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Abstract 

Mining typical load profiles in buildings to drive energy management strategies is a fundamental task to be addressed in a smart 
city environment. In this work, a general framework on load profiles characterisation in buildings based on the recent scientific 
literature is proposed. The process relies on the combination of different pattern recognition and classification algorithms in order 
to provide a robust insight of the energy usage patterns at different levels and at different scales (from single building to stock of 
buildings). Several implications related to energy profiling in buildings, including tariff design, demand side management and 
advanced energy diagnosis are discussed. Moreover, a robust methodology to mine typical energy patterns to support advanced 
energy diagnosis in buildings is introduced by analysing the monitored energy consumption of a cooling/heating mechanical room.  
 
© 2017 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The last decades have seen a profound transformation in the energy system of many countries worldwide. The 
progressive introduction of renewable energy sources in buildings in a smart city context and the consequent effort 
for decarbonisation have changed the way to use and manage energy. The improvement of building energy efficiency 
is a central theme both in scientific community and global political environment. Important opportunities to address 
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this task are provided by the implementation of strategies aimed at enhancing the building energy management and 
operation. In this context the increasing implementation of Information and Communication Technologies (ICT) and 
Energy Management System (EMS) in buildings has enabled an easier availability of a huge amount of heterogeneous 
building related data making it possible a bi-directional communication between  infrastructures and operators [1]. As 
a consequence, in the last few years, an increasing interest of researchers and energy companies in exploring the 
potentialities of data analytics procedures to extract information on the actual building energy behavior was observed 
[2–6]. The application of data analytics techniques coupled with a robust physics-based expertise can effectively 
support the implementation of procedures or strategies aimed at enhancing the operational performance of buildings 
[7]. In particular, the mining of time-series data has recently gained high attention in the scientific literature as a way 
to describe the load patterns and the boundary conditions (e.g., weather, time period or user/customer features) 
influencing their particular variation over time. The electrical or thermal load time series are usually characterised by 
a particular trend with stochastic components and time based cycle at annual, seasonal and daily scales [8].  

In the process of load profiles characterisation, data driven recognition techniques play a key role for the 
identification of typical operational patterns and trends in a high-dimensional time series [9]. Pattern recognition 
procedures usually require time series to be segmented in a pre-processing step. In the analytical process of building 
load profiles, time series are usually chunked into subsequences through a fixed length window to obtain a time scale 
based profiles. In the majority of energy and buildings applications load profiles are usually well described on a daily 
scale. The mining of time based load profiles is an emergent task which enables the implementation of various energy 
management and diagnostic strategies at both single and multiple buildings/customers level. Load profiles can be 
analysed at different scales and/or at different levels of detail or for specific building energy services. The process of 
daily load profiling primarily consists in grouping similar load profiles using domain expert based procedures, 
statistical methods or data mining algorithms. For each group of similar load profiles a representative load pattern can 
be extracted. The shape of a load profile is usually representative of an operational pattern of a building/customer or 
a sub-system. It is intended as the daily-based set of time-related features defining that specific pattern under bounded 
load conditions. When time series sub-sequences are compared to discover similar shapes a data scaling is a task to 
carry out in order to isolate the effect of the magnitude and allow the data mining algorithms to perform correctly for 
this purpose. Clustering algorithms proved to be particularly effective in discovering robust energy patterns from time 
series data [9].  In the framework of energy profiling data mining techniques are commonly applied to classify energy 
consumers or to detect anomalous energy patterns or for the short-term forecasting according to customer/building 
and temporal variables. In fact, the mining of typical load patterns can be also viewed as a powerful pre-processing 
phase for the implementation of predictive models of building energy consumption [8]. For different typologies of 
users (e.g., industrial, residential, commercial) relevant differences could be observed in the daily energy profiles. 
Furthermore, for the same typology of users, various daily load profiles can be extracted usually depending by the 
weather, the day of the week, the season or specific features of the building/customer. Depending on whether a single 
or a group of buildings/customers are analysed, different implications arise from the process of load profiles 
characterisation. In the first case a detailed diagnostic analysis of energy time series is performed to discover 
interesting energy patterns characterising the operation of building/customer or sub-systems. In the second case, 
instead, the objective becomes a load classification to discover typical classes of buildings/customers according to 
profile shape similarity [10,11]. The process of typical load profiles recognition is beneficial for different actors in the 
smart city environment: 

