treated as unknown primary variables, and compatibility of the displacements at layer

interfaces follows:

ukt = uk+1
b , k = 1, · · · , Nl − 1. (12)

in which Nl is the total number of layers. The continuity of transverse stresses at layer

interfaces can be achieved when a sufficient number of expansion terms are used in each layer,125

as demonstrated in the authors’ previous work [9].

4. Plate elements Node-dependent Kinematics (NDK)

Figure 2: A Q4 plate element with node-dependent kinematics.

In CUF framework, the displacement functions of refined 2D FE models read:

u(k)(x, y, z) = Ni(x, y)F (k)
τ (z)uiτ τ = 0, · · · , N ; i = 1, · · · ,M. (13)

where Ni(x, y) are the nodal shape functions, which for standard elements are Lagrange

interpolation polynomials, and M is the total number of nodes per element. According to this130

definition, the nodal kinematics is defined uniformly over the whole FE model, which means a FE

model with uniform kinematic assumptions. For structures undergoing high-stress gradients only

within a limited region, such models might consume some unnecessary computational resources.
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Carrera et al. [40, 41] proposed a method to define the local kinematic refinement in FE

models. By relating the thickness functions to the chosen nodes through Equation 14, an element135

consisting of more than one type of mathematical assumptions can be formulated:

u(k)(x, y, z) = Ni(x, y)F i(k)
τ (z)uiτ τ = 0, · · · , N ; i = 1, · · · ,M. (14)

in which F
i(k)
τ are defined on node i and become kinematics local to the node. The kinematics

of a certain node i is indeed smeared over the finite element domain utilizing the shape functions

Ni(x, y). In a sense, node i acts as the “anchor” of F
i(k)
τ within the 2D mesh. A natural

application of this approach is to construct global-local FE models. Assume that the kinematics140

is gradually refined from one side to the other side of an element, as illustrated on the left-hand

side of Figure 2, an element with a kinematic transition can be formulated. The transition zone

Ωγ can serve as a bridge between the local domain Ωβ with refined kinematics and a peripheral

domain Ωα with lower-order kinematics, as illustrated on the right-hand side of Figure 2. In such

a way, the local kinematic refinement can be carried out straightforwardly without changing the145

mesh nor using any extra coupling approach. Thus, the compactness of the governing equation

is kept, and the implementation of simultaneous multi-model global-local FE models is very

convenient. On the other hand, this approach enables a set of mesh grids to accommodate a

series of local refinement schemes, from very simple and cheap to very precise but computationally

expensive. Moreover, the convenience of changing the nodal mathematical assumptions permits150

an automatic refinement procedure without user intervention. NDK has been successfully applied

to generate numerically efficient global-local models for 1D [40, 41] and 2D [42, 43, 44, 45]

modeling in the analysis of multilayered structures.

5. Higher-order Legendre polynomials as the shape functions of plate elements

Szabó et al. [18] suggested a set of shape functions based on Legendre polynomials for a155

quadrilateral domain (ξ, η) ∈ [−1, 1]. This type of shape functions consist of nodal modes, edge

modes, and internal modes, as shown in Figure 3.

Nodal modes are defined as Lagrange linear interpolation polynomials on the four vertex

nodes of the quadrilateral domain, and their expressions are:

Ni(ξ, η) =
1

4
(1− ξiξ)(1− ηiη) i = 1, 2, 3, 4 (15)
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Figure 3: High order Legendre polynomials as shape functions of plate elements.

where (ξi, ηi) represent the local coordinates of node i in the isoparametric reference system160

in a four-node element.

Edge modes are dominated by the deformation on the four edges and vanish linearly along

the corresponding perpendicular edges. These functions are expressed as:

Ni(ξ, η) =
1

2
(1− η)φp(ξ) i = 5, 9, 13, 18, · · ·

Ni(ξ, η) =
1

2
(1 + ξ)φp(η) i = 6, 10, 14, 19, · · ·

Ni(ξ, η) =
1

2
(1 + η)φp(ξ) i = 7, 11, 15, 20, · · ·

Ni(ξ, η) =
1

2
(1− ξ)φp(η) i = 8, 14, 16, 21, · · ·

(16)

where φp is defined as:

φp(ξ) =

√
2p− 1

2

∫ ξ

−1

Lp−1(x)dx =
Lp(ξ)− Lp−2(ξ)√

4p− 2
p = 2, 3, · · · (17)

Surface modes contain the deformation shapes that happen on the internal surface and165
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vanish on the edges:

Ni(ξ, η) = φm(ξ)φn(η) m,n > 2; i = 17, 22, 23, 28, 29, 30, · · · (18)

With the above-described hierarchical shape functions, four-node Legendre-type elements for

p-refinement can be developed. Different from Lagrange-type shape functions, when the polyno-

mial degree p increases to p+1, only the newly added shape functions and the resulting matrices

need to be introduced. Meanwhile, it should be noticed that compared with Lagrange polynomi-170

als of the same polynomial order interpolated on equally spaced internal nodes, Legendre-type

shape functions usually requires a fewer number of functions in the construction of a 2D element.

