
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Implementation of a performance optimized database join operation on FPGA-GPU platforms using OpenCL / Roozmeh,
Mehdi; Lavagno, Luciano. - ELETTRONICO. - (2017), pp. 1-6. ((Intervento presentato al convegno 2017 IEEE Nordic
Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)
tenutosi a Linkoping, Sveden nel 23-25 Oct. 2017.

Original

Implementation of a performance optimized database join operation on FPGA-GPU platforms using
OpenCL

ieee

Publisher:

Published
DOI:10.1109/NORCHIP.2017.8124981

Terms of use:
openAccess

Publisher copyright

copyright 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating .

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2704818 since: 2018-04-01T14:02:44Z

IEEE

Implementation of a Performance Optimized
Database Join Operation on FPGA-GPU Platforms

Using OpenCL
Mehdi Roozmeh Luciano Lavagno

mehdi.roozmeh@polito.it luciano.lavagno@polito.it
Politecnico di Torino

Italy

Abstract—The growing trend toward heterogeneous platforms
is crucial to meet time and power consumption constraints for
high-performance computing applications. The OpenCL parallel
programming language and framework enable programming
CPU, GPU and recently FPGAs using the same source code. This
eases software developers to implement applications on various
devices supported by heterogeneous HPC platforms.
This work presents two very different FPGA implementations of
a database join operation, one using a direct O(n2) algorithm,
and the other using a bitonic sort network to speed up the join
operation. Comparison of performance and energy consumption
for both FPGA and GPUs is provided which suggests a 40%
performance/watt improvement by using an FPGA instead of a
GPU.

Database, Data Center, FPGA, GPU, OpenCL, High-level
synthesis, Low-power low-energy computations, Parallel Com-
puting.

I. INTRODUCTION

Energy consumption and power dissipation are significant
energy costs for modern datacenters. Intel’s acquisition of
Altera in 2016 and FPGA deployment in datacenters and cloud
infrastructure by Microsoft, Baidu and Amazon indicate the
ever-growing interest of industry leaders to implement a wide
range of workloads on FPGA. This option which previously
was not interesting due to the very high design costs implied
by HDL-based FPGA design, is now becoming interesting
thanks to both FPGA architectural improvements (e.g. in terms
of on-chip CPU cores and of external DRAM bandwidth)
and design flow improvements, namely the broad adoption of
High-Level Synthesis (HLS) tools [1].

Intel, for example, is supplying Systems-In-Package(SIP)
including both Xeons and Altera FPGAs. It may also, in the
future, integrate them on the same chip. It is also provid-
ing its customers with a Software Development Kit (SDK)
which supports these heterogeneous SIPs. The SDK allows
the programmer to write kernels in OpenCL and than map
them uniformly to FPGA resources, in addition to CPUs and
GPUs [2].

The OpenCL Programming model has been developed by
the Khronos group to overcome the hurdles of program-
ming multi-core and heterogeneous compute platforms[3].
OpenCL enables programmers to develop both close-to-the-
metal and portable software. Although, OpenCL is a high-level

programming language, it provides a low-level abstraction
layer that can expose significant architectural aspects of the
target hardware, such as massive parallelism and the memory
hierarchy. The CPU/GPU based platforms generally have a
fixed architecture. While this makes programming easier and
compilation times much faster, it is also a limitation because
it reduces both the energy efficiency and the on-chip ("local"
in OpenCL terms) memory access bandwidth with respect to
an FPGA [4].

SDAccel is a sophisticated toolchain from Xilinx that sup-
ports C/C++ and OpenCL for high-level synthesis targeting
Xilinx FPGAs. It starts from software simulation, which only
verifies OpenCL functionality, proceeds through the generation
of high-quality RTL, whose functionality can be verified
through RTL simulation, all the way to placement, routing
and bitstream generation.

