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Threshold Models of Cascades in Large-Scale
Networks

Wilbert Samuel Rossi, Giacomo Como, Member, IEEE, and Fabio Fagnani

Abstract—The spread of new beliefs, behaviors, conventions, norms, and technologies in social and economic networks are often
driven by cascading mechanisms, and so are contagion dynamics in financial networks. Global behaviors generally emerge from the
interplay between the structure of the interconnection topology and the local agents’ interactions. We focus on the Threshold Model
(TM) of cascades first introduced by Granovetter (1978). This can be interpreted as the best response dynamics in a network game
whereby agents choose strategically between two actions. Each agent is equipped with an individual threshold representing the
number of her neighbors who must have adopted a certain action for that to become the agent’s best response. We analyze the TM
dynamics on large-scale networks with heterogeneous agents. Through a local mean-field approach, we obtain a nonlinear,
one-dimensional, recursive equation that approximates the evolution of the TM dynamics on most of the networks of a given size and
distribution of degrees and thresholds. We prove that, on all but a fraction of networks with given degree and threshold statistics that is
vanishing as the network size grows large, the actual fraction of adopters of a given action is arbitrarily close to the output of the
aforementioned recursion. Numerical simulations on some real network testbeds show good adherence to the theoretical predictions.

Index Terms—cascades; social networks; threshold model; coordination game; best response; random graphs; local mean-field.

1 INTRODUCTION

ASCADING phenomena permeate the dynamics of so-
C cial and economic networks. Notable examples are the
adoption of new technologies and social norms, the spread
of fads and behaviors, participation to riots [1], [2]. Such
phenomena have been largely recognized to spread through
networks of individual interactions [1], [3], [4]. However,
in contrast to standard network epidemic models based on
pairwise contact mechanisms [5], [6] —whereby diffusion
of a new state occurs independently on the links among
the agents— complex neighborhood effects —whereby the
propensity of an agent to adopt a new state grows nonlin-
early with the fraction of adopters among her neighbors—
play a central role in the mechanisms underlying such
cascading phenomena [7], [8], [9].

One of the most studied models of cascading mecha-
nisms capturing such complex neighborhood effects is the
Threshold Model (TM) of [1]. The original work of Gra-
novetter [1] is concerned with a fully mixed population of n
interacting agents, each holding a binary state Z;(t) = 0,1,
for i = 1,...,n, and updating it at every discrete time
instant ¢ = 0,1,... according to the following threshold
rule: Z;(t + 1) = 1 if the current fraction of state-1 adopters
in the population is not less than a certain value 0, ie.,
if 37, Z;(t) > ©; and Zi(t + 1) = 0 otherwise, ie.,
if 230, Z;(t) < ©;. Here ©; € [0,1] is a normalized
threshold value that measures the reluctance of agent ¢ in
choosing state 1, equivalently, her propensity to choose state
0. In more realistic scenarios, the population is not fully
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mixed and agents interact on an interconnection network
that can be represented as a, generally directed, graph
G = (V,€) whose node set V = {1,2,...,n} is identified
with the set of agents themselves and where the presence
of a link (4,j) € & represents the fact that agent 7 observes
agent j and gets directly influenced by her state. In this
setting, the TM dynamics reads as follows:

Zi(t+1) = Lot Yjigee Zi(t) 2 Oiki
l L0 X es Zi(t) < Oiki,

where k; stands for node i’s out-degree, see, e.g., [10], [11].
This can be interpreted as the best response dynamics in a
network game whereby agents choose strategically between
two actions, 0 and 1, and their payoff is an increasing
function of the number of their neighbors choosing the same
action. A variant of the TM, that is referred to as Progressive
Threshold Model (PTM) or as Bootstrap Percolation in sta-
tistical physics, allows for state transitions from 0 to 1 only,
but not from 1 to 0, so that when an agent adopts state 1,
she keeps it ever after [12], [13], [14], [15].

