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Case C1.2: Inviscid Flow through a

Channel with a Smooth Bump

Andrea Ferrero∗and Francesco Larocca†

Department of Mechanical and Aerospace Engineering

Politecnico di Torino, Italy

1 Code description

Numerical simulations were performed with an high-order discontinuous Galerkin
code written in Fortran 90 which can solve Euler equations. Several approxi-
mate Riemann problem solvers are available for the computation of convective
fluxes. In particular all simulations were performed with the Osher solver. The
numerical solution inside the element is represented with a modal basis obtained
by a tensor product of Legendre polynomials. Integrals are approximated by
Gauss quadrature formulas. Discontinuities can be stabilized with both limiters
or adaptive filters. Curvilinear boundaries can be represented with quadrilateral
elements transformed with high-order Serendipity mapping (linear, parabolic,
cubic and quartic curvilinear elements are available). Time integration is per-
formed with explicit Runge Kutta algorithms up to 4th order. Parallelization
is supported on shared memory machines with OpenMP directives.

2 Case summary

2.1 Boundary conditions and mesh

Subsonic characteristic inflow and outflow boundary conditions are imposed at
the inlet and at the outlet. Lateral boundaries are represented as inviscid solid
walls. Tangency is imposed by the solution of a particular Riemann problem in
which the wall state is forced to have zero normal velocity.
Simulations were performed on three structured meshes with 16x4, 32x8, 64x16
and 128x32 quadrilateral elements. The edges of the elements on the bottom
wall are curved by the introduction of additional points. In particular we use
second, third and fourth order Serendipity mapping for wall elements with p=1,
p=2 and p=3 discretizations. Elements which are not in contact with the wall
are always mapped with the classical bilinear mapping.
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2.2 Error computation

The L2 norm of the entropy is evaluated according to the following expression
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in which ∆s, |J |, wi and wj represent the entropy error, the Jacobian deter-
minant and the Gauss quadrature weights. In particular we use for this com-
putation the same tensor products of Gauss quadrature formulas used for mass
matrix evaluation: 2x2 points for p=1, 3x3 points for p=2, 4x4 points for p=3.

2.3 Time discretization and time step

The code is still under development and at the moment we integrate the solution
in time using explicit Runge-Kutta algorithms. For p=1 and p=2 we use TVD-
RK2 and TVD-RK3 algorithm. For p=3 we use SSP-RK4 algorithm. The time
step is chosen according to the following stability limit ([1]):

∆t =
σ∆x

λ(2k + 1)
(3)

in which λ is the maximum propagation speed for the signals inside the cell, ∆x

is a representative cell dimension and p is the order of the polynomial recon-
struction. In order to accelerate convergence we start the simulation working
with the first order in space and time scheme, we reduce the density residual of
5 order of magnitude and then we activate the second order in space and time
scheme. We repeat this procedure until we activate the scheme with the desired
order of accuracy. Starting from that point we integrate in time until the L2-
norm of the density residual is dropped by 10 orders of magnitude. In particular
we monitor the residual of the zero order density modal coefficient, which repre-
sents the average density in the element. Numerical solution is initialized with
a uniform M∞ = 0.5 field.

2.4 Hardware specification

All computations were performed on a Linux machine with two Intel64 E5504
processors with 8 cores in total. The machine produces a Taubench time of 13.82
s on a single core. The number of employed cores is from 1 to 8, depending on
the mesh size and scheme order.

3 Results

In Fig.1 and 2 we report the entropy L2 error as a function of the lenght scale
and work units for different meshes. Fig. 2 shows clearly the need of multigrid
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techniques or implicit integration methods in order to make high order schemes
more advantageous respect to low order schemes in steady state problems.

Figure 1: Entropy L2 error vs length scale

Figure 2: Entropy L2 error vs work units

p Work units
1 3.9
2 5.5
3 10.7

Table 1: Work Units for 100 residual evaluations with 250000 DOFs
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