OpenCL defines hierarchical memory model that is com-
mon between all vendors and can be applied to all OpenCL
applications[5]. Global, local and private memories are the
main layers of this hierarchy. SDAccel maps them to the FPGA
platform as external DRAMs, BRAMs, and register. SDAccel
allows even finer-grained exploitation of the on-chip memory
architecture of FPGAs by using directives such as on-chip
global memory, multiple AXI buses for kernel global arrays,
and partitioned local arrays, which enable a designer to fine-
tune the memory architecture and adapt the RTL architecture
to the application, rather than the application to the GPU
architecture.

This paper presents two implementations of the join opera-
tion between two database tables, i.e. the creation of a single
merged table containing only elements with the same primary
key. One of them is ultra-parallel, based on two nested loops
which simply apply the join definition to unsorted tables. The
other uses a fast bitonic sort algorithm, with lower complexity,
followed by a linear join of sorted tables. Note that sorting is
very memory bandwidth-intensive. So this application is a sort
of worst case when comparing GPU and FPGA platforms.

II. BACKGROUND AND RELATED WORK

This section summarizes related work on the implementa-
tion of the join operation using GPU and FPGA accelerators,
with the main focus on using Xilinx FPGAs high-level syn-
thesis.

The authors of [6] discuss relative performance of the nested
loop and sort-merge join algorithms. However, they do not
discuss a specific target platform. Their results confirm that
the sort-merge join algorithm outperforms the nested loop join
algorithm except for small data sizes. In [7] modern multi-
core processors are compared via an extensive analysis of their
performance executing of sort-merge join and radix-hash join.
Their results indicate that only when very large amounts of
data are involved sort-merge join has better performance than
radix-hash join.

Two different hardware implementations of the bitonic
sorting network were presented in [8]. The best performing
design, in that case, utilized a single memory port and a
streaming permutation network (SPA), thus resulting in a
memory and energy optimized implementation on a Xilinx
Virtex-7 platform. A significant performance improvement was
also achieved in [9] by proper pipelining of different stages
of the sorting network. In [10], the Bitonic sort algorithm was
compiled for a GPU-based hardware platform by using CUDA,
where optimizations were done mainly to reduce the number
of global memory accesses and the number of kernel launches.

Even though GPUs and CPUs have been the main platform
for query processing, FPGAs have recently gained interest due
to the availability of FPGA-based reconfigurable computing
[11]. Implementation of database systems on FPGA is now
much easier, as a result of the availability of OpenCL-based
and C-based design flows.

In [13], [14] and [15] the authors discuss the usage of an
OpenCL-based synthesis framework targeting FPGAs that en-
courages many software developers to use them as acceleration
platforms. Although using OpenCL as a high-level synthesis
input language is not yet mature and significant hurdles should
be addressed to achieve high-quality RTL generation, the
design speed offered by the new flow more than overcomes
any limitations [16].

FPGAs are hence considered as a viable option as an accel-
erator instead of GPUs especially when energy-per-operation
is the main concern. As mentioned above, researchers at
Baidu are thus considering FPGAs for accelerating their deep
learning models for image search [17]. Microsoft’s Bing search
engine also uses Altera FPGAs as accelerators in combination
with traditional microprocessors from Intel [18]. Keeping in
view this market trend and the general perception of the
complexity of FPGA programming, two of the major FPGA
manufacturers, Intel/Altera and Xilinx, have recently intro-
duced tools to enable the designers to program their respective
FPGAs directly using C, C++, SystemC and OpenCL code
[20], [21]. There is hence a considerable interest on this topic
in the design community. This provided us with a motivation
to perform this study.

III. MOTIVATION

The OpenCL programming language has been used for a
while as the input to a common framework that can target
multiple devices with different available levels of parallelism.
The OpenCL execution model [23] subdivides an application
into multiple kernel executions. Each kernel, capturing task-

level parallelism, executes in parallel a number of Work-
Groups (WGs), which in turn execute in parallel a number
of WorkItems (WIs), in a doubly nested doall loop structure.
The memory hierarchy is also modeled explicitly. Kernels
communicate via global memory (DRAM). WIs within a WG
share a local memory (SRAM), and each WI has its own
private memory (registers). WIs within a WG can synchronize
by means of barriers, while WGs are fully concurrent.