As illustrated by [1], there is a simple way to analyze
the TM in fully mixed populations. If one denotes by
z(t) := 137, Z;(t) the fraction of state-1 adopters at time
t, and if F(0) := %\{z 0 9; <0}, for 0 < 0 < 1, stands
for the cumulative distribution function of the normalized
thresholds, then

2(t+1) = F(a(1)),

M

t>0. @)

Hence, the evolution of the fraction of state-1 adopters in the
population can be determined by the above one-dimesional
non-linear recursion. This is a dramatic reduction of com-
plexity with respect to the original TM dynamics whose dis-
crete state space has cardinality 2" growing exponentially
fast in the population size. In fact, an analogous result can be



verified to hold true for the PTM, provided that agents with
initial state Z;(0) = 1 are considered as if having threshold
0, which is consistent with the fact they will always keep
their state equal to 1. More precisely, if one introduces the
distribution function F() = L|{i : ©;(1 — Z;(0)) < 6}|
then the fraction z(t) of state-1 adopters in the PTM satisfies
the recursion’ z(t + 1) = F(2(t)).

In the more complex case where the population is not
fully mixed but rather interacts along a given graph G =
(V, &), the simple recursion (2) does not hold true any longer
for the fraction of state-1 adopters z(¢) in the TM (1). In
fact, for undirected (possibly infinite) graphs G and homo-
geneous normalized thresholds ©; = 6, [10] characterizes
the fixed points of the TM dynamics as those configurations
in {0,1}" whose support i C V is a #-cohesive subset of V
with (1 — 6)-cohesive complement V \ U, meaning that all
nodes in U have at least a fraction ¢ of neighbors in ¢/ and all
nodes in V \ U have less than a fraction 6 of neighbors in U.
While such a characterization provides fundamental insight
into the structure of the equilibria of the TM, finding 6-
cohesive subsets of nodes with (1 —#)-cohesive complement
in an arbitrary graph G is a computationally hard problem.
Computational complexity issues also arise in the PTM
dynamics, for which, e.g., [12] prove NP-hardness of the
selection problem of the k£ ‘most influential” nodes, i.e., the
choice of the cardinality-k subset of nodes that, if initiated
as state-1 adopters, lead to the largest set of final state-
1 adopters. Building on submodularity properties of the
number of final state-1 adopters as a function of the set of
initial state-1 adopters, provable approximation guarantees
are then provided by [12] for the k£ ‘most influential” nodes
selection problem. Such influence maximization problem
has attracted a large amount of attention recently, see, e.g.,
[16], [17] and has also been tackled in the statistical physics
literature [18], [19], [20]. Asymptotic analysis of the TM
dynamics and associated complexity issues have also been
addressed by [11].

As the aforementioned results point out, analysis and
optimization of the TM and of the PTM on general networks
is typically a hard problem. On the other hand, in practical
large-scale applications, complete information on the net-
work structure and on the specific threshold configuration
might not be available, while only aggregate statistics such
as degree and threshold distributions might be known.
With this motivation in mind, the present paper deals with
the analysis of the TM and of the PTM dynamics on the
ensemble of all graphs with a given joint degree/threshold
distribution (formally we will consider the so-called config-
uration model of interconnections, cf. [6], [21]), rather than
on a specific graph G. Our main result shows that for
all but a vanishingly small (as the network size n grows
large) fraction of networks from the configuration model
ensemble of given joint degree-threshold distribution, the
fraction z(t) of state-1 adopters in the TM dynamics can be
approximated, to an arbitrary small tolerance level, by the
solution of the recursion

w(t+1)=o(t), ylt+1)=v=t), O

1. Formally, the result follows from Lemma 2 in Section 2.
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where ¢(x) and ¢ (z) are suitably defined polynomial func-
tions that map the interval [0, 1] in itself, whose form de-
pends only on the joint degree-threshold distribution (see
(13) and (14)). An analogous result for the PTM is proved
as well, provided that agents with initial state Z;(0) = 1
are treated as if having threshold 0, equivalently, that the
functions ¢(x) and v (z) are defined based on the joint
distribution of node degrees and the product (1 — ©;)Z;(0).