Furthermore, for Legendre-type shape functions the polynomial order p is defined as an input

parameter and p-refinement can be conveniently realized on the same set of mesh grids to reach

the numerical convergence.175

6. FE governing equations

In this section, the governing equations for plate elements with NDK are derived from the

Principle of Virtual Displacements (PVD). For a static problem, one has:

δLint = δLext (19)

where δLint is the strain energy due to the external load, and δLext represents the work done

by the external load on the virtual displacements. The internal work can be expressed as:180

δLint =

∫
V

δεTσdV =

∫
Ω

∫
Ak

δεTσdAkdΩ (20)

in which Ω represents the element in-plane domain, and Ak indicates the thickness domain

within layer k. In Equation 20, the integration is conducted within the domain determined by

the element and the layer k. The displacement field can be expressed as shown in Equation 21

for ESL models, in which z ∈ [zbottom, ztop]:

u(x, y, z) = Ni(x, y)F iτ (z)uiτ τ = 1, · · · , N ; i = 1, · · · ,M.

δu(x, y, z) = Nj(x, y)F js (z)δujs s = 1, · · · , N ; j = 1, · · · ,M.
(21)
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Alternatively, for LW models as in Equation 22 , where ζk ∈ [−1, 1]:185

uk(x, y, ζk) = Ni(x, y)F ikτ (ζk)ukiτ τ = 1, · · · , N ; i = 1, · · · ,M.

δuk(x, y, ζk) = Nj(x, y)F jks (ζk)δukjs s = 1, · · · , N ; j = 1, · · · ,M.
(22)

The strain vectors can be obtained through Equation 23, which applies to both ESL and LW

models:

εkp = F i(k)
τ DpNiu

(k)
iτ

εkn = F i(k)
τ DnpNiu

(k)
iτ + F i(k)

τ,z Niu
(k)
iτ

(23)

Considering the strains as expressed in Equation 23 and the constitutive relations in Equa-

tion 5, one can obtain the expression of the internal work as:

δLint =

∫
Ω

∫
Ak

(δεkn
T
σkn + δεkp

T
σkp )dAkdΩ = δu

(k)
js

T
Kk
ijτsu

(k)
iτ (24)

in which the 3×3 matrix Kk
ijτs is the so-called fundamental nucleus (FN) of stiffness in the190

context of CUF, which is the basic unit of the element stiffness matrix. Thus, the stiffness matrix

of the spatial domain identified by Ω and Ak can be obtained.

Assume that pα(x, y) is a surface load acting on a horizontal surface of the plate (α indicates

the loading direction, which is x, y or z), the virtual variation of the external work caused by pα

can be written as:195

δLpαext =

∫
Ω

δu(k)
α pαdΩ =

∫
Ω

δu(k)
αjsNjF

j(k)
s (zp)pαdΩ (25)

where zp represents the coordinate of the loading surface. If the external surface load is

written into a vector pα(x, y), Equation 25 can be further written as Equation 26, where P
(k)
js is

the FN of external load. In P
(k)
js , only the components on α direction are non-zero.

δLpαext = δu
(k)
js

T
P

(k)
js (26)

Hence, the governing equation can be obtained as:

δu
(k)
js

T
: Kk

ijτsu
(k)
iτ = P

(k)
js (27)

If the external loads are point loads, P
(k)
js can be expressed accordingly then be substituted200
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into Equation 27. For the explicit expressions of the FNs, the reader is referred to [42].

7. Assembly of the stiffness matrix and load vector

The fundamental nucleus (FN) is a core unit of the stiffness matrix. By looping on the

indexes of the expansions, the stiffness matrices on the node level can be obtained, then be

further assembled on the element level and the global structure. For more details on the assembly205

technique of CUF-based FE models, see Carrera et al. [7].

