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Abstract: Damage models, particularly the Gurson–Tvergaard–Needleman (GTN) model, are widely
used in numerical simulation of material deformations. Each damage model has some constants
which must be identified for each material. The direct identification methods are costly and
time consuming. In the current work, a combination of experimental, numerical simulation and
optimization were used to determine the constants. Quasi-static and dynamic tests were carried
out on notched specimens. The experimental profiles of the specimens were used to determine the
constants. The constants of GTN damage model were identified through the proposed method and
using the results of quasi-static tests. Numerical simulation of the dynamic test was performed
utilizing the constants obtained from quasi-static experiments. The results showed a high precision
in predicting the specimen’s profile in the dynamic testing. The sensitivity analysis was performed
on the constants of GTN model to validate the proposed method. Finally, the experiments were
simulated using the Johnson–Cook (J–C) damage model and the results were compared to those
obtained from GTN damage model.

Keywords: damage model; Gurson model; Kriging method; simulation; optimization

1. Introduction

Today, the finite element codes have substituted expensive and tedious experiments for mechanical
characterization of materials. The accuracy of material damage and material models plays an important
role in the performance of the codes. All models involve a number of constants which must normally be
determined by experiment. The accuracy of the models obviously depends on the accuracy of the constants.

1.1. Damage Models

Various damage models can be found in the literature. Some of the most important models are briefly
described in this section.
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1.1.1. Gurson–Tvergaard–Needleman Model

Gurson, Tvergaard and Needleman’s damage model (GTN model) [1] is an analytical model
that predicts ductile fracture on the basis of nucleation, growth and coalescence of voids in materials.
The model is defined as:

φ =
σ2

e

σ2
M

+ 2q1 f ∗ cosh
[

trσ

2σM

]
− 1− (q1 f ∗)2 = 0 (1)

In which q1 is the material constant, trσ is the sum of principal stresses, σM is the equivalent flow
stress and f * is the ratio of voids effective volume to the material volume ratio defined as follows:

f ∗( f ) = fc i f f ≤ fc, (2)

f ∗( f ) = fc +
(1/q1)− fc

f f − fc
( f − fc) i f f > fc, (3)

where f is the voids’ volume ratio, fc is the voids’ volume ratio at the beginning of nucleation and ff is
the voids’ volume ratio when fracture occurs. The equivalent flow stress (σM) is obtained from the
following work hardening relation:
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In which tr
.
ε
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=
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.
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.
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)

is the volume plastic strain rate, sN is the voids’ nucleation mean
quantity, fn is volume ratio of the second phase particles (responsible for the voids’ nucleation) and εN
is mean strain at the time of voids’ nucleation. So, GTN model involves ten parameters which can be
defined in a vector form by:

φ = φ
(

σy εy n q1 f0 fc f f fn εN SN

)
In this model, the effect of hydrostatic pressure on the voids’ growth is considered and

the shear stress effect is ignored which in general cases makes the results questionable. Thus,
although, this model can perfectly predict damage in tensile stress, it is not as accurate in shear
stress tests. To overcome this shortcoming, an extension of the Gurson model was proposed by
Nahshon and Hutchinson [2] that incorporates damage growth under low triaxial straining for
shear-dominated states. Var et al. [3] identified material parameters for Gurson-type and Lemaitre-type
constitutive models for low alloy steel based on a hybrid global–local optimization technique.
Chang-Kyun et al. [4] used experiment and FE simulations for smooth and notched tensile bars,
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to calibrate the parameters in the GTN model. Malcher et al. [5] undertook a numerical comparative
study based on GTN original model and two recent enhancements that included shear mechanisms,
employing mathematical and numerical strategies to calibrate the material parameters.

1.1.2. Johnson–Cook Damage Model

Johnson and Cook [6] developed the following relation for failure strain:

ε f =

(
D1 + D2 exp

(
D3

(
p
σy

)))(
1 + D4Ln

.
ε
)
(1 + D5T∗), (9)

In which ε f is the strain failure, p
σy

is the stress triaxiality parameter,
.
ε is strain rate and T∗ is the

dimensionless temperature calculated by Equation (10). D1 to D5 are material constants.