 
 An in-depth knowledge of building typical load profiles could help managers in developing different strategies 

involving energy savings opportunities related to the management of renewable energy systems [12] or 
thermal/electrical storage systems. Information on typical daily patterns may drive the design of targeted tariff 
plan or of proper demand side management (DSM) strategies [10,13]. Moreover, the energy mangers can benefit 
from load profiles characterisation for exploiting anomaly detection initiatives [3]. 

 Energy Service Companies (ESCO) acting as building managers could benefit from the knowledge of typical 
building load profiles to develop energy savings and conservation measures. 

 Transmission System Operators (TSOs) and Distribution System Operators (DSOs) may both benefit from energy 
profiles identification for the management of theirs grids and markets. In the case of smart electricity grids or 
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district heating installations a comprehensive analysis of energy demand curves can support demand management 
strategies aimed at improving the system balance [14]. 

 Policy makers may take advantage of load profile characterisation to identify which actions could have the highest 
impact for a specific group of consumers or buildings [11]. 
 

The identification of typical patterns in buildings is a matter of concern in different fields involving electrical and 
thermal energy demand in buildings. However, considering that the application of data analytics technologies to 
discover typical load profiles in buildings is relatively young, the implementation of robust frameworks is particularly 
desirable [15]. In this paper, a critical methodological framework based on the recent scientific literature to drive the 
extraction of typical load profiles from energy time series data is proposed.  The process is discussed in relation to 
most important applications related to the classification of customers in smart city environment and single 
building/sub-system energy diagnosis. Moreover, an example of energy profile characterisation at individual building 
level for one-year energy consumption data related to a mechanical cooling/heating room is provided.  

2. A robust recognition of load patterns in buildings 

In Fig. 1 is shown a general framework for the extraction of typical load profiles and their use for different 
applications. To this purpose, data pre-processing is a preliminary phase aimed at organising time series data in an 
appropriate format to mine load energy patterns [3]. Moreover, a data preparation including data cleaning and data 
grouping is carried out in this phase. For example, buildings can be a-priori segmented into preliminary classes 
according to different properties (e.g., voltage, building type, weather conditions, building physical features etc.) to 
obtain more homogeneous groups that are simpler to be treated in a single framework. The second phase is performed 
at single building/customer level and it is aimed at extracting typical daily energy patterns according to profiles 
similarity generated under the same load conditions [11,13]. At this stage depending on whether a single or a group 
of buildings/customers are analysed, two different and alternative aims can be pursued.  

 

Fig. 1. General framework for load profiles characterisation at single building level and classification at multiple buildings/customers level. 
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When a group of buildings/customers are analysed, after the extraction of a reference load pattern for each of them 
a customers’ classification is usually performed [16]. On the other hand, the discovery of typical load profiles can be 
also interpreted as a preliminary phase for supporting a detailed diagnostic analysis (e.g., energy demand prediction, 
fault detection and diagnosis (FDD), energy benchmarking) performed at sub-system or whole building level. 

2.1. Data pre-processing 

Data pre-processing is a fundamental task to prepare time series data for the load profiles recognition analysis. In a 
first step, the collected raw data in form of time series are analysed through different statistical methods to identify 
potential missing values and punctual outliers that must be replaced or removed [3]. In a second step, the original time 
series is chunked in fixed length windows in order to obtain constant time-scale based sub-sequences. A time‐series 
is characterised by many individual data values, but in this case is viewed as a single object to process, representing 
the daily energy profile. This method, in the framework of time series analysis, could have potential drawbacks since 
patterns in some cases could be better characterised by different length of windows in the segmentation procedure. 
However, the daily scale is the most common time scale adopted in this field of investigation. The sub-sequences, 
representing the daily load profiles, are organized into a MxN matrix where M is the number of daily load profiles 
while N depends from the granularity of the collected measurements. Preliminary pattern recognition techniques (e.g., 
hierarchical clustering methods with average or single linkage [17]) can be used to detect daily load profiles presenting 
anomalous patterns that can negatively influence the performance of the analyses. 

