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Abstract. The currently available formulations for contact between beams are based on
the identification of the minimal distance points along the beam axes, followed by some
tuning in case of non-circular beam cross-sections. Up to now a suitable implementation
within the framework of the Finite Element Method is available both for the frictionless
and for the frictional case. The procedure requires the explicit computation of the virtual
work contribution due to the contacts. In such a context for solving the problem with
implicit schemes, the formulation has also to be consistently linearized. With this respect
both the frictionless and the frictional formulation present severe problems. To overcome
all the cited problems a generalized formulation is proposed, which deals with contact
between circular beams. It has to be remarked that the contact problem is treated first in
a completely generic framework, and only in a second step the results are particularized
to the FE formulation. For such purpose the centroids of the beams in the 3-D space
are considered as parametric functions. The framework for the consistent linearization is
developed in a very rigorous and systematic way, providing evidence of the symmetry of
the operators. The procedure is quite cumbersome, hence here only the most heavy part,
related to the computation of all the fundamental geometrical terms involved, is presented.

1 INTRODUCTION

The basic problem of contact between three-dimensional beams undergoing large dis-
placements has been properly considered within the framework of the Finite Element
method only in the recent years. The interesting contribution for a rod/continuum in-
teraction, proposed by Maker and Laursen [1] in 1994 can be considered as a preliminar
starting point.

The formulation of a suitable finite element to deal with contact between frictionless
beams has been presented by Wriggers and Zavarise [2] in 1997. The frictional extension
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[3] is dated 2000. The formulation is based on the identification of the minimal distance
points along the beam axes. It has to be remarked that this formulation can deal with
any available beam model. Also, it presents a perfectly symmetric treatment of the two
contacting beams, which is for sure an interesting characteristics that permits to avoid
several unconsistencies related to the classical “master-slave” approach, commonly used
for contact between solids. The resulting equation set has been consistently linearized,
with a cumbersome procedure which does not permit to evidence some basic properties,
like e.g. the symmetry of the operators. Moreover the frictional formulation is currently
restricted to straight beams. The most recent literature presents interesting applications,
see e.g. Durville [4], but the problem of the consistent linearization is not addressed
anymore.

When a contact relationship is consistently linearized, a dependence both on the geom-
etry and on the contact constitutive law is involved. The biggest effort for the linearization
is usually related to the geometrical terms. For this purpose in this paper the contact
problem is treated first in a completely generic framework, and only in a second step the
results are particularized to the FE discretization. In this framework the centroids of the
beams in the 3-D space are considered as parametric functions.

2 CONTACT ELEMENT SETUP

For the self-consistency of the paper, the notation defined first in [2] is here briefly
resumed, with suitable modifications. In the following we distinguish between the two
beams by using the bar symbol, •, for one of the two. In any case it has to be remarked
that the formulation is completely symmetric, i.e. no distinction between master and
slave surfaces, like in the well-known 2D node-to-segment formulation, is required.

We start considering the current configuration, x and x̄, of the centroids of two beams
in a 3D space. Such a configuration is obtained as usual, from the original one, X, X̄,
adding the displacement field, u, ū

x (ξ) = X (ξ) + u (ξ) x
(
ξ̄
)

= X
(
ξ̄
)

+ u
(
ξ̄
)

(1)

where the classical parameter range −1 ≤ ξ ≤ 1, −1 ≤ ξ̄ ≤ 1 has been considered.

2.1 Geometry definition

Contact will eventually take place at the minimal distance location, depicted in Figure
(1) . The candidate points along the centroids can be identified solving for the minimal
distance

d = min
∥∥x (ξ)− x

(
ξ̄
)∥∥ (2)

The solution takes place for suitable values, ξ = ξC , ξ = ξ̄C̄ of the parameters, which
identify the candidate contact points, C and C̄, along the centroids. To simplify the
notation the following equivalence is then used

x (ξC) = xC x
(
ξ̄C̄

)
= xC̄ (3)
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Figure 1: A generic scheme of two contacting beams.

which permits also to write

d = ‖d‖ =
∥∥x (ξC)− x

(
ξ̄C̄

)∥∥ = ‖xC − xC̄‖ (4)

where the minimal distance vector, d, i.e. the vector joining the minimal distance points,
has been introduced

d = xC − xC̄ (5)