T∗ =
T − Troom

Tmelt − Troom
, (10)

where Troom is the room temperature and Tmelt is the material melting point. In the Johnson–Cook model,
parameter D defined by Equation (11), represents the voids’ growth and is used as the fracture criterion.

D = ∑
∆ε

ε f
, (11)

This parameter is generally a function of strain rate and the stress triaxiality parameter. In this
relation D is the damage coefficient and ∆ε is the plastic strain increment in each iteration. In the finite
element numerical simulation the value D is calculated in every loading increment for each element.
When the value of D reaches unity in an element, D = 1, fracture occurs in that element and the element
is eliminated from the computations.

1.1.3. Rice and Tracey Model

Rice and Tracey [7] developed a mathematical model that relates to the voids’ growth to stress
triaxiality parameter. In this model, voids’ growth rate is defined as follows:

dR
R

= α exp
(

3
2

ξ

)
dεpl , (12)

In which α is the material constant and ξ = σm
σeq

is the stress triaxiality parameter. For considering
the work hardening in Rice and Tracey model, Bermin [7] suggested the use of flow stress instead of
yield stress in Equation (12). By integrating Equation (12) we can obtain:

Ln
R
R0

=
∫

α exp
(

3
2

σm

σeq

)
dεpl , (13)

1.1.4. Gunawardana Model

Gunawardena [8] developed a damage model on the basis of Rice and Tracey model.
Assuming spherical growth of voids and rigid-plastic behavior of materials, the fracture reference
strain ε f is calculated for different states of stress triaxiality as follows:

ε f = ε0 exp
(

1
2
− 3

2
σh
σeq

)
, (14)
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In which σh is the hydrostatic stress component. For this model D is the damage parameter for
which the growth rate is defined as follows:

dD =
dεp

ε f
, (15)

Integrating Equation (15) and using Equation (14) we obtain:

D =
1
ε0

εc
p∫

0

exp
(

3
2

σh
σeq
− 1

2

)
dεp, (16)

Note that εc
p is the plastic strain in each increment of loading in which D is calculated.

Damage occurs when the D parameter reaches unity. The most important advantage of this model is
that it requires only constant (ε0) to be determined.

1.2. The Constants Identification Methods

There are two methods which are generally used to determine the constants of damage model.

1.2.1. Metallography Method

Since damage models describe micromechanical processes, some of their constants can be obtained
by metallographic methods. In this method, quantitative photography process is used for analyzing
fractured surface metallography. Quantitative photography is a method for acquiring quantitative
data from photos using special software designed for such purposes.

1.2.2. Numerical Methods

In this method, the computations continue until some geometrical parameters such as the
final profile of the specimen predicted by numerical simulation converges to that obtained from
an experiment such as tensile test. Plain or notched specimens can be used in the experiments.

Determination of the constants of Gurson damage model through direct measurement and
experimental testing is very difficult. On the other hand, the response of materials in numerical
simulation definitely depends on these constants. Consequently, the constants can be determined
by comparing material response in different loading states in numerical simulation with that of
experimental measurements.

Various researchers utilized this idea to find the damage models constants. Majzoobi et al. [9,10]
obtained the variation of fracture strain versus stress triaxiality coefficient for notched steel and copper
specimens of different notch radii. The results were used for determining the constants D1 to D3 in
Johnson–Cook damage model. They also obtained the variation of fracture strain versus Ln

.
ε under

dynamic test conditions. The results were employed for determining the constant D4 in Johnson–Cook
damage model.

Ochewit et al. [11] performed plain specimen tensile test and measured the fracture displacement
of the specimen. Then, they simulated the same tests using a finite element code. The constants q1, Sn,
εn, f 0 and fn were obtained from the literature. For determining fc and ff, simulation was performed for
different sets of fc and ff and for each simulation the fracture displacement was recorded. The next step
was to define the difference between fracture displacement of the specimens obtained from experiment
and that of simulation as an objective function. By minimizing this objective function, fc and ff were
identified. They used the computed constants for numerical simulation of automobile component
under crash loading and found a good compatibility with experimental results.