Despite market availability of tools that allow implemen-
tation of OpenCL code on FPGAs, this path still requires a
more significant design effort than for a GPU target, especially
when both performance and energy are a concern, and resource
limitations must be taken into account. This work focuses on
optimizing both the code structure and the memory archi-
tecture of generated RTL by extensively using the analysis
and synthesis capabilities of the SDAccel design environment
from Xilinx. Since this is a memory bandwidth-dominated
application, the main goal of these optimizations is to increase
efficiency of main memory access and bandwidth utilization.

IV. ANALYSIS OF JOIN ALGORITHM

Join operations are at the core of all relational databases.
Their performance on CPU-based platforms has been dis-
cussed extensively for several decades. This section introduces
and illustrates the pseudo-code of the nested loop and sort-
merge join approaches.

A. Nested Loop join Algorithm

The nested loop join, illustrated in Algorithm 1, is a
straightforward approach to join two relations. Since each loop
iteration of this algorithm is completely independent of the
others, it offers a huge level of parallelism, but also requires
a huge memory bandwidth. This is because the complexity
in terms of the number of both of memory reads and writes,
and of comparison operations is proportional to the product
of the sizes of the tables being merged (i.e. O(n2) if the have
the same size). Hence this case is almost ideal in terms of
raw parallelism, but is absolutely brutal in terms of usage of
memory bandwidth [22].

B. Sort Merge Join Algorithm

The main idea behind the sort-merge join algorithm is to
that sorts each vector before performing join phase. Then the
join process of two sorted vectors can be implemented using
one single loop with complexity O(N+M), whose execution
time is negligible in comparison with sorting (which is close
to O(NlogN)).

Bitonic sorting is one of the fastest known sorting networks.
In general, the term "sorting network" identifies a sorting
algorithm where the sequence of comparisons is not data-
dependent, thus making it suitable for parallel hardware imple-
mentation. A simple example of sorting network is depicted in
Fig. 1, with five comparators and four inputs. The comparators
in a layer can work concurrently (i.e. they can be part of a
kernel in OpenCL).

Algorithm 1: Nested Loop Join Algorithm
Input: vector A[N] and B[N] with Size of N ,M;
Output: A_out[N] ,B_out[M] and Value_out[N*M];

Output arrays store indices and values of
input after join operation respectively

1 for each i ∈ {1 . . .M} do
2 for each j ∈ {1 . . . N} do
3 if A[j] and B[i] can be joined (have the same

key) then
4 A_out[i*N+j]=j; write current index of A

into output
5 B_out[i*N+j]=i; write current index of B

into output
6 Value_out[i*N+j]=A[j]; write current value

into output
7 end
8 else If the join condition is not met mark

output with holes
9 A_out[i*N+j]=-99;

10 B_out[i*N+j]=-99;
11 Value_out[i*N+j]=-99;
12 end
13 end

3

2

4

1

1

2

3

4

Fig. 1: Illustration of a simple sorting network

0

n
Stage 1 Stage 2 Stage 3

Fig. 2: Bitonic sort network with eight inputs (N=8). It
operates in 3 stages, it has a depth of 6 (steps) and employs

24 comparators.

The depth and number of comparators are key parameters to
evaluate the performance of a sorting network. The depth of a
sorting network is the maximum number of comparators along
any path. If all the comparisons in each layer could be done in
parallel (i.e. with infinite resources), the depth of the network
would be proportional to the total execution time. The bitonic
sort network shown in Fig. 2, is one of the fastest comparison
sorting networks, where the depth is D(N) = log2N.(log2N+1)

2

and the number of comparators is C(N) = N.log2N.(log2N+1)
4 .

