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ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE

EVOLUTION PDES

SERGEI IGONIN GIANNI MANNO

Department of Mathematical Sciences, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

ABSTRACT. Zero-curvature representations (ZCRs) are one of the main tools in the theory of
integrable (1 + 1)-dimensional PDEs. According to the preprint larXiv:1212.2199, for any given
(14 1)-dimensional evolution PDE one can define a sequence of Lie algebras F¥, p =0,1,2,3,...,
such that representations of these algebras classify all ZCRs of the PDE up to local gauge equiv-
alence. ZCRs depending on derivatives of arbitrary finite order are allowed. Furthermore, these
algebras provide necessary conditions for existence of Backlund transformations between two given
PDEs. The algebras F? are defined in larXiv:1212.2199 in terms of generators and relations.

In the present paper, we describe some methods to study the structure of the algebras F?
for multicomponent (1 4 1)-dimensional evolution PDEs. Using these methods, we compute the
explicit structure (up to non-essential nilpotent ideals) of the Lie algebras F? for the Landau-
Lifshitz, nonlinear Schrodinger equations, and for the n-component Landau-Lifshitz system of
Golubchik and Sokolov for any n > 3.

In particular, this means that for the n-component Landau-Lifshitz system we classify all ZCRs
(depending on derivatives of arbitrary finite order), up to local gauge equivalence and up to killing
nilpotent ideals in the corresponding Lie algebras. As a result of the classification, one obtains two
main non-equivalent ZCRs: a well-known ZCR with values in the infinite-dimensional Lie algebra
of certain (n + 1) x (n + 1) matrix-valued functions on some algebraic curve and a very different
ZCR with values in the Lie algebra so,_;. We prove that any other ZCR of the n-component
Landau-Lifshitz system is equivalent to a reduction of these two ZCRs.

The presented methods to classify ZCRs can be applied also to other (1+ 1)-dimensional evolu-
tion PDEs. Furthermore, the obtained results can be used for proving non-existence of Backlund
transformations between some PDEs, which will be described in forthcoming publications.
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1. INTRODUCTION

1.1. The main ideas. Let m be a positive integer. An m-component (1 + 1)-dimensional evo-
lution PDE for functions u!(x,t),...,u™(z,t) is a PDE of the form

ou’ ,
(1) 5 Filw t,ub, oo u™ ut, ., ),
, , , OFu?
u' = u'(x,t), u;, = ——, 1=1,...,m, k € Zsy.
( ) k 8(1}'k >0
Here the number d > 1 is such that the functions I may depend only on the variables z, t, u7,

uy, for k < d.

A large part of the theory of integrable systems is devoted to the study of such PDEs. This class
of PDEs includes many celebrated equations of mathematical physics (e.g., the KdV, Krichever-
Novikov, Landau-Lifshitz, nonlinear Schrédinger equations). Many more PDEs can be written in
the evolution form (l) after a suitable change of variables.

To simplify notation, we set ué =« and ui = Ou? /Ot for j = 1,...,m. Then the right-hand
side of () can be written as F*(x,t,u), ul, ..., u’), and the PDE (I} reads

(2) ui:Fi(x,t,ug,u{,...,uﬁ), 1=1,...,m.

So (2)) is a compact form of ().

In this paper, integrability of PDEs is understood in the sense of soliton theory and the inverse
scattering method. This is sometimes called S-integrability.

It is well known that, in order to investigate possible integrability properties of (), one needs
to consider zero-curvature representations (ZCRs).

Let g be a finite-dimensional Lie algebra. For a PDE of the form (dI), a zero-curvature repre-
sentation (ZCR) with values in g is given by g-valued functions

(3) A:A(z,t,ug,u{,...,u;), B:B(:)s,t,ué,u{,...,u;”_l)
satisfying
(4) D,(B) — Dy(A) + [A, B] = 0.



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 3

The total derivative operators D,, D, in () are

(5) D, = ot > Ui g D=+ > DiF (x,t,ug,u{,...,ugl))a%.
TR R

The number p in (@3] is such that the function A may depend only on the variables z, ¢, ufg for
k<pandj=1,...,m. Then equation ({]) implies that the function B may depend only on =z,
t,ul, for ¥ <p+d—1.

Sélflh ZCRs are said to be of order < p. In other words, a ZCR given by A, B is of order < p

iff — =0 foralll > p.

ou;
Remark 1. The right-hand side F'(x,t, ué,u{, o ,uﬁl) of () appears in condition (), because
F* appears in the formula for the operator D; in (&).

Note that () can be written as [D, + A, D; + B] = 0. Condition () is equivalent to the fact
that the auxiliary linear system

(6) 0:(W) = =AW, 0, (W) = —BW
is compatible modulo (). Here W = W (x,t) is an invertible N x N matrix-function.

Remark 2. When we consider a function @ = Q(z,t, ué, u{, e ,uf) for some [ € Z>(, we always
assume that this function is analytic on an open subset of the manifold with the coordinates
z t,u),wl,. .. u for j =1,...,m. For example, () may be a meromorphic function, because a
meromorphic function is analytic on some open subset of the manifold. In particular, this applies
to the functions (3]).

We study the following problem. How to describe all ZCRs (3)), () for a given PDE ()7

In the case when p = 0 and the functions F*, A, B do not depend on z, t, a partial answer
to this question is provided by the Wahlquist-Estabrook prolongation method (WE method for
short). Namely, for a given PDE of the form u} = F'(u},u],...,u}), i = 1,...,m, the WE
method constructs a Lie algebra so that ZCRs of the form

(7) A=A(}), B=Buul,.. . ,u)_),  D.(B)— DA +[A B =0

correspond to representations of this algebra (see, e.g., [2, 25, @]). It is called the Wahlquist-
Estabrook prolongation algebra. Note that in (7) the function A(u!) depends only on ),
j=1...,m.

To study the general case of ZCRs ([B]), () with arbitrary p for any equation (), we need to
consider gauge transformations.

Without loss of generality, one can assume that g is a Lie subalgebra of gl for some N € Z+,,
where gl is the algebra of N x N matrices with entries from R or C. So our considerations are
applicable to both cases gly = gly(R) and gly = gly(C). And we denote by GLy the group of
invertible N x N matrices.

Let K be either C or R. Then gly = gly(K) and GLy = GLx(K). In this paper, all algebras
are supposed to be over the field K.

Let ¢ C GLy be the connected matrix Lie group corresponding to the Lie algebra
g C gly. (That is, G is the connected immersed Lie subgroup of GLy corresponding to the
Lie subalgebra g C gly.) A gauge transformation is given by an invertible matrix-function
G = G(x, t,ué, ul, ... ,u{) with values in G.

For any ZCR @), @) and any gauge transformation G = G(z, t, u), ), . .. ,u{), the functions

(8) A=GAG™ - D,(G)-G™, B=GBG™ — D/(G)-G!
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satisfy Dy(B) — Dy(A) + [A, B] = 0 and, therefore, form a ZCR. (This is explained in Remark
below.)

Moreover, since A, B take values in g and G takes values in G, the functions A, B take values
in g. (This is well known, but for completeness we prove this in Lemma [ in Section [2)

The ZCR (R)) is said to be gauge equivalent to the ZCR (3)), (). For a given PDE (), for-
mulas (8) determine an action of the group of gauge transformations on the set of ZCRs of this
PDE.

The WE method does not use gauge transformations in a systematic way. In the classification
of ZCRs () this is acceptable, because the class of ZCRs () is relatively small.

The class of ZCRs ([B]), () is much larger than that of (). As is shown in the present paper,
gauge transformations play a very important role in the classification of ZCRs (B)), (d]). Because
of this, the classical WE method does not produce satisfactory results for ([B]), (@), especially in
the case p > 0.

To overcome this problem, we use the approach which we developed in [10] [11]. Namely, using
some ideas from [10, [11], we find a normal form for ZCRs (3]), () with respect to the action of
the group of gauge transformations. Using the normal form of ZCRs, for any given equation (II),
we define a Lie algebra F” for each p € Z>( so that the following property holds.

For every finite-dimensional Lie algebra g, any g-valued ZCR (@), ) of order < p is locally
gauge equivalent to the ZCR arising from a homomorphism F? — g.

More precisely, as is discussed below, we define a Lie algebra [F? for each p € Z>( and each
point a of the infinite prolongation £ of the PDE (Il). So the full notation for the algebra is
F?(&,a).

Recall that the infinite prolongation £ of (Il is the infinite-dimensional manifold with the
coordinates

9) r, ot owul, i=1,....m,  k€Zs.

(A more precise definition of the manifold £ is given in Section 2.11) The precise definition of
F?(€, a) for any evolution PDE () is presented in Section 2l In this definition, the algebra F?(&, a)
is given in terms of generators and relations.

For every finite-dimensional Lie algebra g, homomorphisms F?(€,a) — g classify (up to gauge
equivalence) all g-valued ZCRs (B, () of order < p, where functions A, B are defined on a
neighborhood of the point a € £. See Section [2 for details.

The algebras F? (&, a) are responsible also for parameter-dependent ZCRs, see Remark [3] below.

For scalar evolution equations with m = 1 this approach was developed in [11]. In the present
paper we study the algebras F?(£, a) for multicomponent evolution PDEs (1) with arbitrary m.

Note that the same Lie algebras F?(&, a) were used in [10] for a different purpose, see Remark @]
below.

Remark 3. In the theory of integrable (1 + 1)-dimensional PDEs, one is especially interested in
ZCRs depending on a parameter X. So consider a g-valued ZCR of the form

(10) A:A()\,x,t,ué,u{,...,ué), B:B(A,x,t,ué,u{,...,u;er_l),
D,(B) — Di(A)+ [A,B] =0,

where g-valued functions A, B depend on x, t, u} and a parameter \.

Let g be the infinite-dimensional Lie algebra of functions h(\) with values in g. (Depending
on the problem under study, one can consider analytic or meromorphic functions A(A). Or one
can assume that A runs through an open subset of some algebraic curve and consider g-valued
functions A(\) on this algebraic curve.)

Then (I0) can be regarded as a ZCR with values in g. After a suitable (parameter-dependent)
gauge transformation, each ZCR of the form (I0) corresponds to a homomorphism FF(€,a) — g.
So the Lie algebras FP(&, a) are responsible also for parameter-dependent ZCRs.
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Applications of FP(£, a) to the theory of Bicklund transformations are described in [10]. In the
scalar case m = 1, applications of F?(£, a) to obtaining necessary conditions for integrability of
scalar evolution equations are discussed in [11].

According to Section 2] the algebras FP (&, a) for p € Z>( are arranged in a sequence of surjective
homomorphisms
(11) o= FP(E a) 5 FPHE a) = - = FHE,a) = F°(E,a).

Recall that K is either C or R. We suppose that the variables z, t, u} take values in K. A
point a € £ is determined by the values of the coordinates z, t, u} at a. Let

(12) a= (2 =xq, t =14, ul, = al) € &, Ta,tg, ak € K, i=1,...,m, k € Z>o,

be a point of £. In other words, the constants z,, t,, ai are the coordinates of the point a € £ in
the coordinate system z, t, .

Example 1. To clarify the definition of F?(£,a), let us consider the case m = p = 1. To this
end, we fix an evolution PDE (Il) with m = 1 and study ZCRs of order < 1 of this PDE.

Since we assume m = 1, any ZCR of order < 1 is written as follows
(13) A= A(x,t,up,uy), B = B(x,t,up,ui, . .., uy), D.(B) — D,(A) + [A, B] = 0.

According to Theorem [2in Section [2, any such ZCR (I3]) on a neighborhood of a € £ is gauge
equivalent to a ZCR of the form

(14) A= Az, t,ul, ub), B = B(z, t,ul,ul, ... ub),
(15) D,(B) — Dy(A) + [A, B] =0,
0A 11 i 11 5 11 1
(16) w(:c,t, ug, ay) = 0, Az, t,ag,ay) =0, B(zg,t,ag,a;,...,a5) =0,
1

where z,, a; are the constants determined by the point a € £ given by (I2).

In other words, properties (I0) determine a normal form for ZCRs (I3]) with respect to the
action of the group of gauge transformations on a neighborhood of a € £.

A similar normal form for ZCRs (B), ) with arbitrary m, p is described in Theorem [B] in
Section 2 o

Since the functions A, B from (I4)), (If) are analytic on a neighborhood of a € &, these
functions are represented as absolutely convergent power series

(17) A= Y (=) (t—ta) (ug — ag)(ug — ay)" - AL,

l1,l2,i0,11>0
(18) B= Y (z—z)"(t—ta)?(uf — ad)? ... (uj— ap)*- B2 .
l1,02,J0,--,5a=>0

Here /E(l)lfl and Bﬁ;lzjd are elements of a Lie algebra, which we do not specify yet.

Using formulas (I7), (I8]), we see that properties (I6]) are equivalent to
(19) Al =AY =By =0 Vi, ly, ig € Zso.
To define F'(€,a), we regard flﬁéii, Bﬁ;lzjd from (I7)), (I8) as abstract symbols. By definition,
the algebra F'(&,a) is generated by the symbols fli;ii, B;;lzjd for Uy, 12,40, %1, jo, - - -, Ja € Z>o.

Relations for these generators are provided by equations (I5]), (I9). A more detailed description
of this construction is given in Section 2 for arbitrary m, p. The scalar case m = 1 is studied also
in [I1].

Remark 4. Let g € Z~o. Consider a system of the form

(20) w! al(wl,...,wq,x,t,ué,u{,...,ug),

r —
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z z o .
(21) wt:6(wl,...,wq,z,t,ué,u{,...,ufﬂrd_l),
wh = w'(x,t), l=1,...,q.
We assume that system (20), (21]) is compatible modulo ({I), which means the following. Dif-
ferentiating equation (20) with respect to t and equation (2I) with respect to x, one obtains some

expressions for w!, and w! . The expressions for w!, and w! must coincide, modulo (TJ).
For example, the linear system ([6]) corresponding to the ZCR (3]), () is compatible modulo ().

In general, in (20), ([21)) the functions o!, 3' may depend on w', ..., w? nonlinearly. It is well known
that such compatible systems play an important role in the theory of Backlund transformations
(see, e.g., [I7]).

Recall that £ is the manifold with the coordinates ([@). We assume that the functions o!, 8!

from (20)), (2I)) are defined on the manifold W x U, where W is a manifold with the coordinates

w!,...,w? and U is an open subset of &.

Let £ be the Lie algebra of vector fields on W. Since W is a manifold with the coordinates

w', ..., wi, the Lie algebra £ consists of vector fields of the form > 7, f'(w',..., wq)%.
Then
a o 9
(22) A:Zal(wl,...,wq,x,t,u{),u{,...,u;)w,
ql 1 o . )
(23) B:Zﬁl(wl,...,wq,x,t,u{),u{,...,u;+d_1)%
=1

can be regarded as functions on U C £ with values in £.
It is well known (and is explained in [10]) that system (20), (21I]) is compatible modulo () iff

D.(B) — Dy(A) + [A,B] = 0.

Therefore, (22)), (23) can be viewed as a ZCR with values in £.

The preprint [10] shows that, up to gauge equivalence, compatible systems of the form (20),
(21)) can be described in terms of homomorphisms F*(€,a) — £. (The notion of gauge equivalence
for such systems is discussed in [10].)

The main goal of this paper is to demonstrate techniques for computation of the algebras
FP(€,a) for multicomponent evolution PDEs. Since the algebras FP(€, a) are responsible for all
ZCRs, computation of FP(£,a) leads to classification of ZCRs up to gauge equivalence. The
results of the paper are described in the next subsection.

1.2. The main results. As has been discussed above, for each p € Zs( the algebra F(&,a)
is defined by a certain set of generators and relations arising from a normal form of ZCRs. In
Theorem[Min Section 25 we describe a smaller subset of generators for F?(€, a). This result is very
helpful in the computation of F?(£, a) for concrete PDEs, which is demonstrated in Sections [,

In Theorem B in Section Bl we describe a relation between the algebra F°(£, a) and the
Wahlquist-Estabrook prolongation algebra. This is helpful in the computation of F°(&,a) for
PDEs whose Wahlquist-Estabrook prolongation algebra is known.

The main example of a PDE considered in this paper is the multicomponent generalization of
the Landau-Lifshitz equation from [0, 23]. To describe this PDE, we need some notation.

For any k € Z~( and any k-dimensional vectors V = (v!,...,v*) and W = (w!, ..., w"), we set
(V,W) =30, viw,

Recall that K is either C or R. Fix an integer n > 2. Let 7y,...,7, € K be such that r; # r;
for all i # j. Denote by R = diag (r1,...,r,) the diagonal n X n matrix with entries r;. Consider
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the PDE

3 3 .
(24) S, = (sm + (S sm>s) + 5(S. RS)S.. (8,8 =1, R = diag (r1, ..., m),
where S = (s'(z,t),...,s"(z,t)) is an n-dimensional vector-function, and s'(z,t) take values in

System (24]) was introduced in [6]. According to [6], for n = 3 it coincides with the higher
symmetry (the commuting flow) of third order for the Landau-Lifshitz equation. Thus (24]) can
be regarded as an n-component generalization of the Landau-Lifshitz equation. For this reason,
we call (24)) the n-component Landau-Lifshitz system.

The paper [6] considers also the following algebraic curve

(25) NN = hi=L....m

in the space K" with coordinates Aj,...,\,. According to [6], this curve is of genus
1+ (n—3)2"2 and system (24) possesses a ZCR parametrized by points of this curve. (The
ZCR is described in Remark [0 below.)

System (24) has an infinite number of symmetries, conservation laws [6], and an auto-Bécklund
transformation with a parameter [1]. Soliton-like solutions of (24]) can be found in [1]. In [23]
system (24]) and its symmetries are constructed by means of the Kostant—Adler scheme.

Remark 5. Fori,j =1,...,n+1,let E;; € gl,,; be the (n+ 1) X (n+ 1) matrix with (7, j)-th
entry equal to 1 and all other entries equal to zero.
From the results of [6, 23] one can obtain the following gl,,,-valued ZCR for the PDE (24])

(26) A= z": §'Ni(Bips1 + Enyr),
(1) B=DAA)+ DAL A+ (r 4 X L(S.RS) 1 2 (Da(S). Da(S) A

D,(B) — Dy(A) + [A, B] = 0.

Here A1, ..., \, € K are parameters satisfying (25)).
We regard \;(E; 41+ Ent1,) as gl -valued functions on the curve (20]). Let £ be the infinite-
dimensional Lie algebra of all polynomial gl ;-valued functions M(Ay, ..., A,) on the curve (25).
Let L(n) C £ be the Lie subalgebra generated by the functions A\;(E; 41+ Epy14), i =1,...,n.
Using relations (25)), one can easily show that L(n) consists of linear combinations of the functions

(28) (M) +7)'Ni(Einsr + Enri), (M)? +r)' NN (B — Ej),
,7=1,...,n, 1< 7, ZGZZ().

According to [9], the Lie algebra L(n) is infinite-dimensional, and the functions (28] form a basis
for it. We describe L(n) in more detail in Section [l

Note that the algebra L(n) is very similar to infinite-dimensional Lie algebras that were studied
in [22, 23]. According to [9], the Lie algebra L(n) appears in the description of the Wahlquist-
Estabrook prolongation algebra for the PDE (24]). The paper [9] gives also a presentation for the
algebra L(n) in terms of a finite number of generators and relations.

Note that (26), (27) can be regarded as functions with values in L(n). So (26), (27) can be
viewed as a ZCR with values in L(n).

Remark 6. Let so0,; C gl,,; be the Lie algebra of the matrix Lie group O(n, 1) C GL,1, which
consists of invertible linear transformations that preserve the standard bilinear form of signature
(n,1).

The algebra so,,; has the following basis

I
\‘}—‘
3

Ei,j - Ej,ia 1<j<mn, El,n+1 + En+1,l, l
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Note that the functions (26), ([27), (28)) take values in so,, ;.