In another study, Markus Feucht et al. [12] predicted the fc and ff constants of Gurson model
for aluminum die cast alloy and high strength steel, using minimization of the difference between
component displacement parameter obtained from numerical simulation and the one measured in
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tensile test of the plain sample. They applied the same constants in a numerical simulation of the
tensile test of notched samples. Moreover, they used these constants for automobile components in
crash tests. The results obtained were found to agree well with the experimental results.

Springmann and Kuna [13] determined the constants of Gurson damage model using
the displacement-load curves obtained from experiment and a nonlinear optimization method.
They defined the difference between the load measured in experiment and predicted by simulation
at some points of displacement-load diagram as objective function for optimization. This objective
function is defined as:

φ(p) =
1
2

nl

∑
i=1

[
fi(p)− f i(p)

]2

, (17)

where, ni is the number of points on displacement-load diagram, φ(p) is the objective function, fi(p) is
the force obtained from simulation and f i(p) is the force measured from experiment. The optimization
of this objective function was accomplished by an iterative nonlinear method.

Broggiato et al. [14] used digital photography method for obtaining the specimen’s profile in
each loading increment. By collecting the profiles for each loading increment, they acquired the
data to determine the damage and material models constants. Kuna and Springmann [15] employed
local deformation measurements to determine GTN damage model constants. At the beginning,
they performed a simple tensile test on a notched specimen and obtained displacement for some
specified points in each loading increment via displacement filed optical measurement technique.
For the next step, they simulated their experiment numerically and obtained the displacement of
a specified point for different values of damage model constants. Then, by defining the objective
function Equation (18) and minimizing it with respect to damage model constants p, the optimized
values of the constants were determined.

φ(p) =
1
2

nl

∑
i=1

nm

∑
j=1

3

∑
k=1

[
(uk(p))ij − (uk)ij

]2

, (18)

where, φ(p) is the objective function, nl is the number of loading steps, nm is the number of points
specified, uk (p) is the displacement calculated by simulation and uk is the displacement obtained
from experiment.

2. Materials and Methods

2.1. Experiments

The geometries of plain and notched specimens are illustrated in Figure 1. The specimens were
fabricated according to ASTM standard from structural steel ST37. The quasi-static tests were carried
out using Instron tensile testing machine.
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The engineering and true stress-strain curves obtained from plain specimen test are illustrated in
Figure 2. From the figure, the yield and ultimate stresses were obtained as:

σy = 400 Mpa σu = 600 MpaAppl. Sci. 2017, 7, x  6 of 20 

Figure 2. The true and engineering stress-strain curves. 
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Dynamic tests were performed using Flying Wage testing apparatus (a high rate testing device) [16,17].
A general view of the device is shown in Figure 3.
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The geometry of the notched specimen was measured precisely by the method of optical
measurement before and after the test. The optical precise measurement machine utilizes a projector to
project the magnified picture of the specimen on a white screen and measurements are made on this
screen. Figure 5 illustrates the specimen picture projected on the measurement machine screen.
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From the projected picture of the specimen, the change in the gauge length, (∆L(mm)) and the
notch root diameter, (∆d(mm)), of the specimen are measured. The results are given in Table 1 for
quasi and dynamic tests.

Table 1. Quasi-static and dynamic measurements.

Test Type ∆d (mm) ∆L (mm)

Quasi-static 1.675 1.95
Dynamic 1.36 1.57

2.2. Numerical Simulations

2.2.1. Simulation of Quasi-Static Tests

As the plastic deformation accumulates only in the notch area, only this area is considered in
numerical simulation of quasi-static test. Due to axisymmetric conditions of the specimens, only 1/4
of the specimen is simulated. Figure 6 illustrates the finite element model of the specimen.
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2.2.2. Simulation of Dynamic Tests