2.2. Typical daily load profiles evaluation 

This phase of the framework is performed at individual building/customer level and it is aimed at identifying the 
typical daily load profiles that are the most representative of the energy behaviour. The number of profiles potentially 
extractable strongly depends by load conditions characterising the building/customer under analysis. To this purpose, 
data segmentation may be performed following (i) a domain expert based approach (ii) a data mining approach by 
using unsupervised techniques (iii) an indirect clustering through data reduction methods.  

The typical profiles can be then evaluated through statistical measures (e.g. mean, median) calculated in each group 
of homogenous daily load profiles identified in the data segmentation phase. Generally, when the extraction of typical 
daily load profiles is performed at single building/customer level, data scaling is not carried out in order to preserve 
the effect of shapes as well as magnitudes in finding groups of similar objects.  

Expert segmentation is a procedure completely driven by the domain knowledge of the analyst and it is aimed at 
generating subsets of daily load profiles that are supposed to be subjected to homogenous boundary conditions [18]. 
The typical load profiles are then usually calculated as the statistical mean of the objects in each subset. A common 
procedure consists in segmenting weekdays and weekend/holidays [19] due to the different activities carried out by a 
specific customer in these periods. Depending if the characterisation is or not performed on thermal sensitive energy 
patterns, the assumptions that need to be taken into account for an expert segmentation could be significantly different. 
In the case of characterization of thermal sensitive patterns, the climatic conditions (external and internal), occupancy 
pattern, building thermo-physical features and heating/cooling systems operation modes generate the existence of 
various load patterns (in terms of shape and magnitude), not always easily inferable. It is proven that also socio 
economics factors [20] and building final type [21] play a key role in the variation of load profiles. Especially in 
residential buildings, electrical (not thermal sensitive) and thermal load profiles do not have similar patterns [11,13]. 
For example space heating energy demand in households presents a typical two-peak daily pattern [20],  instead of 
afternoon/evening peak pattern [1] that is typical of electricity demand. Moreover, daily load profiles for space heating 
exhibit small differences between weekdays and weekends making more reasonable a climate-driven segmentation 
considering a seasonal effect [13,21] (i.e., segmenting the warm periods from the cold periods).  

In this perspective, in order to avoid the identification of noisy or not representative reference profiles more and 
more analysts rely on the application of unsupervised pattern recognition techniques such as cluster analysis [22]. 
Unlike the expert segmentation, cluster analysis allows load patterns to be identified in a not pre-determined time 
domain. In this way, robust and consistent reference profiles can be discovered.  
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A further approach for the data segmentation and profiles extraction relies on indirect clustering [23], where the 
object of clustering are features extracted from the load profiles. To this purpose, Symbolic Aggregate approXimation 
(SAX), can be used. SAX is based on the reduction of a time series through a piecewise process and then on its 
transformation into symbolic string [24]. The symbolic string represents a symbols subsequence preserving the 
important information of the original time series [25]. This approach offers the opportunity to discover motif (frequent 
symbols subsequence) and discord (infrequent symbols subsequence) for example fixing a threshold of the word 
frequency count for each identified pattern [26]. In this way the discords can be filtered out (e.g., for future detailed 
diagnostic investigation) while from the remaining set of motifs the typical daily load profiles are evaluated through 
cluster analysis on dataset of reduced dimensions. This approach makes it possible to find more robust typical profiles 
considering that sub-sequences based on both magnitude and shape similarity are discovered.  