Our results should be compared to the literature on
the analysis of the TM or the PTM on large-scale random
networks with given degree distribution. [13] and [22],
[23] study the asymptotic behavior of the PTM in random
undirected networks. In particular, the paper [22] focuses
on the asymptotic effect of two vaccination strategies equiv-
alent to the a priori removal of nodes, whereas the papers
[13] and [23] both rigorously provide conditions, in the
large-scale limit, for the PTM contagion to eventually reach
a sizeable fraction of nodes when started from a single
node or a fraction of nodes that is sublinear in n. [24]
present analogous results for a version of the PTM on
random weighted directed networks, proposed as a model
for cascading failures in financial networks. Building on
the approach of [13], [25] rigorously investigates how the
the presence of tighter communities in the random network
affects the extension of the final PTM contagion. In contrast
with those results, ours are concerned with approximation
of the dynamics rather than with the asymptotics of the
fraction of state-1 adopters. For the PTM, our recursive
equations are similar to the generating function approach
of [15], that is strictly accurate on tree structure and gives a
reasonably well approximation on networks without dense
loops. Our major contribution is a mathematical proof of
the approximation accuracy along the dynamic. The other
major difference is that they are not limited to the PTM
but cover also the original TM on the directed configuration
model ensemble of networks. On the other hand, it should
be stressed that our results do not extend to the analysis
of the general TM on the undirected configuration model
ensemble. In fact, as pointed out by [26], the analysis of the
TM on undirected trees presents itself additional challenges
beyond the scope of the approach proposed here.

In summary, the main contributions of this paper consist
in providing a rigorous approximation result in terms of
the output y(t) of the recursion (3) for the fraction z(¢)
of state-1 adopters in the TM and the PTM dynamics on
the ensemble of directed networks (Theorem 1) and of the
PTM on the ensemble of undirected networks (Theorem 2).
Such theoretical results are then supported by numerical
simulations on an actual large-scale network topology (see
Section 5). In the course of building up the tools for such
analysis, we also prove that the PTM can be regarded as
a special case of the TM (Lemma 2), a result of potential
independent interest.

The rest of this paper is organized as follows. The final
part of this section gathers some notational conventions
to be used throughout; Section 2 formally introduces the
TM and the PTM dynamics, proves some fundamental
monotonicity properties (Lemma 1), and builds on them to
show that the PTM can be regarded as a special case of
the TM when all agents with initial state 1 have threshold
0 (Lemma 2); in Section 3 we present our main result,



Theorem 1, which guarantees that the output y(t) of the
recursion (3) provides a good approximation of the fraction
of state-1 adopters in both the TM and PTM dynamics on
the ensemble of directed networks; in Section 4 we formally
prove Theorem 1, and extend it to the PTM dynamics on the
ensemble of undirected networks (Theorem 2) and to net-
works with time-varying thresholds; in Section 5 we present
numerical simulations on an actual large-scale network.
Notational conventions We denote the transpose of a
matrix M by M’ and the all-one vector by 1. We model
interconnection topologies as directed multi-graphs G =
(V,&) where V = {1,...,n} is a finite set of nodes repre-
senting the interacting agents and £ is a multi-set of directed
links e = (4,7) € V x V. Here, the use of the prefix multi
reflects the fact that links (7, j) directed from the same tail
node ¢ to the same head node j may occur with multiplicity
larger than 1, ie., we allow for the possible presence of
parallel links. The adjacency matrix A € R"*" of G has then
nonnegative-integer entries A;; whose value represents the
multiplicity with which link (i, j) appears in €. Observe
that we also allow for the possibility of selfloops, i.e., links
of the form (7,¢) that correspond to nonzero diagonal en-
tries A;; > 0 of the adjacency matrix. Of course, directed
graphs with no self-loops can be recovered as a special case
when A has binary entries A;; € {0,1} and zero diagonal,
whereas undirected graphs can be recovered as a special
case when the adjacency matrix A’ = A is symmetric.
In particular, simple graphs (undirected and with no self-
loops) correspond to the case when the adjacency matrix is
symmetric and has zero diagonal and binary entries. The in-
degree and out-degree vectors of a graph are then denoted
by 6 = A'l and k = A1, respectively, so that §; = >_, Aj;
and r; = }_; A;; are the in- and out-degree, respectively,
of node i. Whenever the interconnection topology contains
a link (4,j) € &€ we refer to node j as an out-neighbor of
i and to node ¢ as an in-neighbor of j. An [-tuple of nodes
10,11, .. .17 is referred to as a length-l walk from i to 4; if
(in—1,1n) € € for 1 < h <. Finally, the depth-t neighborhood
N} of a node i is the subgraph of G containing all nodes j
such that there exists a walk from i to j of length [ < ¢.