Bitonic sorting is a recursive divide-and-conquer algorithm
that is based on the notion of bitonic sequence, i.e. a sequence
of N elements in which the first K elements are sorted in
ascending order, and the last (N −K) elements are sorted in
descending order (i.e. the K − th element acts as a divider
between two sub-lists, each sorted in a different direction), or
some circular shift of such an order.

Bitonic sorting first divides the input into pairs of keys and
sorts them into a set of bitonic sequences. It then repeatedly
merges and sorts pairs of adjacent bitonic sequences, until the
entire sequence is sorted [10].

Algorithm 2 & 3 :
Algorithm 2, executed on the host (i.e. the CPU), iterates
the execution of three kernels described in Algorithm 3 to
complete bitonic sorting in three phases. In the first phase, the
algorithm partially sorts an arbitrary input array to obtain a set
of bitonic sequences. In the second and third phases respec-
tively, the algorithm merges bitonic sequences repeatedly until
a fully sorted array is produced. All the comparisons (i.e. all
the WGs and WIs) in each kernel execution can be performed
in parallel and independent of each other. This makes the
whole algorithm suitable for parallel implementation. Finally,
algorithm 4 performs the join algorithm on two sorted vectors
within a single linear complexity loop.

Algorithm 2: Host Code for Bitonic Sorting execution
Input: A vector of N keys to be sorted;
Output: A sorted vector of the same keys;

1 Begin
2 On host:
3 SORTLOCAL(Input, Output);
4 for size = 4 ∗Work_Group_Size to N do
5 multiply size by 2;
6 for stride= size

2 to stride > 0 do
7 divide stride by 2;
8 if stride >= 2 ∗Work_Group_Size then
9 MERGE LOCAL(Input, Output, size,

stride);
10 end
11 else
12 MERGE GLOBAL(Input, Output, size, stride);
13 end
14 end
15 end
16 End

Algorithm 3: Bitonic Sorting Kernels

1 On device:
2 Begin
3 function KERNEL1: SORT LOCAL(Input, Output)
4 for local_id = 0 to Work_Group_Size− 1 do
5 copy a block of data from global to local memory

with the size of work_group;
6 for size = 2 to size < Work_Group_Size do
7 multiply size by 2;
8 for stride = size/2 to stride > 0 do
9 divide stride by 2;

10 perform comparison on each pair and swap
them if they are not sorted;

11 end
12 end
13 for stride = Work_Group_Size to stride > 0

do
14 divide stride by 2;
15 pos = 2 ∗ local_id− (local_id&(stride− 1));
16 compare and sort each pair;
17 end
18 write back sorted array to global memory with the

size of work_group;
19 end
20 function KERNEL2: MERGE LOCAL(Input, Output,

size, stride)
21 for local_id = 0 to Work_Group_Size− 1 do
22 read one pair in each Work Item;
23 perform comparison on each pair and swap them if

they are not sorted;
24 write back sorted pair to the global memory;
25 end
26 function KERNEL3: MERGE GLOBAL(Input,

Output, size, stride)
27 declare and initialize a private variable global_stride;
28 for local_id = 0 to Work_Group_Size− 1 do
29 copy a block of data from global to local memory

with the size of work_group;
30 for stride = global_stride to stride > 0 do
31 divide stride by 2;
32 perform comparison on each pair and swap

them if they are not sorted;
33 end
34 end
35 End

V. OPTIMIZATION OF KERNEL IMPLEMENTATIONS FOR
FPGAS

SDAccel provides designers with an extensive set of
OpenCL attributes that allows the designer to fully control
the micro-architecture of the synthesized RTL.Optimization is
performed in two phases, a micro-architecture optimization
and a macro-architecture optimization. In the first stage of
optimization for both test cases, each kernel is optimized
only with respect to its internal structure, by using (1) Work
Item pipelining, (2) loop unrolling and (3) array partitioning