Remark 7. In order to describe the algebras F?(€,a) for system (24]), we need to resolve the
constraint (S, S) = 1 for the vector-function S = (s'(z,t),...,s"(z,t)). Following [6], we do this
as follows

, 2u? ‘ 1 — (u,u)
29 = =1,...,n—1, N
(29) ° 1+ (u,u)’ R ° 14 (u,u)
where v = (u'(z,t),...,u" ' (z,t)) is an (n — 1)-dimensional vector-function.

Then system (24)) can be written as a PDE of the form u! = u} + G (v, u], u}), i =1,...,n—1.
The explicit formula for this PDE is (I47) in Section @l Substituting (29) in (26), ([27), we see
that (26), (27) is a ZCR of order < 0 for this PDE. (That is, the function (26) does not depend
on u] for I > 0.)

In Theorem [I0 in Section we construct for this PDE an so,,_;-valued ZCR of the form

(30) A=A, u)),  B=B(W, ul,ubui),  D.(B)—Dy(A)+[A Bl =0,

where s0,,_; is the Lie algebra of skew-symmetric (n — 1) x (n — 1) matrices with entries from K.
According to our notation, u/ = ), hence the ZCR (B0) is of order < 1. Note that the ZCR (B0)
does not depend on any parameters.

So we have two very different ZCRs for the same PDE (24]), which can be transformed to the
PDE (I47) by the transformation (29). Namely, we have the g, -valued ZCR (26), ([27) and
the so0,,_i-valued ZCR (30) described in Theorem [0

One can embed the Lie algebras gl, ., and so,_; into the Lie algebra gly for some N >n + 1,
and then one can regard these ZCRs as gly-valued ZCRs. One can ask whether these ZCRs can
become gauge equivalent after suitable embeddings gl,,,; < gly and so,,_1 < gly. In Remark 29
in Section we show that these ZCRs cannot become gauge equivalent.

Using the theory described in Sections 2], B we compute the algebras F? (€, a) for the PDE (24])
in Sections @] [5]

The PDE (24)) is imposed on a vector-function S = (s'(z,1),...,s"(z,t)) satisfying (S, S) = 1.
We compute F?(€, a) for this PDE in the case n > 4. (The cases n = 2, 3 are less interesting and
will described elsewhere.)

In Section @ we compute the algebra F°(£,a) for this PDE, using its Wahlquist-Estabrook
prolongation algebra described in [9].

In Section Bl we compute F*(£,a), and in Section Bl the algebras F*(€,a) for all k > 2 are
computed for this PDE. (We describe the structure of these Lie algebras up to some non-essential
nilpotent ideals.)

The results are summarized in the following theorem, which is proved in Section [6.4]

Theorem 1 (Section 6.4). Let n > 4. The Lie algebras FP(E,a) for the PDE ([24) have the
following structure.

The algebra F°(E, a) is isomorphic to the algebra L(n) defined in Remark[3.

There is an abelian ideal & of F*(&,a) such that FY(E,a)/& = L(n) ® s0,_1, where $0,_, is
the Lie algebra of skew-symmetric (n — 1) x (n — 1) matrices. The surjective homomorphism
FY(E,a) — F°(&,a) from ) coincides with the composition of the homomorphisms

FY(E,a) = F(£,a)/6 = L(n) ®s0,_, — L(n) 2F°(E,a).

Let 7i,: F¥(E,a) — F*Y(E, a) be the surjective homomorphism from (). Then for any k > 2
we have
[’Ul,[’l}g,’l}g“ =0 ‘v’vl,vg,vg € keer.

In particular, the kernel of 1, is nilpotent.



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 9

For each k > 1, let ¢: F¥(E,a) — L(n) ® so,_; be the composition of the surjective homo-
morphisms

F*(E,a) = FY(E,a) = FY(E,a) /G = L(n) ® s0,_1,
where F*(E,a) — FY(&,a) arises from (). Then
[ha, [ha, ..., [hok—2, [hok—1, hog]] .. .]] =0 YV hi, he, ..., ho € ker ¢y
In particular, the kernel of ¢y, is nilpotent.

Remark 8. Nilpotent ideals of the Lie algebras FP(€, a) are not important for the main applica-
tions to the theory of Backlund transformations and integrability.

Theorem [I] says that, for the PDE (24)) in the case n > 4, for each k > 1 there is a surjective
homomorphism ¢;: F*(£,a) — L(n) @ so0,_; such that the kernel of ¢ is nilpotent. Since
nilpotent ideals of F*(£,a) are not important, one can say that “the main part” of F¥(€, a) is
L(n) D s0,_1.

And one has also the isomorphism F(€,a) = L(n) for this PDE, according to Theorem [I.

Consider a ZCR (@), a gauge transformation G = G(z,t,u), ul, . .. ,u{ ), and the corresponding
gauge equivalent ZCR (8)). Then, essentially, (B8] and (8) carry the same information, because one
can switch from (@) to (8) and vice versa, using G and G~'.

Furthermore, the following fact about ZCRs with values in a Lie algebra g is well known. If
one is interested in applications to the theory of integrable systems, then one can ignore nilpotent
ideals of the Lie algebra g.

Therefore, it makes sense to classify ZCRs up to gauge equivalence and up to killing nilpotent
ideals in the corresponding Lie algebras. As we show below, the algebras F?(£, a) are helpful in
this respect.

As has been said above, for every finite-dimensional Lie algebra g, homomorphisms F*(€,a) — g
classify (up to gauge equivalence) all g-valued ZCRs (B]), (@]) of order < p, where functions A, B
are defined on a neighborhood of the point a € £.

According to Theorem [ for the PDE (24)) in the case n > 4, we have F*(€,a) = L(n), and
for each k > 1 there is a surjective homomorphism ¢;: F*(€,a) — L(n) @ so,_; such that the
kernel of ¢}, is nilpotent.

This allows us to classify all ZCRs (up to gauge equivalence and up to killing nilpotent ideals)
for the PDE (24]) in the case n > 4 as follows. In Section [7] we prove that, after suitable
gauge transformations and after killing some nilpotent ideals, any ZCR becomes isomorphic to a
reduction of the direct sum of the L(n)-valued ZCR described in Remark [5] and the so,,_;-valued
ZCR described in Remark [1l (The notions of direct sums and reductions of ZCRs are explained
in Section [2.6])

In other words, as a result of the classification of all ZCRs (depending on derivatives of arbitrary
finite order) for the PDE (24]) in the case n > 4, we obtain two main non-equivalent ZCRs: the
L(n)-valued ZCR and the so,,_;-valued ZCR described above. In Section [7] we prove that any
other ZCR for the considered PDE is essentially equivalent (up to killing nilpotent ideals) to a
reduction of the direct sum of these two main ZCRs.

In our opinion, it is interesting to see that, for a given multicomponent evolution PDE, one can
classify all ZCRs (depending on derivatives of arbitrary order), and, as a result of the classification,
one obtains several non-equivalent ZCRs depending on different derivatives and taking values in
different Lie algebras. As has been said above, we classify ZCRs up to gauge equivalence and up
to killing nilpotent ideals in the corresponding Lie algebras.

In the present paper we do this for the multicomponent Landau-Lifshitz system, but the de-
scribed computational techniques can be applied to many more evolution PDEs. (Although for
some PDEs the computations may be very difficult.)
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For some scalar evolution PDEs of orders 3, 5, 7 (including the KdV and Krichever-Novikov
equations), a similar approach to classification of ZCRs was described in [8, [I1]. Note that the
multicomponent case considered in the present paper is much more sophisticated than the scalar
case considered in [, [1T].

Using the methods developed in Sections PH6l in Section [§ we describe the structure of the Lie
algebras F?(€,a), p € Z>y, for the classical Landau-Lifshitz and nonlinear Schrédinger equations
in the case K = C.

As has been said above, in Theorem [§ in Section Bl we describe a relation between the algebra
F°(€, a) and the Wahlquist-Estabrook prolongation algebra. To compute F°(&, a) for the classical
Landau-Lifshitz and nonlinear Schrodinger equations in Section [8, we use this relation and the
corresponding Wahlquist-Estabrook prolongation algebras computed in [16), [3].

For the classical Landau-Lifshitz equation, we show that F°(£, a) is isomorphic to an infinite-
dimensional Lie algebra of certain so3(C)-valued functions on an elliptic curve. According to [16],
this algebra arises from the well-known elliptic s03(C)-valued ZCR of the Landau-Lifshitz equa-
tion [2I] B, 16]. For this equation, we show also that the Lie algebras F(€,a) with ¢ € Z-
are obtained from the Lie algebra FY(£,a) by applying several times the operation of central
extension.

For the nonlinear Schrédinger equation, we show that F°(€, a) is isomorphic to the direct sum
of the infinite-dimensional Lie algebra

sly(C[A]) = s1,(C) ®¢ C[A]

and a one-dimensional abelian Lie algebra. Here C[)] is the algebra of polynomials in the variable
A. The Lie algebra sly(C[A]) arises from the well-known parameter-dependent sly(C)-valued ZCR
of the nonlinear Schrodinger equation, and A\ corresponds to the parameter in the ZCR. For this
equation, we show also that the Lie algebras F?(€,a) with ¢ € Z-( are obtained from the Lie
algebra FY(£, a) by applying several times the operation of central extension.

Using the algebras F?(&, a) for (1 + 1)-dimensional evolution PDEs, the preprint [10] describes
a necessary condition for existence of Backlund transformations between two given PDEs. This
necessary condition is given in [10] in terms of the algebras F?(&, a).

Using this necessary condition from [10] and knowing the structure of the algebras F?(€, a),
one can sometimes prove non-existence of Backlund transformations between two given PDEs.
Examples of such results for scalar evolution equations are given in [I0] and references therein.
The methods to compute FF(€,a) described in the present paper allow one to obtain similar
results for some multicomponent PDEs,; which will be discussed in forthcoming publications.

Remark 9. As has been said above, the ZCR (26]), (27) for the PDE (24)) is parametrized by
points of the curve (25]). Some other integrable PDEs with ZCRs parametrized by the curve (25])
were introduced in [6] [7, 22]. It was noticed in [22] that the formulas A = A7 + 7y, y = [[[L, N
provide a map from the curve (25) to the hyperelliptic curve y* =[], (A — ;). According to [6],
for n > 3 the curve (25]) itself is not hyperelliptic.

Remark 10. It is well known that equation (4)) implies D,(B) — Dy(A) +[A Bl =0 for A, B
given by (8). Indeed, one has D, + A = G(D,+ A)G™! and D, + B = G(D; + B)G~!. Therefore,

D.(B) — Dy(A) + [A,B] = [D, + A, D, + B] = [G(D, + A)G™,G(D; + B)G™]
=G[D, + A, D; + B]G™' = G(D,(B) — Di(A) + [A, B]))G™.
Hence the equation D,(B) — D;(A) 4 [A, B] = 0 implies D,(B) — D;(A) + [A, B] = 0.

Remark 11. Some other approaches to the study of the action of gauge transformations on ZCRs
can be found in [13] [14], 15, I8, 19, 20] and references therein. For a given ZCR with values in a
matrix Lie algebra g, the papers [13] [14, 18] define certain g-valued functions that transform by
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conjugation when the ZCR transforms by gauge. Applications of these functions to construction
and classification of some types of ZCRs are described in [13], 14} [15] [I8] 19} 20].

To our knowledge, the theory of [13| 14} [15], 18, 19} 20] does not produce any infinite-dimensional
Lie algebras responsible for ZCRs. So this theory does not contain the algebras F(£, a).

1.3. Abbreviations, conventions, and notation. The following abbreviations, conventions,
and notation are used in the paper.

ZCR = zero-curvature representation, WE = Wahlquist-Estabrook.

The symbols Z~( and Z>( denote the sets of positive and nonnegative integers respectively.

K is either C or R. All vector spaces and algebras are supposed to be over the field K. We
denote by gly the algebra of N x N matrices with entries from K and by GLy the group of
invertible N x N matrices.

Also, we use the following notation for partial derivatives of functions u® = u*(z,t),i =1,...,m,
UZO = Uz, Uz = W’ ]f - ZZO‘

2. ZERO-CURVATURE REPRESENTATIONS, GAUGE TRANSFORMATIONS, AND THE ALGEBRAS
FP(&,a)

In this section we study the algebras FF(€,a) introduced in [10]. For completeness, we give
detailed definitions of £, a € £, and F¥(€, a).

2.1. The infinite prolongation of an evolution PDE. As has been said in Section [[LT] we
suppose that z, t, u, take values in K, where K is either C or R. Let K> be the infinite-dimensional
space with the coordinates

(31) z, t,  wul, i=1,....m,  kE€&Zs.
The topology on K> is defined as follows.

For each [ € Zxg, consider the space K™(*U+2 with the coordinates =, t, uj, for k =0,1,...,1
and ¢ = 1,...,m. One has the natural projection m;: K® — K™ +1)+2 that “forgets” the coordi-

nates u, for &' > [.

Since K™(H1D+2 ig 4 finite-dimensional vector space, we have the standard topology on K™(+D+2,
For any [ € Zso and any open subset V C K™(+D+2 the subset 7; '(V) C K™ is, by definition,
open in K*. Such subsets form a base of the topology on K*. In other words, we consider the
smallest topology on K™ such that the maps m;: K> — Km(+D+2 | ¢ Z>y, are continuous.

According to our notation, the PDE (Il) can be written as (£). Let K™@+D+2 be the space
with the coordinates x, ¢, ui for k =0,1,...,dand i = 1,...,m. Let U C K™4+)+2 he an open
subset such that the functions F'(z,t,u}, ul, ... u}) from (2) are defined on U.

The infinite prolongation & of the evolution PDE () can be defined as follows

& =m"(U) c K™.

So £ is an open subset of the space K> with the coordinates (B1). The topology on &£ is induced
by the embedding & C K.

Example 2. For any constants e, €2, e3 € K, consider the Krichever-Novikov equation [12] 24]

3 (Ugz )? N (u—e1)(u—eg)(u—e3)

2 ug Uge

(32) Ut = Upzx — ) U = U(l’, t)

Since this is a scalar equation of order 3, we have here m =1 and d = 3.
In our notation, we set u' = u(z,t) and rewrite equation ([B2)) as follows

(33) ui = Fl(x,t,ué,u%,ué,ué),
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3 1 1 1
(31) P, ) = — 202 (h —e)(ws — ea)(up —eq)
2 A Uy
k1
where u = u! and uj, = Tk for k € Zs,.

Let K% be the space with the coordinates x, t, u}, ui, ul, ul. According to (34, the function

!'is defined on the open subset U C K¢ determined by the condition ul # 0.
In this example, K* is the space with the coordlnates z, t, uj, for k € Zso. We have the
map 73: K> — KO that “forgets” the coordinates uy, for &’ > 3. The infinite prolongation &£ of
equation (B3) is the following open subset of K>

E=m;"(U) = {(z,t,up,uy, uj,...) € K*|uy #0}.

2.2. A normal form for ZCRs with respect to the action of gauge transformations.
Consider again an evolution PDE (dl) with arbitrary m,d € Z-o. As has been said above, the
infinite prolongation £ of (1) is an open subset of the space K> with the coordinates (31]).

A point a € £ is determined by the values of the coordinates w, t, u} at a. Let

(35) a=(x=max4t="t, u,=al) € E, Ta,tg, ak €K, i=1,...,m, k € Z>o,

be a point of £. In other words, the constants z,, t,, ai are the coordinates of the point a € £ in
the coordinate system z, ¢, ui.

Recall that, for every N € Z~(, we denote by gly the algebra of N x N matrices with entries
from K and by GLy the group of invertible N x N matrices. Let Id € GLy be the identity
matrix.

By the standard Lie group — Lie algebra correspondence, for every Lie subalgebra g C gly
there is a unique connected immersed Lie subgroup ¢ C GLy whose Lie algebra is g. We call G
the connected matrix Lie group corresponding to the matrix Lie algebra g C gly.

For any | € Zs, a matrix-function G = G(x,t,u), u?, ..., u]) with values in G is called a gauge
transformation. Equlvalently, one can say that a gauge transformatlon is given by a G-valued
function G = G(z, t,u), v, ..., ul).

The following lemma is known, but for completeness we present a proof of it.

Lemma 1. Let N € Z~ and p € Z>o. Let g C gly be a matriz Lie algebra and G C GLy be the
connected matriz Lie group corresponding to g C gly.
Let
(36)
A=Az, tup,ui,... ul),  B=DBtuhul,...,u ),  Dy(B)—Dy(A)+[A Bl =0

be a ZCR of order < p such that the functions A, B take values in g. Here D, and D, are given

by (B).

Then for any G-valued function

(37) G =Gz, t,ud,ul,. .. ul_)

p—1
depending on x, t, ué, e ,ug_l, 7 =1,...,m, the functions
(38) A=GAG' - D,(G) -G, B=GBG™ ' —Dy(G) -G

form a g-valued ZCR of order < p. That 1is,
(39) A= fl(m, t,ué, u{, . ,ug), B= B(m, t,ué, u{, . ,uZer_l), Dx(B) —Dt(fl) + [fl, B] =0,

and A, B take values in g.
Formulas (38]) determine an action of the group of G-valued gauge transformations [B1) on the
set of g-valued ZCRs of order < p.
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Proof. Since A, B take values in g and G takes values in the connected matrix Lie group G
corresponding to the Lie algebra g C gl, the functions

-1 -1 9 40 -1 4
(40) GAG™, GBG 7, %(G)-G ) E(G)L? " o
take values in g. Hence the functions A, B given by ([B8)) take values in g as well.
Using formulas (@), 36), B8) and the fact that G may depend only on x, ¢, u), ... ,uf,_l, we
easily get (39)).
One has D4+ A = G(D,+A)G~! and D, +B = G(D;+B)G~", which implies that formulas (BS)
determine an action of the group of G-valued gauge transformations (37)) on the set of g-valued
ZCRs of order < p. O

(G)-G™t Vi k

Remark 12. For any [ € Z>( and a € €, when we consider a function @ = Q(z,t, ué, ul, ... ,u?)
defined on a neighborhood of a € &£, we always assume that the function is analytic on this
neighborhood. For example, () may be a meromorphic function defined on an open subset of &£
such that () is analytic on a neighborhood of a € £.

In particular, this applies to the functions A, B, G, A, B considered in Theorems [ B below.

Theorems [2 and B] below describe a normal form for ZCRs with respect to the action of the
group of gauge transformations. To clarify the construction, we first consider the case of ZCRs
of order < 1 in Theorem 2l The general case of ZCRs of order < p for any p € Zx( is described
in Theorem [

Theorem 2. Let m, N € Z~o. Let g C gly be a matrix Lie algebra. Denote by G C GLy the
connected matrix Lie group corresponding to g C gly .

Let € be the infinite prolongation of an m-component evolution PDE (0l). Consider a point
a € & given by BH). According to [B3), the point a is determined by constants x,, t,, at.

Let

(41) A=Az, t,u),u]),  B=B(xtu)ul,...,u)),  Dy(B)— D(A)+[A B =0

be a ZCR of order < 1 such that the functions A, B are defined on a neighborhood of a € £ and
take values in g.
Then, on a neighborhood of a € £, there is a G-valued function

(42) G = G(x,t,u})
depending on x, t, ué, j=1,...,m, such that the functions
(43) A=GAG™ - D,(G) -G, B=GBG™ - Dy(G) -G
satisfy
DA
(44) Vip=1,...,m, i =0,
aul u{:a{ Y7, ué:aé Vi>ig
45 4 =0
( ) u%:aé, u{:aj vj ’
(46) B - =0,
r=zq, ul=aj Vj, Vk>0
and
(47) G - =1d
T=xq, t=tq, u(]):aj Vi

Note that, according to Lemmaldl, the functions [@3) form a g-valued ZCR of order < 1. That
18,

(48) A= A(x,t,ul,wl),  B= Bz, tu),ul,...,u)),  D.(B)— D(A)+[A B =0,
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and A, B take values in g.

Remark 13. The notation B

in (46) means that we substitute x = x, and
T=Xq, uk—ak Vi3, VkE>0

u{t = ai forall j =1,...,m and all k¥ > 0 in the function B = B(a:,t,ug,u{, o ,ué). That is,

» J J J
B = B(x,, t,a),a1,...,a)).

r=xq, “k_ak Vi3, VE>0

The notation in (44)), ([43]), (47) can be understood in a similar way.