2 THE THRESHOLD MODEL OF CASCADES

In this section, we introduce the TM dynamics on arbitrary
interconnection networks. We then prove some basic mono-
tonicity properties of the TM and use them to show how the
PTM can be recovered as a special case of the TM with the
proper choice of thresholds.

Let G = (V, £) be an interconnection topology. We follow
the convention that the link direction is the opposite of the
one of the influence, so that the presence of a link (4, j) € £
indicates that agent ¢ observes, and is influenced by, agent j.
The behavior of each agenti = 1, ..., n in the TM dynamics
is characterized by a threshold value p;, € {0,1,...,k;}
that represents the minimum number of state-1 adopters
that she needs to observe among her neighbors in order

2. In fact, one could easily relax the integer constraint on the entries
of the adjacency matrix A and consider weighted graphs, whereby each
positive entry A;; stands for the weight of the link from node 7 to node
j- For the sake of simplicity in the exposition we will not consider this
generalization explicitly in this paper.
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to adopt state 1 at the next time instant. Such threshold is
related to the normalized threshold ©; € [0, 1] mentioned
in Section 1 by the identity p; = [©;%;]. The vector of all
agents’ thresholds is then denoted by p € R". In order to
introduce the TM dynamics, we are left to specify an initial
state 0; € {0,1} for every agent i. Let the vector of all
agents’ initial states be denoted by ¢ € {0, 1}". We will refer
to a network as the 4-tuple N = (V, €, p, o) of a set of agents
V), a multiset of links &, a threshold vector p, and a vector
of initial states 0. The TM on a network N' = (V, &, p, o)
is then defined as the discrete-time dynamical system with
state space {0, 1}" and update rule

Lif >0 AiZ;(t) = ps

fort >0andi=1,...,n.

Remark 1. The TM can be interpreted as the best response dy-
namics in so-called semi-anonymous network games with strategic
complements [27], whereby the agents i € V have utilities that
are increasing functions of the number of their out-neighbors
taking the same action. E.g., [2], [10], [23] consider best response
dynamics for network coordination games where agents i choose
their binary action Z; € {0, 1} so as to maximize their utilities

UZ(ZZ, Z,Z) = aiZZ- Zj Aiij +bl(1 — Zz) Zj Azg(]- - ZJ) s

where Z_; is the vector of all but agent i’s actions and a; > 0 and
b; > 0 are constants. In such games, it is easy to verify that the
best response dynamics is given by (4) with p; = k;b;/(a; + b;).

The following lemma captures some basic monotonicity
properties of the TM dynamics that prove particularly use-
ful in its analysis. In stating and proving it we will adopt the
notational convention that an inequality between vectors is
meant to hold true entry-wise.

Lemma 1. Let N = (V,&,p,0) and NT = (V,E,p,0™) be
two networks differing only (possibly) for the initial state vector.
Let Z(t) and Z*(t) be the state vectors of the TM dynamics (4)
on N and N'*, respectively. Then,

() ifot >0, then ZT(t) > Z(t) forall t > 0;
(i) if pi < (1 —0y)k; for all i, then Z(t) is non-decreasing
in t, hence, in particular, it is eventually constant.

Proof. (i) Let A be the adjacency matrix of A/ and N'T.
Observe that, since A is nonnegative, if Z7(t) > Z(t) for
somet > 0,then AZT(t) > AZ(t)and Z+(t+1) > Z(t+1)
(as Z; (t+1) = 0 implies > AigZi(t) <325 Aiij*(t) < pi
so that Z;(t + 1) = 0). The claim follows by induction on t.