Algorithm 4: Join Algorithm for Sorted Relations
Input: A[N] and B[M] are two sorted vector
A_index[N], B_index[M] contain indices of A and B
before being sorted;
Output: A_out[N+M] ,B_out[N+M]

,Value_out[N+M]; If join condition is met
output arrays store indices and values of
inputs respectively

1 Begin
2 Function Sort_Join
3 Initialize i,j,k, t_tmp = 0; i,j are indices of inputs , k is

the outputs index and j_tmp is used to check for
successive join between array B elements and the
same element of A

4 while (i < N and j < M)
5 if A[i]>B[j] then
6 j++;
7 end
8 else
9 if A[i]<B[j] then

10 i++;
11 end
12 else If the join condition is met write indices and

values of inputs into output
13 A_out[k]=A_index[i];
14 B_out[k]=B_index[j];
15 Value_out[k]= A[i];
16 j_tmp=j+1;
17 k++;
18 while(A[i]==B[j_tmp])
19 A_out[k]=A_index[i];
20 B_out[k]=B_index[j_tmp];
21 Value_out[k]= A[i];
22 j_tmp++;
23 k++;
24 end
25 i++;
26 end
27 end
28 end function
29 End

synthesis-specific attributes (i.e. synthesis directives). In the
next stage of optimization, multiple WGs of each kernel are
instantiated on an FPGA, each with its own global memory
access port for each OpenCL kernel argument, in order to fully
utilize the off-chip memory band-width and increase memory
transfer efficiency.

VI. PERFORMANCE AND POWER ANALYSIS

This section compares the power and performance analysis
of the two join algorithms on two GPUs and an FPGA (the
Virtex UltraScale VU440). Table I reports the specification
of the two GPUs [25] and of the FPGAs that we target in
this work. Although the relative performance of each device
can vary from one test case to another, the GTX960 often

outperforms the K4200 in our experiments. The higher number
of cores and higher memory bandwidth of the K4200 are not
as effective as one could hope, most likely because of higher
core speed (37%) and the use of a second generation Maxwell
architecture, with a very large cache, for the GTX960.

Even though companies like Microsoft may not disclose
their data-center infrastructure specification in detail, reports
suggest that a typical data center can consume about 30 MW
and include about 50,000 servers, with one or two GPUs on
each card. For example, the Microsoft Azure cloud service
offers Tesla K80 cards with two GK 210 GPUs on each card.
A Tesla GK 210 has a similar specification to our K4200 GPU
in terms of core frequency (562MHz), architecture(Kepler) and
double precision support.

Figures 3 and 4 compare the performance of the two dis-
cussed test cases on the GPUs and the FPGA, with increasing
input table sizes. For both applications, the most advanced
VU440 FPGA has better performance than both GPUs. In this
experiment, our FPGA implementation uses a 200 MHz clock
frequency that results in lower dynamic power consumption
and better overall performance per watt (i.e. better energy
consumption) than both GPU platforms. Tables II and III
present performance, resource usage and power analysis for
the two discussed algorithms, using always the same data size
(8192 items). In the FPGA case, we instantiated a number of
WGs that uses at most about 60% of the on-chip resources,
to ensure that the design can be placed and routed1.

Moreover, for both applications a fully-optimized imple-
mentation on both FPGAs consumes less energy than both
GPUs to perform the same amount of computation. This is
due to the smaller power consumption, and in case of the
VU440 also to a lower execution time.