Proof. To clarify the main idea, let us consider first the case m = 2. Then formulas (41]), (4S)
become

(49) A= Az, t,ub, ud, ui, ud), B = B(x,t,uf, ud, ui,u?, ... ulu?),

(50) A= Az, t,up, ud, ug, uld), B = B(x,t,uf, ud, uj,u?, ... ul, ul).

For m = 2 in (44]) we have ig = 1, 2, so condition (44)) is equivalent to the following two equations

8‘21 2 1 2

(51) a—%(x,t,u(l),ao,al,al) =0,
(52) g—%(x, fd a2, al,a?) = 0.
Conditions (45]), (46) in the case m = 2 can be written as

(53) A(z,t,a), a2, at,a?) =0,

(54) B(xa,t,ab,a2,at, a2, ... al,a2) = 0.

According to Lemma [ in the case p = 1, formulas ([43]) determine an action of the group of
G-valued gauge transformations ([42]) on the set of g-valued ZCRs of order < 1.

To prove the statement of the theorem in the case m = 2, we need to find a G-valued gauge
transformation G = G(z,t, u}, u3) such that the transformed ZCR ([@3) satisfies (51), (52), (E3),
(B4), and G(x,,ta,ad,a?) = 1d.

We are going to construct the required gauge transformation in several steps. First, we will
construct a transformation to achieve property (52)), then another transformation to get proper-
ties (B10), (52)), then another transformation to get properties (51I), (52)), (53), and finally another

transformation to obtain all properties (&1I), (52), (53), (G4).
Consider the ordinary differential equation (ODE)

oG 0A
auj =Gy (a 2(I t u07u(2)7aiva%))

with respect to the variable u} and an unknown function Gy = Ga(z,t,uf, u?). The variables
x, t, u} are regarded as parameters in this ODE.

Let G2(r1: t,u,ud) be a local solution of the ODE (B5) with the initial condition
Ga(z,t,ul, a?) = 1d. Since DA/Ju? takes values in g, the function G takes values in G.

Set

(55)

(56) A=GyAG;" — D,(Gy) - G5, B = Gy,BG;' — Dy(G,) - G5t

Since G takes values in G, the functions A, B take values in g. Using (56) and (53), we get
0A 0A _ 0 _

(57) 8—’1@(']:’ tu u(l)v U%, CL%, a2) = G <a 2 (I t u07 uOv a17 al)) G2 t— <8—u% (D:B(G2)>>G2 ! =

. 814 2 _ 8G2 _
_G2(8u1 (z,t uo,uo,al,al))G aqu
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0A 0A
:G2<8 2(55 t UOaU0>a1>a1))G2_1 _G2<0 2(55 t uO’u0>a1>a1))G2_1 =

Now consider the ODE
0G A
(58) Wg = Gl (a 1(‘7: 3 u0>a(2)>ai>a%))

with respect to the variable u{ and an unknown function Gy = G4 (z,t,u}), where z, t are regarded

as parameters.
Let Gy (x,t,u}) be a local solution of the ODE (58) with the initial condition G (z,t,a}) = Id.

Since A/du! takes values in g, the function G takes values in G.
Set

(59) A=GAGT' — D,(Gy) - GTY, B =GyBGT' — Dy(Gy) - GT1.
Then (£7), (58), (B9) imply that A satisfies properties (51), (E2), if we replace A by A in (5I),

B2). Furthermore, since G takes values in G, the functions A, B take values in g.
Let G = G(z,t) be a local solution of the ODE

aé~_ 2 1 2

e G- A(z,t, a5, a3, a1, al)
with the initial condition G(z,,t) = Id, where ¢ is viewed as a parameter. Set
(60) A= GAG - D,(G)- G, B—GBG - DJG)- G

Then A satisfies properties (51)), (62), (53), if we replace Aby Ain @B1), B2), G3).
Finally, let G = G(t) be a local solution of the ODE

0G . -
(61) 5 =G - B(xg, t,a5,a2,a1,a3,. .. a4} a;)
with the initial condition G(t,) = Id. Set
(62) A=GAG - D,(G) -G, B=GBG ' —D,(G)-G".

Then A, B obey 1), 62), 63, 6.
Let G =G -G -Gy - Gy. Then equations (56), (59), (©0), (62) imply

A=GAG™ - D,(G) -G, B=GBG™' - Dy(G)- -G~
Furthermore, since Ga(x,t,ug,ay) = Gi(z,t,a5) = Glza,t) = G(t,) = Id, we have
G(z4,ta,ab,a2) = I1d. Thus G = G- G- G - Gy satisfies all the required properties in the
case m = 2.

This construction can be easily generalized to the case of arbitrary m. One can define G as the
product G =G -G -Gy -Gy ... G,y,, where the G-valued functions

G, = Gylx, t,ug, ... ud), g=1,...,m, G = G(z,1), G=G(t)
are defined as solutions of certain ODEs similar to the ODEs considered above. O

The set {1,...,m} x Z>( consists of pairs (i, k), where i € {1,...,m} and k € Z>,. Consider
the following ordering < of the set {1,...,m} X Zxg
i,i'e{l,...,m}, ]{Z,]{?/EZZO, ]{Z%]{Zl,
(63) (i, k) < (', k') iff k<K, (i, k) < (', k) iff ¢ <.
That is, (1,0) < (2,0) <--- < (m,0) < (1,1) < (2,1) < ....
As usual, the notation (i1, k1) = (42, ko) means that either (i1, k1) = (i, k2) or (i1, k1) = (ia, k2).
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Remark 14. Let F' = F(x,t,u}) be a function of the variables z, ¢, u}. Let ¢ € {1,...,m}
and k' € Z>(. Then the notation F
(i,k) > (¢, k") in the function F.
Similarly, the notation F
for all (i,k) = (¢, k') in F.

o says that we substitute u} = ai for all
uj=aj, V(3,k)~( k)

means that we substitute z = z, and u} = ai,

T=xq, ui=al V(i,k)=(i' k)

Theorem 3. Let m,N € Z-o and p € Z>o. Let g C gly be a matriz Lie algebra. Denote by
G C GLy the connected matrixz Lie group corresponding to g C gly.

Let € be the infinite prolongation of an m-component evolution PDE (0l). Consider a point
a € € given by [B8). According to ([BH), the point a is determined by constants x,, t,, ai.

Let
(64)
A=A, touul,...ul),  B=Btuhul,... ,u, ),  Di(B)—Di(A)+[A B =0
be a ZCR of order < p such that the functions A, B are defined on a neighborhood of a € £ and

take values in g. o ’
Then, on a neighborhood of a € &, there is a G-valued function G = G(z,t,ud, ul,... ul_,)

: p—1
depending on x, t, up,...,u;_y, j=1,...,m, such that the functions
A=GAG™' - D,(G) -G, B=GBG™ - Dy(G) -G
satisfy
DA
(65) Vig=1,...,m, Vko>1, - =0,
8uk0 ul=al ¥ (i,k)=(io,ko—1)
66 A =0,
( ) ui=al V(i,k)
67 B =0,
( ) r=xq, ul=al V(ik)
and
(68) G . = Id.
T=Tq, t=tq, ul=a} V(i,k)

Note that, according to Lemmall, the functions ([@3) form a g-valued ZCR of order < p. That
is, A, B take values in g and satisfy ([39).

Proof. This theorem can be proved similarly to Theorem One can define G as the product
of several gauge transformations, which are defined as solutions of certain ODEs similar to the
ODEs considered in the proof of Theorem [21 O

Fix a point a € £ given by (BH), which is determined by constants z,, t,, ai.
A ZCR
(69) o o ‘
A=Azt ug,ul, ... ul), B =B(z,t,up,uy, .U, 4 1), D.(B) — Dy(A) +[A,B] =0

is said to be a-normal if A, B satisfy the following equations

0A

(70) viO:la"'vln% kaZl’ io :O’
Quigy i =ai v (i.k)(io ko—1)

71 A == 07

(71) wi=al, ¥ (i )

72 B =0

( ) T=Taq, UAZ:‘IZ V(i,k))
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Remark 15. For example, the ZCR A, B described in Theorem [l is a-normal, because A, B
obey (65), (66), (67). Theorem [ implies that any ZCR on a neighborhood of a € £ is gauge
equivalent to an a-normal ZCR.

Theorem 4. Let N € Z~q. Let
(73) A=Az, t,up,ul,...,ul), B=B(x,tuhul,...,ul 4 ), Ds(B)—Di(A)+[AB]=0

be an a-normal ZCR with values in gly. (So A, B take values in gly and satisfy ([0), (1), ([72).)
Consider another a-normal ZCR with values in gly

(74)
A=Az, t,ul, ), ... ul), B =Bt w), ... ,ug+d_1), D.(B) — Di(A) + [A,B] =0,
(75) Viozl,...,m, \V/k’QZL aA :O,
8“2% ul =al ¥ (i,k)>(i0,ko—1)
k%% ) )
76 A =Y,
( ) ui:a}; v (i,k)
7 B =
( ) r=xq, ui=al V(ik)

Suppose that there is a function G = G(z,t, ué, ul, ... ,u{) with values in GLy such that

(78) A=GAG™' - D,(G) -G,
(79) B=GBG' - D,(G) -G

In other words, we suppose that the a-normal ZCR A, B is gauge equivalent to the a-normal ZCR
A, B with respect to a gauge transformation G = G(z,t,u),ul, ..., uj).
Then the function G is actually a constant element of GLy (that is, G does not depend on z,

t, uy), and we have

(80) A=GAG™, B=GBG™.
Proof. Using (70)), (75), (78), one can prove
0G
81 = Vi k
(81) ouy, /

by descending induction on (j, k) with respect to the ordering <. Equation (8I]) means that the
function G may depend only on z, t.
Now, taking into account (&I]) and (), we can rewrite (8], (79) as

oG
_ -1 _ 7 -1
(82) A= GAG o G,
(83) B=GBG™* - —88(5’ -G

Substituting ui = ai for all i, k in (82) and using (7)), (T6), we get G /dx = 0. Hence G may
depend only on t. Substituting x = x, and u}, = a} for all 4, k in (83) and using (72), (77), we
get 0G /ot = 0.

Thus G does not depend on z, t, u{z, so G is a constant element of GLy. Then

D,(G) = Di(G) = 0, and relations (78), (79) imply (80). O

Remark 16. In the situation described in Theorem H] since G is a constant element of GLy, the
equation 4 = GAG™! implies that the functions A and A depend on the same variables z, ¢, uJ..
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2.3. The algebras F’(€,a). Recall that £ is the infinite prolongation of an m-component evo-
lution PDE (Il). The number m € Z+q is fixed throughout this section. Consider a point a € &
given by ([B5). According to (35, the point a is determined by constants x, t,, ak.

For each ¢ € Zsg, let M, be the set of matrices of size m x (¢ + 1) with nonnegative integer
entries. For a matrix v € M,, its entries are denoted by 7, € Z>o, where i = 1,...,m and
k=0,...,q. Let U} be the following product

(84) U[]: H (I'c_ak)%k'

Remark 17. For each q € Z~g, ig € {1, ... ,m}, and ko € {1,...,q}, denote by M ko C M, the
subset of matrices « satisfying the following conditions

(85) Oéiokozl Vk>]€0 Vi Oéik:O Vll%lo Oéilkozo V’i2>’i0 Oéi2k0_120.

In other words, for each k > k¢ the k-th column of any matrix o € M 0 ko is zero, the ko-th column

contains only one nonzero entry «;, 5, = 1, and in the (kg — 1)-th column one has a;, y,—1 = 0 for

all iy > 1.
Set also M

i0,k0

= & for all iy, ko. So the set M} , “is empty.

Let N € Z-y and p € Z>o. Consider again a matrix Lie algebra g C gly. According to
Theorem [3] any g-valued ZCR (64]) of order < p defined on a neighborhood of a € £ is gauge
equivalent to a g-valued ZCR

(86) fl:fl(x,t,ué,u{,...,ué), B:B(:)j,t,ué,u{,...,uéw_l),
(87) D,(B) — Dy(A) + [A,B] =0
satisfying (65), (67), (65). -
According to Remark [I2, the g-valued functions A, B are analytic on a neighborhood of a € €.

Hence, in some neighborhood of a € &, the functions A, B can be represented as absolutely
convergent power series

(88) /1 = Z (:L” _ ZEa)ll (t o ta)lz X U:lx . Ag,lz’
CYGMP, ll,lgezzo
(89) B= Y @-w) (-t Ul BYY

BEMpra—1, l1,12€Z>9
/Ifjh,élﬁl’lz €g.
Remark 18. Using formulas (88), (89)), we see that properties (G6)), (67), (G8]) are equivalent to
(90) Ag? =By =0, Al"=0, aeM
where MP

10,ko

’iozl,...,m, kozl,...,p, 1171262207

i0,ko”

C M, is the set of matrices defined in Remark [I7

Remark 19. The main idea of the definition of the Lie algebra F¥(€, a) can be informally outlined
as follows. According to Theorem [3land Remark[I8], any ZCR (64]) of order < p is gauge equivalent
to a ZCR given by functions A, B that are of the form (88), (89) and satisfy (87), (@0).

To define FP(€, a), we regard A2 Blﬁl’l2 from (8Y), (89) as abstract symbols. By definition,
the Lie algebra FP(€,a) is generated by the symbols A2 Blﬁl’l2 for « € M,, € Mpia-1,
l1,ly € Z>y. Relations for these generators are provided by equations (87), ([@0). The details of
this construction are presented below.

Let § be the free Lie algebra generated by the symbols Al Blﬁl’l2 fora e M, B € Mpii,
li,ly € Z>p. In particular, we have

Abb e Biteg [AL2BI"]eF VaeM, VBEMpaqar, Vi€ Zs.
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Consider the following formal power series with coefficients in §

A= Y (w—m)t—t) U AR
aeMy, l1,l2€Z>0
B = > (z — za)" (t — 1) - U - Bl
BEMpia—1, l1,l2€Z>¢
Set
(91) D,(B) = > Dy ((z — )" (t — ta)2UP) - B,
BEMpia—1, l1,l2€Z>¢
(92) Dy(A) = > Dy((z — )" (t — t,)2U2) - Az,
aeMy, l1,l2€Z>0
(93) [A,B] = Z (z — %)11+l’1 (t— ta>l2+l’2 U UB. [Afll’l?, Blﬁ’l,lé]'

QEMZN ﬁeMp+d717
ll,lg,lll,léEZEO

For any a« € M,,, B € M4, li,la € Z>p, the expressions Dx((x — x,)l(t — ta)l2Ua5) and
D, ((93 —x,)8(t—t,)2U, (‘j‘) are functions of the variables z, , u%. Taking the corresponding Taylor
series at the point (33]), we regard these expressions as power series.
Then (@10), (92), (@3) are formal power series with coefficients in §, and we have
D,(B) — Dy(A) + [A,B] = > (¢ — xa)1(t — t)2 - U7 - 7002
YEMypia, h,l2€750

for some elements nyl’lz €g.
Let J C § be the ideal generated by the elements

Iy, l1,l2 0,l2
Z’Yl 2, AO s BO y v e Mp+d, ll,ZQ € Zzo,

Ag’b, OAéEMZ-IZLkO, g=1,...,m, ke=1,...,p, ll,ZQGZZ().
Set FP(€,a) = §/3J. Consider the natural homomorphism p: § — §/J = FP(£, a) and set
Al&,lz — p(AlO}Jz)’ ]Blﬁhlz — p(Bng)-
The definition of J implies that the power series
(94) A= Y (w—x)(t—ta)? US- AL
CVGMP, 117126220
(95) B = > (z—20)" (t — ta) - UY - B
BEMpira—1, l1,12€Z>¢
satisfy
(96) D,(B) — Dy(A) + [A,B] = 0.

Remark 20. The Lie algebra F(€,a) can be described in terms of generators and relations as
follows.

Equation (@8]) is equivalent to some Lie algebraic relations for Ak, ]B%lﬁl’l?.
l17

The algebra F?(€, a) is given by the generators Alb2, B 3 "2 the relations arising from (@6l), and
the following relations

(97) AJ”2 =BY2 =0, Al2=0, aecM’ io=1,...,m, ko=1,...,p, Iy, 1y € Zsy.

i0,ko?
Note that condition (97) is equivalent to the following equations

A
(98) Viozl,...,m, \V/k’QZL a :O,

20 . .
uyg, ui=al ¥ (i,k)>(i0,ko—1)
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(99) A =0,

ul=al V(ik)
o =0.

T=Tq, uj=aj, Y (i,k)
Remark 21. Let £ be a Lie algebra. If A, B are functions with values in £ and satisfy (69]) then
A, B form a ZCR of order < p with values in £.

Instead of functions with values in £, one can consider formal power series with coefficients in
£. Then one gets the notion of formal ZCRs with coefficients in £.

More precisely, a formal ZCR of order < p with coefficients in £ is given by power series

(100) B

(101) A= Y (@—m) (-t US AL
A€My, 11,l2€%
(102) B = > (€ — ) (t —t,)2 - U - By

BEMpia—1, l1,l2€Z>¢

such that A2 Bl € € and D,(B) — D;(A) + [A,B] = 0.
If the power series ([I0T]), (I02) satisfy (70), (71)), (72) then this formal ZCR is said to be
a-normall.

For example, since (94)), ([@3) obey (@6)), ([©@8)), (@9), (I00) and Ag’b,Blﬁl’lz € FP(&,a), the power
series (94]), (O5) constitute an a-normal formal ZCR of order < p with coefficients in F?(€, a).

Remark 22. Let £ be a Lie algebra. Consider an £-valued ZCR of order < p given by £-valued
functions A, B satisfying (69)). Then the Taylor series of the functions A, B are of the form (I0T)),
(I02)) and constitute a formal ZCR, with coefficients in £.

Thus any £-valued ZCR can be regarded as a formal ZCR with coefficients in £, if we replace
the £-valued functions by the corresponding Taylor series with coefficients in £.

The definition of the Lie algebra F?(€, a) implies the following result.

Theorem 5. Let (I0T)), (I02)) be an a-normal formal ZCR of order < p with coefficients in a Lie
algebra £. Then one has a homomorphism FP(€ a) — £ given by the formulas AL — Alblz)

]Blﬁl,lz S Blﬁl’l2 for all o, B, 11, 5.

Remark 23. Let A = fl(m, t, ué, ul, ... ,ul), B= B(:c,t, ué,u{, - ,ufﬂrd_l) be an a-normal ZCR
of order < p with values in a Lie algebra g. We suppose that the g-valued functions /1, B are
defined on a neighborhood of a € £.

Then the Taylor series of the functions A, B at the point a € £ constitute an a-normal formal
ZCR of order < p with coefficients in g. Therefore, by Theorem [ we get a homomorphism
FP(€£,a) — g which maps the coefficients of the power series ([94]), ([©@3) to the corresponding
coefficients of the Taylor series of the functions A, B.

Let g be a finite-dimensional Lie algebra. A homomorphism pu: FP(£,a) — g is said to be
reqular if the power series

(103) A — Z (x _ l’a)ll(t _ tQ)lz . Uc(ul . M(Afj’b),
aEMy, ll,lQEZZO
(104) B = > (= x0)"" (t — o) - UY - u(BY2)

BEMypra—1, l1,l2€Z>0

are absolutely convergent in a neighborhood of a € £. In other words, pu is regular iff (I03), (104)
are analytic functions on a neighborhood of a € £.

Since (@4), ([@5) obey (@4]), the power series (I03), (I04) satisfy (87) for any homomorphism
p: FP(E,a) — g. Therefore, if u is regular, the analytic functions (I03), (I04) form a ZCR with

values in g. Denote this ZCR by Z(&, a,p, p).
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Combining this construction with Theorem [3l and Remark [I8, we obtain the following result.

Theorem 6. Let g be a finite-dimensional matriz Lie algebra. For any g-valued ZCR (64]) of
order < p on a neighborhood of a € &, there is a regular homomorphism p: FP(E,a) — g such
that the ZCR (64) is gauge equivalent to the ZCR Z(E, a, p, ) given by (103)), (104]).