(i) Let Z(0) = o and Z+(0) = ot = Z(1). Observe
that, if p; < (1 — 0;)k; for every 4, then for all those ¢ such
that Z;(0) = 0; = 1 one has p; = 0 < 37, A4;;Z;(0) so that
o = Z;(1) = 1. Hence, necessarily o+ = Z(1) > o. It then
follows from (i) that ZT(¢t) = Z(t + 1) > Z(t) for all t > 0,
i.e., Z(t) is non-decreasing, hence eventually constant. [

We now introduce a variation of the TM known as
Progressive TM (PTM), whereby only state transitions from
0 to 1 are allowed, but not from 1 to 0. Formally, the PTM



on a network N' = (V, &, p, o) is defined by the following
recursive relations

Zl(O) =0;,
LVif 35, A7) = (1= Zi(t)ps  (5)
Zilt+1) :{ 0 X, AiZ(t) < (1= Zi(t)ps

valid fort > 0 and i = 1,...,n. Observe that in the PTM
dynamics the state update rule of every agent ¢ depends
on her own current state, regardless of the presence of self-
loops in the network. This is in contrast with the TM update
rule, whereby the new state of every agent ¢ such that
Aji = 0 depends on the current state of its out-neighbors
only and not on itself. In spite of these differences, the
following result shows that the PTM dynamics coincides
with the TM provided that agents with initial state 1 are
treated as if having effective threshold 0.

Lemma 2. The PTM dynamics (5) on a network N =
(V, &, p, o) coincide with the dynamics defined by

Zl(O) =04,

Zi(t+1) :{ Lif 305 A4i25(t) = (L —ai)pi 6)

. >0.
0if >, A Zi(t) < (A —oi)pi ~ —
fori=1,...,n. Inparticular, if p; < (1—0;)k; foreveryi € V,
then the TM dynamics (4) and the PTM dynamics (5) coincide.

Proof. Let us denote by Z(t) and Z(t) the state vectors
generated by the recursions (5) and (6), respectively. It
follows from applying part (ii) of Lemma 1 to the network
N = (V,&,p,0) where p; = pi(1 — 0;) that Z(t) is non-
decreasing in ¢. On the other hand, Z(t) is non-decreasing
by construction, since only transitions from 0 to 1 are
allowed by (5) but not the other way around. Now, we
shall proceed by an induction argument, assuming that
Z(s) = Z(s) for s = 0,1,...,t and showing that then
Z(t+1) = Z(t+1). For all those 7 such that Z;(t) = Z;(t) =
0 monotonicity of Z(t) implies that o; = Z;(0) < Z;(t) = 0
and therefore the updates in (5) and in (6) coincide, yielding
Zi(t + 1) = Z;(t + 1). On the other hand, for all those i
such that Z;(t) = Z;(t) = 1, monotonicity implies that
Zit+1) > Zi(t) = land Z;(t +1) > Z;(t) = 1 so
that Z;(t + 1) = Z;(t + 1). This proves the first claim. The
second part of the Lemma simply follows from the fact that
pi <(1—o0;)k;and 0; € {0,1} imply (1 —0;)p; = p;. O

Lemma 2 is particularly significant in that it implies that
the study of the PTM dynamics (5) can be reduced to that
of a special case of the TM dynamics (4), where all agents
with initial state o; = 1 have threshold p; = 0. Observe
that, if an agent ¢ has threshold p; = 0, then her state in
the TM dynamics (1) satisfies Z;(t) = 1 for ¢ > 1. Hence,
it is intuitive that, for the TM dynamics to coincide with
the PTM ones, agents with initial state o; = 1 should have
threshold p; = 0, so that they will keep their state equal to
1 throughout the process. The less intuitive and deeper part
of Lemma 2 consists in showing that the condition that all
agents with initial state o; = 1 have threshold p; = 0 is
also sufficient for the state Z;(t) of all other agents —i.e., of
those ¢ with initial state o; = 0— to have the same dynamics
under both the TM (1) and the PTM (5) update rules, hence,
in particular, to switch at most once — from state Z;(t) = 0
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to Z;(t+1) = 1 but never from Z;(t) = 1 to Z;(t+1) = 0.In
fact, this is nothing but the statement of part (ii) of Lemma 1,
which is turn a consequence of the monotonicity properties
of the TM dynamics stated in part (i) of Lemma 1.