To complete the geometrical setup it is also convenient to introduce the tangent vectors
of the centroids at the minimal distance points, which are easily computed as

t = xC,ξ t̄ = x̄C̄,ξ̄ (6)

where the classical notation x,ξ = ∂x/∂ξ, and also xC,ξ = (∂x/∂ξ)ξ=ξC
, has been intro-

duced. This notation will be widely used in the following. The lengths of such tangent
vectors are easily defined as

t = ‖xC,ξ‖ t̄ =
∥∥x̄C̄,ξ̄

∥∥ (7)

Equations resume. The vector variables that have been identified and will play a
crucial role in the following are the distance vector and the tangent ones

d = xC − xC̄ t = xC,ξ t̄ = x̄C̄,ξ̄ (8)

Moreover the norms of the above vectors are also requested

d = ‖d‖ t = ‖t‖ t̄ = ‖t̄‖ (9)

Finally, from the definition (5) and (6) the following equivalences are easily obtained

d,ξ = xC,ξ = t d,ξ̄ = −xC̄,ξ̄ = −t̄ d,ξξ̄ = d,ξ̄ξ = 0

d,ξξ = xC,ξξ = t,ξ d,ξ̄ξ̄ = −xC̄,ξ̄ξ̄ = −t̄,ξ̄ t,ξξ̄ = t̄,ξ̄ξ = 0
(10)
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2.2 Contact variables

The contact element formulation requires the definition of a set of geometrical variables,
identified as gN , gT and ḡT . The first one provides the distance between the external
surfaces of the beams, hence it is the crucial one to detect if contact takes place or not.
The others permit to compute the amount of tangential displacement/sliding along each
beam, and are involved only when friction between the beams is considered.

2.2.1 Definition

When the minimal distance points have been identified, the measure of the distance
between the external surfaces of the beams is then obtained simply starting from the
minimal distance, d, by taking into account the radii of the two circular beams, r and r̄,
which gives

gN = d− (r + r̄) (11)

In this case a restriction to beams with circular cross-section is introduced. Moreover
in-plane deformations of the beam section are disregarded, hence both r and r̄ are treated
as constants. However this limitation does not affect the mainstream of the proposed
formulation. Non-circular and deformable sections will result simply into additional con-
tributions.

A completely general framework for the tangential displacement/sliding along the
beams is considered for the frictional case. In such formulation the geometry deals with
a regularized model, where small tangential displacements are considered also during the
stick phase. The classical stick-slip Coulomb model can be recovered as limit case. With
reference to Figure (1), we identify with ξC0 the initial contact position. If a tangential
force is then applied, regardless from the stick or the slip phase, the centroid of the beam
will assume a new position, identified with ξC . Hence the tangential displacement along
a centroid can be computed as an integral of the first derivative of the centroid equation

gT =

∫ ξC

ξC0

‖x,ξ‖ dξ (12)

The problem can be greatly simplified if we consider the fact that ξC is very close to ξC0 ,
i.e.

ξC − ξC0 ≈ dξ (13)

Within this hypothesis, for ξC0 ≤ ξ ≤ ξC the norm of the tangent can be considered as a
constant. Also, from (6) we see that t = ‖xC,ξ‖ = ‖x,ξ‖C is the norm of the local tangent
vector, which gives

gT = ‖t‖
∫ ξC0

+dξ

ξC0

dξ = t dξ = t (ξC − ξC0) (14)

Hence in such a context the tangential displacement takes place along the local tangent,
and it results into a linear equation.
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Equations resume. The following geometrical variables constitute hence the whole set
needed for the contact element formulation

gN = d− (r + r̄) gT = t (ξC − ξC0) gT = t̄
(
ξ̄C̄ − ξ̄C0

)
(15)

2.2.2 Variations

The element geometry and the solution method determine the characteristics of the
contribution that has to be added to the global equation system in case of active contact.
More in detail, the requested terms can be easily determined by writing the virtual work
contribution of the contact forces [2, 3] and computing its linearization. For this purpose
both virtual variations and linearizations of the geometrical terms have to be computed.
It can be easily seen that the terms required are the following