The ZCR Z(E, a,p, 1) takes values in the Lie algebra ,u(IFp(é', a)) Cg.

Recall that we have the power series A, B with coefficients in FP(E,a) given by formu-
las (@), @F). Formulas (I03), (I04) say that A = p(A) and B = u(B), in the sense that p
maps the coefficients of the power series A, B to the corresponding coefficients of the Taylor
series of the functions A, B.

So the ZCR ([©4)) is gauge equivalent to the ZCR Z(E, a, p, 1) given by the functions A = pu(A),
B = u(B).

2.4. The homomorphism F”(€,a) — F*~'(£,a). According to Remarks 20, 2T}, the Lie algebra
FP(&, a) is generated by Allt2 Blﬁl’lz, and the power series (94]), (93] constitute an a-normal formal
ZCR of order < p with coefficients in F?(€, a).

In this subsection we suppose that p > 1. Constructing the Lie algebra FP~*(£, a) in the same
way, we get power series

(105) A= Z (& — o)l (t — t) - US - Al®,
aEMp_1, ll,l2€Z20
R _ Ly _ 3\l . 778 . Tl
(106) B = > (= wa) (t = 1) - U - BY

éeMpﬁ»dev l1,l2€Z>¢

such that the Lie algebra FP~'(&, a) is generated by Ag’b, ]ﬁ%g’b for all & € M, 4, B e My,
l1,ly € Z>y, and the power series (I05), (I06) constitute an a-normal formal ZCR of order < p—1
with coefficients in F*~ (€, a).

We are going to construct a surjective homomorphism 7,: F?(€,a) — FP~!(£,a). Since the
algebra (€, a) is generated by A2 ]B%lﬁl’lz, it is sufficient to define 7, (A1), Tp(Blﬁl’lz).

To do this, we need to introduce some extra notation. Recall that, for each g € Z>(, we denote
by M, the set of matrices of size m x (¢ + 1) with nonnegative integer entries. For a matrix
v € M, its entries are denoted by v, € Z>o, where t =1,...,mand k=0,...,q.

For each ¢ > 1 and each m x (¢ + 1) matrix v € M,, we denote by r(vy) the m x ¢ matrix
with the entries r(7);x = vix fori =1,...,mand k = 0,...,¢ — 1. In other words, the matrix
r(y) € M, is obtained from the matrix v by erasing the last column.

Let ly,ly € Zso. For « € M,, f € M, 41, we can consider the matrices r(a) € M,_;,
r(f) € My q—o and the elements Alrl(ﬁ, ]ﬁ%lrl(éz) cFP (€, a).

For all 11,1y € Z>g, a € My, B € Mpi4-1, we set

0, if there is ¢ € {1,...,m} such that a;, # 0,
Alrl(f), if o, = 0 for all 1,

0, if there is i € {1,...,m} such that 3;,,4-1 # 0,
]ﬁ%i}(éz), it B; p+a—1 = 0 for all i.

(107 (AL") = {

(108) (B} ") = {

The definition of FP(£,a) and FP*(€,a) implies that 7,: F’(£,a) — F’~'(£,a) defined
by (I07), (I08) is indeed a surjective homomorphism. The meaning of this homomorphism is
explained in Remark 24] below.

According to ([I07), one has 7,(Al2) = 0 if there is a nonzero entry in the last column of the
matrix o € M,. According to (I08), one has Tp(IB%lﬁl’b) = 0 if there is a nonzero entry in the last
column of the matrix f € My q-1.
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Recall that the power series A and B are given by (94]), (@5). Taking into account formula (84)),
we see that formulas (I07), (I08) say the following. Applying 7, to the coefficients of the power

series A , we get the power series (I05). Applying 7, to the coefficients of the power series

i—gi 4
up=aj, Vi

B

, we get the power series (I06).

i 1
Up g 1= g1 Vi

Remark 24. Any ZCR of order < p—1 is at the same time of order < p. Therefore, (I05]), (I06)
can be regarded as an a-normal formal ZCR of order < p with coefficients in F?~'(£,a). The

homomorphism 7,: FP(€,a) — FP(€, a) is the homomorphism which corresponds to this ZCR
by Theorem [5l

Thus we obtain the following sequence of surjective homomorphisms of Lie algebras
(109) L FP(E ) B FYE o) B L B FYE o) B FOE, a).

2.5. Some results on generators of F”(£,a). According to Remark 20 the algebra F?(€, a)
is given by the generators A2, Blﬁl’lz and the relations arising from (96]), (97)). Using (), we can
rewrite equation (@) as

10) TE+ Y (B - (A

T e 8u§f ot
k=0,1,....p+d—1
. o 9
— Z D’;(F’(x,t, ud,ul, .. ,ufi)) - (A) +[A,B] =0.
=1 m 8U2
k=0,1,...p
Here we regard F' = F i(z,t,ug,u{, e ,ué) as a power series, using the Taylor series of the

function F* at the point (35).

Theorem 7. The elements

(111) AL Iy € Z>o, o € M,,
generate the algebra FP (€, a).

Proof. For each | € Z>, denote by 2, C FP(€,a) the subalgebra generated by all the elements
Alvl2 with [, < 1. To prove Theorem [T, we need several lemmas.

Lemma 2. Let ly,ly € Z>. Let B € Myyq—1 be such that not all entries of the matriz 3 are zero
(i.e., in the matriz B there is a nonzero entry). Then ]B%lﬁl’l2 € A,.

Proof. One can prove this lemma, analyzing equation (I10) and properties (O7)), (98]). O

Lemma 3. For all 11,1y € Z>q, one has ]B%f)l’l2 € y,. Here 0 € Myy4-1 is the matriz with zero
entries.

Proof. According to (7), we have B)™ = 0. Therefore, it is sufficient to prove B e 2, for
ll > 0.
Note that property (O8) implies

(112) A —0, 2 (A)

ul=al V(i,k) ot

In view of (9%]), one has

d -1 Iy ol
(113) 5-(B) = ) hm— )N —ta)"? By

uj=aj, Y (i,k) 110, 15>0
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Substituting u} = a} for all 4, k in (I10) and using (I12)), (T13)), we get

(114) Z Lz — 22) Nt — 1) - B2 —

11>0, 1220
i ®) (32 5)
= — u) —(B -+ DmFZ—A
(Subiigg® RIOGFD

For a matrix f € M,i4-1, we denote by |5| the sum of all entries of 5. Combin-

ing (@), (@), (1), we see that for any [; > 0 and I, > 0 the element B} is equal to a
linear combination of elements of the form

(115) Al BRR 6 €Zs,  a€M,  BEMyan, |Bl=1
According to Lemma [ and the definition of 2;,, the elements (II5) belong to 2;,. Thus
By 2 € 2. O

Lemma 4. For all ly,l € Z>y and o € M, we have Afj’l“ e .

Proof. Using (04)), we can rewrite equation (I10) as

8 A l « I1,l+1
E(A) = E (l‘i‘l)(flf—xa) (t—ta) 'Ua 'Aa =
aeMy, 11,l€Z>g

_ 9 O N pr (O
= o-(B) + ;ukﬂ 5ur ® ;Dm (F') 5ur &) + (A B

This implies that AL+ is equal to a linear combination of elements of the form
(116) AL, B, [Agv’Q,th], b<l, L<l I,€Zs a€M, BEMpyg

Using Lemmas@ Bland the condition I, < I, we get IB%%’I~2 € 2A;, C 2. Therefore, the elements (I16])
belong to 24;. Hence AT € 2. O

Now we return to the proof of Theorem [l According to Lemmas 2] 3] and the definition of 2A;,
we have Ag’b,Blﬁl’lz ey, for all ly,ly € Z>g, a € M,,, B € M, 4-1. Lemma [ implies that

2[12 - 2[12_1 C Ql12_2 C---C Q[o.
Therefore, FP(£, a) is equal to 2y, which is generated by the elements (I1T]). O

2.6. Some constructions with zero-curvature representations. We continue to work with
an evolution PDE (), which can be written also as (2), according to our notation.

Let £' and £2 be Lie algebras. For i = 1,2, let
(117) N R

At = Azt ug, g, - u)),  BY= B tug, g, u) ), Do(B) — Di(A) +[A, B] =0

be an £-valued ZCR for the PDE (). So the functions A?, B? take values in £!. The following
notions will be needed in the next sections.

The direct sum of the £'-valued ZCR Al, B! and the £2-valued ZCR A?, B? is the (£!' @ £?)-
valued ZCR given by the functions A'@® A%, B'® B?. So the ZCR given by the functions A ® A2,
B! ® B? takes values in the Lie algebra £!' @ £2.

We say that the ZCR A2, B? is a reduction of the ZCR A', B! if there is a homomorphism
p: £ — £2 such that A% = p(A') and B? = p(B').

Similarly, one can speak also about direct sums and reductions of formal ZCRs.
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Remark 25. For any (possibly infinite-dimensional) Lie algebra £, there is a (possibly infinite-
dimensional) vector space V such that £ is isomorphic to a Lie subalgebra of gl(V'). Here gl(V')
is the algebra of linear maps V' — V.

For example, one can use the following construction. Denote by U(£) the universal enveloping
algebra of £. We have the injective homomorphism of Lie algebras

£ £ —gl(UL)), E(v)(w) = vw, veg, w e U(L).

So one can set V = U(£L).
So we have £ C gl(V). Let k € Z>o. A formal gauge transformation of order < k is a formal
power series of the form

(118) G= Y (r -t -t UT -G Gl € gl(V),

YEMy, 11,12€Z>0

such that the map Gi°: V' — V is invertible. (So the free term G§ of the power series (II8) is
invertible.) Then G™! is well defined and is a power series with coefficients in gl(V) as well.

Recall that a formal ZCR (I0T]), (I02) with coefficients in £ is given by formal power series A,
B with coefficients in £ satisfying D,(B) — D;(A) + [A,B] = 0. Then

(119) A =GAG™ — D,(G)- G, B=GBG™!— D,G) -G}

are formal power series with coefficients in gl(V) and satisfy D, (B)—D,(A)+[A, B] = 0. Therefore,
(I19) is a formal ZCR with coefficients in gl(V').

The formal ZCR (II9) is said to be gauge equivalent to the formal ZCR (I01)), (I02) with
respect to the formal gauge transformation (II]).

Quite often, it happens that the coefficients of the power series (I19) belong to £ C gl(V).
Then (II9) can be regarded as a formal ZCR with coefficients in £.

This allows us to speak about gauge equivalence for formal ZCRs with coefficients in infinite-
dimensional Lie algebras.

3. RELATIONS BETWEEN F°(£,a) AND THE WAHLQUIST-ESTABROOK PROLONGATION
ALGEBRA

Let m, d be positive integers. Consider an m-component evolution PDE of the form

(120) ul = Fi(u),ul, ... ul),
u' =u'(z,t), uy = u', U;f:wa i,j=1,....m, k€ Zs>o.

Note that the functions F* in (I20) do not depend on z, t.

Let £ be the infinite prolongation of the PDE (I20). According Section 2.1 £ is an infinite-
dimensional manifold with the coordinates z, ¢, ul for i =1,...,m and k € Zx.

Consider a point a € & given by ([B5). The constants x,, t,, a; € K from (B3] are the coordinates
of the point a € £ in the coordinate system z, ¢, us.

As has been said in Section 23] for each ¢ € Z>(, we denote by M, the set of matrices of
size m x (q¢ + 1) with nonnegative integer entries. For a matrix v € M,, its entries are denoted
by ik € Z>o, where i =1,...,mand k=0,...,q.

According to formula ([84), for « € Mg and 8 € M _; we have

v I Gh-a)™ o= T1 Gh-a)™
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The Wahlquist-Estabrook prolongation algebra of the PDE ([I20) at the point a € £ can be defined
as follows. Consider formal power series

(121) A=) Us-A,, B= Y U/ By,
aEMo BEMg_1

where A,, Bs are generators of some Lie algebra, which is described below. The equation
(122) D,(B) — Dy(A) + [A,B] =0

is equivalent to some Lie algebraic relations for A,, Bg. The Wahlquist-Estabrook prolongation
algebra (WE algebra for short) at the point a € £ is the Lie algebra given by the generators A,
Bj and the relations arising from (I22]). A more detailed definition of the WE algebra is presented
in [9]. We denote this Lie algebra by 20,,.

Then (I21)), (I22) is called the formal Wahlquist-Estabrook ZCR with coefficients in 20,,.

For each p € Zsy, the Lie algebra FP(£,a) has been defined in Section 23l In the present
section we study F°(£,a). We are going to show that the algebra F°(€,a) for the PDE (I20) is
isomorphic to some Lie subalgebra of 2J,,.

Since the PDE (I20) is invariant with respect to the change of variables z — x —xz,, t — t —t,,
we can assume z, = t, = 0 in (35]). Then ([©4)), (O5), ([@0) in the case p = 0 can be written as

(123) A= E : it U Al B — 2: 2tz . 8 ']Blé’b,
aEMo, I1,12€Z>¢ BeEM_1, l1,l2€Z>0

(124) D,(B) — D,(A) + [A,B] = 0,

where Al2, Bg’lz € F°(£,a). Note that equation (I24)) is equivalent to some Lie algebraic relations
for Alvlz B

According to Remark 20, the Lie algebra F°(£, a) can be described in terms of generators and
relations as follows. The algebra F%(€,a) is given by the generators Atz Blﬁl’b, the relations

arising from (I24]), and the relations Aél’lz = Bg’l2 =0 for ly,ls € Z>y.
Lemma 5. The elements

(125) A0, Iy € Z>o, a € My, a#0,
generate the algebra F°(&, a).

Proof. According to Theorem [7] the elements A0 for I} € Zsy, a € M, generate the algebra
FO(E, a). Since AM? =0, we can assume o # 0. O

Lemma 6. Let £ be a Lie algebra. Consider formal power series of the form

(126)  P= Y = atk.Uz.-pPh Q= > i UY - Qu
aeMy, 117126220 BeEMy_1, llylZEZZO

satisfying

(127) Pt Qi e g, Pl — %k — Vi, ly € Zso,

(128) D,(Q) — Dy(P) + [P, Q] = 0.

Then the map Al s Plulz, Blﬁl’b — Qlﬁl’l2 determines a homomorphism from F°(E,a) to £.

Proof. According to Remark 21l formulas (I26), (I27), (I28) say that the power series P,
constitute an a-normal formal ZCR of order < 0 with coefficients in £.

According to Theorem [ this formal ZCR determines a homomorphism F°(£,a) — £ given by
the formulas A2 s Ptz and B2 — QU2 O
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Let £ be a Lie algebra. A ZCR of Wahlquist-Estabrook type with coefficients in £ is given by
formal power series

(129) P=>" U Pa Q= > U/-Qs P, Qs € &,
aeEMy BeEMa_1

satisfying

(130) Dy (Q) — Dy(P) + [P, Q] = 0.

The next lemma follows from the definition of the WE algebra 20,.

Lemma 7. Recall that the WE algebra 28, is generated by A,, Bz for o € My, B € Mgy such

that one has formulas (I21)), (122)).
For any Lie algebra £, any ZCR of Wahlquist-Estabrook type (129)), (I30) with coefficients in £

determines a homomorphism 2, — £ given by the formulas A, — P,, Bg — Q3.

Denote by F the vector space of formal power series in the variables z1, zo with coefficients in
F°(£,a). That is, an element of F is a power series of the form

Il
S Ghakent, Clit € FO(E, a).
117126220

The space F has the Lie algebra structure given by

|:Z Z:lll ZéZ ClllQ’ Z Z:{l Zgz éi1i2:| — Z Zil"ril Zé2+i2 |:Cl112’ éi1[2:| , Clllg’ é’i1[2 e FO(E’ a)'
li,l2 .02
We have also the following homomorphism of Lie algebras
(131) v: F = FE, a), D Attt e 0
l1,12€Z>0

Fori=1,2,let 0,,: F — F be the linear map given by

0
0%- < Z Zil Zéz Clll2) = Z a—z (Zil Zéz) Clﬂz‘
Let D be the linear span of 0., 0,, in the vector space of linear maps F — F. Since the
maps 0d,,, 0., commute, the space D is a 2-dimensional abelian Lie algebra with respect to the

commutator of maps.
Denote by IL the vector space D @ F with the following Lie algebra structure

(X1 + f1, Xo + fo] = Xu(f2) — Xao(f1) + [f1, fo], X1, X €D, Ji, f2 € F.
An element of L can be written as a sum of the following form

(110:, + 120:,) + Z Ak ohtz Y1, 42 € K, Chl € F(€, a).

Theorem 8. Recall that the WE algebra 28, is generated by A,, B for a € My, € Mg_1 such
that one has formulas (I21)), (122)).

Let R C 20, be the subalgebra generated by the elements
(132) (ad Ag)*(AyL), k € Zso, a € M,, a#0.

(Note that for k = 0 we have (ad Ag)°(A,) = Ay, hence A, € R for all a #0.)
Then the map (ad Ag)*(Ay) — (kDAFC determines an isomorphism between R and FO(E, a).

Proof. Since the functions F* in (I20) do not depend on z and ¢, from (I23)), (I24]) it follows that

the power series

o 5w (S

aEMy, a#0 l1,l2



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 27

(134) B = (@z +) 2By 12) S <Z Zilzéngﬁl,zg)

ly,l2 BeEMg_1, BF#0 l1,l2

form a ZCR of Wahlquist-Estabrook type with coefficients in L. Applying Lemma/[7] to this ZCR,
we obtain the homomorphism

(135)  @: W, =L, oA =0.,, @A) =) 2BAIE aeMy, a#0,
l1,l2
=0.,+ ) BB = B BeE Mo, BAO.
l1,l2 l1,l2

Clearly, F is a Lie subalgebra of L = D @ F. In view of (I35)), for any v € Mg and k € Zx
such that o # 0 we have

(136)  o((adAg)(Ay)) = (ad0y,) (Z b 52A2712) _ (321)16(22111252 Ag,m) cF.
l1,l2 11,2

Since R C 27, is generated by the elements (I32), property (I36]) implies p(R) C F C L. Using
the homomorphism (I31]) and property (I36), we obtain

(137) vogpl,: R —TF(E,a), (vo gp)((adAO)k(Aa)> = kAR k€ Zso, a€ Mg, a#0.

Using Remark 25, we can assume that 20, is embedded into the algebra gl(V') for some vector
space V.

Then the exponentials e 740 and the expressions (I21)) can be regarded as power series with
coefficients in gl(V). If S;, Sy are power series with coefficients in gl(V'), then the product S;5
is a well-defined power series as well. It is easy to check that the following formulas are valid

(138) Boeho (D, 37 U Ay e thne B =

tB
0 e

aeMg
=D, — etBOAoe—tBo + Z e . etBoeonAae_one_tBo _
aeEMo
a l1 lQ 12 ll
=D, + Y U 211'12 1" (ad Bo)" ((ad Ao)" (Aa) )
aeMo, a0 11,2

(139) @Beto (D 30 U By)eArato =
BEMg_1

—Di—-By+ Y U Zz 7 (ad By )l2<(adA0)ll(B5))
BEMi_1 Ll
Recall that A, B are given by (I2I]). Set
(140) P= Y U le'lz htl?(adB)lQ((adA)h(A )),

aEMyp, a#0 I1,l2

(141) Q=-By+ > U’ Zh,lz lltl2(adB)l2<(adA)“(Bﬁ))

BEMg_1

According to (I21)), (I3]), (I39), (I40), (I41) we have

(142) D, + P = ¢Poe™0(D, + A)e Ao~ 1Bo, Dy 4 Q = B0 (D, + B)e hoe 1B,
Note that, since [D,, D;] = 0, one has

(143) [Dz+A, Di+B] = Do(B)=Dy(A)+[A,B],  [Do+P, Di+Q] = Do(Q) = Di(P)+[P, Q].
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Using (142), [I43), [I22), we get
D.(Q) = Di(P) + [P,Ql = [D; + P, Dy + Q] =
— [etBoeon(Dm +A)e_wAOe_tB0, etBoe.’EAo (Dt + B)e—one—tBo] —
= eBoe™0[D, + A, D, + Ble ™0e B0 = eBoem0 (D (B) — Dy(A) + [A, B])e "A0e B0 = .