As stated above, the dynamic tests were conducted on the “Flying wedge” testing apparatus.
Therefore, the major parts of the Flying Wedge involved in pulling the specimen were considered in
the finite element model of the dynamic test simulations. The simulations were performed using the
hydrocode, Ls-dyna. Figures 7 and 8 illustrate views of the 3-D and the finite element model of the
wedge respectively. The model consists of the notched specimen, two sliders in which the specimen is
mounted and the wedge plate. The plate impacts on the sliders and makes them move away from
each other resulting in tension in the specimen. The strain rate can be varied by changing the impact
velocity of the wedge plate. The dimensions and the boundary conditions of the model are exactly the
same as those in the testing apparatus.
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Figures 9 and 10 illustrate the 3-D model and the finite element model of the dynamic testing
specimen. As noted before, the damage phenomenon is highly dependent on plastic deformation.
Again, as plastic deformation occurs only in notch area, a GTN model was used only for the simulation
of this area. Therefore, a higher mesh density was considered in the notch area. The other parts
of the specimen were modeled using a coarser mesh and were analyzed using elastic behavior for
the material.
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2.3. Identification of the Constants of GTN Model

2.3.1. Definition of the Objective Function

For determining the constants of GTN damage model a combination of experimental,
numerical, and optimization methods were employed. This approach has already been used by
Majzoobi et al. [18,19] for determining the constants of few material models. Of course, the optimization
methods used by Majzoobi et al. are different from those used in this study. The elongation and fracture
strain of the specimen were the most important design parameters used in this study. The fracture
strain was computed as follows:

ε f = 2Ln
d0

d f
(19)

In which d0 is the initial diameter and df is the diameter after fracture. The constants of the
damage model were determined in a way that the results of the numerical simulation for elongation
and diameter reduction of the specimen after fracture have minimum deviation from the measurements
of the experiment.

Thus, the difference between the numerical predictions and the experimental measurements for
these two parameters was defined as the objective function. It is worth noting that if more parameters
from tensile and shear tests are simultaneously considered in defining the optimization objective
function, the optimized constants will be more accurate.
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For defining the objective function in optimization the following parameters were used.

∆lexperimental = L f − Li, ∆dexperimental = d f − di, (20a)

∆lnumerical = L f (p)− Li, ∆dnumerical = d f (p)− di, (20b)

OBJ1 = ∆lexperimental − ∆lnumerical , (20c)

OBJ2 = ∆dexperimental − ∆dnumerical , (20d)

OBJ =
OBJ1 + OBJ2

2
, (20e)

where, Li and di are the initial length and diameter of the specimen before loading.
L f and d f are the experimental length and diameter of the specimen after failure.
L f (p) and d f (p) are the numerical length and diameter of the specimen after failure.
∆lexperimental is the experimental notch length change.
∆lnumerical is the numerical notch length change.
∆dexperimental is the measured notch root diameter of the specimen
∆dnumerical is the numerical notch root diameter of the specimen
OBJ is the Objective function.

2.3.2. Surrogate-Based Optimization Method

An effective and efficient method to have cheap approximations of expensive black-box functions
is the surrogate-based algorithm [20,21]. It is simply a numerical approximation of how an entity varies
when the entities that affect it are varied. This method has also been widely employed to evaluate the
numerical predictions which are calculated by expensive codes such as computational fluid dynamics
(CFD) and nonlinear finite element method (NFEM) to speed up the analyzing process [22–24].
For implementing the surrogate-based optimization technique in a numerical simulation, the following
steps should be taken [24,25]:

1. Selecting the initial sampling points with a design of experiments (DoE) technique
2. Performing the computationally expensive FE simulation for the selected points
3. Fitting the surrogate model
4. Optimizing the surrogate model and finding the new set of samples and
5. Repeating steps 2–4 to reach convergence.

Figure 11 illustrates the flow chart of the surrogate-based optimization process.
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In surrogate-based optimization there are different methods for generation of the surrogate
function. This paper employs two methods of polynomial regression and Kriging. Each method is
described briefly and the results obtained from the two methods applied for optimization are compared.