TABLE I: Specification of tested Platforms
Params/Devices GTX960 K4200 Virtex7 Series VU440
Architecture Maxwell GM206 Kepler GK104 Virtex7 Virtex US
Process 28nm 28nm 28nm 20nm
Cuda Cores 1024 1344 - -
Core Speed 1127 MHz 706 MHz - -
Memory Interface GDDR5 GDDR5 DDR3 DDR4
Memory Bandwidth 112.2GB/sec 172.8GB/sec 200 GB/s 300 GB/s
On-chip memory 1 MB 0.5 MB 6 MB 11 MB
Maximum Power 120W 108 W - -
Double Precision NO YES YES YES
Price 350 $ 900 $ 3000 $ 37000 $

TABLE II: Performance and energy analysis of Nested_Loop
Join

Params/Devices Virtex7 VU440 GTX960 K4200
Device time 29 ms 3.145 ms(tclk = 5ns) 135 ms 253ms
WGs 65 400 256 256
Band-Width Utilization 3.2 %(6.5 GB/s) 20 %(60 GB/s) 100% (172 GB/s) 59%(66GB/s)
Device power 35 W 81.7 W 95 W 105 W
Energy 1 J 0.256 J 12.8 J 26.5 J

Utilization

BRAMs = 65(4.4%) 400(16%)

NADSPs = 260(7.2%) 1600(28%)
FFs= 279500(32%) 1720000(33%)
LUTs = 260000(60%) 1600000(63%)

1The current version of SDAccel from Xilinx also limits the maximum
number of WGs that can be instantiated on an FPGA to 10. We did not
consider this limitation since it is tool-dependent, rather than resource-
dependent, and will most likely be lifted in future versions of the tool.

Fig. 3: Performance comparison of nested-loop join versus
data size

Fig. 4: Performance comparison of sort-merge join versus
data size

TABLE III: Performance and energy analysis of Sort_Merge
Join

Params/Devices Virtex7 VU440 GTX960 K4200
Device time 638 us 70 us (tclk = 5ns) 127 us 152 us
WGs 20 122 256 256
Band-Width Utilization 5% (10 GB/s) 30% (90 GB/s) 100 % (172 GB/s) 42% (47 GB/s)
Device power 13.2 W 75 W 90 W 100 W
Energy 8.4 mJ 5.2 mJ 11.7 mJ 15.2 mJ

Utilization

BRAMs = 140 (9.5 %) 923 (37%)

NADSPs = 300(8.3%) 2023 (36%)
FFs = 268000(30%) 1634800 (32%)
LUTs = 254800 (58%) 1554400 (61%)

VII. CONCLUSION

This paper compares performance and energy consumption
of two well-known join algorithm implementations on GPU
and FPGA devices. Nested-loop and sort-merge join algo-
rithms are memory-intensive computations that require careful
optimization to be efficiently implemented on FPGAs. Our
experiment suggests that a significant amount of speed up can
be achieved by properly using all the optimization techniques
offered by SDAccel. Note that, even though sorting is a
memory-intensive application, our best implementation makes
such effective use of the available DRAM bandwidth that it
has better better performance than a GPU. Moreover, thanks to
the lower power consumption of the FPGA, its overall energy
consumption per operation is significantly better than that of
a GPU.

VIII. ACKNOWLEDGMENT

We express our gratitude to Xilinx Inc. for their precious
help while carrying out this research activity. This work
was supported by the European Commission through the
ECOSCALE project (H2020-ICT-671632).

REFERENCES

[1] Nicole Hemsoth, Timothy Prickett Morgan. "FPGA frontiers: new appli-
cations in reconfigurable computing" Published by Next Platform Press,
2017 edition (January 16, 2017)

[2] "Intel FPGA RTE for OpenCL : Getting Started Guide" UG-
OCL005,2016.10.31

[3] Khronos OpenCL Working Group, "The OpenCL Specification", Version
2.0, October 17, 2014 (khronos.org/registry/cl/sdk/2.0/docs/man/xhtml)

[4] "SDAccel Development Environment Methodology Guide: Performance
Optimization" UG1207 (v1.0) February 16, 2016

[5] "SDAccel Development Environment: User Guide" , UG1023, September
2015

[6] Chen, Mingxian, and Zhi Zhong. "Block Nested Join and Sort Merge Join
Algorithms: An Empirical Evaluation." International Conference on Ad-
vanced Data Mining and Applications. Springer International Publishing,
2014.