Therefore, the power series (I40), (I41]) satisfy all conditions of Lemma [6l Applying Lemma
to (I40), (I4I)), we obtain the homomorphism

(144)
Y: FOE, a) — 2W,, P(AR) =

(ad B2 ((adAo)ll(Aa)>, aeMy a0,

115!
V(B") = iy adBo) (a0 A0 (By)).  Be M, B0,
Al 1 / ,
V(B ) = 7o (adBo) (ad A)i (Bo)), 1 > 0.
192

From (I44) we get
1
145 ALY = —
(45)  w(ab?) = o
Since, by Lemma [ the elements (I25) generate the algebra F°(E,a), property (IZ5) implies
Y(F°(€,a)) C R.
Then from (I37), (I45) it follows that the homomorphisms w: F’(£,a) — %R and
Vo 90}9%: R — F°(&, a) are inverse to each other. O

(ad Ao)ll (Aa) € 9{, ll € ZZO’ o€ MQ, « 7é 0.

4. THE ALGEBRA F°(€, a) FOR THE MULTICOMPONENT LANDAU-LIFSHITZ SYSTEM

r -di i A% rs v = ce U = co,w Wi
For any m € Z- and m-dimensional vectors vh oo™, w wt, .. w™), we set

(v,w)y = 3" Vi,
In order to describe the algebra F°(E,a) for system (24)), we need to resolve the constraint
(S,8) =1 for the vector-function S = (s'(z,t),...,s"(z,t)). Following [6], we do this as follows

. 2u? . 1— (u,u)
146 S — =1....n—1 n_ -\
( ) 8 1+<u7u>7 .] ) 7n ) 8 1+<u’u>7
where u = (u'(z,t),...,u" ' (z,t)) is an (n — 1)-dimensional vector-function.

As is shown in [6], using (I46)), one can rewrite system (24]) as follows
Up = Uggw — 6(U, Up) A Mgy + (—6(u, Uge ) AT 4 24, uy )2 AT — 6(u, u) (g, ux>A_2)ux+

147 n—1 '
(147) + (6<ux, Uge) AT — 12w, uy) (U, ux)A_Q)u + ;(rn +4A7? Z:(rZ — rn)(u’)2>ux,

u= (u(z,1), ... .u" (2,1)),

where A =1+ (u,u) and rq,...,r, € K are the numbers such that R = diag (ry,...,r,) in (24).
As has been said in Section [I.2] we assume r; # r; for all i # j.

In this section we assume n > 3, because we will use some results of the paper [9], which
studied equations (24)), (I47) in the case n > 3.

Let & be the infinite prolongation of the PDE (I47)). Then £ is a manifold with the coordinates
z, t,ut fori=1,...,n—1 and k € Z>o. (Recall that u, = u’, according to our notation.) Let
acf.
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According to Theorem 8] the algebra F°(€, a) for (I47) is isomorphic to a subalgebra of the WE
algebra 20, of (I47). The WE algebra of (I47) is described in [9]. To present this description,
we need to introduce some auxiliary constructions.

Recall that g, is the algebra of matrices of size (n + 1) x (n + 1) with entries from K. Let
E;; € gl be the matrix with (¢, j)-th entry equal to 1 and all other entries equal to zero.

The Lie subalgebra so,,; C gl,,; has been defined in Remark [6l It has the following basis

E;; — E;,, 1< j<mn, B+ Epyigs l=1,...,n

Consider the algebra K[Aq, ..., \,] of polynomials in Ar,...,\p. Let Z C K[Aq,..., A\, be the
ideal generated by A7 — X2 +r; —r; for 4,5 =1,...,n.

Consider the quotient algebra Q@ = K[\i,...,\,]/Z, which is isomorphic to the algebra of
polynomial functions on the algebraic curve (IQH)

The space s0,,; ®x Q is an infinite-dimensional Lie algebra over K with the Lie bracket

My ® hy, My ® ho] = [My, Ms] @ hyhs, My, M, € s0,.1, hi,hy € Q.
We have the natural homomorphism &: KAy, ..., \,] — K[A\,...,\]/Z = Q. Set
A =¢&(\) € Q.
Consider the following elements of so,,; ® Q
(148) Qi = (Eipt1+ Eny1) ® A, i=1,...,n.

Denote by L(n) C so,; ® Q the Lie subalgebra generated by @1, ..., Q,.

Since 5\3 — 5\3 +7;, —7r; =0in Q, the element \ = 5\22 +r; € Q does not depend on 1.

Recall that Z-q is the set of positive integers. For i,j € {1,...,n} and k € Z~, consider the
following elements of s0,,; ®x Q

Q' = (Binp1 + Bnt1i) ® NN o =(Biy—Ej)® j‘k_lj‘ij‘j'

ij
For i,7,l,m € {1,...,n} and ky, ky € Z~( one has

(149) [Q?Jkl, 2k2:| 5 Q2(k1+k2 _ ZmQ2(k1+k2 _l_é‘]m l2i(k?1+k‘2 5 QQ(k)l-‘rkg

+ 730 zmQ2(k1+k2 1) 5l]Q (k1+ko—1) _'_ 5le2(k1+k2 1) Tjéjm l2i(k1+k2_1)7
(150) [Q?Jkla 2ko— 1] — 5leZ2k1+2k2—l . 5“@?]61—}—2]62—1 . Tj(Sle?k1+2k2_3 + ri(silQ?kl—l—ng—?)’
- - 2(k1+ha—1 - -
(151) @, Q?‘” 11 = QY @R QT =0
Since Q; = Q; and Q7 = —Q3F, from (149), (I50), (I5I) we see that the elements
(152) A o, i,5,0 € {1,...,n}, i< 7, k € Zo,

span the Lie algebra L(n). It is shown in [9] that the elements (I52) are linearly independent
over K and, therefore, form a basis of L(n).

Remark 26. In Remark Bl we have said that L(n) consists of certain gl,, ,,-valued functions on the
curve (23]), and in Remark 6l we have shown that these functions take values in the Lie subalgebra
50,1 C gl

Here we have defined L(n) as a certain Lie subalgebra of so, ; ® Q. This is in agreement with
Remarks [l [6] because elements of so0,,; ©® Q can be regarded as so, ;-valued functions on the

curve (25]).

Note that the algebra L(n) is very similar to infinite-dimensional Lie algebras that were studied
in [22] 23).

Theorem 9. Let n > 3. For the PDE ([47), the Lie algebra F°(E,a) defined in (I09) is isomor-
phic to L(n).
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Proof. Let 20, be the WE algebra for the PDE (I41). According to [9], the algebra 27, is isomor-
phic to the direct sum of L(n) and the 2-dimensional abelian Lie algebra K2. So 20, & L(n)®K2.
(Note that the algebra 20, is denoted by 20 in [9].)

According to [9], in the formal Wahlquist-Estabrook ZCR with coefficients in 20, for the
PDE (I47), one has

A=Co+) Cr-s'u',... u"™), Co,Cy,...,C, €920,

=1

where the functions s' = s'(u!,... u""!) are given by (I48), the elements Ci,...,C, € 20,
generate the Lie subalgebra L(n) C 2, = L(n) ®K?, and one has [Cy,Cj)] =0 foralll =1,...,n.

This implies that the subalgebra S8 C 20, defined in Theorem [ is equal to L(n) C 20,.
According to Theorem [§, one has F°(£,a) = 9. Since in the considered case we have R = L(n),
we get F°(£,a) = L(n). O

5. THE ALGEBRA F'(£,a) FOR THE MULTICOMPONENT LANDAU-LIFSHITZ SYSTEM

o ul

-
Let & be the infinite prolongation of the PDE (I47). Recall that v = (u!,... u" 1) isan (n—1)-
dimensional vector in (I47). Then £ is an infinite-dimensional manifold with the coordinates

5.1. Preliminary computations. We continue to use the notation u}, =

(153) r, t, ul, i=1,....n—1, k€Zsy, u)=u"
Consider an arbitrary point a € £ given by
(154) a = (z = 24, t = t,, Ul = al) € &, Ta, ta, a), €K, i=1,...,n—1, k € Zso.

Since the PDE (I47) is invariant with respect to the change of variables z — x —z,, t — t —t,,
it is sufficient to consider the case

(155) T, =1, = 0.
For simplicity of exposition, we assume also
(156) a;, =0 Vi, k.

(In the case a}, # 0, the computations change very little, and the final result is the same.)
According to Remark 20] and assumptions (I55]), (I50), in order to describe the Lie algebra
F'(€, a) for the PDE (I47), we need to study the equations

(157) D.(B) - Dy(4) + [4, B = 0,
0A
(158) Vip=1,...,n— 1, e —0,
Ou wl =0 Vj, ub=0 Vi>ig
(159) Al =0,
u%:O7 u{:O Y
(160) B | —0,
2=0, ul=0 ¥j, Vk>0
where
o A= A(x,t, ué,u{) is a power series in the variables z, t, u)), ul for j = L...,n—1,
e B = B(x,t,u),u],u,ul) is a power series in the variables z, ¢, u}, w], ul, u} for

j=1...,n—1.
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The coefficients of the power series A, B are generators of the Lie algebra F'(€, a). Relations for
these generators are provided by equatlons (I57), ([1I58), ([I59), ([Ieq).

Since, according to our notation, u} = w/, below we sometimes write u/ instead of u). In
particular, we can write A = A(z, t,u/, u?).

When we consider power series in the variables z, ¢, u/, ui, partial derivatives with respect to
these variables are often denoted by subscripts. For example,

0A D?A 9*A .
Aui = =, Wi — A A, wu — AT Ao Z,jzl,...,n—l.
Loud ! ou’ 0x 1 ou’, ou’
Differentiating equation (I5T) with respect to u}, we obtain that B is of the form
(161) B =Y ujA; + F'(x,t,0/,ul, uj),

where F'! is a power series in the variables z, t, u/, uj, u?.
According to our notation, the symbols uy, u, ., Uyy, Uy, in (I4T) denote the following vectors

wy = (uf, ..., ul™t), u=(ut,.. . u") = (ug,. .., udt),
Uy = (ug,...,ul™b), Uy = (Uy, ..., ud™ "), Upgw = (U3, ..., ul ).
Therefore, system (I47) can be written as
(162) ul = ul 4+ G ul, ), i=1,...,n—1,

for some functions G*(u’, v/, u}) determined by the right-hand side of (IZ7). Then one has

i

Di(A4) = A, + Z (ugAuz + G A+ ui Ay + Z Gl Ay + WAGE, Ay + WG AL ) ),

Zu3A Ayl + 1A FY.
Differentiating equation (I57) with respect to u}, we get
(163) Fy = Aw+y Gl A;—Ayp— D wlAy— Y uwhAu,—[A A, i=1..n-1L
J J J
Since Gii . = 0forall 4, [, from (I63) one obtains that F' is of the form
272

(164) F' :——Zu UhA i T

+Zu2< uz—l—ZGZ%Au{— Zul -4, A, ]>+F2(x,t,ul,ul1),
J
where F? is a power series in the variables z, t, u!, u!. Then equation (I57) becomes

(165) F! +Zu1 +Zu2F1 — A=Y GAG =Y ulGl A — ZugGi{Aui +[A, FY = 0.
i i,j Y]
Differentiating (I63) with respect to u}, u), u? and taking into account (I64), one gets
Auiu?u? = 0 for all 7, j, h. That is, A is of the form

(166) A= wmulYy+ ) wYi+Y, Y=Y,
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where Y;, Y;, Y are power series in the variables x, ¢, u',... u"".
From the definition of G%, for all h,i,57 =1,...,n — 1 one has
(167) G = =60 A u, u1> — 6AT Ul 4+ 6AT U,

168) G", = —6A " wlul — 66" A7 (u, ug) + 6A udu”
o 2 2

1

+ A8AT (u, uy Yud ul + 245;-‘A_2(u, wy)? — 1207w, wyuul — 5hA 2 (w, u) (uy, uy)
— 120207 (uy, uy) — 24072 (u, uy Yulud + 5h (rn +4A” Z —Tp)u ) :
where uy, is the vector (uj,...,u} ') for k € Zsy.

Differentiating equation (I65) with respect to u}, u} and taking into account (I64)), (I67), (I6S),
we obtain

(169) wid s —I—Zu}fAu uh+ [A, Al 3]—|—4A 'A a g<u uy —I—QZu’u}l‘A 'A T
+QZUJU1A_1Au’fu§—QZU u"ATA uhud QZuluhA 'A, hyi =
h h

Substituting (I66) to (I6J), one gets
(170) Yijo+ Z WY + A, Y]+

+ A‘l< (u,u1)Yij + 2 Z Ul Y, + 2 Z wul Yy — 2 Z uhuYy; =2 Z U{thhz’) =0.
h h h

Here and below we use the followmg notation

dY; dY;; Yy -
}/;'j,x:%a Y;lj,h:W> Y;'j,hkzma Z>]>h>k:1a2>"'>n_1a

oYy, aY; oY Yy

Yx:—a i, — A T = 4 Yi=—+—.

& Ox T Oud ’ Ox T

The left-hand side of (I70) is a polynomial of degree < 2 with respect to the variables
ul, ..., u}"'. Equating to zero the coefficients of this polynomial, we obtain
(171) Yok, Yij] =0 Vh,k,i,j,

(172)

Yijn = Vi, Y] = 2871 (2u"Yy + w'Yiy + @5 — 6, Y u"Yy = 61> u™Y)  Vijh,
(173) Yiie = [Yij, Y] Vi,
Let us rewrite (I72) replacing h by k
(174) Yij = [Yij, il = 287" (2ubY5 + u'Vig +w/Vag — 64 Y u™Voy — 61> w"Yoni) Vi g,k
Now we differentiate (I72) with respect to u* and differentiate (I74]) with respect to u”. Then
the equality Y, ne = Yij kn implies
(175) [Yij, Ton] + 4A 2 (=6,Y0j + 6, Y0g — 61V + 0 Yie) =0 Vi, j k,h,
where

(176) Tin = [Yi, Ya| — Y + Yai
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In other words, we regard (I72)) as an overdetermined system of PDEs for Y;;, and equations (I75])
have been obtained from the compatibility condition of system (I72).

Remark 27. Another way to obtain (I75) from (I72) is the following. Set

0
Vk_Yk+ak’ kzl,...,n—l.

Then (I72)) and (I76]) can be rewritten as follows
(177) Vi, Yij] = =287 (2u"Yy + w'Ysy + 0/ — 6}, ) u™Yoy = 61 u"Yon),

(178) Tin = [V, Vil
Using the Jacobi identity and equation (I78), we get
(179) Ve, Vi, Yigl] = Vi, Val, Yigl + Vi, Vi, Yigll = [Then, Yig] + [Vi, [V, Yigl-

Let P be a power series in the variables z, ¢, u', ..., u"! with coefficients in the Lie algebra

F'(£,a). Then the operator ad Vj}, can be applied to P in the standard way

0

Applying the operator ad V}, to equation (I77), for all k, h we can express [V, [Vi, Yi;]] as a linear
combination of Y,,, p,¢ = 1,...,n—1. Then, exchanging k and h, we can express [V}, [Vi, Yi;]] as
a linear combination of Y,,, p,q = 1,...,n — 1. Substituting the obtained expressions in (I79),

one gets (I75).
Combining equations (I58)), (I59) with formula (I66), we obtain

(180) Vi=1,...,n-2, Y =0, Y,1=0,

Witl=git+2—..—yn—1—0
=0.
ul=y2=-..=yn—1=0
In order to study the obtained equations, we need the following lemmas on formal power series,
which can be proved straightforwardly by induction on the degrees of the coefficients of these
power series.

(ad V;)(P) = [Vi, P] = [Yk + 2 P] — [Y;, P] +

(181) Y

Lemma 8. Let Zy, ..., Z,_1 be formal power series in some variablesv', ... v" ! with coefficients
in a Lie algebra g. Suppose that
(182) Vi=1,...,n—2, Zil _ =0, L1 =0.
,U7,+1:U'L+2:,,,:Un71:0
0Z; 07,
Set ‘/;j = [ZZ, ZJ] — + J

ovi ot

Then the Lie subalgebra generated by the coefficients of the power series Zy, ..., Z,_1 coincides
with the Lie subalgebra generated by the coefficients of the power series Vi, 4,7 =1,...,n— 1.

Lemma 9. Let Zy,...,Z,_1 and Uy, ..., ¥, be formal power series in some variables vt ... v" 1
with coefficients in a Lie algebra g.
Suppose that (I82) holds and
ov, _
(183) 821" - \Illvzh +Zfl Y 1>\IIZ vlvhv
for some power series fi(v',... v ") wzth coefficients in K. Consider the coefficients of the
power series U,
v, = Z (vl)i1 o (v”_l)i"*l Zl-l _____ P Zl-l _____ i, €9, [l=1...,n-1
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Then any coefficient wﬁl,...,infl belongs to the vector subspace spanned by the zero degree coefficients
wé w000 (T)Lj.lo'

Recall that Y;; from formula (I66) are power series in the variables z, ¢, u',...,u"~! with
coefficients in the Lie algebra F'(£,a). Let g be the Lie algebra of formal power series in the
variables x, t with coefficients in F'(€,a). Then Y;; can be regarded as a power series in the

variables u!, ..., u" ! with coefficients in g
(184) Y = Z (ul)Zl . (u"‘l)Z"*lnyMinfl(x,t), vil (@, t) €g.
11,eeytin—1>0

Note that equations (I72) are of the type ([I83) for v" = u" and Z, = Y),. Therefore, by
Lemma [9 we obtain the following result.

Lemma 10. For any1,j,i1,...,i,_1, the power series yfflnfl (z,t) belongs to the vector subspace

spanned by the power series yp? o(x,t), p,g=1,...,n—1.

From (I73)), (I8T)), (I84) one gets

0
(185) = (7 o(8)) = Yia

wley2e. =120
Combining (I85]) with Lemma [I0, we obtain
(186) N o
and, by (73,
(187) Y5, Y] =0 Vi, J.

Before continuing the analysis of the obtained equations, we need to consider some special cases
in the next subsections.

5.2. Some special cases. Suppose that A is of the form

(188) A= "ulY;+7Y,

where Y;, Y are power series in the variables z, ¢, u', ..., u" ! with coefficients in some Lie algebra.
Substituting (I88) in (I64) we obtain

(189) F'=> ujH; + F”,

where

Hy=Y Ty + Y, +[Vi,Y] - Yie + ) _GLY,
g j

(190) T = [Yi, Ya] = Yig + Yiu,
. oY, - aY; - Y
}/iiﬂ = —Zv ik — —27 YZ == -
’ ox B Duk T out

Differentiating (I63) with respect to u}, one gets
OF2 . o . . 8 N
(191) — = = His + > wlHi; = Gl ufY; — > ERTE D oulGh Y=Y Gh Y+
! j Gk j gk k

+ Zk Gy e + ; uf [Ye, Hj] + [V, Hj).
.]7
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Denote the right-hand side of (I9I]) by ;. Then equation (I91)) reads

OF?
(192) ol Vi
Differentiating (I92) with respect to uf, uf, we obtain
9, 0

193 I ) = -2 (),
(193) out (6%) ou} ()

0? 0?
194 —— () = ——— ().
(194) Oulrouk (6%) Oui ouk ()

Using formulas (I67)), (I68]), it is straightforward to show that equations (I94)), (I93)) reduce to
(195) Tih,k = 2A_1 <2ukThZ + uthi + uiThk + (5,@ Z u™ th -+ 5]}: Z umTZm> —+ [Tim Y/k],

(196) Crz’h,ac - [iriha }7]7

where
poo_ 9T po_ 0T
th,k — 8uk ) thyx — o .