δgN , ∆gN , ∆δgN , δgT , ∆gT , ∆δgT , δḡT , ∆ḡT , ∆δḡT (16)

where the symbols δ and ∆ have been introduced, respectively, to distinguish among vir-
tual variation and linearization. Due to the equivalent way to compute virtual variations
and linearizations, and due to the similarities for the tangential displacements along the
beams, only the effort to compute the following subset of the above terms is really required

δgN , ∆δgN , δgT , ∆δgT (17)

Considering the first one, starting from the definition (11), where the radii are consid-
ered constant, we have

δgN = δd (18)

Considering the second order term we get simply

∆δgN = ∆δd (19)

Also, considering the frictional effects, regardless from the stick or the slip state, as shown
in [3, 5], the term ξC0 has to be treated as a constant, hence from (15) it gives

δgT = δt (ξC − ξC0) + t δξC (20)

∆δgT = ∆δt (ξC − ξC0) + δt ∆ξC + ∆t δξC + t ∆δξC (21)

Equations resume. From the practical point of view the following geometrical variables
constitute the whole set that has to be determined for the contact element formulation

δgN ⇒ δd ∆δgN ⇒ ∆δd δgT ⇒ δt, δξC ∆δgT ⇒ ∆δt, ∆δξC (22)

The key issue is hence the consistent linearization of the geometry vector norms, d and t,
and of the projection parameter, ξ.
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3 PRELIMINARIES ON VIRTUAL QUANTITIES

The consistent linearization of the required terms constitutes a hard task. Hence to
perform it in a clear and efficient way some preliminary results have to be achieved.

3.1 Contact point coordinates

It has been shown in the previous paragraphs that the solution of the contact problem
requires both the virtual variations and the linearizations of the geometrical parameters.

Due to the definition of the current coordinates (1), considering a minimal distance
point we have

δxC = δXC (ξ) + δuC (ξ, u) (23)

i.e. the current coordinates of a centroid depends both on the parameter and on the
displacement field. Hence, in the general case for a node on the centroid we have the
following important result

δxC = δXC + δuC = XC,ξδξ + uC,ξδξ + δuuC = xC,ξδξ + δuuC (24)

where the important notation δu has been introduced to represent the variation only with
respect to the displacement field, u. In the following a careful distinction has to be carried
out between terms like δuC = uC,ξδξ + δuuC and δuuC .

From the above equation we can easily compute its linearization, which gives

∆δxC = ∆XC,ξδξ + XC,ξ∆δξ + ∆uC,ξδξ + uC,ξ∆δξ + ∆δuuC (25)

Applying once more the derivation rule outlined in (24), the above equation results in

∆δxC = XC,ξξδξ∆ξ + XC,ξ∆δξ + uC,ξξδξ∆ξ + ∆uuC,ξδξ

+ uC,ξ∆δξ + δuuC,ξ∆ξ + ∆uδuuC

(26)

and disregarding the higher order terms ∆uδuuC we have

∆δxC = xC,ξξδξ∆ξ + xC,ξ∆δξ + δξ∆uuC,ξ + δuuC,ξ∆ξ (27)

In the same way it is possible to compute also the term δxC,ξ, which gives

δxC,ξ = δXC,ξ + δuC,ξ = XC,ξξδξ + uC,ξξδξ + δuuC,ξ = xC,ξξδξ + δuuC,ξ (28)

Concerning the linearization, following the same procedure above employed we have

∆δxC,ξ = ∆XC,ξξδξ + XC,ξξ∆δξ + ∆uC,ξξδξ + uC,ξξ∆δξ + ∆δuuC,ξ (29)

proceeding as usual and disregarding once more higher order terms, from the above equa-
tion we get

∆δxC,ξ = XC,ξξξδξ∆ξ + XC,ξξ∆δξ + uC,ξξξδξ∆ξ + ∆uuC,ξξδξ

+ uC,ξξ∆δξ + δuuC,ξξ∆ξ + ∆uδuuC,ξ

= xC,ξξξδξ∆ξ + xC,ξξ∆δξ + δξ∆uuC,ξξ + δuuC,ξξ∆ξ

(30)
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Equations resume. Results (24, 27, 28, 30) are then summarized using (10) as

δxC =tδξ + δuuC

∆δxC =t,ξδξ∆ξ + t∆δξ + δξ∆uuC,ξ + δuuC,ξ∆ξ

δxC,ξ =t,ξδξ + δuuC,ξ

∆δxC,ξ =t,ξξδξ∆ξ + t,ξ∆δξ + δξ∆uuC,ξξ + δuuC,ξξ∆ξ

(31)

It can be easily proved that, due to their structure both ∆δxC and ∆δxC,ξ result into
symmetric contributions.