2.2.1 Load profiles characterization at multiple customers/buildings level 

When a group of buildings/customers is analysed a classification process is usually performed. To this purpose a 
reference daily load pattern needs to be selected for each building/customer. In fact, the classification process involves 
a large number of customers making it a labour intensive and time consuming task.  For this reason, in most of cases, 
it is necessary to extract only one representative load pattern from the set of typical daily load profiles of each 
building/customer evaluated through the previous phase. On the basis of the data segmentation, the representative load 
pattern usually corresponds to the typical profile in a specific time period or to the most populated cluster or to the 
most occurring motif. After the selection of the reference load pattern for each customer/building, data scaling is 
necessary in order to compare the different profiles between each other removing the effect of magnitude. Magnitude 
differences, resulting from different building design features (e.g. gross volume, floor area, installed power, etc.) or 
load conditions, can negatively affect the performance of pattern recognition algorithms in discovering similar shapes 
among daily load profiles. Scaling can be achieved through different approaches. Load profiles in the (0,1) range are 
obtained normalizing respect to a reference power e.g., the maximum value [27], mean value [12] or between 
minimum and maximum [22] values of the original daily load profiles. In other cases, a z-score normalisation can be 
also performed. Consequently, the representative normalised load patterns are processed in order to discover typical 
classes of customers/buildings and to classify them according to appropriate variables. The whole process consists of 
three different steps: (i) identification of n customer classes of buildings/customers, (ii) definition of the normalised 
reference load pattern for each customers’ class (e.g. centroid) (iii) enrichment of the database with additional 
attributes (categorical or numerical) for each load profile to perform a supervised classification process.  

The first step generally unfolds through the application of unsupervised pattern recognition techniques such as 
hierarchical or partitive cluster analysis. In the literature a plethora of combinations between aggregation techniques 
and distance measures were proposed. The best known methods include k-means algorithm [10,11,13,14,18,22,28], 
Fuzzy C-Means (FCM) [18,20,22,29], hierarchical clustering [18,22,30], Self-Organising Maps (SOM) [10,14,18] 
and Follow the Leader algorithm [17,27]. In particular, these techniques make it possible to handle a large amount of 
data in order to recognize the most significant load patterns. On the other hand, due to the necessity of setting in 
advance the clustering technique, the distance measure between objects and the number of clusters, this type of 
procedure is influenced by the subjective interpretation of the analyst. For this reason, several clustering adequacy 
indices (based on the measure of inter-cluster similarity and intra-cluster dissimilarity) have been proposed in the 
literature in order to drive the fine-tuning of the algorithms. In [18] were employed a series of adequacy measures 
such as Mean Index Adequacy (MIA), Clustering Dispersion Indicator (CDI), Scatter Index (SI), Variance Ratio 
Criterion (VRC) and Davies-Bouldin Index (DBI). In [10,22] the ratio of Within Cluster Sum of Squares to Between 
Cluster Variation (WCBCR) was indicated as the most suitable algorithm to evaluate the correct number of partitions 
of a clustering algorithm. Moreover the reliability of clustering techniques strongly depends by the selection of the 
distance measures particularly when time series sequences are compared [31]. For this reason, much effort was done 
in the recent years in finding robust distance measures (e.g. Dynamic Time Warping (DTW) [32]),  to discover in a 
more robust way shapes similarity for a group of daily scaled energy patterns [31]. The outcome of this step is the 
definition of n classes of buildings/customers where the representative load patterns can be evaluated by calculating 
the centroid or medoid of the profiles grouped together. Subsequently, the customer class label is defined as a 
categorical dependent variable which can be predicted with a classification model, using additional attributes for the 