Set P, =Y, + i Then
out

(197) B %
[ .

and equation (I95) can be written as

(198) [Tih, Py =2A"" (2ukTih +u" Ty, + u'Thp, + 5 Z W Ty + 52 Z umeZ)

Using (197)) and (198), one obtains

(199) [Tin, Tim) = 4A72(62 Thes + 00 T + 05, Tote + 01T

5.3. A zero-curvature representation. In order to analyze the structure of F! (€,a), we need
to construct a ZCR with A of the form

(200) A=>"uly,

where Y; are power series in the variables ul, ..., u"! with coefficients in some Lie algebra. In
particular, we assume that Y; do not depend on z, t. That is,

0 0 -
201 LWy =2 =0
Also, similarly to (I80), we assume

(202) Vi=1,...,n—2,
By (I61), (I64), (200), one has
(203) B=> uiVi+> uj (u{Tij + G{%?]) + F2

witl—qit2—...—yn—1—0
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Using (I91) and (201)), it is straightforward to show that £ is of the form

(204) Z whulul My, + Z ut M; + M,
i,5,h

M = 2072 <(4(uku’ffh + u Y + uuiYy) — (u, u) (8LY), + 6L Y 4 01Y5)

— 23 WV (8P + S+ St ) _z Z A ™ (5 T + 6 Tiom + 01T,

3 _ 2\
M, = 3 <rn—|—4A 12};(rk —rp)u” ) Y;,

(205) Ten = Vi, Ya) = Yiw + Y,

where M is a power series in the variables z, ¢, u!, ..., u"!.

Equations (I95), (I99) remain valid if we replace (I88)) by (200), so one has
(206) Tih,k = 2A_1 <2ukThZ -+ uthi + uiThk + 5]1 Z umeh + 5]}; Z umTZm> + [Tim Yk],

(207) [T, Tiom] = AAT2(08 Thi + 01 Tign + 62, Thte + 01T
Combining (205) with (201]), we obtain also
0 d .-
T, Twn) = 0.
ax( kh) ot ( kh)
Thus T}y, is a power series in the variables u!, ..., u"!.

Let E;; € gl,_1(K) be the matrix with (i, j) th entry equal to 1 and all other entries equal to
zero. Then the matrices Cy, = 4(Ey , — Epx) span the Lie algebra so,_ C gl,_; (K).
Theorem 10. There is a ZCR with values in so,,_1 such that

o A is of the form [00), where the power series Yy(u',. .., u"") satisfy 202),

o B is defined by (203)), (204) with M = 0,
e for the power series (208), one has

(208) Tin| vy = AEn = Eng).
Proof. For j =1,...,n—1, let N7 be the s0,,_;-valued matrix-function whose (h, i)-entry is equal
to

—200 AT+ 205 AT

Let A be given by (200) with Y; = N and B be defined by ([203), @04) with M = 0. It is
straightforward to check that such A, B satisfy the zero-curvature condition (I57). In order to
achieve condition (202)), we can apply a gauge transformation depending on !, ..., u"~!, similarly
to Theorem [l

According to Theorem [3], the required gauge transformation is defined on a neighborhood of
the point (I54]) and is equal to the identity transformation at this point. Since we assume (I53]),
([I56), in our case the gauge transformation may depend nontrivially on u!, ..., u""! and is equal
to the identity transformation at the point u! = --- = "~ = 0.

Computing T, by formula 203) for Y; = N, one obtains that [208) is valid. It is easy
to check that (208) remains valid after applying the gauge transformation, because the gauge

transformation is equal to the identity transformation at the point u' = - = v~ = 0. ([

Remark 28. Note that the ZCR described in Theorem [I0] is of order < 1 and is a-normal for

the point a € & satisfying (I54), (I55), (I56).



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 37

5.4. The ideal generated by Y;;. Continue the analysis started in Section 5.Il Recall that
A= Az, t,u},ui) and B = B(xz,t,u), u], ul, u}) are power series with coefficients in the algebra

F'(&,a) and satisfy (I57), (I58), (I59), (I60). Recall that we have obtained formula (I66).

Lemma 11. The algebra F'(E,a) is generated by the coefficients of the power series
(209) Yij

: Y;

t=0

: Y

t=0

, ,7=1,....,n—1.
t=0

Proof. Theorem [ implies that the algebra F'(£, a) is generated by the coefficients of the power

series A| . According to formula (I66]), the set of the coefficients of A consists of the
t=0 t=0
coefficients of the power series (209]). O

Lemma 12. For all i, j, any coefficient of the power series Y;; belongs to the vector subspace
t=0

spanned by the zero degree coefficients

(210) P =Y,, iy p,g=1,...,n—1.

Proof. The statement follows from Lemma [I0 and equation (I8H]). O
Lemma 13. Let P be a power series in the variables x, u'. Suppose that

(211) [Y = P] —0  Vij

Then any coefficient of the power series Y; commutes with any coefficient of P.

t=0

Proof. Using Lemma [I2, one can prove the statement by induction on the degree of coefficients
of P. ([l

Lemma 14. For all i, 7, any coefficient of the power series Y; commutes
t=0

e with any coefficient of Y ‘ ,
t=0

o with any coefficient of Y, ‘ for all p, q.
t=0

Proof. Substituting t = 0 to (I87) and (IT7Il), we obtain the required statement by Lemmal[l3 O

Consider the ZCR with values in so0,,_; constructed in Theorem [I0. Recall that, according
to (200), (205), and Theorem [0, this ZCR determines the power series Y;, Tin in the variables
ul,...,u"! with coefficients in s0,,_;.

According to Remark 28] this so,,_i-valued ZCR is of order < 1 and is a-normal. Therefore,
by Remark 23, this ZCR determines a homomorphism o: F'(£,a) — s0,_1.

For a power series P with coefficients in F'(£,a), we can apply o to each coefficient of P and
obtain a power series o(P) with coefficients in so,,_1.

Recall that Ty, is defined by (I76]). By the definition of o, one has

Combining (212)) with (206]), (207), we obtain
(213)

U(Tih,k) = 0’(2A_1 <2ukThi + uthi + uiThk + (52 Z umeh + 52 Z umT;m) + [Tih, Yk]> s

(214) o ([Tin, Tom)) = o (4D (00 Thi + 63 Tim + 63, Thk + 04T o) ) -
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Set
(215)

Cine = Ty — (2077 <2ukThi + U Ty + u'Thy, + 6}, Z " Trp + Op Z Umﬂ'm) + [Tin, Yi))

(216) Cinkm = [Tins Thmm] — 4AT2(0" Ths + 60T + 0% Thie + 0T
Lemma 15. One has
(217) D/;)quihk] = 07 [}/;D%Fihkm] =0 vPaqviahakam'

Proof. Set P/ =Y, + 88 then

(218) T‘ih - [Y;, Yh] - Y;',h + Yh,i = [Pi/a Pilz]>
(219) Ty = [P, Tin] — 2071 <2ukTm~ " T + ' T + 6 Y u" T + 01 Y ume> .

and equation (I9%5) can be written as

(220) Vi, Br) = 2871 (2u"Yy; + u'Yiy + w! Vi — 6, Z T Z U™V,
Using (I75), (216), (218)), (219), (220), one can check relatlons ([2I7) by a straightforward com-
putation. ]
Combining (213)), (214), (213), (216]) with (201]), we obtain
(221) o(Din) = U<Fihk L_O> =0, o (Dinkm) = 0<Fihkm ’ - ) =0.
From (2I2) and (201)) it follows that
(222) o) =a(vi| J=o(vi| =¥
t=0 2=t=0
Set
(223) =Y -V )
t=0 r=t=0

then equation (222)) implies
(224) o(l;) =0.

Let § C F'(&,a) be the subalgebra generated by the coefficients of the power series
Yi‘ ,i=1,...,n—1. ThenY;

and Ty, ’ are power series with coefficients in §). Therefore,
t=0

t=0 t=0

the coefficients of the power series

(225) Link | Linkm ) ; I
t=0 =

belong to $ as well.

Lemma 16. Let J C § be the ideal of $ generated by the coefficients of the power series (225)).
Then

(226) J=9HNkero.
Proof. From (221)) and (224)) it follows that
(227) J Ckero.

Consider the quotient Lie algebra g = $/J and the natural projection ¢ : $ — g. Set
(228) Y; = ?ﬂ(Yi >, Trn = ¢(Tkh >,
t=0 t=0
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which are power series with coefficients in g. From (I76)), (I80) it follows that
(229) Trn = [Yi, Ya] — Y + Yoy,
- O, Yn—l - 0

witl—qit2—...—yn—1—0

(230) Vi=1,...,n-2 Y,

By the definition of J and ),
(231) ¢<Fihk t:(]) =0, 1/1(Fihkm L=0> =0, () =0
According to (213), (216), (223)), ([228), equations (231]) say that

(232) Tz’h,k = 2A_1 <2ukTm + uhTM + UiThk + 5]2 Z umeh + (52 Z umsz> + [Tih, Yk],

(233) [Tin, Taom] = 4A72(6" Thi + 07 Tirm + 0% Thie + 02T,
0
(234) a_x(Yi) =0.

From ([22]), 229), [234) it follows that Y;, Ty, are power series in the variables u', ... u"~! with
coefficients in g.

Lemma 17. The elements
(235) Tyn e 10 cg, kh=1,...,n—1,

generate the Lie algebra g.

Proof. From the definition of §) and g it follows that g is generated by the coefficients of the power

series Y;.

Relations (229), [230), ([232) are of the type considered in Lemmas R [ for v* = u’. Therefore,
by Lemmas 8 [0 any coefficient of Y;, Ty, belongs to the Lie subalgebra generated by ([235). O

From (233)) and Lemma [I7 it follows that the map

1
§0,-1 — @, (Exn — Eng) = 1 <Tkh ul:uzz...:un71:o>’
is a surjective homomorphism. Therefore,
(236) dim g = dim ($/7) < dimso,,_;.

According to Theorem [I0, the coefficients of the power series Y; generate s0,,_1. Combining this
with (222) and the definition of §), we obtain

(237) o(9) =s0,_1.
Combining (227)), (230), (237), one gets (226]). O
Substituting ¢t = 0 to (I'72)), we obtain

238) Yijn| =
(238) 2L

=[] t:o] SN C TS TR RN AR ST CRER ) ST LZO i, g, h.

t=0

From (I86) it follows that Y;;
to (I72), we get

(239) Yin

=Y
t=0 !

for all 7,5. Therefore, substituting x =t = 0

r=t=0

t=0
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= [v R x:tzo}—2A—1<2uh1@j+uiyhj+ujyhi—5g;umymj—ag;umym) L:O Vi, . h.
Subtracting (239) from (238), one obtains
(240) Y| _T|=0 Vi,
=0
where Fh = Yh — Yh .
=0 o=t=0

Let V be the vector subspace spanned by the elements zP?, p,q = 1,...,n— 1, defined in (210).
Lemma [I4] implies that V is a commutative subalgebra of the Lie algebra F*(&, a).

1

Recall that Y}, ’ is a power series in the variables z, u!,..., 4" !. So one has

=0
= > ()" @B
l,i1,e0yin—120

c F'(&,a).
Lemma [I2] says that for all 7, j any coefficient of the power series Y;;

(241) Y,

t=0
for some elements 8 .
belongs to V. Then

,Yh’ ] belong
=0 0

t= t=
to V. Using these facts and the definition of V, by induction on [ 4 i¢; + - -+ + 4,,_; one proves

that 8", . . V] C V. Since the Lie algebra § is generated by the elements £/, ,  and V
is spanned by the elements 277, we see that [2P9, $H] C V for all p, q.
Substituting ¢t = 0 to (2I7), one gets

(242) [qu t:o] =0, [qu

By Lemma [I3] from (240) and (242]) it follows that zP? defined in (2I0) commutes with any
coefficient of the power series (225)).

Thus [2P7, 5] C V and 2P? commutes with any coefficient of the power series (225]). Combining
this with Lemma [I6, one gets

(243) (2", (HNkero)] =0 Vp,q.

equation (238]) implies that for all i, 7, h the coefficients of the power series [Yij

y Fihk 7Fihkm ‘ } =0 Vp,q,i,h,k,m.
t=0

Lemma 18. The vector space V spanned by the elements zP4, p,q =1,...,n—1, is a commutative
ideal of the Lie algebra F' (€, a).

Proof. We have shown above that V is a commutative subalgebra F'(€,a). Let us show that V
is an ideal of F! (&, a).

According to Lemma [IT] the Lie algebra F'(&, a) is generated by the coefficients of the power
series (209). As we have shown above, [V, ] C V, where $ C F'(&, a) is the subalgebra generated

by the coefficients of the power series Y; } ,i=1,...,n — 1. Furthermore, Lemma [14] implies
t=0
that any element of V commutes with any coefficient of the power series Y and Y;
t=0 t=0
Therefore, V is an ideal of F' (€, a). O

Lemma 19. For any v € kero C FY(&€,a), one has [zP?,v] = 0 for all p,q.

Proof. By Lemma [[I], the algebra F'(€, a) is generated by the coefficients of (209). Since
o(Y;;) = o(Y) = 0 and the coefficients of Y;

generate ), the ideal ker o is generated by

t=0
the subalgebra ) N ker o and the coefficients of Y;; , Y
t=0 t=0

follows from ([243), Lemma [I4] and Lemma [I8 O

Then the required statement

From (I84) and (I80) it follows that yfflnf | is a power series in one variable ¢.



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 41

Lemma 20. For all i,7,7,j, any coefficient of the power series yé{m,o(t) commutes with any
coefficient of yé:?f_70(t).
Proof. For each | € Z>, set

o tj

ij 9.0 1
(244) z) = o |, e F (&, a).
Similarly to Lemma [19], by induction on [, one can prove that
(245) (27 kero] =0 Vi, j, L.

Since o(Yy;) = 0, property ([245) implies that 2’ commutes with any coefficient of the power
series ygf'lwo(t). Since the elements z” are the coefficients of the power series yg/_,, we see that
any coefficient of yé{m,o(t) commutes with any coefficient of yé:?f_70(t). O

Theorem 11. The Lie subalgebra & generated by the coefficients of Y;; is abelian and satisfies
(246) (S, ker o] = 0.
Furthermore, the subalgebra & is an ideal of F*(£,a).

Proof. The fact that & is abelian follows from Lemma [0, property (I86]), and Lemma 20l Ac-
cording to Lemma [[0l and property (I80), the subalgebra & is generated by the coefficients (244))
of the power series yé{m,o(t). Then (245) implies (244]).

By Lemma [IT], the algebra F*(£, a) is generated by the coefficients of (209). Therefore, in order
to show that & is an ideal, one needs to prove that [C,&] C & for any coefficient C' of Y;

t=0

and Y| . This can be easily deduced from equations (I72) and (I87), using Lemma [I0] and
t=0

property (I86). O

5.5. The ideal generated by Y. In this subsection we study the quotient Lie algebra
£ = F'Y(€,a)/6, where & is the ideal generated by the coefficients of Y;;. Therefore, we can
assume that A, B are power series with coefficients in £ and formula (I88]) holds.

Then Tij defined in (T90) are power series in the variables z, ¢, u!,... v~ with coefficients
in £. Let g be the Lie algebra of formal power series in the variables z, ¢ with coefficients in £.
Then T}; can be regarded as a power series in the variables u', ..., u"~! with coefficients in §

Ty= Y (@) @™ al (), ol (xt) €d

11,eeytin—1>0
From (I80), (I8T]) we get
(247) Vi=1,...,n—2, ;| =0, Y,.,=0,
witl=qit2=...=qyn—1=Q
(248) Y 1 0.

Similarly to Lemma [I0, using Lemma [0 from equations (I95]) we obtain the following.

Lemma 21. Foranyi,j,iq,...,%,_1, the power series O‘Z,...,infl(
spanned by the power series ag: o(x,t), p,g=1,...,n— 1.

Similarly to (I83), from (I96) and (248) one gets

0
(249) = (ab? o2,8)) = Thae

x,t) belongs to the vector subspace

ul=y2=-..=yn—1=0

= [qu =0 Vp,q.

)
ul=y2=...=yn—1=0 ul=y2=...=yn—1=0
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Combining (249]) with Lemma 21l we obtain

(250) Tpye =0 Vp,q
and, by (196),
(251) [T:;,Y] =0 Vi, j.

Lemma 22. The algebra £ is generated by the coefficients of the power series

(252) T;

, Y

J t=0

t=0’
Proof. Similarly to Lemma [l taking into account formula (I88]), one proves that £ is generated
by the coefficients of Y;

LY ‘ . By Lemmal[g] the Lie subalgebra generated by the coefficients
t=0 t=0

of Y; coincides with the Lie subalgebra generated by the coefficients of Tij . O
t=0 t=0

Similarly to Lemma [I2] using equation (I93]), we obtain the following,.

Lemma 23. Any coefficient of the power series Tij belongs to the vector subspace spanned by

the zero degree coefficients
(253) g =T, , p,gq=1,...,n—1.

r=t=ul=-..=un—1=0

Lemma 24. Let 3 C F'(£,a)/& be the Lie subalgebra generated by the coefficients of the power

series Tj; . This subalgebra is isomorphic to s0,_1.
t=0

Proof. Recall that E; ; € gl,_(K) is the matrix with (4, j)-th entry equal to 1 and all other entries
equal to zero. The matrices

Ckh:4(Ek,h_Eh,k>7 k;h=1,...,n—1, k < h,
form a basis of the Lie algebra so,_; C gl,_;(K).
Substituting * = t = ! = --- = v"~! = 0 in equation (I99), we see that the elements (253)
satisfy
(251) (57, 6] = A58 + 5™ + 8,5 + 55,
Since T, pg = — ~qp, we have fP? = —(9%. Combining this with equation (254)), we see that the map
(255) f: 50,1 — 3a f(Ckh) = ﬁkh7

is a homomorphism.

Consider the homomorphism o: F'(€,a) — s0,,_; constructed in Section 5.4l Since o(Y;;) = 0
and the ideal & C F'(€, a) is generated by the coefficients of Yi;, the homomorphism o determines
a homomorphism 6: F!(€,a)/& — so,,_;.

Consider the ZCR with coefficients in so0,,_; constructed in Theorem [I0. Recall that, according
to (200), (205), and Theorem [0, this ZCR determines the power series Y;, T}, in the variables
u', ..., u" with coefficients in so0,,_; such that (208), [212)) hold.

For a power series P with coefficients in F*(£,a)/&, we can apply & to each coefficient of P
and obtain a power series ¢(P) with coefficients in so0,,_;.

The projection F*(€,a) — F*(£,a)/& maps Y; to Y; and Ty, to Ty,. Combining this with (212),
we obtain

(256) 6Y)) =Y,  6(Tin) = Tin-
From (208), ([253), (250) we get
(257) 6(B8") = A(Bypj, — Eng) = Cin.
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Relations (255]), (257) imply that the Lie subalgebra generated by the elements " is isomorphic
to s0,_1. According to Lemma 23] the Lie subalgebra generated by 3*" coincides with 3, so 3 is
isomorphic to s0,_1. ]

Lemma 25. Any coefficient of Tij commutes with any coefficient of Y
t=0

Proof. The statement is proved similarly to Lemma [I4] using (25I]) and Lemma 23] O
Recall that L(n) is the infinite-dimensional Lie algebra generated by (I48]).

Theorem 12. Suppose that n > 4. Then the Lie algebra £ = F'(€,a)/& s isomorphic to the
direct sum L(n) @ so,_1, where s0,,_; is generated by the coefficients of T;;. The ideal §0,_4

coincides also with the subalgebra generated by the coefficients of Y;.
The homomorphism F*(€,a) — F*(E,a) from ([[09) coincides with the composition of the ho-
momorphisms

(258) F'(&,a) —» F'(£,a)/6 = L(n) ® s0,_1 — L(n) X F°(£,a),

where L(n) =2 F°(E, a) is the isomorphism described in Theorem [3.