2.3.3. Design of Experiments (DOE)

The design of experiment defines how initial points in the variable space are selected.
The evaluation process of the satisfactory coverage in the domain space and also the number of
samples limitations due to computational expenses are two important elements for this step. There is
a variety of DoE methods which can be found in the literature [24–26]. In this investigation Latin
hypercube sampling (LHS) method [26,27] was adopted as the DoE method due to its good ability of
filling domain space. A schematic of six sample points selection using LHS method for two variables
is shown in Figure 12.

For the generation of a polynomial regression function having four constants, 15 initial samples
were needed for which LHS design function of MATLAB (Vesion: 2017a, Company: MathWorks, City:
Torino 10122, Country: Italy)code was applied. The same initial samples were also used for generation
of Kriging function. In addition, five different trial sets of samples with 6, 7, 8, 9 and 10 samples were
used for generation of Kriging function using LHS design function.

Appl. Sci. 2017, 7, x  11 of 20 

hypercube sampling (LHS) method [26,27] was adopted as the DoE method due to its good ability of 
filling domain space. A schematic of six sample points selection using LHS method for two variables 
is shown in Figure 12. 

For the generation of a polynomial regression function having four constants, 15 initial samples 
were needed for which LHS design function of MATLAB (Vesion: 2017a, Company: MathWorks, 
City: Torino 10122, Country: Italy)code was applied. The same initial samples were also used for 
generation of Kriging function. In addition, five different trial sets of samples with 6, 7, 8, 9 and 10 
samples were used for generation of Kriging function using LHS design function.  

 

Figure 12. A schematic of six sample points selection using LHS method. 

2.3.4. Polynomial Regression Method 

In this method, the objective function is approximated by a polynomial of second order  
as below [28]:  

( ) 0
1 , 1

n n

i i ij i j
i i j

OBJ x a a x b x x
= =

≅ + +  , (21) 

In which, n is the number of constants of GTN damage model, and a0, ai and bij are the 
polynomial coefficients. The GTN model has 10 constants ( )1 0y y c f N N Nn q f f f f Sσ ε ε . σy, εy and 

n are obtained from stress-strain curve of plain specimen obtained from quasi-static tensile test. The 
optimum quantities of q1 = 1.5, SN = 0.1 and εN = 0.3 are taken from literature [29–32]. Therefore, four 
constants remain to be determined for structural steel ST37. The polynomial of second order for four 
variables has 15 coefficients as follows: = + + + + + + + + + ++ + + + , (22) 

In relation to Equation (22), we have: x1 = fc, x2 = f0, x3 = fn, x4 = ff. To optimize this relation, the 15 
coefficients should be identified. Therefore, a system of 15 equations was needed to be solved 
simultaneously to obtain the coefficients.  

To do this, 15 numerical simulations of tensile test using GTN damage model with 15 different 
sets of constants sets (which have been obtained using LHS design) were performed and the 
quantities explained in Equation (20) were measured. The system of equations can be written in 
matrices as shown below. 

Figure 12. A schematic of six sample points selection using LHS method.

2.3.4. Polynomial Regression Method

In this method, the objective function is approximated by a polynomial of second order as
below [28]:

OBJ(x) ∼= a0 +
n

∑
i=1

aixi +
n

∑
i,j=1

bijxixj, (21)

In which, n is the number of constants of GTN damage model, and a0, ai and bij are the

polynomial coefficients. The GTN model has 10 constants
(

σy εy n q1 f0 fc f f fN εN SN

)
. σy, εy and

n are obtained from stress-strain curve of plain specimen obtained from quasi-static tensile test.
The optimum quantities of q1 = 1.5, SN = 0.1 and εN = 0.3 are taken from literature [29–32]. Therefore,
four constants remain to be determined for structural steel ST37. The polynomial of second order for
four variables has 15 coefficients as follows:

OBJ = a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x2
1 + a6x2

2 + a7x2
3 + a8x2

4 + a9x1x2+

a10x1x3 + a11x1x4 + a12x2x3 + a13x2x4 + a14x3x4,
(22)
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In relation to Equation (22), we have: x1 = fc, x2 = f 0, x3 = fn, x4 = ff. To optimize this relation,
the 15 coefficients should be identified. Therefore, a system of 15 equations was needed to be solved
simultaneously to obtain the coefficients.