[7] Balkesen, Cagri, et al. "Multi-core, main-memory joins: Sort vs. hash
revisited." Proceedings of the VLDB Endowment 7.1 (2013): 85-96.

[8] Chen, Ren, Sruja Siriyal, and Viktor Prasanna. "Energy and memory
efficient mapping of bitonic sorting on FPGA." Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays. ACM, 2015.

[9] Mueller, Rene, Jens Teubner, and Gustavo Alonso. "Sorting networks on
FPGAs." The VLDB Journal. The International Journal on Very Large
Data Bases 21.1 (2012): 1-23.

[10] Mu, Qi, Liqing Cui, and Yufei Song. "The implementation and op-
timization of Bitonic sort algorithm based on CUDA." arXiv preprint
arXiv:1506.01446 (2015).

[11] Boncz, Peter A., Marcin Zukowski, and Niels Nes. "MonetDB/X100:
Hyper-Pipelining Query Execution." CIDR. Vol. 5. 2005.

[12] Wang, Zeke, et al. "Relational query processing on OpenCL-based
FPGAs." Field Programmable Logic and Applications (FPL), 2016 26th
International Conference on. IEEE, 2016.

[13] Abdelfattah, Mohamed S., Andrei Hagiescu, and Deshanand Singh.
"Gzip on a chip: High performance lossless data compression on fpgas
using OpenCL." Proceedings of the International Workshop on OpenCL
2013 & 2014. ACM, 2014.

[14] Denisenko, Dmitry. "OpenCL Compiler Tools for FPGAs." Proceedings
of the 4th International Workshop on OpenCL. ACM, 2016.

[15] Wang, Kui, and Jari Nurmi. "Using OpenCL to rapidly prototype FPGA
designs." Nordic Circuits and Systems Conference (NORCAS), 2016
IEEE. IEEE, 2016.

[16] Krommydas, Konstantinos, Ruchira Sasanka, and Wu-chun Feng.
"Bridging the FPGA programmability-portability Gap via automatic
OpenCL code generation and tuning." Application-specific Systems,
Architectures and Processors (ASAP), 2016 IEEE 27th International
Conference on. IEEE, 2016.

[17] Ouyang, Jian, et al. "SDA: Software-defined accelerator for large-scale
DNN systems." Hot Chips 26 Symposium (HCS), 2014 IEEE. IEEE,
2014.

[18] "Microsoft knows where exactly Intel’s future is" http://www.wired.
com/2015/06/Microsoft-knows-exactly-Intel’s-future/, 2015, [Online; ac-
cessed 12-July-2016].

[19] "Dominate FPGA event," "http://www.eetimes.com/author.asp?section_
id=36&doc_id=1330431", 2016, [Online;accessed 12-December- 2016].

[20] Xilinx, SDAccel Development Environment User Guide, Xilinx.
[21] D. Singh, "Implementing FPGA design with the OpenCL standard,"

Altera white paper, 2011.
[22] Cilardo, Alessandro, and Luca Gallo. "Interplay of loop unrolling and

multidimensional memory partitioning in HLS." Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2015. IEEE, 2015.

[23] Munshi, Aaftab. "The OpenCL specification." Hot Chips 21 Symposium
(HCS), 2009 IEEE. IEEE, 2009.

[24] Xilinx UltraScale Architecture for High-Performance,Smarter Systems
- WP434 (v1.2) October 29, 2015

[25] http://gpuboss.com/
[26] http://datacenterfrontier.com/inside-amazon-cloud-computing-

infrastructure/
[27] http://www.datacenterknowledge.com/
[28] "TESLA K80 GPU ACCELERATOR" BD-07317-001_v05 | January

2015- Board Specification
[29] "Fundamentals of Azure" - Microsoft Azure Essentials- Michael Collier

-Robin Shahan
[30] "UltraScale FPGA", Product Tables and Product Selection Guides
[31] Vivado Design Suite User Guide "Synthesis" , UG901 (v2016.3) October

21, 2016