3 MAIN RESULT

As mentioned in Section 1, the TM on a complete network
lends itself to a simple analysis enabled by the fact that
the fraction of state-1 adopters z(t) = 13, Z;(t) evolves
according to the one-dimensional recursion (2), where F' is
the cumulative distribution of the normalized thresholds
across the population [1]. While such a one-dimensional
recursion does not hold true for the TM dynamics on general
networks, the main contribution of this paper consists in
showing that the fraction of state-1 adopters z(¢) in the TM
and the PTM dynamics on most directed networks can be
approximated in a quantitatively precise sense by the output
y(t) of another one-dimensional recursion of the form

w(t+1)=¢(x(t), ylt+1)=v@@), @)

where (cf. (13) and (14)) ¢(x) and ¥ (z) are polynomials
with nonnegative coefficients that depend on the network’s
statistics p defined below. In this section, after introducing
the notation for the network’s statistics, we provide the
expression of the recursion (7), introduce the directed ver-
sion of the configuration model ensemble of interconnection
and enunciate the main result. We postpone to Section 4
the formal derivation of the recursion and the intermediate
results that form the proof of the main theorem.

Throughout, we will use the following notation. For a
network ' = (V, &, p, o) of size n,

1
Pikrs = HieV:d =d ri=k, pi=r 0,=s5}, (8

ford >0, 0 <r <k, s=0,1 stands for the fraction of
agents having in-degree d, out-degree k, threshold r, and
initial state s and

= 1
l'_zievéi_zievm’ d_ﬁ’
denote the network’s total and average degree, respectively.
We refer to p = {pa k. rs} as the network’s statistics and let

Dk,r = Z Z Dd,k,rys » Qo = %Z Z dpg kr,s s

d>0 s=0,1 d>0 s=0,1
)

for k,r > 0, be the fractions of agents and, respectively, of
links pointing to agents, of out-degree k and threshold 7.
Moreover, let

vi= Z Z Zpd,k,r,l )

d>0k>07r>0

£= =3 5 dpas

d>0k>07r>0
(10)

be the fractions of agents and, respectively, of links pointing
towards agents, with initial state o; = 1.

3.1 A heuristic derivation of the recursion

In order to get a quick, not thorough yet intuitive derivation
of the recursion (7), consider the following random network
dynamics with state vector Y (¢) € {0,1}™ whose initial
state is Y (0) = o and whereby, at each time ¢ > 0, agents



i € V select k; agents Ji,...,J. independently at random
from the population with probability P(.J} = j) = §;/l and
update its state as Y;(t + 1) = 1if 3 ocpc,, Yii (8) = pi
and as Yi(t + 1) = 0if 3 ocp<,, Yii (t) < pi. Let y(t) =
L5 Yi(t) and z(t) = § 32, 6;Y;(t) be the fractions of state-
1 adopters and links pointing towards state-1 adopters,
respectively. It is immediate to verify that

z(0)=¢,  y(0)=wv.

On the other hand, if I is a random agent selected from V
with uniform probability P(I = i) = 1/n, then

Ely(t+ DY (8)] = P(Yr(t + 1) = 1[Y ()

=3 B (Shoav () 2 ()

(11

k>07>0
=3 e Y (ALY =Y ()
k>0 7r>0 r<u<k
= Z Zpk,rwk,r(x(t)) = (x(t)),
kE>07r>0
where
k

0<r<k, (12)

B
b(x):= Z Zpk,rwk,r(x) ,

k>017r>0

(13)

and the fourth identity above follows from the fact that,
conditioned on Y'(t), the Y} (¢) are independent Bernoulli
random variables with P(Yj: (t) = 1|Y(t)) = x(t). An
analogous computation shows that, if M is a random agent
selected with probability P(M = m) = 4,,/, then