870	 Alfonso Capozzoli et al. / Energy Procedia 134 (2017) 865–874 Author name / Energy Procedia 00 (2017) 000–000 

supervised process [19,33]. As shown in the framework (Fig. 1) the additional attributes to be taken into account in 
the classification, can be related to customers’ rating information or based on field measurement campaign of energy 
patterns [34]. The rating indicators are related to the customers’ contracts and to type of activity; they are generally 
used by the distribution companies to obtain a preliminary classification of their customers. These indicators are not 
shape sensitive and if used alone as predictors could be not able to provide a good characterization [34]. For this 
reason, indicators based on field measurements campaign can be employed in order to improve the accuracy of the 
classification model. For each customer these indicators are derived from measured daily representative load pattern 
providing compact information on the variation of the consumption over time. The indicators ranging in (0,1) are 
capable to highlight differences between customers behavior in different daily periods (e.g. night, lunch time) [34] 
considering that peak hours and off-peak hours could be different among customers. Once the predictors are selected, 
the methodological process goes through the development of a classification model. Also in this case the literature 
offers a wide set of suitable algorithms such as decision trees (e.g. C4.5, C5.0) [19,33]. Especially this kind of 
classifiers are used in customers classification processes due to their capability in handling both categorical and 
numerical variables and the high intelligibility of their output in terms of decision rules.  

The described methodology represents a robust and useful tool to easily estimate for a new statistical object the 
representative load profile on the basis of the predicted membership to a specific class of customers/buildings. This 
opportunity in a liberalized energy market is highly desirable for suppliers, local and national authorities for 
implementing more effective energy management strategies also through targeted financial demand response 
programs [34–36] (e.g., Time Of Use tariff, Critical Peak Pricing, Real-Time Pricing). These programs are designed 
to be attractive for the consumers and at the same time profitable for the retailers. Indeed, the knowledge of customers’ 
macro-behavior in energy consumption allows the distribution companies to better manage the grid operation and the 
interactions between energy consumption and production (e.g., implementation of energy storage solutions in district 
heating DH [37]). In this context, also the modification of customers energy use over time represents an effective 
demand side management strategy. The modification of a load profile (e.g., consuming less energy during peak hours 
or shifting the energy use to off-peak hours), allows the demand profile to be flat or in some cases to follow the 
generation pattern for grid stability purpose.  For example, virtual thermal storage, through the modification of load 
profiles of a group of buildings served by a district heating network represents an effective way to increase the share 
of heat from cogeneration and renewable sources [38]. Moreover, the opportunity to classify specific groups of 
buildings/customers on the basis of their representative load patterns makes it possible to better address the current 
transition from large centralised generation plants to distributed ones that are capable to provide energy at a small-
scale (e.g., neighborhood) when it is needed [39]. In fact, lack of knowledge about building energy use patterns 
currently represents the main barrier for fully exploiting the benefits of energy management also at micro grid level. 
In a dynamic smart city environment, the energy consumption patterns of the end-use customers need to be 
benchmarked also in order to assess the influence and the impact of DSM and DR initiatives over time [40]. 

