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Case C1.2b: Flow over the NACA0012

airfoil - transonic case

Andrea Ferrero∗and Francesco Larocca†

Department of Mechanical and Aerospace Engineering
Politecnico di Torino, Italy

1 Code description

Numerical simulations were performed with a discontinuous Galerkin code writ-
ten in Fortran 90 which is currently under development. The code can solve
Euler equations, Navier-Stokes equations or RANS equations with different tur-
bulence models (Spalart-Allmaras, Wilcox k-omega, k-omega+Laminar Kinetic
Energy) in 2D.
Several approximate Riemann problem solvers and numerical fluxes (Osher,
Roe, AUSM+, Rotated-RHLL, Lax-Friedrichs) are available for the computa-
tion of convective fluxes. In particular in this test case the Osher-Solomon flux
[1] is used.
Diffusive fluxes are computed by means of a recovery based approach [2]. The
implemented method is inspired to the original recovery approach proposed by
Nomura and van Leer [3] but it makes use of a different recovery basis and a
different boundary procedure.
The numerical solution inside the element is represented through an orthonormal
modal basis obtained by the modified Gram-Schmidt procedure. Both physical
space defined and element space defined basis functions can be chosen. In the
first case a set of monomials defined in the physical space is used to start the
orthonormalization procedure, following the approach of [4]. In the second case,
the orthonormalization is initialized with a tensor product of Legendre polyno-
mials defined on the reference element. In this test case the first approach is
used.
Several shock capturing methods are implemented: limiters, adaptive filters and
artificial viscosity. For this test case the artificial viscosity method described by
[5] is considered. Curvilinear elements are implemented up to fourth order for
quadrilaterals and third order for triangles.
Both explicit (RK-TVD and SSP-RK) and implicit (backward Euler) time inte-
gration schemes have been implemented. For this steady test case the implicit
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backward Euler method is used. The jacobian is evaluated numerically. The
implementation of an analytically evaluated jacobian is under development.
As far as parallelization is concerned, the explicit version of the code is fully
parallelized through OpenMP directives. In the implicit version of the code,
the computation of fluxes and the linear solver are parallelized by OpenMP. In
particular, the GMRES method with ILU(0) preconditioner from the library
PARALUTION [6] is used. The numerical evaluation of the jacobian is per-
formed in serial.
The code can perform both h-adaptive or hp adaptive strategies. The h-adaptive
algorithm is based on isotropic splitting and is controlled by an error indica-
tor based on residuals, according to [7]. At each refinement step the algorithm
splits 20 % of the elements which are characterized by the largest values of the
error indicator. After that, a further check and splitting is performed in order
to avoid too large jumps in the mesh size distribution.
The implemented hp-adaptive algorithm is controlled by the same error indica-
tor of the h-adaptive algorithm. However, the elements flagged for refinement
are further analyzed by means of a smoothness test. The test is based on the
smoothnees sensor proposed by [8] and applied to pressure. If the element is
considered sufficiently smooth, the order of the reconstruction is increased. Oth-
erwise the element is splitted.
As far as postprocessing is concerned, the code can generate output files in
which each mesh element is subdivided in several elements depending on the
number of degrees of freedom of the reconstruction. This makes it possible to
obtain a visualization which takes into account all the information related to
the high order reconstruction

2 Case summary

2.1 Computational domain and mesh

The computational domain is reported in Figure 1. The external boundaries
are at more than 2000 chords from the airfoil. This distance has been chosen
according to the meshes reported on the website of the Workshop. The original
mesh has been generated by Gmsh 2.8.5 [9] and a detail is reported in Figure 2.
Cubic triangular elements are used in all simulations.

2.2 Time discretization

All simulations were stopped when L2R/L2R0 dropped down 10−10 where L2R
and L2R0 are the L2-norm density residuals at the current iteration and at the
first time step. The residuals refer to the zero order modal coefficient. In order
to accelerate convergence, the solution is obtained through a sequence of pro-
gressively higher order reconstructions. All simulations are initialized with a
uniform flow field and a reconstruction order p=0 on the original mesh of Fig-
ure 2. Then the reconstruction order is increased up to the desired value. The
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adaptation is performed when the final reconstruction order is reached. The
reported computational time refers to the entire process, from p=0 to the final
p. It also includes the cost required by the adaptive procedure.

The pseudo-transient continuation technique is employed to accelerate con-
vergence to steady state. The chosen CFL number evolution strategy is a mix
between exponential progression and switched evolution relaxation.
The minimum CFL number is 101 and the maximum CFL number is 1010. The
GMRES iterative solver is stopped when the relative error reaches 10−2 or when
the number of iterations exceeds 250.

2.3 Hardware specification

A Linux machine with an Intel i7-3930x processor and 32 Gigabytes of RAM
was used. The machine produces a Taubench time of 6.5 seconds. All compu-
tations were performed in serial. In Table 1 the work units required to perform
100 residual evaluations with 250000 DOFs are reported. The data refer to a
convection-diffusion discretization which takes into account the artificial viscos-
ity shock capturing term. The results for the implicit integration are dominated
by the cost of the numerical jacobian evaluation.

p Explicit Implicit
1 9.40 131
2 16.4 649
3 34.0 2326

Table 1: Work Units for 100 residual evaluations in an inviscid transonic problem
(with artificial viscosity) with 250000 DOFs

3 Results

Computations were performed with both the h-adaptive algorithm (p=1 and
p=2) and the hp-adaptive algorithms (1 ≤ p ≤ 2). In each case five refinement
steps were performed.

The errors on the lift and drag coefficients are computed by taking the
RWTH values from a precedent edition of the Workshop (Cl = 3.529140 ∗
10−1;Cd = 2.274636 ∗ 10−2) as reference. Figure 4 and 5 show the Cd and Cl
errors as a function of the equivalent length scale h = 1/

√
nDOFs. Figure 6

and 7 show the Cd and Cl errors as a function of the work units.

The results show that the hybrid hp-adaptive strategy is more convenient
than the h-adaptive strategy for both p = 1 and p = 2. This is probably due to
the fact that the chosen higher order reconstruction does not pay in the shock
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region.
Indeed, a comparison between the results for p = 1 and p = 2 with the h-
adaptive algorithm shows that the p = 1 reconstruction is more convenient.
These results could be related to the use of an isotropic splittig strategy which
introduces a lot of degrees of freedom in the shock region. The degrees of
freedom related to the high-order modes do not bring a significant benefit in
this region because the singularity induces a degradation of the local order of
accuracy. However, they increase significantly the computational cost. For this
reason, an anisotropic splitting strategy would be a better approach.
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Figure 1: Computational domain

Figure 2: Initial mesh (1060 elements)
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Figure 3: Adapted mesh after 5 refinements (11806 elements)
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Figure 4: Cd error vs length scale
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Figure 5: Cl error vs length scale
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Work units
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Figure 6: Cd error vs work units
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Figure 7: Cl error vs work units
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