3.2 Geometry vectors

Considering the dependencies for the distance vector and the tangent vectors, from the
definition (8) of d, t, t̄, and from a simple application of the results (31), the following
equivalences hold for virtual variations and their linearization

δd =tδξ − t̄δξ̄ + δuuC − δuūC̄

∆δd =t∆δξ − t̄∆δξ̄ + t,ξδξ∆ξ − t̄,ξ̄δξ̄∆ξ̄

+ (δξ∆uuC,ξ + δuuC,ξ∆ξ)−
(
δξ̄∆uūC̄,ξ̄ + δuūC̄,ξ̄∆ξ̄

)
δt =t,ξδξ + δuuC,ξ

∆δt =t,ξξδξ∆ξ + t,ξ∆δξ + (δξ∆uuC,ξξ + δuuC,ξξ∆ξ)

δt̄ =t̄,ξ̄δξ̄ + δuūC̄,ξ̄

∆δt̄ =t̄,ξ̄ξ̄δξ̄∆ξ̄ + t̄,ξ̄∆δξ̄ +
(
δξ̄∆uūC̄,ξ̄ξ̄ + δuūC̄,ξ̄ξ̄∆ξ̄

)
(32)

4 CONSISTENT LINEARIZATION OF THE GEOMETRY VECTOR NORMS

4.1 Preliminaries: generic vector norm

Considering the norm, d, t and t̄ of the above vectors, we outline first the general rule
for the virtual variation of a vector norm, ‖v‖, which gives

δv = δ ‖v‖ = δ
√

v · v =
1

v
v · δv (33)

The linearization of the above equation results into

∆δ ‖v‖ = ∆

(
1

v
v · δv

)
=

1

v2
[v (∆v · δv + v ·∆δv)−∆vv · δv] (34)

which can be more suitably expressed using (33) for ∆v.

Equation resume. As a summary hence we have

δv =
1

v
v · δv ∆δv =

1

v
(v ·∆δv + ∆v · δv)− 1

v3
δv · vv ·∆v (35)

7



Giorgio Zavarise

4.2 Vector norm of the distance vector

With the above results and (32) we can easily compute δd as

δd =
1

d
d · δd =

1

d
d ·

(
tδξ − t̄δξ̄ + δuuC − δuūC̄

)
(36)

Due to the orthogonality conditions d · t = 0 and d · t̄ = 0, we have

δd =
1

d
d · (δuuC − δuūC̄) =

1

d
d · δuûC (37)

where, to compact notation the symbol δuûC = (δuuC − δuūC̄) has been introduced.
For the second order term, ∆δd, due to the simplifications related to the orthogonality

conditions, instead of using (35) it is more convenient to directly linearize the above
equation, which gives

∆δd =
1

d

[
∆d · (δuuC − δuūC̄) + d ·

(
δuuC,ξ∆ξ + ∆uδuuC − δuūC̄,ξ̄∆ξ̄ −∆uδuūC̄

)]
− 1

d2
[∆dd · (δuuC − δuūC̄)]

(38)

Disregarding higher order terms and using (32) for the expanded version of ∆d, and (37)
for the expanded expression of ∆d we get

∆δd =
1

d

[
δuûC ·

(
t∆ξ − t̄∆ξ̄ + ∆uuC −∆uūC̄

)
+ d ·

(
δuuC,ξ∆ξ − δuūC̄,ξ̄∆ξ̄

)]
− 1

d3
[δuûC · dd ·∆ûC ]

(39)

or, more suitably

∆δd =
1

d

[
δuûC ·

(
t∆ξ − t̄∆ξ̄

)
+ d ·

(
δuuC,ξ∆ξ − δuūC̄,ξ̄∆ξ̄

)]
+

1

d
[δuûC ·∆ûC ]− 1

d3
[δuûC · dd ·∆ûC ]