Elz(t + DY (1)] = P(Vu(t +1) = 1Y (1))
= Z ZQ’WP (ZZ:1YJ% (t) > T\Y(t))

E>01r>0

=3 e 2 B(ShaYou ) =Y ()
k>07r>0 r<u<k

=D qrrna(a(t) = dla(t),
kE>01r>0

where
o) =D ) qrrprr(@), (14)
k>07r>0

and in the second identity we used the fraction gy, of links
pointing to agents of out-degree k and threshold r.

While the above computations are merely concerned
with the conditional expected fractions of state-1 adopters,
and links pointing towards state-1 adopters, in the random
network dynamics Y'(¢), the output y(¢) of the recursion
(7) with initial condition (11) does in fact provide a good
approximation of the evolution of the fraction of state-1
adopters for the actual TM dynamics (1) on most of the
networks with given statistics p.

3.2 Formal statement of the main result

We start by introducing the configuration model ensem-
ble C,p of all networks with given size n and compat-
ible statistics p. We refer to p and n as compatible if
NPak,rs 1S an integer for all non-negative values of d, k,

Fig. 1. The Configuration Model, with each node represented twice, on
the left and on the right side of the picture. The picture contains the link
(A(h),v(m(h))) and a few other dashed links.

0<r <k and s € {0,1}. We construct a random network
N = (V,&,p,0) of compatible size n and statistics p as
follows. Let V = {1,...,n} be a node set and let 0, &,
p, and o be a designed vectors of in-degrees, out-degrees,
thresholds, and initial states, such that (8) holds true, i.e.,
there is exactly a fraction pgq s of agents i € V with
(8i, ki, piy0;) = (d,k,7,5). Let | = dn be the number of
directed links, put £ = {1,2,...,l}, and let v,\ : L — V
be two maps such that [v=1(i)| = &; and [A71(i)| = &;.
Then, let 7 be a uniform random permutation of £ and let
the network N = (V, &, p, o) have node set V, link multiset
&€ = {(A(h),v(m(h)))}1<n<i, threshold vector p, and initial
state vector o. Figure 1 illustrates the above construction.
We refer to such network N as being sampled from the
configuration model ensemble C,, 5.

The next theorem is our main contribution. It guarantees
that the fraction of state-1 adopters z(t) after a finite number
of iterations of the TM dynamics (4) is arbitrarily close to
the output y(¢) of the recursion (7) on all but a fraction of
networks in C,, ,, that vanishes as n grows large.

Theorem 1. Let N be a network sampled from configuration
model ensemble C,, p, of size n and statistics p. Let Z(t), fort > 0
be the state vector of the TM dynamics (4) on N, let z(t) =
L5 Zi(t), and let y(t) be the output of the recursion (7). Then,
for e > 0and n > 7, /e where v, = dmaxk2L53 /d, it holds true

|2(t) —y(t) < e

for all but at most a fraction 2= fn of networks N from the

configuration model ensemble C,, ,, where 3 = (32dd2t,,) 1.

While the proof of Theorem 1 is postponed to Section 4,
we conclude this section with a few remarks.

Remark 2. While Theorem 1 is stated for the TM dynamics, it
follows from Lemma 2 that the same result remains valid for the
fraction of state-1 adopters in the PTM dynamics as long as

Dd,kr1 =0, d>0, 1<r<k, (15)

ie., when p; < k;(1—0o;) for all agents i € V, so for those nodes
with o = 1 it is required that p; = 0 to exclude any switch to
state-0. Two further important extensions of Theorem 1 to time-
varying thresholds and, respectively, the undirected configuration
model will be discussed at the end of Section 4.