In fact, it is quite straightforward to apply such a routine to the NDK cases. When various

nodal kinematic assumptions coexist in an element, sub-matrix Kij will probably be rectangular

rather than square. As an example, Figure 4 illustrates the assembly of the stiffness sub-matrices

and load vector in a NDK-type Q4 plate element el. In this element, on node a and d LW models210

are employed, while on node b and c ESL models are adopted. Consider two typical cases of the

sub-matrices:

• Kaa: diagonal matrix for LW models on node a, which has a different number of expansions

from Layer 1 to Layer 3. Kaa is achieved by assembling the stiffness matrices corresponding

to each layer then superimposing the interfacial components.215

• Kbb: diagonal matrix for ESL models for node b, obtained by overlapping the stiffness

matrices of all the layers directly.

• Kab and Kba: coupling matrices between node a and b. Since when PVD is applied the

integration to obtain the stiffness matrix is operated on a brick domain defined by element

el and layer k, Kk
ab and Kk

ba (k is the layer index) will become rectangular. After the220

components at layer interfaces are overlapped, the location of their components become as

shown in Figure 4, where K1
ab, K

2
ab, and K3

ab are in a banded shape.

Meanwhile, the load vector will be assembled similarly, and become compatible with the

stiffness matrix, as shown on the right-hand-side of Figure 4.

8. Numerical results225

In this section, results on laminated structures obtained from p-version elements constructed

with higher-order Legendre polynomials and NDK are reported. Firstly, in Case 1, composite

laminates under sinusoidal distributed pressure are analyzed, and the Legendre-type elements us-

ing CUF-based kinematics are validated on both thick and thin plates. Case 2 presents laminated

12



Node a Node b

Node cNode d

Figure 4: Assembly of the stiffness matrix and load vector of elements with various nodal kine-
matics.

plates under an out-of-plane point load, which causes intense local deformation. In Case 3, a sim-230

ply supported plate under local pressure is studied, and NDK is used to build a computationally

efficient FE model.

In the authors’ previous work [51, 52], the same set of higher-order Legendre polynomials have

been denoted as “HLE” when used as cross-section functions of refined beam models. Following

this notation, in the present article, FE models employing Legendre-type shape functions of the235

pth order will be represented by HLEp. Meanwhile, TEn is used to indicate TE-type kinematics

of the nth order, and LEn serves LE-type thickness functions with Lagrange polynomials of order

n. For FE models with multiple kinematics, LEm/TEn is used as an acronym.

8.1. Case 1: Simply-supported three-layered cross-ply plates under pressure load

By referring to Pagano’s work [53], three-layered composite plates with lamination sequence240

[0°/90°/0°] under bi-sinusoidal transverse pressure and simple supports are studied. The load is

imposed on the top surface, whose distribution follows:

p(x, y) = p0 · sin(
πx

a
) sin(

πy

b
) (28)
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Figure 5: 2D FE model for the composite plate, with symmetry boundary conditions.

The plates are rectangular with b = 3a. The nondimensional material coefficients used for

each layer are: EL = 25, ET = 1, GLT = 0.5, GTT = 0.2, νLT = νTT = 0.25, where L and

T stand for the fiber longitudinal and transverse direction, respectively. The three layers have245

equal thickness h/3. Both thick (a/h = 2) and thin (a/h = 100) plates are considered. For the

convenience of comparison, the displacement and stresses are non-dimensionalized according to:

w̄ =
100ETh

3

p0a4
w, σ̄xx =

h2

p0a2
σxx, σ̄yy =

10h2

p0a2
σyy, σ̄xy =

10h2

p0a2
σxy,

σ̄xz =
10h

p0a
σxz, σ̄yz =

10h

p0a
σyz, σ̄zz =

1

p0
σzz.

(29)

The following constraints are used on the edges to satisfy the boundary conditions:

At x = 0, a : v = w = 0;

At y = 0, b : u = w = 0.
(30)

Taking advantage of the symmetry feature of the structure and loading conditions, a quarter

of the plate is modeled with finite elements with the help of symmetric boundary conditions,250

as illustrated in Figure 5. Numerical study on such a case has also been reported by many

authors. Carrera et al. [9] studied this case with MITC9 finite elements employing various

CUF-based models; Kulikov and Plotnikova [54] also proposed solutions obtained with the so-

called Sampling-surfaces method (SaS). Their solutions are also listed in Table 1 and Table 2 for

comparison in which the displacement and stress evaluations are summarized.255
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The results obtained with the proposed p-version elements adopting higher-order Legendre

polynomials are compared against those achieved with nine-node Lagrange-type elements (Q9)

with full integration. Lagrange polynomials of the 4th order (LE4) are used as thickness functions

in each layer. To achieve numerical convergence, for FE models based on Q9 elements, the mesh is

refined gradually, following a h-refinement scheme. For Legendre-type elements, the polynomial260

order p of the elements is increased hierarchically.