2.2.2 Detailed diagnostic analysis at individual building/customer level 

Following the framework reported in Fig. 1 the typical daily load profiles evaluation can also represents a 
preliminary analysis for supporting a detailed diagnostic procedure at individual building level. The knowledge of 
typical load profiles at single building/system level offers the opportunity to address complex emerging issues in 
building management such as building energy demand prediction, Fault Detection and Diagnosis (FDD), energy 
benchmarking, active demand response applications, exploitation of on-site renewable energy sources production. In 
fact, typical load profiles have a direct or indirect effect on the aforementioned applications. In [41] a motifs extraction 
based methodology was proposed to enhance the operation of a set of chillers serving a data center. Moreover, the 
sustainability impact was evaluated by means of useful metrics. In [31] a pattern recognition analysis based on a 
clustering algorithm (k-Shape) was performed in order to discover building energy consumption patterns. These 
patterns were further utilized to improve the accuracy and robustness of a forecasting model of energy consumption 
for ten institutional buildings in Singapore based on Support Vector Machines (SVM) algorithm. Also in [29] typical 
load profiles identification were used as a preliminary step in the development of a forecasting model for the electrical 
power demand of a supply fan of an Air Handling Unit (AHU). In detail, using a Fuzzy C-Means clustering algorithm, 
three subsets of homogeneous daily profiles (typical patterns) of the supply fan modulation were discovered while the 
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atypical profiles were removed from the dataset. Then, for each subset a forecasting model combining Autoregressive 
Neural Network (ANN) and a physical model was built. The development of innovative robust multiple-diagnosis 
methodologies to automatically detect anomalous energy consumption [42] (profiles with shape/magnitude 
significantly different from the typical operation patterns) makes it possible to operate a continuous commissioning 
of the building, also defining rule-based strategies [43] to be implemented in the building energy management system. 
For building diagnosis purpose also the robust extraction of daily patterns of occupancy data or indoor environmental 
quality parameters can be extremely useful when it is correlated with energy usage patterns. For example, the 
occupancy profile can be associated to operation of air conditioning or lighting systems. On the other hand, the 
building energy usage patterns can be analysed in relation to different consuming components or sub-systems whose 
mutual interactions and correlations can be discovered by analysing their behaviour over time with a temporal mining 
approach. Temporal data mining can support the optimal operation of a building at multiple levels through the 
extraction of useful cross-sectional relationships between forcing variables and the actual energy consumption by 
performing a multivariate time series analysis. In some cases, can be beneficial to transform the typical daily load 
profiles to reduce datasets. In detail SAX representation can be employed to improve the execution of data mining 
algorithms increasing the computational efficiency [24]. In [26] a process based on SAX representation of time series 
to transform the original load profiles information into strings of characters was developed. This technique combined 
with motif discovery and clustering algorithms was employed to enhance diagnostic procedures of building energy 
usage. Moreover, the methodology proposed can be implemented in Fault Detection and Diagnosis (FDD) procedure 
and could provide relevant information for the calibration of simulation models. In [25] SAX and motif discovery 
were employed in combination with Temporal Association Rule Mining (TARM) to mine temporal correlations in 
Building Automation Systems (BAS) data. The extracted knowledge joined with domain expertise was helpful in 
identifying typical patterns and anomalies, estimating energy performance and detecting opportunities for energy 
conservation measures. As discussed above the robust recognition of energy profiles to perform energy diagnosis is 
particularly desirable. In the next section a robust methodological procedure conceived for this purpose is developed 
on a real case study.  

3. Pattern recognition procedure for a single building/customer: a case study 

The case study herewith presented deals with the application of a pattern recognition procedure applied to electrical 
consumption data releted to a heating/cooling mechanical room of Politecnico di Torino campus in Turin (Italy). The 
analysed system serves the main building of the campus including classrooms, central administration, bar and canteen 
for an overall floor area of more than 20,000 m2. The system includes both hot and chilled water circuits of the building 
with the corresponding auxiliary pumping systems. The circulation pumps installed are different for the two circuits 
and have an overall designed electrical power of 120 kW. The hot water is produced through a district heating heat 
exchanger located in separate area of the campus. The chilled water, instead, is provided by two chillers (with a total 
design electrical power of 220 kW and a rated cooling capacity of 1120 kW) and a water to water reversible heat pump 
(with a design electrical power of 165 kW and a rated capacity of 590 kW in cooling mode). The two chillers and the 
heat pump are connected in parallel and the heat rejection is operated through a geothermal water source in a closed 
loop. The operation of chillers is controlled according to the cooling load of building to maintain supply/return 
temperature of the chilled water at 7/12 °C. The aggregated average electrical load data (chillers and auxiliaries) of 
the whole system for the year 2015 with a time interval of 15 minutes were analysed. The original time series data 
were chunked into daily sub-sequences that were organised into a 365 x 96 matrix. From the 365 daily load profiles, 
70 were removed due to the presence of inconsistences and outliers. The remaining 286 daily load profiles were then 
analysed in order to characterise the operational patterns of the system under analysis. The open-source software R 
was used to perform the analysis. 
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In a first phase the daily load profiles were normalised in the (0,1) range on the maximum power value of each 
profile. A hierarchical clustering algorithm with Ward linkage method was then implemented to group the normalised 
load profiles. The Davies-Bouldin (DB) Index and the Silhouette Index were used as adequacy measures to identify 
the optimal number of partitions in a range between 2 and 10 clusters. In a first attempt 3 clusters were identified as 
the best partition. This first result produced 3 sets with different cardinality suggesting a further segmentation 
considering only the objects in the largest cluster. In this case Silhouette and DB indices suggested to split the daily 
load profiles in two further sub-clusters. In conclusion four different clusters labelled as “Shape 1”, “Shape 2”, “Shape 
3” and “Shape 4” were obtained as shown in Fig. 2(a). The cluster labels were then used as dependent variable in a 
Classification and Regression Tree (CART) algorithm while month and day of the week were selected as explanatory 
variables. The result of the classification process produced a decision tree (Fig. 2(b)) capable to assign each shape to 
a specific period of the year (accuracy = 95.8%, precision = 96.4%, recall = 96.4%).This process provided a 
preliminary insight of the total power consumption patterns of the system under analysis. As shown in Fig. 2 (b), 
clusters “Shape 4” and “Shape 3” were found to be typical of Sundays and Saturdays, while clusters “Shape 1” and 
“Shape 2” of the working days of the winter and summer months respectively. Load profiles with Shape 1 are related 
to the period of the year where the electrical energy consumption of the system is due to the operation of the auxiliary 
pumping system of the hot water circuit. For this reason, load profiles in this cluster are characterised by a constant 
load between 6:00 and 20:00 with very small variations around the cluster centroid. On the other hand, cluster “Shape 
2” is related to a period where chillers, auxiliary pumping system and geothermal water pumps were working under 
different conditions.  