To do this, 15 numerical simulations of tensile test using GTN damage model with 15 different
sets of constants sets (which have been obtained using LHS design) were performed and the quantities
explained in Equation (20) were measured. The system of equations can be written in matrices as
shown below.∣∣∣∣∣∣∣∣∣∣∣∣∣

1 fc
(1) f0

(1) fn
(1) f f

(1) . . . . fn f0
(1) f f f0

(1) f f fn
(1)

1 fc
(2) f0

(2) fn
(2) f f

(2) . . . . fn f0
(2) f f f0

(2) f f fn
(2)

. . . .

. . . .

. . . .
1 fc

(15) f0
(15) fn

(15) f f
(15) . . . . fn f0

(15) f f f0
(15) f f fn

(15)

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

a0

a1

. . . .

a14

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

OBJ(1)

OBJ(2)

. . . .

OBJ(15)

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (23)

Having obtained the coefficients of Equation (23), and having optimized the equation using
genetic algorithm, the constants of GTN model which are the variables of the optimization problem,
were determined. The results are given in Table 2.

Table 2. The constants of GTN damage model obtained using polynomial regression method.

fc f 0 fn ff Error %

0.148 0.013 0.046 0.246 0.72

2.3.5. Kriging Method

In this model the prediction function y(x) is a linear combination of the main function f (x) and
random function Z(x) [24]:

y(x) = f (x) + Z(x), (24)

The function f (x) is usually determined by a polynomial or root base function. Z(x) is a Gaussian
random function with zero average, non-zero variance σ2 and also covariance defined as:

cov[Z(x), Z(x́)] = σ2R(x, x́), (25)

where, R(x, x́) is a correlation function which is just dependent to two vectors x and x́.

R(x, x́) = exp
(
−∑m

k=1 θk|xk − x́k|ck
)

, (26)

In which θk and ck are the Kriging unknown coefficients in the range of 0 < θk < ∞ and 1 < ck ≤ 2.
The number of these coefficients are equal to the number of design parameters. The values of these
parameters determine the effect of each design parameter r ron the objective function. The relation
Equation (24) can be rewritten in matrix form as:

y(x) = β0 + rT(x)R−1(ys − β0 I), (27)

where, β0 is the least square estimation defined as follows:

β0 =
(

IT R−1 I
)

IT R−1ys, (28)
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I is the unit vector and ys is the function output in initial sample points. r and R are correlation
vector and correlation matrix, respectively,

R =


R
(

x(1), x(1)
)

R
(

x(1), x(2)
)

. . . R
(

x(1), x(n)
)

R
(

x(2), x(1)
)

R
(

x(2), x(2)
)

. . . R
(

x(2), x(n)
)

. . .

R
(

x(n), x(1)
)

R
(

x(n), x(2)
)

. . . R
(

x(n), x(n)
)

, r =


R
(

x(1), x
)

R
(

x(2), x
)

. . .

R
(

x(n), x
)

, (29)

where, x and x(i) are design parameters vectors for which objective functions are unknown and known
respectively. The variance can be calculated as,

σ2(β0, θ, c) =
(

1
n
(ys − β01)T R−1(ys − β01)

)
, (30)

Assuming the Gaussian distribution of the samples the likelihood function would be:

L
(

β0, σ2, θ, c
)
=

1√
2π(σ2)

n|R|
exp

{
−1

2
(ys − β01)T R−1(ys − β01)

σ2

}
, (31)

The later equation can be written as:

MLE(θ, c) = −nlnσ2(θ)− lnR(θ), (32)

This is the equation that should be optimized in order to obtain the Kriging Unknown parameters.
For simplicity, we considered ck = 2. Equation (32) is optimized by genetic algorithm.