The thick plate (a/h = 2) is first studied. From Table 1, it can be found that FE model with

5 × 5 Q9 elements or one HLE7 element can lead to converged numerical results. It should be

noticed that, comparatively, an HLE7 element uses a fewer number of degrees of freedom than

5 × 5 Q9 elements. Regarding the relative error of σ̄yz with respect to the degrees of freedom,265

as shown in Figure 6 (a), it is evident that FE models adopting Legendre-type elements have

better numerical efficiency than commonly used Lagrange-type Q9 elements.

Table 1: Displacement and stress evaluation on the three-layered cross-ply plates under pressure
load, obtained with LE4 as thickness functions, thick plate case (a/h = 2).

Element Mesh w̄ σ̄yy 10σ̄yz σ̄zz DOFs
(a2 ,

b
2 , 0) (a2 ,

b
2 ,

h
6 ) (a2 , 0, 0) (a2 ,

b
2 ,

h
2 )

Q9 1×1 3.196 1.006 2.668 0.5103 351
Q9 2×2 8.167 2.356 7.525 1.010 975
Q9 4×4 7.882 2.315 6.904 0.9693 3159
Q9 5×5 8.165 2.308 6.825 1.004 4719

HLE2 1×1 8.137 2.671 9.853 1.038 312
HLE3 1×1 8.005 2.866 6.961 0.9598 468
HLE4 1×1 8.120 2.333 6.600 0.9918 663
HLE5 1×1 8.167 2.279 6.622 1.004 897
HLE6 1×1 8.166 2.293 6.688 1.004 1170
HLE7 1×1 8.165 2.295 6.686 1.004 1482

Pagano [53] 8.17 2.30 6.68 –
Kulikov and Plotnikova [54] 8.1659 2.6772 6.6778 1.0001

Carrera et al. [9] 8.166 2.296 6.690 1.000

For the thin plate case (a/h = 100), the Q9 elements with full integration encountered some

locking, which can be observed from the transverse shear stress σ̄yz shown in both Table 2

and Figure 6(b). For Legendre-type elements, with the increase of the polynomial order p,270

the accuracy can also be improved gradually. Table 2 shows that with even only one element

(mesh 1× 1), HLE8 can give very accurate stress evaluation. If a h-p-refinement scheme (mesh

2 × 2) is used, the accuracy of the stress solutions is further enhanced. Moreover, the use of

higher-order functions mitigates the locking issues, which shows that in this case, HLE8 can
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deform appropriately to capture the responses of the thin plate. Concerning the variation of275

the transverse shear stress σ̄yz as shown in Figure 6 (b), one can observe that Legendre-type

elements still convergence faster than the Q9 elements for the thin plate case.

Table 2: Displacement and stress evaluation on the three-layered cross-ply plates under pressure
load, obtained with LE4 as thickness functions, thin plate case (a/h = 100).

Element Mesh w̄ σ̄yy 10σ̄yz σ̄zz DOFs
(a2 ,

b
2 , 0) (a2 ,

b
2 ,

h
6 ) (a2 , 0, 0) (a2 ,

b
2 ,

h
2 )

Q9 5×5 0.5069 0.2511 2.365 1.813 4719
Q9 10×10 0.5076 0.2528 2.217 1.128 17199
Q9 15×15 0.5076 0.2530 2.020 1.041 37479

HLE3 1×1 0.4487 0.5085 105.1 5.404 468
HLE4 1×1 0.5054 0.3479 42.23 -1.431 663
HLE5 1×1 0.5087 0.2830 -7.019 0.4908 897
HLE6 1×1 0.5077 0.2486 0.8042 1.164 1170
HLE7 1×1 0.5077 0.2531 1.202 1.011 1482
HLE8 1×1 0.5077 0.2532 1.087 0.9971 1833

HLE3 2×2 0.5075 0.3472 8.386 2.541 1287
HLE4 2×2 0.5075 0.2629 3.799 0.8828 1911
HLE5 2×2 0.5077 0.2540 0.9318 0.9758 2691
HLE6 2×2 0.5077 0.2530 1.075 1.003 3627
HLE7 2×2 0.5077 0.2531 1.084 1.000 4719
HLE8 2×2 0.5077 0.2531 1.084 1.000 5967

