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Abstract—In this paper, we propose a new method for the recovery of
a sparse signal from few linear measurements using a reference signal as
side information. Modeling the signal coefficients with a double Laplace
mixture model, and assuming that the distribution of the components
of the prior information differs slightly from the unknown signal, the
problem is formulated as a weighted `1 minimization problem.

We derive sufficient conditions for perfect recovery and we show that
our method is able to reduce significantly the number of measurements
required for reconstruction. Numerical experiments demonstrate that
the proposed approach outperforms the best algorithms for compressed
sensing with prior information and is robust in imperfect scenarios.

I. SPARSE RECOVERY WITH SIDE INFORMATION

In this paper, we consider the problem of compressed sensing with
side information as addressed in [1]. More precisely, we are interested
in recovering the high dimensional signal x? from y = Ax? ∈ Rm
(m << n), with the additional information that x? is sparse (i.e., it
has at most k << n nonzero entries) and is similar to a reference
signal w. This problem arises in several situations, as in compressive
image sampling [2], [3], where the spatial and temporal correlation
within image/video is exploited. Also in sensor/camera networks [4],
[5], [6], the signals acquired by close sensors are similar and can be
used as prior information. In [1], the authors propose to solve the
following optimization problem

min
x∈Rn

‖x‖1 + γ‖x− w‖pp s.t. y = Ax (1)

with p ∈ {1, 2} and γ > 0, referred as `1-`1 minimization, and `1-
`2 minimization, respectively. Moreover, it is shown that the number
of measurements required by `1-`1 minimization is much smaller
than that obtained using classical CS. The use of prior information
as a tool to reduce the number of measurements required for signal
reconstruction has appeared in CS literature [1], [7], [8] also with
different assumptions. In [7], the authors employ as prior information
an estimate T of the support of x? and propose a truncated `1-
minimization problem, i.e. the minimization of

min ‖xT c‖1 s.t. y = Ax?. (2)

It should be noticed that (2) can be adapted to our problem using
T = supp(w) (Mod-CS, [7]). Another piece of literature [8], [9]
considers a weighted `1-minimization with weights wi = − log pi
where pi is the probability that x?i = 0. It should be remarked that
in our setting pi is not available.

II. PROPOSED METHOD

Here, we propose a new weighted `1 minimization, which we
call 2LMM-CS. The fundamental idea is to use a good generative
model for sparse and compressible vectors [10], [11]. For this
purpose, we use a Laplace mixture model (2LMM) as the parametric
representation of the prior distribution of the signal coefficients:

x?i = ziui + (1− zi)vi, i ∈ {1, . . . , n}

where ui are identically and independently distributed (i.i.d.) ac-
cording to Laplace(0, α), vi are i.i.d. as Laplace(0, β) and zi are
i.i.d. Bernoulli random variables with probability mass function
P(zi = 1) = 1− p, with p = K/n < 1/2, 0 < α << β, and K ≥ k
is an estimate of the signal sparsity. Then, we cast the estimation
problem as a non convex optimization problem that incorporates the
parametric representation of the signal. However, the optimization
problem turns out to be computationally hard. Assuming that the
distribution of the signal coefficients of w is similar to that of x?,
the estimation problem is simplified to

min
x∈Rn

∑
i∈T

ω|xi|+
∑
i∈T c

(πi + (1− πi)ω) |xi|, s.t. Ax = y, (3)

with ω = α/β and

πi = πi(w) = P(zi = 1|w,α, β) =
(
1 +

α

β

p

1− p
e
|wi|

(
1
α
− 1
β

))−1

,

(4)

T c = supp(σn−K(π(w))), and σj(v) is a thresholding operator
which acts on v by keeping the j biggest elements in absolute value
and setting the others to zero.

The following theorem shows that in the large system limit, as
n is large enough and for a sufficiently small α ≈ 0 and the
prior information has good enough quality, then the number of
measurements sufficient for perfect reconstruction of a sparse vector
supported on Λ with |Λ| ≤ k can be significantly reduced.

Theorem 1. Let 0 ≈ α << β, k ≤ K, π = π(w) as defined
in (4) and A ∈ Rm×n be a matrix whose entries are i.i.d.
Gaussian random variables with zero-mean and unit variance. If
‖w − x?‖ ≤ 1

2
mini∈Λ |x?i | then the weighted `1-minimization in

(3) uniquely recovers x? from measurements y = Ax? if it holds
condition

m ≥ K +O

(
(K − k)

1

1 + α
β
e|r(w)K |(1/α−1/β)

ln(en/k)

)
,

where r(w) the non increasing rearrangement of w, i.e. r(w) =
(|wi1 |, . . . , |win |) with |wi` | ≥ |wi`+1 | for all ` = 1, . . . , n− 1.

In Fig. 1, we show the empirical recovery success rate, averaged
over 50 experiments, as a function of the number of measurements m.
For a fixed m, we mean the success when the algorithm reconstructs
the signal x? with a relative error smaller than 10−2. The sensing
matrix entries Aij are sampled from the Gaussian distribution with
zero mean and variance 1/m. It should be noticed that the number of
measurements required for reconstruction can be significantly reduced
compared to the techniques used in literature before. Moreover, the
reconstruction is robust against imperfect scenarios (Fig. 2 and 3),
achieving excellent performance in several situations.



Fig. 1. Empirical probability of reconstruction of classical CS (BP), `1-
`1 minimization, `1-`2 minimization, and 2LMM-CS. A signal x? of length
n = 1000 is generated with sparsity k = 70. The nonzero elements of x?
are drawn from a standard Gaussian distribution. The prior information w is
obtained w = x?+z, where z is a 28-sparse signal, whose nonzero elements
are drawn from a Gaussian distribution with standard deviation 0.8. Mod-CS
uses as prior information T = supp(w). The parameters have been set to
α = 10−4, β = 10, K = |supp(w)| = 76.

Fig. 2. Empirical probability of reconstruction of classical CS (BP), `1-`1
minimization, `1-`2 minimization, and 2LMM-CS in imperfect scenarios. We
consider signal x? and z generated as in the previous experiment. The prior
information w is obtained by w = x? + z + η, where η is a gaussian noise
with standard deviation 10−3. Mod-CS uses as prior information the set T
of the 123 largest components in absolute value of vector w. For CS-2LMM
the mixture parameters have been set as follows: α = 10−4, β = 10, and
K = 123.
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