The normalized load profiles grouped in cluster “Shape 2” were rescaled to their original values to perform a further 
analysis. A segmentation of the energy profiles belonged in this cluster was performed and three different groups of 
daily profiles with magnitudes significantly different were discovered. In Fig. 3(a) are shown the centroids of these 
groups of profiles with the evidence of the relative standard deviation.  

Fig. 2. (a) Shapes of load profiles extracted through hierarchical clustering; (b) Classification of profiles shapes. 

Fig. 3. (a) Load profile magnitudes extracted through hierarchical clustering; (b) Classification of profiles magnitudes. 
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The centroids of clusters labelled as “Magnitude 1”, “Magnitude 2” and “Magnitude 3” exhibit a mean value of the 
electrical power load during the time period 06:00–20:00 of 30 kW, 103 kW and 165 kW respectively. A classification 
process was then performed using as predictive variable the external air temperature. As shown in Fig. 3 (b), the 
profiles labelled as “Magnitude 1” occurred during days with a daily average temperature lower than 18.5 °C. The 
energy patterns of this cluster can be considered typical of mid-season when the operation of chillers were switched 
off but part of the auxiliaries (different from pumping system of the hot water circuit) were working. The clusters 
“Magnitude 2” and “Magnitude 3” grouped days of the warm season where different systems (chillers, heat pump and 
auxiliaries) were operating with external daily average temperature higher than 18.5 °C. Furthermore, the algorithm 
produced an additional split by classifying the load profiles of the warmest days (external daily average temperature 
≥ 23.5°C) as “Magnitude 3”.  

The approach presented in this case study was aimed at mining knowledge from energy consumption patterns and 
can be useful for detection potential deficiencies in control strategies or uncorrected operation of equipment and 
control system. 

4. Conclusions 

The great availability of data and platforms for managing them, contributed in the last decade to increase the interest 
in data-driven approach for facing emerging challenges in buildings in smart cities context. The development and 
implementation of generalised frameworks in this field of investigation represents a great issue to face, especially for 
combining different data mining techniques and couple them with building physics expertise for extracting useful 
information. In this perspective, in this work is proposed a general framework for implementing flexible and robust 
methodologies capable to drive the load profiles characterisation tasks at different levels (from sub-system to whole 
building) and at different scales (from single building to stock of buildings). In fact, lack of knowledge about building 
energy use patterns and how to promote their variation are currently the main barriers for fully utilizing the benefits 
of energy management in smart cities. The knowledge of energy consumption patterns at single system/building makes 
it possible to promote their optimisation through changes in energy demand, load shifting, the detection and diagnosis 
of anomalies related to uncorrected system operations or users’ behaviour. In this context future research will focus 
on exploring the potentialities of pattern recognition methodological process in handling inconsistent, infrequent, 
abnormal energy profiles considering a temporal diagnostic approach.  
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