(40)

4.3 Vector norm of the tangent vector

Concerning the tangent vector, the computation in this case is extremely easy. From
(35) and (32) we have immediately

δt =
1

t
t · δt =

1

t
t · (t,ξδξ + δuuC,ξ) (41)

∆δt =
1

t
[t · (t,ξξδξ∆ξ + t,ξ∆δξ + ∆uuC,ξξδξ + δuuC,ξξ∆ξ)

(t,ξ∆ξ + ∆uuC,ξ) · (t,ξδξ + δuuC,ξ)]

− 1

t3
(t,ξ∆ξ + ∆uuC,ξ) · tt · (t,ξδξ + δuuC,ξ)

(42)
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5 CONSISTENT LINEARIZATION OF THE PROJECTION PARAME-
TERS

5.1 Preliminaries: variational forms of the orthogonality conditions

We start from the consideration that the minimal distance vector, d, is orthogonal
to both the tangent vectors, t and t. Let us assume that a virtual displacement takes
place for the centroids. Due to the displacements, the minimal distance points C, and
C̄ will move along the centroid. The amounts of sliding along the centroids are due the
increments δξ, δξ̄, and such values should permit to satisfy the orthogonality conditions
once more in the new position, hence we can write

d · t = 0 ⇒ (d + δd) · (t + δt) = 0 ⇒ d · t + δd · t + d · δt + δd · δt = 0 (43)

Applying the original orthogonality conditions to the above result, and disregarding the
higher order term we have

δd · t + d · δt = 0 ⇒ δ (d · t) = 0 (44)

The procedure can be repeated starting from the above result and applying an increment,
∆, which gives

δ (d + ∆d) · (t + ∆t) + (d + ∆d) · δ (t + ∆t) = 0 (45)

δd · t + δd ·∆t + δ∆d · t + δ∆d ·∆t + d · δt + d · δ∆t + ∆d · δt + ∆d · δ∆t = 0 (46)

Also in this case, using orthogonality conditions in variational form (44) and disregarding
higher order terms we have

δ∆d · t + δd ·∆t + ∆d · δt + d · δ∆t = 0 ⇒ ∆δ (d · t) = 0 (47)

Equations resume. The results (44) and (47) can be applied to both the centroids.
As a summary we get the important results{

d · t = 0

d · t̄ = 0

{
δ (d · t) = 0

δ (d · t̄) = 0

{
∆δ (d · t) = 0

∆δ (d · t̄) = 0
(48)

The above equation set constitute a key tool to compute the contact parameters, as shown
in the following.

5.2 Projection parameters

For the computation of the variations of the contact parameters, δξ, δξ̄ and their
linearization, ∆δξ, ∆δξ̄, we use the virtual variation the orthogonality conditions (44)
and (47). A straightforward application of the first one provides an equation set which

9
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gives us the variation of the parameters as functions of the displacement field. Using (32)
for δd and δt we have{

δd · t + d · δt =
(
tδξ − t̄δξ̄ + δuuC − δuūC̄

)
· t + d · (t,ξδξ + δuuC,ξ) = 0

δd · t̄ + d · δt̄ =
(
tδξ − t̄δξ̄ + δuuC − δuūC̄

)
· t̄ + d ·

(
t̄,ξ̄δξ̄ + δuūC̄,ξ̄

)
= 0

(49)

The above problem can be simplified and arranged in matrix form as[
t · t + d · t,ξ −t · t̄

t · t̄ −t̄ · t̄ + d · t̄,ξ̄

] [
δξ
δξ̄

]
=

[
− (δuuC − δuūC̄) · t− δuuC,ξ · d
− (δuuC − δuūC̄) · t̄− δuūC̄,ξ̄ · d

]
(50)

If the problem is rewritten in compact form as[
a −b
b ā

] [
δξ
δξ̄

]
=

[
Rδ

R̄δ

]
(51)

The solution can be rapidly achieved as

δξ =
āRδ + bR̄δ

D
δξ̄ =

−bRδ + aR̄δ

D
(52)

where D = aā + b2 is the determinant of the matrix of the coefficients.
For the computation of the higher order terms ∆δξ, ∆δξ̄ we use the same approach

using the third relation of (48), that can be suitably written also as{
∆δ (d · t) = 0