Proof. Let S; be the subalgebra generated by the coefficients of Y

and Sy be the subalgebra

t=0
generated by the coefficients of f}j ’ . By Lemmas 22 25] one has £ = S; +.5; and [S7, S2] = 0.
t=0

By Lemma 24, Sy & s0,_;. Since for n > 4 the center of the Lie algebra so,_; is trivial, we
obtain S; N Sy = 0 and, therefore, £ = 57 & 5;. In particular, S5 is an ideal of £.
For n > 4, from equations (I99), (250) and Lemma 2] it follows that for all p,¢g =1,...,n—1

,i,=1,...,n—1.

any coefficient of T, »q belongs to the ideal generated by the coefficients of Tij

(To see this, one needs to differentiate (I99) with respect to ¢ several times and substitute ¢t = 0.)

is an ideal, we obtain that all

Since the subalgebra S, generated by the coefficients of Ti]—
t=0

coefficients of T, »q belong to Ss.

According to (I90) and ([247), we can apply Lemma B to the power series Y; and TZ] This
implies that the subalgebra generated by the coefficients of Y;,i=1,...,n — 1, coincides with
the subalgebra S5 generated by the coefficients of T,-j, 1,7 =1,...,n — 1. Since S, is an ideal,
we see that the ideal generated by the coefficients of ¥; coincides with S,. Therefore, taking into
account formulas (I6I) and (I88), one obtains that the quotient £/5; is isomorphic to F°(&€, a).
Combining this with Theorem [ we get S; = £/59, = F°(£,a) = L(n).

According to formulas (I66) and (I61]), the kernel of the homomorphism F'(£,a) — F(E, a)
from (T09) is generated by the coefficients of the power series Y;;, Y;. Recall that & C F'(€, a) is
the ideal generated by the coefficients of Y;;. Applying the projection F'(€,a) — F(€,a)/& to
the coefficients of the power series Y;, we get Y;. As has been shown above,

FL(E,a)/S = L(n) @ s0,_1,

where s0,,_; coincides with the ideal generated by the coefficients of Y;. According to Theo-
rem [ the algebra F°(£,a) is isomorphic to L(n). These results show that the homomorphism
FY(&,a) — F°(&,a) from (I09) coincides with the composition [258). O

Remark 29. We have two different ZCRs for the same PDE (24]), which can be transformed to
the PDE (I47)) by the transformation (29). Namely, we have the gl ;-valued ZCR (26)), (27) and
the s0,,_;-valued ZCR described in Theorem [10l.

One can embed the Lie algebras gl,.; and so0,,_; into the Lie algebra gly for some N >n +1,
and then one can regard these ZCRs as gly-valued ZCRs. One can ask whether these ZCRs can
become gauge equivalent after suitable embeddings gl,,; < gly and so,_; — gly.
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Let us show that these ZCRs cannot become gauge equivalent.

The gl,,,-valued ZCR (26]), ([27) is of order < 0. By Theorem [l and Remark [I5] there is an
a-normal gl ,,-valued ZCR 3 of order < 0 such that the ZCR (26), (27) is gauge equivalent to
the ZCR 3.

Theorem M and Remark [I6] imply the following. If two a-normal ZCRs €; and €, are gauge
equivalent and the ZCR €; is of order < 0, then the ZCR € is also of order < 0.

The so,,_;-valued ZCR described in Theorem [I0 is a-normal and is not of order < 0, because
the function A in this ZCR depends nontrivially on ujl Therefore, this so0,,_i-valued ZCR cannot
become gauge equivalent to the gl -valued ZCR 3, after any embeddings gl,,; — gly and
50,1 — gly.

Since the ZCR (26), [27)) is gauge equivalent to the ZCR 3, we see that the so,_;-valued ZCR
described in Theorem [0l cannot become gauge equivalent to the gl ;-valued ZCR (26), (27,
after any embeddings gl ; < gly and so,_; — gly.

6. THE ALGEBRAS F?(€£,a) FOR THE MULTICOMPONENT LANDAU-LIFSHITZ SYSTEM

6.1. Preliminary computations. Recall that the infinite prolongation &£ of system (I47) is

m, 1

oxr™

an infinite-dimensional manifold with the coordinates (I53), where u! corresponds to for

m € Zso and i =1,...,n — 1. In particular, u) = u’.

Consider an arbitrary point a € £ given by (I54). As has been said in Section [5.1], since the
PDE (I47) is invariant with respect to the change of variables © — x — x,, t +— t — t,, it is
sufficient to consider the case x, = t, = 0.

For simplicity of exposition, we continue to assume (I56), so we assume that al = 0 in (I54).
(In the case a}, # 0, the computations change very little, and the final result is the same.)

Fix an integer k > 2. In this section we compute the algebra F*(€,a) of the PDE (I47).

According to Remark 20] and assumptions (I55]), (I50), in order to describe the Lie algebra
F*(E,a) for the PDE (I47), we need to study the equations

(259) D.(B) — D,(A)+ [A,B] =0,
0A
(260) Vie=1,....n—1, Vko>1, 22 _o,
uyy ui =0V (i,k)>(io,ko—1)
(261) Al =0,
ui =0 ¥ (i,k)
(262) B | = 0.
=0, u},=0 V (i,k)
where
o A = A(a,t, ug,u{,...,ui) is a power series in the variables z, t, ug, u{,,ui for
j=1...,n—-1, ' o .
e B = B(z,t,up,ul,..., up,,) is a power series in the variables x, t, uy, uf, ..., uj ., for

j=1,....n—1.
The coefficients of the power series A, B are generators of the Lie algebra Fk(g ,a). Relations for

these generators are provided by equations (259), (260), [261), [262).

In this section, summations over repeated indices run from 1 to n — 1 when referred to the
number of dependent variables and from 0 to & when referred to the order of derivatives, unless
otherwise specified. For instance, u?,F, means Y77 'S wi  FL . The integer k > 2 is
fixed throughout this section, and there is o summation over k. "

Recall that system ([I47) is of the form

(263) ul = ub 4 G (u, ud, ul) = ul + GHud, ul, ul), i=1,...,n—1
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Then equation (259) reads

k+2
(264) B+ ) uj B, — A Z ul 54, Z D} (G')A,; +[A,B] = 0.
j=0 j=0

If we put equal to zero the coefficient of uj_ 4 in (264), we obtain that B, T A, =0, and,
by integrating this, we see that B is of the form

(265) B:uﬁﬁrzAu}-v + FMz, tu' ul, . upy )

for some power series F*'(z,t,u’, ul, ..., uj_,). Taking into account the form of A and B above,
we rewrite equation (264) as

k+1
(266) ujyoAyis + F} + 0 yUipa Ay r + s Ay + Y i Pl
m=0

— A - u]+3A DJ(GZ)A + U yo[A, Ay ] + [A F] =
Now we compute the coefficient of uj,, of the left-hand side of ([266). It is

Ao+l Ay — Ay +FL —GLA, +[A A
k k% k—1 Uy U k

Uptq

and, by putting it equal to zero, one obtains the following system of PDEs
F, —Aui1+AuiGii—Auim—Azhu —[AAy),  i=1,...,n—1
2

Uptq k— U

Integrating this system, we see that F'! is of the form

1
(267) F' = —Sul Ay i (A + G A ZAl sl = A, — (A, Ay)) + F?

for some power series F? = F?(x,t,u’ ui, . uk)
In view of (267, the coefficient of uj uj, ,u?,, in the left-hand side of (266) is Ao up mul-
tiplied by a nonzero scalar. Therefore, A il = = 0 for all 7, 7, p. Hence A is of the form'
1 i
(268) A= §uku’ VE+u Yl +vE Y=Y}
where YZ’;, Y, Y* are power series in the variables z, t, u , m =0,...,k — 1.

Similarly to (I80), combining condition (260]) with formula (268]), we obtain

269 Vi=1,...,n— 2, Yk =0, Yk =o0.
% n—1
i1 _ i4+2 n—1 -0
U1~ U1 =Up_q

6.2. The ideal generated by Y;'. The coefficient of uj uj , of the left-hand side of (260,
taking into account that D’ (G") does not contribute to this coefficient because k > 2, is

k-1
(270) =3V, =3l Vi + Gl Y+ Gl Y - BA Y]
j=0

Note that ([270) is a polynomial of degree 2 in u}. Equating the coefficient of u}u] of [270) to
zero, we get

(271) [YF Ykl =0 Vp,q,i,h.

pg’



ON LIE ALGEBRAS RESPONSIBLE FOR ZERO-CURVATURE REPRESENTATIONS 46

Now, to compute the coefficient of u}_  u}, ;u} of (26, it is enough to look at the coefficient of
uy, of (270). Note that the quantity G’ : Yy + G ngj does not depend on uf, since we suppose
k > 2. Then we have only the system

(272 Vi =AY Vpih

oD
thouy, i

We regard (272) as an overdetermined system of PDEs for Y;¥. The compatibility conditions of
this system give the relations

[T;WY;]Z] = 0 Vp,q,i,h,
where

k o.__ k k k k
(273) qu T D/;) 71/(1 ] - }/;)7ug71 _'_ }Z,uﬁil'

Lemma 26. The Lie subalgebra generated by the coefficients of the power series Y} coincides
with the Lie subalgebra generated by the coefficients of Tlfq.

Proof. The statement follows from Lemma [§ applied to (269), ([273). O

The coefficient of u}_ u},; of (260) is the coefficient of degree zero in uf} of (270). Equating
this coefficient to zero, we obtain

p+ G Y+ G Y = 3R Y] =0,

ih,u;
g

k—2
(274) — 3V, =3 ub, Y
j=0

Lemma 27. The power series Y} does not depend on ub for ¢ > 0. So Y% depends only on
uy = uP and z,t.

Proof. This is proved by induction on [ = k — ¢, using conditions ([260), 26I) and equa-
tions (272), (274). O

In view of Lemma 27, equation (274]) becomes
(275) = 3Yih, = 3ulYg, + G Y + G, Y = 3[Y R Y] =0,

where Y;’fl,p = Y;’pr
Furthermore, by differentiating (275) with respect to u] with I > 2 and with respect to uf, uf
we get, respectively, the following relations

[Kﬁf’yi?] =0 Vi>2, [Y,]Zf;ugayii] = 0.
Therefore, the quantity [Y* V] is a polynomial of degree < 1 in uf. TIts coefficient in u} is

[Y,Z’f’ Y] (recall that Y% depends only on z, t, uP) and its zero degree term is [Y* — Yk,;u’l’ Y]

By putting equal to zero the coefficient of v} and that of degree zero (in u}) of the left-hand side
of (277), we get the system

(276) Y5, = [V5, Yol = 287 (2u"Y + 'Y + WYy — GumY - uY,) Vi gh,
Yii. =¥}, 2], Z=Y"—ulYy,.
Similarly to (I75)), the compatibility conditions of system (276]) imply

(277) Y, W] + A2 (=6 Y + Y — S Yk + 61V ) =0 Vi, j,m,h,
where
(278) Wi = [Y e, Yﬁ?] - }/:'z]j'inuh + Y,Zlfum-

Recall that in Section .4 we have defined the homomorphism o: F*(£,a) — s0, ;. Let
o,: F*(E,a) — s0,_; be the composition of the homomorphisms F*(€,a) — FY(£,a) — $0,_1,
where the homomorphism F¥(€,a) — F'(£, a) arises from (I0J).
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Theorem 13. The Lie subalgebra &y, generated by the coefficients of YZ'; s abelian and satisfies
(S, ker oy] = 0.
Furthermore, this subalgebra is an ideal of F*(E, a).

Proof. This is proved similarly to Theorem [1]], using the results of this section. O

6.3. The ideal generated by Y/. In this subsection we study the quotient Lie algebra

(3

£, = F¥(&,a) /G, where &), is the ideal generated by the coefficients of YZI; Therefore, we
can assume that A, B are power series with coefficients in £; and

(279) A=ulYF+YF

where Y} and Y* depend on x,t,u®, ... ul ;.
Then from (265]), (266)), ([267) one gets

k—1
=0
k k—2
(281) FY ) Bl = Av— Y w3 A — DG Ay + [A, F'] = 0.
m=0 7=0

Substituting (279) and ([280) in (281), we see that F? is a polynomial of degree < 3in u}, ..., u} "
So F? is of the form ‘ ‘
F? = wiudup M, + upud, MY + uj MY+ M”,
where all the M* are fully symmetric with respect to the lower indices and depend on x, t, ufz,
q=0,...,k—1.
Differentiating (281]) with respect to uj , uf, ujf, we get

(282) T+ T Y To] + [V T+ 6Mp, =0 Vi, p,q.

ip,uf iq,ul_ p g v Sip ipg

Interchanging the indices i and p in (282]), one obtains

(283) Dot + Ty + YV To] + (Y5 T) + 6My;, = 0 Vp,i.q.

‘ : : ko _ pAfk ko ko k o _ k
Sutbtractmg ([283)) from (282) and using the relations My = M7, T = =T, T" = =T: we
ge

k k k k ok k ok k ki _
(284> ,‘Tiq,uzil + qu,u};71 + 2TTip,uZ71 + [Y;) 7friq] + [Y; 7qu] + Q[YZI 7Tyip] =0.
Set 3
VE=YF+ :
P p auz_l

Then from 273) we have T = [VF, VF], and equation (284) can be written in terms of commu-
tators of V¥

(285) WV VR VI + VE [V VIl + 2V [VE VT = 0.
By the Jacobi identity, equation (285) can be rewritten as
k ok yk

(256) 3[VE, [VE,VE) = 0.

0
Since [VF, VI =T} and VF = YF + S equation (280) says that

k—1
(287) T  +[YS T =0 Vi, p,q.
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Differentiating (281]) with respect to uj, , u}, we obtain

(288) V), L —2VE, o+ VEYHL VLY -V, Z b g g + G T,
FYRTRAYE o = Y =Y Y YR -RYE, T+
m=0
k—2
m=0

Denote the left-hand side of ([288) by ZJ. So equation ([288) reads Z;, = 0 for all ¢, p. Inter-
changing the indices ¢ and p, one gets also Z],fi = 0.

Subtracting the equation Z;fi = 0 from the equation Zi’; = 0 and using the relation M;; k lefm
we obtain

(289) 37F . +3 Z T o Wiy + Gl Ty — Gl T 4+ 3[YF, T = 0.
Lemma 28. The power series T does not depend on ul, for m > 0. So T depends only on

u) = vl and x,t.

Proof. This is proved by induction on | = k — m, using conditions (260), (261I)) and equa-
tions (287), (289). O

Differentiating (289) with respect to u} with [ > 2 and with respect to u}, u{ we get, respectively,
the following relations

Yo T =0 122, Y ire, Th] = 0.

Therefore, the left-hand side of (289) is a polynomial of degree 1 in u}. Equating to zero the
coefficients of this polynomial, taking into account (I67]), we obtain the system

(290) T} ;= 207" U/ Th + uPTS + u'Th + Siu™ T, + 0Pu™ T ) + [Thh, Yk ] Vi, p, 7,
k k _ vk k
Crzp:c_[T‘z;u’Z] Z=Y _u(fyr,utlz
The compatibility conditions of system (290) imply
(291) [Ty Wim| = 4AT2(00, T, + 85T, + 6, T + 0;T)

with W, defined by (278).
Let ¢: F*(€,a) — F'(£,a) be the homomorphism that arises from (I09). Formulas (268)
and (2650]) imply that 1, maps each coefficient of YZ’; to zero. Since & is generated by the coef-

ficients of Y}¥, we get ¢(&;) = 0. Therefore, ¢ F*(£,a) — F'(£,a) induces a homomorphism

from F*(€, a) /&y to FY(E, a), which we denote by ¢,: F¥(E,a)/S), — FX(&, a)
Recall that in Section [5.4] we have defined the homomorphism o: F*(£,a) — s0,_;. Let

Ok Fk(g, &)/Gk — 50,1
be the composition of the homomorphisms o: F'(€,a) — s0,_; and ¢y, FX(E,a)/S; — F(E, a).

Theorem 14. Recall that k > 2. Let §;, C F*(€,a)/&,, be the Lie subalgebra generated by the
coefficients of Y;F. Then $y, is abelian and satisfies

(292) (9%, ker o%] = 0.
Furthermore, this subalgebra is an ideal of the Lie algebra F*(£,a)/Sy,.
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Proof. According to Lemma 26, the Lie subalgebra generated by the coefficients of the power
series Y;* coincides with the Lie subalgebra generated by the coefficients of Tlfq.

Therefore, it remains to prove that the subalgebra generated by the coefficients of T Ifq is an
abelian ideal and satisfies (292]). This is proved similarly to Theorem [IT], using the results of the
present section. O

6.4. The structure of the algebras F?(£,a).

Theorem 15. Letn > 4. Recall that the n-component Landau-Lifshitz system (24) is transformed
to the PDE (I4T) by means of the change of variables (146]).

The Lie algebras F¥(E,a), p € Z>o, for the PDE (I47) have the following structure.

The algebra F°(E, a) is isomorphic to L(n).

There is an abelian ideal & of F (€, a) such that F*(£,a) /S = L(n) ®s0,_,, where 50,_, is the
Lie algebra of skew-symmetric (n—1) x (n—1) matrices. The homomorphism F*(€,a) — F°(E, a)
from ([IQ9) coincides with the composition of the homomorphisms

F'(&,a) = FY(&,a)/6 = L(n) ® s0,_1 — L(n) X F°(E,a).

Let 7i.: F*(E,a) — F*"Y(&, a) be the surjective homomorphism from (I09). Then for any k > 2
we have

(293) [’Ul, [’Ug,’UgH =0 \V/’Ul,’Ug,’Ug € ker 7.

In particular, the kernel of 1, is nilpotent.
For each k > 1, let : F*(E,a) — L(n) @ s0,_, be the composition of the homomorphisms

(294) F*(&,a) — FYE,a) = FY(&,a)/6 = L(n) ® so0,_1,
where F*(€,a) — FY(&,a) arises from (I09). Then
(295) [hl,[hg,...,[hgk_g,[hgk_l,hgk]] ]] =0 Vhl,hg,...,hgk - kerapk.

In particular, the kernel of ¢y is nilpotent.

Proof. The isomorphism F°(€,a) = L(n) is proved in Theorem

In particular, the abelian ideal & C F*(€,a) is defined in Theorem [II], and the isomorphism
FY(£,a)/& = L(n) @ s0,_; is described in Theorem [2 Also, in Theorem 2 it is shown that the
homomorphism F*(&,a) — F°(€, a) from (I09) coincides with the composition (293)).

Recall that in Section B5.4] we have defined the homomorphism o: F'(£,a) — s0, 1.
For any » > 1, let o,: F"(£,a) — s0,_1 be the composition of the homomorphisms
F"(&,a) — F'(&£,a) = 50,1, where F"(E,a) — F'(€, a) arises from (I09).

Since for any k > 2 the composition

FE(E,a) 2 F*Y(E, a) 225 s0,_4
coincides with o;,: F*(E,a) — s0,_,, we have
(296) ker 7, C ker oy, VEk>2.

Formulas (268)), (263) imply that ker 7, is generated by the coefficients of the power series YZ-’;,
YE.

Recall that &, C F¥(£,a) is the ideal generated by the coefficients of YJ for any £ > 2.
According to Theorem [I3]

(297) (S, kerog] =0 VE > 2.
Since ker 7, C ker oy, we get

(298) (&), ker 7] = 0 Vi > 2.
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Theorem [14] implies
(299) [ker 71, ker 0] C &y, VE > 2.

Combining (296d]), (298)), (299), one obtains [ker 7, ker 7] C & and [Sy,ker7] = 0. This
yields (293]) and implies that ker 7, is nilpotent.
Since ¢y: F¥(€,a) — L(n) @ so,_, is the composition ([294), we have

(300) ker ¢ C ker oy, Vk>2.

For k = 1, the homomorphism ¢,: F'(£,a) — L(n) @ s0,_; is the composition of the homo-
morphisms

(301) FY(E,a) = FY(&,a)/6 = L(n) ® s0,_1,

hence ker p; = & C F*(£,a). According to Theorem [IT], the ideal & is abelian, so [hy, hy] = 0 for
all hq, hy € ker o1 = &. This proves (295) for k& = 1.

Now let us prove (295]) by induction on k > 2.

In the case k = 2, consider any elements

(302) hi, ho, hs, hy € ker oo C F*(E, a).
According to the definition of ¢y, the homomorphism 5 is the composition of the homomorphisms
F2(&,a) = F'(&,a) = F'(£,a)/6 = L(n) ® 50,_1.