Pagano [53] 0.508 0.253 1.08 –
Kulikov and Plotnikova [54] 0.50766 0.25236 1.0836 1.000

Carrera et al. [9] 0.5077 0.2533 1.085 1.000

The best solutions to the transverse shear stresses obtained with h-refinement using Q9 and

p-refinement are compared in Figure 7 regarding the variation in the thickness direction, and they

are in high agreement with each other. The contour plots of σxz shown in Figure 8 demonstrate280

that even with only one element, when the polynomial degree p is sufficiently high, Legendre-

type elements adopting CUF-based kinematics can capture very detailed 3D stress field with

satisfying accuracy for both of the thick and thin plate cases.

8.2. Case 2: Simply supported three-layered plates subjected to a point load

Three-layered square cross-ply plates under simple supports on the four edges are considered285

in this part. The plates are subjected to a concentrated load at the central point on the top

surface, as illustrated in Figure 9. The three layers are of equal thickness h/3 and laminated

in the sequence [0°/90°/0°]. The mechanical properties of each lamina are characterized by
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Figure 6: Relative error of σ̄yz on the three-layered cross-ply plates under pressure load, obtained
with LE4 as thickness functions.
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Figure 7: Through-the-thickness variation of the transverse shear stresses on the plates under
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Figure 8: Contour plot of σxz obtained with Legendre-type elements employing LE4 as thickness
functions.

nondimensional coefficients: EL = 25, ET = 1, GLT = 0.5, GTT = 0.2, νLT = νTT = 0.25,

where L denotes the fiber direction and T its transverse direction. Both thick (a/h = 4) and290

thin (a/h = 100) cases are studied. The simple supports are defined following Equation 30.

The closed-form reference solutions are provided by Carrera and Ciuffreda [55]. The transverse

displacements w are reported, which are non-dimensionalized as:

w̄ =
100ETh

3

Pza2
w (31)

X
Y

Z
z
P

a

b

h

Figure 9: Geometry and loading of the simply-supported laminated plates subjected to a point
load.

Point loads cause high local deformations, which represent a severe challenge for structural
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analyses based on weak-form solution techniques. Through this numerical example, the capabil-295

ities of Legendre-type elements in approximating the concentration effects are investigated. In

the FE model, the plates are discretized into 16 (4× 4) Legendre-type plate elements, as shown

in Figure 10. The plates are firstly analyzed with Legendre-type elements adopting CUF-based

thickness kinematics LE4 in each layer, and the polynomial order in each element is increased

gradually until 8. Then, by applying NDK, LE4 kinematics is restricted in the area surrounding300

the loaded point, leaving the remaining part the of the structure with kinematics based on TEn.

The corresponding assignment of nodal kinematics is illustrated in Figure 10.

Figure 10: Assignment of nodal kinematics on the FE model for the three-layered plates subjected
to a point load.

The variation of the vertical displacement w̄ through the thickness of the plates is shown in

Figure 11. It can be observed that, when LE4 kinematics is adopted uniformly on the whole

FE model, the quality of the solutions improves with the increase of the polynomial order of305

the elements. For the thick plate case with a/h = 4, when elements of a higher-order are

used, the displacement at the loading point shoots up, which demonstrates that the strong local

deformation can be better captured with higher-orders in p-version refinement. Comparatively,

for the thin plate case with a/h = 100, the local effects through the thickness at the loading

point are much less significant.310

Since the local effects take place within only a limited area near the loading point, for the

peripheral region less-refined kinematics is sufficient. The results obtained with global-local

models constructed with NDK are reported in Figure 11 and Table 3. The results show that the

higher-order elements can accommodate severe deformations when employing refined kinematics.
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In the meanwhile, the NDK models can lead to comparable accuracy with the most refined315

uniform kinematic models while reducing the computational costs concerning the degrees of

freedom.
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Figure 11: Through-the-thickness variation of w̄ at (a/2, b/2) on the three-layered plates sub-
jected to a point load.

Table 3: w̄ at (a2 ,
b
2 , 0) on the simply-supported laminated plates subjected to a point load.