In the polynomial regression method, the number of initial samples is determined according to
the number of optimization problem parameters. For example, in this investigation there are four
parameters for which the linear polynomial function has 15 constants. Therefore, 15 simulation samples
are required to determine the polynomial constants. Oppositely, Kriging function does not require
specific number of initial samples.

At the beginning, the same 15 samples used for polynomial regression method formation were
used for constructing the Kriging function. Therefore, Kriging parameters were obtained by optimizing
the relation Equation (32) using genetic algorithm. Then by optimizing the Kriging function again with
genetic algorithm, the constants of GTN damage were obtained. The identified constants were then
used in accomplishing the simulation. If the result of simulation fails to meet the desired precision,
it would be considered as a new sample and the Kriging function would be constructed again using
the old 15 samples plus the new sample. This iteration would continue until reaching the desired
precision. In this study, the constants obtained by optimizing the Kriging function with the 15 initial
samples met the prescribed precision and there was no need to have more iteration.

In order to make a comparison between the two models, polynomial regression and Kriging,
the Kriging function was constructed with 10, 9, 8 and 7 initial sample points. In all cases, the first
optimization iteration provided the desired precision and the errors were less than 1%. However,
the first iteration of the Kriging function constructed with six samples was not accurate enough and
needed one more iteration to satisfy the criteria of having less than 1% error. Table 3 lists the results
of GTN constants and the corresponding errors obtained from optimizing the Kriging function with
different numbers of initial samples.
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Table 3. The results of Kriging method with different numbers of initial samples.

Number of Initial Samples
Constants of GTN Damage Model

Error %
fc f 0 fn ff

15 0.150 0.012 0.047 0.246 0.11
10 0.154 0.012 0.048 0.246 0
9 0.155 0.012 0.049 0.245 0.60
8 0.151 0.011 0.048 0.250 0.95
7 0.154 0.012 0.048 0.251 0.59
6 0.145 0.013 0.048 0.254 2.38

It is found that although the resulting error for all cases is negligible, there are cases for which the
constants obtained by optimizing the Kriging function with more initial samples have less precision
compared to the ones with fewer initial samples. The reason may be due to random nature of sample
generation by Latin hyper cube method. Indeed, in some cases the initial samples are located in the
optimum area by accident and lead to more precise results. Since, the constants obtained using 10
initial samples were quite satisfactory, they are used in the GTN model (Table 4).

Table 4. The final constants of GTN damage model obtained using the Kriging method.

fc f 0 fn ff Error %

0.154 0.012 0.048 0.246 0

2.3.6. A Comparison between Kriging and Polynomial Regression Methods

Mathematical relations applied in polynomial regression method are definitely easier compared
to that of Kriging method, so, the calculations are faster in polynomial regression method. Although,
in the current simulation the polynomial regression method is reasonably accurate, the Kriging method
provides higher precision with fewer initial samples. In addition, the Kriging method has more
flexibility for the number of initial samples. Oppositely, the polynomial regression method requires
a certain number of initial sampling points beyond which the accuracy will not increase. Therefore,
for the cases where initial samples are costly and time consuming using the Kriging method may lead
to more accurate results with fewer initial samples.

3. Results

Now, the numerical simulation of the tensile test is performed for the constants given in Table 4.
The profiles of specimen measured from the numerical simulation and the quasi-static test are compared
in Figure 13. The GTN model does not apparently take account of the effect of strain rate. However,
the model, depending on the loading rate and the predefined solution time, calculates the strain rate
and consider its effect on the voids growth.

In this work, the constants of GTN model are determined using the results of quasi-static tensile
test. The constants are then used for simulation of dynamic test. The profile of the specimen after
fracture is compared with that obtained from the experiment in Figure 14. The error in predicting the
reduction of diameter of the specimen after failure is worked out to be only (1.5%) which is reasonable.
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Some damage models such as Rice and Tracey suggest that there is a direct relation between voids’
growth rate and magnitude of stress triaxiality. Moreover, according to Bridgeman theory, the stress
triaxiality parameter is maximum in the center of the sample notch. Hence, considering these two
principals, it can be assumed that the voids’ coalescence and consequently the rupture of the sample
initiates from the center of samples. This is consistent with the results obtained from Gurson model in
the current study. According to Bridgeman theory [33], the stress triaxiality component is maximum in
center of the necked section of specimen. Thus, it may be assumed that voids’ initiate and coalesce
from the center of notches. In numerical simulation using GTN model this phenomenon was well
predicted. Figure 15 illustrates estimated positions for coalescence of voids in numerical simulation.
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4. Sensitivity Analysis