Therefore, the condition hs, hy € ker o means that m(h3), 2(hs) € &. Since [S, &] = 0, we have
TQ([hg, h4]) = O, SO [hg, h4] € ker T9.

From (300), (B02) it follows that hi,hy € keros. According to (299), since hy € kero
and [hs, hy] € kerme, we have [hy, [hs, hy]] € Gy. According to (297), since hy € keroy and
[ha, [hs, ha]] € Gq, we get [hy, [ha, [hs, ha]]] = 0, which means that we have proved (293) for k = 2.

Let r > 2 be such that (295 is valid for & = r. Then for any elements

Ry, ho, hs, ... horys € ker 0,1 C F™H(E, a)
we have
(303) [7‘r+1(h3), [Tr+1(h4), cee [Tr+1(h2r), [Tr+1(h2r+1)>Tr+1(h2r+2m H =0,
because 7,..1(h;) € ker o, for i = 3,4,...,2r + 2. Equation (B03) says that
(304) [h3y [hay oy [Por, [hors1, horga]] - - . ]] € ker 741

According to (B00), since hy € ker ¢, 11, we have hy € kero,,1. Combining this with ([299) and
(B04)), one obtains

(305) [hg, [hg, [h4, RN [hgr, [h2r+1> hgr_i_g]] R H] € 67»4_1.

According to ([B00), since hy € ker p, .1, we have hy € kero,,;. Combining this with ([297)) and
([B07), one gets
[h1, [hay [Rs, - - -, [har, [hars1, Boria]] - - ]]] = 0.

Thus we have proved ([295) for k£ = r + 1. Clearly, property (293]) implies that ker ¢, is nilpotent.
O
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7. ON ZERO-CURVATURE REPRESENTATIONS FOR THE MULTICOMPONENT LANDAU-LIFSHITZ
SYSTEM

In this section we use the notions of reductions and direct sums of ZCRs. These notions have
been introduced in Section 2.6l

Let n > 4. Recall that the n-component Landau-Lifshitz system (24]) is transformed to the
PDE (I47) by means of the change of variables (I4@). In what follows we study ZCRs for this
PDE.

Let 3; be the L(n)-valued ZCR defined in Remark Bl So the ZCR 3; is given by the func-
tions (26), (27), which take values in the infinite-dimensional Lie algebra L(n) introduced in
Remark [

Let 32 be the so0,,_;-valued ZCR defined in Theorem [I0. We can consider also the direct sum
31 @ 32 of the ZCRs 3; and 35. The ZCR 31 @ 32 takes values in the Lie algebra L(n) & so0,,_1.

For any given ZCR R of the PDE (I4T), we are going to show that, after suitable gauge
transformations and after killing some nilpotent ideal in the corresponding Lie algebra, the ZCR
R becomes isomorphic to a reduction of the ZCR 3; & 3,.

Let £ be the infinite prolongation of the PDE (I47). Fix a point a € &€ given by ([I54]). We are
going to study ZCRs defined on a neighborhood of a € £.

Fix p € Z>. In what follows, we study ZCRs of order < p. Without loss of generality, we can
assume p > 1, because any ZCR of order < 0 is at the same time of order < 1.

Recall that the theory of Section 2l has been developed for an arbitrary m-component PDE (2I)
such that the right-hand side of (2) may depend on z, ¢, u/, ui for k < d. Since we study now
the (n — 1)-component PDE (I47) of order 3, we will use the theory of Section 2 for m =n — 1
and d = 3. o

According to (@4), (@5), one has the power series A = Azt up,u,... ul),
B = B(x,t,u),u,. ..,U;H) with coefficients in FP(&,a) satisfying (9], so A, B constitute a
formal ZCR with coefficients in F?(&, a).

According to Theorem [I3], we have the surjective homomorphism

(306) wp: FP(E,a) — L(n) @ 50,1
such that ker ¢, is a nilpotent ideal of F”(£, a). Then
(307) A =p,(A), B = ¢, (B)

are power series with coefficients in L(n) @ s0,,_; and constitute a formal ZCR with coefficients
in L(n) ® s0,_1.

According to Remark 22, the (L(n) &) son_l)-valued ZCR 31 & 35 can be regarded also as a
formal ZCR with coefficients in L(n) & s0,,_1.

Recall that in Remark we have defined formal gauge transformations and the notion of
gauge equivalence for formal ZCRs with coefficients in arbitrary (possibly infinite-dimensional)
Lie algebras. The results of Sections [, B imply that the formal ZCR A, B with coefficients in
L(n) @ so,_1 is gauge equivalent to the formal ZCR 31 @ 3s.

Let g C gl be a matrix Lie algebra. Let R be a g-valued ZCR of order < p. So the ZCR R
is given by g-valued functions A = A(:c,t,ué,u{, o ,ug), B = B(:c,t,ué,u{, o ,ug”) satisfying
D,(B) — Di(A)+ [A,B] =0.

According to Theorem [0 there is a homomorphism p: FP(E,a) — g such that the ZCR A, B
is gauge equivalent to the p( FP(£, a))-valued ZCR

(308) A= p(a), B = u(B).

Here A, B are 1(F?(€, a))-valued functions, and formulas (B08) mean that y maps the coefficients

of the power series A, B to the corresponding coefficients of the Taylor series of the functions A,
B. The ZCR A, B is a-normal.
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Recall that ker ¢, is a nilpotent ideal of FP(€,a). This implies that u(ker,) is a nilpotent
ideal of the Lie subalgebra u(F?(€,q)) C g.

Since the homomorphism (300) is surjective, the algebra L(n) & so,_; is isomorphic to
F?(€,a)/ ker ¢,, and the surjective homomorphism p: FP(£,a) — p(FP(E,a)) induces a sur-
jective homomorphism

(309) fi: L(n) ® s0,_1 — p(FP(E,a))/p(ker g,).
Consider the natural surjective homomorphism
(310) U pu(FP(E,a)) = u(FP(E,a))/n(ker pp).

Using this homomorphism and the p( F”(€, a))-valued ZCR (B08]), we see that the functions (A,

Y (B) form a ZCR with values in the Lie algebra p(FP(E, a))/pn(ker gp).
Formulas (307), (B08)) and the definition of the homomorphism (B09) imply the following

(311) v(A) = a(A), ¥(B) = i(B).
Equations (BII) say that the ZCR 1(A), ¢)(B) is a reduction of the ZCR A, B, which is gauge
equivalent to the ZCR 31 @ 32, as has been discussed above.

Recall that two ZCRs are called gauge equivalent if one is obtained from the other by means

of a gauge transformation. Thus, starting from an arbitrary ZCR R given by functions A, B, we
have done the following steps:

(1) Using Theorem [0, we have obtained a homomorphism p: F? (£,a) — g and a gauge
equivalent ZCR A, B satisfying (B08). The ZCR A, B takes values in the Lie subalgebra
(IF” (&, a)) C g and is obtained from the ZCR A, B by means of a gauge transformation.

(2) Killing the nilpotent ideal p(kerp,) C w(F?(€,a)), we have obtained the ZCR Y(A),

Y(B), where v is defined by BI0).

(3) We have shown that the ZCR (A), ¢(B) is a reduction of the ZCR A, B, which is gauge
equivalent to the ZCR 3; & 3,. The ZCR A B is obtained from the ZCR 3; & 3, by
means of a gauge transformation.

Thus, for any given ZCR fR, we have shown that, after suitable gauge transformations and after
killing some nilpotent ideal in the corresponding Lie algebra, the ZCR R becomes isomorphic to
a reduction of the ZCR 3; @ 3.

Remark 30. One has also a similar result in the case when a ZCR ‘R takes values in a matrix
Lie algebra g and depends on a parameter \.

Suppose that the ZCR fR is given by functions
(312)

A=Az, tud ul, ... ul), B= B\, z,t,ul,ul, ... ,uiﬁ), D,(B) — Di(A)+ [A,B] =0,

where g-valued functions A, B depend on x, t, u} and a parameter \.

Let g be the infinite-dimensional Lie algebra of functions h(\) with values in g. (Depending
on the problem under study, one can consider analytic or meromorphic functions h(A). Or one
can assume that A runs through an open subset of some algebraic curve and consider g-valued
functions h(\) on this algebraic curve.)

Then (BI2)) can be regarded as a ZCR with values in g. Using parameter-dependent versions
of Theorems [3 [6] one can show that the ZCR, (312) is gauge equivalent to an a-normal ZCR

A=Az, tud ), ... ,ul), B =B\ z t,u),ul,. .. ,ug”), D.(B) — Dy(A) + [A, B] = 0,

satisfying A = pu(A), B = u(B) for some homomorphism p: FP(£,a) — §. The functions A, B
take values in the Lie subalgebra ,u(IFp(E, a)) Cg.

Then one can kill the nilpotent ideal ,u(ker <pp) C ,LL(IFp (&, a)) and proceed similarly to the
steps described above.
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8. THE ALGEBRAS F?(£,a) FOR THE CLASSICAL LANDAU-LIFSHITZ AND NONLINEAR
SCHRODINGER EQUATIONS

In this section we assume K = C and study the algebras F”(£,a) for the classical Landau-
Lifshitz and nonlinear Schrodinger equations.
The classical Landau-Lifshitz equation reads

(313) Sp =8 xS +SxJS, S = (S, 1), 5%(x, t), S%(x,1)), (SN2 + (5% + (5% =1,

where J = diag(j1, jo, j3) is a constant diagonal (3 x 3)-matrix with j;, j2, j3 € C, and the symbol
x denotes the vector product. We consider the fully anisotropic case j; # jo # j3 # Jj1-

Let &£ be the infinite prolongation of the PDE ([B13]). Let a € £. We are going to describe the
algebras FP (€, a) for this PDE.

Remark 31. Strictly speaking, in order to define £ and F?(€, a) for the PDE (313]), we need to
resolve the constraint (S1)? 4 (5?)2 + (S%)? = 1 and to rewrite (BI3) as a 2-component evolution
PDE. For example, Roelofs and Martini [16] use the spherical coordinates
(314) St = coswsinu, S? = sinvsinu, S? = cos .

According to [16], using the transformation (B14), one can rewrite the PDE (B13) as the 2-
component evolution PDE

up = —(sinu) vy, — 2(cosu)u,v, + (j1 — J2) sinu cos v sin v,
Vp = —— Uy — (cosu)vy + (cosu)(ji cos” v+ jasin®v — js).
sin u

One can use also some other way to resolve the constraint (S1)? + (S%)% + (5%)? = 1 and to
rewrite (B13]) as a 2-component evolution PDE, then £ and F?(£,a) will be the same (up to
isomorphism).

We need some auxiliary constructions. Let Clvy,ve,v3] be the algebra of polynomials in
the variables vy, vy, vs. Recall that, by our assumption, the constants ji,js,j3 € C satisfy
J1 # J2 # js # j1. Consider the ideal Z;, ;, ;, C Clvy, v2, v3] generated by the polynomials

(316) Vh = V5 + Ja — I, a,f=1,2,3.

Set Ej, i, = Clvi,va,v3]/Z;, j,js- In other words, Ej, ;,j, is the commutative associative
algebra of polynomial functions on the algebraic curve in C? defined by the polynomials (316).

Since we assume j; # jo # j3 # ji, this curve is nonsingular and is of genus 1, so this is an
elliptic curve. It is well known that the Landau-Lifshitz equation (313]) possesses an so3(C)-valued
ZCR parametrized by points of this curve |21, [5].

We have the natural surjective homomorphism p: Cluy, v, vs] = Clor, v, U]/ L}, iy is = Eiy jarjs-
Set v; = M(UZ) S Ejl,jz,js for i = 1, 2, 3.

Consider also a basis x1, z2, x3 of the Lie algebra so3(C) such that [z1, z3] = 23, [x2, x3] = 21,
[z3, 1] = 3. We endow the space s03(C) ®¢ Ej, j,.;; with the following Lie algebra structure

(21 ® hy, 22 ® ho| = [21, 22] ® hiho, 21, 2 € 503(C), hi,ho € Ej, j, js-
Denote by R;, j,.j, the Lie subalgebra of s03(C) ®c Ej, j, j, generated by the elements
T QU € 503(@) Rc Ej17j27j3, 1=1,2,3.

Since R, 4,55 C 503(C) ¢ Ej, j,.j5» We can regard elements of Ry, ;, j, as s03(C)-valued functions
on the elliptic curve in C* determined by the polynomials (BI6). The paper [16] describes a basis
for R;, j, js, which implies that the algebra 2, ;, j, is infinite-dimensional.

Theorem 16. Recall that J = diag(j1, j2, j3) in BI3) is a constant diagonal (3 x 3)-matriz with
Ji, 72, J3 € C. We consider the case jy # jo # J3 # J1.
Let € be the infinite prolongation of the Landau-Lifshitz equation BI3). Let a € £.
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The Lie algebras FP(E,a), p € Z>q, for this PDE have the following structure.
The algebra T°(E, a) is isomorphic to Rj, jy is-
For each p € Zsq, there are an abelian ideal I,,1 of the Lie algebra F*™(£,a) and an abelian
ideal J,y1 of the quotient Lie algebra ¥ (€, a)/L,.1 such that
o [Z,41, F"*'(€,a)] =0, so T, lies in the center of the Lie algebra F'*'(€, a),
o [Tpi1, FP7Y(E,a)/T,11] =0, s0 Tps1 lies in the center of the Lie algebra FP*1(E,a) /Ty,
o the algebra FP(E, a) is isomorphic to the quotient algebra (FPY1(E,a)/Lpi1)/ Tps1, and the
surjective homomorphism TP (€ a) — F?(£, a) from [I0Q) coincides with the composition
of the natural homomorphisms

Fp-i-l(g, CL) - Fp-i-l(g, CL)/Ip+1 - (Fp+1(57 a)/IP—H)/\ZD—i—l = Fp(gv CL),

which means that the Lie algebra FPT(E, a) is obtained from the Lie algebra F?(E,a) by
applying two times the operation of central extension.
For each q € Zq, the Lie algebra FY(E, a) is obtained from the Lie algebra F°(£, a) by applying
several times the operation of central extension. The kernel of the surjective homomorphism
Fi(E,a) — F*(&,a) from ([IQ9) is nilpotent.

Proof. Recall that, using the transformation (BI4]), one can rewrite the PDE (BI3) in the
form (BIH). In what follows, when we speak about the WE algebra and the algebras F?(€, a)
for the PDE (B3I3]), we assume that the PDE (3I3]) is written in the form (BIH]).

Let 20, be the Wahlquist-Estabrook prolongation algebra (WE algebra) for the PDE (B13). It
is shown in [16] that this algebra is isomorphic to the direct sum of Rj, ;, , and the 2-dimensional
abelian Lie algebra C2. So 20, = R;, , ;, & C2.

In Section B for any evolution PDE of the form (I20) we have defined the notion of formal
Wahlquist-Estabrook ZCR, which is given by formulas (I21]), (I22). According to [16], in the
formal Wahlquist-Estabrook ZCR with coefficients in 20, for the PDE (3I3]) one has

A =p1 ST+ paS? + p3S® + py, P1,D2,P3,P1 € Wa =Ry, ju gy © C?,

where S, S? 5% are given by (BI4), the elements p;, ps, ps3 generate the Lie subalgebra
Rj1 s C Wa =R, j,js D C? and one has [py,p] =0 for all [ =1,2,3.

This implies that the subalgebra 8 C 20, defined in Theorem [ in Section Bl is equal to
Ry jois C Wa. According to Theorem B one has F*(€,a) =2 R. Since in the considered case we
have R = R, j,.45, We see that F(E, a) is isomorphic to Ry, 4, js-

It remains to prove the statements about FPT'(E a), T,.1, Jpi1, FP(E,a), FU(E,a),
FI(&,a) — F°(£,a) in Theorem

The statements about F**'(£, a), Z,.1, Jp11, F¥(£, a) can be proved similarly to the results of
Sections [

The homomorphism F4(£,a) — F(£,a) is equal to the composition of the surjective homo-
morphisms

FI(&,a) = F (& a) = - = FYE a) = F° (&, a)
from (I09). It is easily seen that the statements about FP*' (€, a), T,11, Jpi1, FP(£, a) imply the
statements about F4(£,a) and F4(&,a) — F(&, a). O

The nonlinear Schrodinger (NLS) equation is another well-known PDE from mathematical
physics (see, e.g, [5]). It can be written as follows

where k € R is a nonzero constant. The function 1) = ¢(x,t) takes values in C, and one has
(318) P = ub + i, P =ub — i, i=+v—-1€C,

for some R-valued functions u' = u!(z,t) and u? = u?(x,t).
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Taking into account (BI8]), we see that the NLS equation (317]) is equivalent to the 2-component
evolution PDE

up = =g, + () + (w7)?),
(319) u2 _ ul _ /ﬁul((ul)2 + (u2)2)
t — Yzx .

In what follows, when we speak about the NLS equation, we mean the PDE (319]).

So we will study the evolution PDE (B19), where & is a nonzero constant. Since in this section
we work over C, we assume that u!, v in (319) take values in C.

Let C[A] be the algebra of polynomials in the variable A\. Consider the infinite-dimensional Lie
algebra

sl,(C[\)) = s15(C) @¢ C[A].

Theorem 17. Let £ be the infinite prolongation of the NLS equation (319). Let a € €.

The Lie algebras FP(E,a), p € Z>q, for this PDE have the following structure.

The algebra F°(E, a) is isomorphic to the direct sum of sly(C[\]) and a one-dimensional abelian
Lie algebra.

For each p € Z>q, there are an abelian ideal Z,1, of the Lie algebra FPH(&E,a) and an abelian
ideal J,.1 of the quotient Lie algebra FP*' (€, a)/T,.1 such that

o [Z,11. FPT'(E,a)] =0, so I,y lies in the center of the Lie algebra F**'(€,a),

o [Tps1, FP7Y(E,a)/T,11] =0, s0 Tps1 lies in the center of the Lie algebra FP*1(E, a) /L1,

e the algebra FP(E, a) is isomorphic to the quotient algebra (F**1(E,a)/Tpi1)/ Tps1, and the
surjective homomorphism TP (€ a) — F?(£, a) from (I0Q) coincides with the composition
of the natural homomorphisms

Fp-i-l(g, CL) - Fp-i-l(g, CL)/Ip+1 - (Fp+1(57 a)/Ip—i-l)/jp—i-l = Fp(gv CL),

which means that the Lie algebra FPT* (€, a) is obtained from the Lie algebra FP(£,a) by
applying two times the operation of central extension.

For each q € Zq, the Lie algebra F4(&, a) is obtained from the Lie algebra F°(&, a) by applying
several times the operation of central extension. The kernel of the surjective homomorphism
FI(&,a) — F°(&,a) from (I09) is nilpotent.

Proof. Let 20, be the Wahlquist-Estabrook prolongation algebra (WE algebra) for the NLS equa-
tion (B19). It is shown in [3, 4] that this algebra is isomorphic to the direct sum of sly(C[\]) and
a 3-dimensional abelian Lie algebra.

To describe F°(£,a), we can use again Theorem B, which allows us to describe F°(£,a) as a
certain subalgebra of 20,. Applying Theorem [§] to the description of the Wahlquist-Estabrook
prolongation algebra 20, in [3, 4], one obtains that F°(£,a) is isomorphic to the direct sum of
sl3(C[)\]) and a one-dimensional abelian Lie algebra.

It remains to prove the statements about FP™'(E a), .1, Jpi1, FP(E,a), FU(E,a),
Fi(€,a) — FY(&,a) in Theorem [Tl

The statements about FP*' (€, a), T,41, Jpr1, F*(€, a) can be proved similarly to the results of
Sections [3]

The homomorphism F(€,a) — F°(€,a) is equal to the composition of the surjective homo-
morphisms

Fi(€,a) = FY(E a) = - = FYE, a) = F*(&,a)

from (I09). It is easily seen that the statements about FP*' (€, a), T,11, Jpi1, FP(£, a) imply the
statements about F4(£, a) and F4(&,a) — F°(&, a). O
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