Element Kinematics w̄(a/h = 4) w̄(a/h = 100) DOFs

HLE8 LE4 12.80 2.169 21255
HLE8 LE4/FSDT 10.96 2.167 5751
HLE8 LE4/TE2 11.04 2.165 7575
HLE8 LE4/TE3 11.88 2.166 8943
HLE8 LE4/TE4 11.95 2.166 10311

Carrera and Ciuffreda [55] 13.188 2.172 –

8.3. Case 3: Three-layered cross-ply moderate thick composite plate under local pressure

This case includes a square cross-ply plate imposed to a local pressure load in the central

area of its top surface, as shown in Figure 12. The length of the edges are a = b = 0.1m and the320

edge-to-thickness ratio is a/h = 10. The stacking sequence is [0°/90°/0°] and each layer has equal

thickness. The uniformly distributed pressure load p0 covers the area of a/5 × b/5. The plate

is simply supported on its four edges, and the corresponding constraints are set with reference
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to Equation 30. The mechanical properties of the material for each layer are: EL =132.5GPa,

ET =10.8GPa, νLT =0.24, νTT =0.49, GLT =5.7GPa, and GTT =3.4GPa.325

Figure 12: Geometry and loading of the three-layered cross-ply composite plate under local
pressure, with a/h = 10 and [0°/90°/0°].

Exploiting the symmetries of the problem, a FE model of a quarter of the structure is built,

which consists of 5 × 5 Legendre-type elements, as shown in Figure 13. The displacement and

stresses are evaluated on four points, whose locations are indicated in Figure 13 and explicitly

given in Table 4. Firstly, different polynomial orders p are tested using LE4 as thickness functions.

Then, the computational efforts are reduced by making use of an NDK methodology. In the area330

distant from the loading region, less-refined model FSDT is employed, leading to a global-local

model as shown in Figure 13.

The numerical results are summarized in Table 4. The reference solutions proposed by Biscani

et al. [33] and Zappino et al. [43] are also listed for comparison. From the results in Table 4,

it can be found that the numerical convergence is achieved when the polynomial order p reaches335

6. The global-local model also gives accurate estimation in the loaded region. The through-the-

thickness variation of the transverse shear stresses obtained with a LE4 model and NDK model

LE4/FSDT are plotted in Figure 14. It can be observed that in the loaded local zone, the model

with LE4/FSDT can lead to results in high agreement with the model adopting uniform LE4

kinematics, but with much fewer degrees of freedom.340

9. Conclusions

In this work, plate elements adopting higher-order Legendre polynomials as shape functions

are explored and used in combination with Node-dependent Kinematics (NDK) for the analysis

of multilayered structures. The following conclusions can be drawn based on the numerical study:
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Figure 13: Assignement of nodal kinematics on the FE model for the three-layered cross-ply
composite plate under local pressure.

Table 4: Displacement and stress evaluation on the three-layered plate under local pressure.

Element Mesh Kinematics w[10−5m] σxx[MPa] σyy[MPa] -10σxz[MPa] -10σyz[MPa] −σzz[MPa] DOFs
A(a2 ,

b
2 ,
−h
2 ) A(a2 ,

b
2 ,
−h
2 ) A(a2 ,

b
2 ,
−h
2 ) B( 5a

12 ,
b
2 , 0) C(a2 ,

5b
12 , 0) D(a2 ,

b
2 ,

h
2 )

HLE3 5×5 LE4 1.681 12.08 2.061 6.596 7.094 1.241 6084
HLE4 5×5 LE4 1.682 11.92 2.023 6.501 6.965 0.881 9399
HLE5 5×5 LE4 1.682 11.97 2.039 6.497 6.972 1.045 13689
HLE6 5×5 LE4 1.682 11.98 2.037 6.499 6.974 1.003 18954

HLE6 5×5 FSDT 1.610 10.44 1.850 3.829 4.647 0.938 2430
HLE6 5×5 LE4/FSDT 1.702 12.50 2.036 6.516 6.941 1.008 5592

Biscani et al. [33] 1.674 11.94 2.019 6.524 – – –
Zappino et al. [43] 1.675 11.99 2.033 6.463 6.902 0.993 37479
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Figure 14: Variation of transverse shear stresses through z̄ on the cross-ply composite plate
under local pressure.

• The convergence rate of p-version refined 2D elements with higher-order Legendre polyno-345

mials as shape functions are better than h-refinement.

• With NDK, FE models with variable LW/ESL nodal kinematics can be conveniently con-

structed.

• By applying NDK, local kinematic refinement can be carried out without modifying the

mesh neither using any artificial coupling method.350

• NDK can help to further reduce the computational consumption when used together with

Legendre-type plate elements for the analysis of structures undergoing strong local effects.

• The proposed approach is ideal for global-local analyses regarding both numerical efficiency

and the convenience of modeling.

The proposed approach could also be extended to the modeling of laminated shells as future355

work.
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