In order to study the GNT model to variation of its constants, the sensitivity of reduction in
diameter of specimen with respect to each constant of GTN damage model was studied in this
investigation. To do this, the reduction in diameter of the specimen due to the change of one parameter
was evaluated by performing the simulation keeping the other parameters unchanged. The results of
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For better understanding the sensitivity of reduction in diameter of specimen, ∆d, with respect to
the constants of Gurson damage model, the absolute valve of Variation of the ∆d% due to 20% change
in any of the four constant is presented in Figure 20. As it is seen, a small variation in each constant,
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gives rise to significant change in ∆d. Therefore, from the sensitivity analysis it may be concluded that
the values of the constants obtained for GTN model in this work are reliable. The reason is that for
false constants, the change in ∆d would not be sensitive to small variations in the constants.
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As Figure 20 indicates, fn and ff show the highest and the lowest sensitivity of ∆d to 20% variation
in the constants, respectively.

5. Discussion

The numerical simulations of quasi-static and dynamic tests were also performed using
Johnson–Cook damage model with the constants obtained by Majzoobi and Rahimi [34]. The results
showed similar specimen profile after fracture for quasi-static test simulation, whereas in the high
strain rate test J–C model predicted the specimen profile after fracture slightly more accurate than that
predicted for GTN model. The reason was that both J–C and GTN models are coupled with material
models which are normally constructed on the basis of experimental stress-strain curve. More clearly,
material models are required for implementing the damage model. Johnson–Cook damage model
makes use of Johnson–Cook material model that involves five constants and considers the effects of
strain rate and temperature [35]. This is while GTN damage model employs the material model defined
by Equation (4) which involves only three constants and is simpler than the J–C material model and
does not take any account of the effects of strain rate and temperature. Therefore, although GTN model
is an analytical approach and involves more constants in damage analysis compared to Johnson–Cook
damage model which is purely an empirical relation, it may be less accurate than Johnson–Cook
damage model as the latter takes account of the effect of strain rate and temperature indirectly through
the material model.

Although, Kriging method is mathematically more complicated and more expensive than
polynomial regression method, it may be more accurate as it requires a smaller number of initial
samples. As a matter of fact, Kriging method is advantageous over the polynomial regression method,
especially in cases where generation of samples is costly. In addition, the Kriging method is quite
flexible in the required number of initial samples which makes it superior the polynomial regression
method for which there is a requirement of having a specific number of samples.

6. Conclusions

1 GTN damage model involves 10 constants which are normally determined by costly and time
consuming experiments. It was shown in this work that the constants can be identified using a
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combined experimental/numerical/optimization technique which requires only two quasi-static
and dynamic tensile tests to be carried out. The profiles of the specimen after fracture are obtained
using a projector. The quasi-static and dynamic tests are simulated using a finite element code
and the profiles of the specimen are predicted for some sets of the constants of the damage
model. The difference between the numerical and the experimental specimen profiles is defined
as the objective function and is optimized using the polynomial regression and Kriging methods.
The constants corresponding to the optimized objective function are the answer.

2 The constants σy, εy and n of GTN model can be easily computed from the stress-strain curve
obtained simply from a quasi-static tensile test.

3 Kriging surrogate method is more efficient than the polynomial regression surrogate method in
the sense that it provides more precise results with a smaller number of initial samples.

4 It was shown that except for the constant fn the reduction in diameter of the specimen predicted
by numerical simulation was significantly sensitive to the constants f 0, fc and ff.

5 Despite the fact that GTN model is an analytical method and Johnson–Cook model is an empirical
method, they both provided the same accuracy in this work.
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