∆δ (d · t̄) = 0
⇒

{
∆δd · t + d ·∆δt = − (δd ·∆t + ∆d · δt)
∆δd · t̄ + d ·∆δt̄ = − (δd ·∆t̄ + ∆d · δt̄)

(53)

The terms can now be expanded using (32), which gives a quite complex equation set

(
t∆δξ − t̄∆δξ̄ + t,ξδξ∆ξ − t̄,ξ̄δξ̄∆ξ̄

+∆uuC,ξδξ −∆uūC̄,ξ̄δξ̄ + δuuC,ξ∆ξ − δuūC̄,ξ̄∆ξ̄
)
· t

+d · (t,ξξδξ∆ξ + t,ξ∆δξ + ∆uuC,ξξδξ + δuuC,ξξ∆ξ) =

− (δd ·∆t + ∆d · δt)(
t∆δξ − t̄∆δξ̄ + t,ξδξ∆ξ − t̄,ξ̄δξ̄∆ξ̄

+∆uuC,ξδξ −∆uūC̄,ξ̄δξ̄ + δuuC,ξ∆ξ − δuūC̄,ξ̄∆ξ̄
)
· t̄

+d ·
(
t̄,ξ̄ξ̄δξ̄∆ξ̄ + t̄,ξ̄∆δξ̄ + ∆uūC̄,ξ̄ξ̄δξ̄ + δuūC̄,ξ̄ξ̄∆ξ̄

)
=

− (δd ·∆t̄ + ∆d · δt̄)

(54)

Also in this case the structure of the equation can be reorganized in a suitable matrix
form as [

t · t + d · t,ξ −t · t̄
t · t̄ −t̄ · t̄ + d · t̄,ξ̄

] [
∆δξ
∆δξ̄

]
=

[
R∆δ

R̄∆δ

]
(55)
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Quite interestingly, like in the previous case, the matrix of the coefficients is still the same,
hence from (52) the solution is simply obtained as

∆δξ =
āR∆δ + bR̄∆δ

D
∆δξ̄ =

−bR∆δ + aR̄∆δ

D
(56)

6 CONCLUSIONS

The basic set of geometrical parameters that are needed for the Beam-to-Beam contact
element formulation has been identified. Starting from their definition, both the virtual
variations and the linearizations of the virtual variations have been computed. These
results constitutes the crucial data set to build the stiffness matrix and the residual vector
of the contact element. For this purpose these vector forms have to be rewritten in matrix
form, with a suitable collection of the variational terms and of the constants. Concerning
the distance vector, from (37) and (40) we get

δd =
1

d
[δuûC · d]

∆δd =
1

d

[
δuûC ·

(
t∆ξ − t̄∆ξ̄

)
+ d ·

(
δuuC,ξ∆ξ − δuūC̄,ξ̄∆ξ̄

)]
+

1

d
[δuûC ·∆ûC ]− 1

d3
[δuûC · dd ·∆ûC ]

(57)

Concerning the tangent vector, from (41) and (42) we get

δt =
1

t
[(δξt,ξ + δuuC,ξ) · t]

∆δt =
1

t
[(t,ξξδξ∆ξ + t,ξ∆δξ + δξ∆uuC,ξξ + δuuC,ξξ∆ξ) · t]

+
1

t3
[(δξt,ξ + δuuC,ξ) · (t,ξ∆ξ + ∆uuC,ξ)]

− 1

t3
[(δξt,ξ + δuuC,ξ) · tt · (t,ξ∆ξ + ∆uuC,ξ)]

(58)

Finally, considering the projection parameters, from (52) and (56) we get

δξ =
āRδ + bR̄δ

D
δξ̄ =

−bRδ + aR̄δ

D

∆δξ =
āR∆δ + bR̄∆δ

D
∆δξ̄ =

−bR∆δ + aR̄∆δ

D

(59)

For a complete solution of the problem some more transformations are needed to get
the explicit form of δξ and ∆δξ. The procedure is quite cumbersome, hence it is not
detailed here, but it is evident that all the data for such transformation are at this stage
of the game available.
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