Remark 3. While proving a bound for finite-size networks,
Theorem 1 readily implies that, for sequences of networks whose



network statistics converge to a given limit as the network size
grows large, the fraction of state-1 adopters in the TM on the
configuration models ensemble concentrates around the output of
the recursion (3) associated to such limit network statistics for
finite values of t, provided that the maximum in- and out-degrees
remain bounded or grow slower than n*/?Y) as n, grows large. As
numerical simulations suggest that the result might remain true
also for faster growth rates of the minimum and maximum degree,
extensions of our result in this direction remain an interesting
research question.

Remark 4. Theorem 1 provides an approximation result for
possibly large but finite values of t (if one considers sequences
of networks of increasing size, the result applies up to values of
t growing at most as logn/(21og dmax)). In fact, by combining
Theorem 1 with techniques for the exchange of limits in t and
n such as those in [28] would allow to show that with high
probability as the network size grows large, the asymptotic fraction
of state-1 adopters in the configuration model ensemble with
bounded maximum degree concentrates on the set of all stationary
points of the recursion (3). When (3) has a unique (globally
attractive) stationary point, concentration is guaranteed in that
point for every initial fraction of state-1 adopters. When (3) has
multiple stationary points, this approach does not allow one to
relate the initial fraction of state-1 adopters to the highly probable
limit and more ad-hoc techniques should be used to prove it
(see, e.g., [23], [24], [29]). It should noted, however, that from a
practical viewpoint our numerical simulations reported in Section
5 suggest that the asymptotic behavior of the recursion (3) still
provides a very good indication of the asymptotic behavior of the
TM on finite-size networks.

Remark 5. Theorem 1 states that for all but an exponentially
small fraction of networks from the configuration model ensemble
the fraction of state-1 adopters in the TM can be approximated by
the output of the recursion (3), see for example the simulations
in Figure 2. In fact, our numerical results reported in Section
5, strongly suggest that such approximation remains valid not
only for artificial networks sampled from the configuration model
ensemble, but for actual large-scale social networks.

4 PROOFS AND EXTENSIONS

This section is devoted to the proof of Theorem 1 and
to two extensions. In Section 4.1 we introduce a different
random graph model with rooted tree structure, the two-
stage branching process Tp, and show that the output y(t) of
the recursion (7) gives the exact expression of the expected
value of the root node’s state in the TM dynamics (4) on
Tp- In Section 4.2, we consider the configuration model C,, 5,
and prove that, after ¢ iterations of the TM dynamics (4)
on the configuration model ensemble, the average fraction
Z(t) of state-1 adopters is arbitrarily close to y(t), i.e., the
expected value of the root node’s state on 7,. Then, a
concentration result is obtained, showing that on most of
the networks in C,, p, the fraction z(t) of state-1 adopters
after ¢ iterations of the TM dynamics is arbitrarily close to
its average Z(t), hence to the output y(t) of the recursion
(7). Finally, Section 4.3 extends Theorem 1 to the PTM on the
undirected configuration model ensemble and to networks
with time-varying thresholds.

—2z(t) simul. 7
--ey(t) = (1) |

t

8 10 12 14 16

Fig. 2. Simulations comparing the dynamics of the fraction of state-1
adopters z(t) in the TM (4) (blue solid lines) with the output y(¢) of the
recursion (7) (dashed red lines). The synthetic random networks have
n = 2000 nodes, each with in-degree d = 7, out-degree k = 7, and
threshold » = 3. The recursion reduces to y(¢t + 1) = z(¢t + 1) =
7,3(x(t)) with v = £ The initial conditions are such that v = 0.246
or v = 0.266. The corresponding simulations converge to zero or one,
respectively: in both case the recursion captures the behavior and timing
of the simulated dynamic. The theoretical predictions are less accurate
if v is chosen very close to 0.256: the simulations z(t) return close to
the recursion y(t) if the network size n is increased. The values of z(T")
for large T and various initial conditions can be compared with the limit
of the recursion output, for the same synthetic networks. If v is not very
close to 0.256, the predicted limit always matches the simulations.

K3

Fig. 3. A directed two-stage branching process 7 with root node vg. The
triples (K, Ry, Sh), for b > 0, of the agents’ outdegrees, thresholds,
and initial states are mutually independent and have distribution (16) and
(17). The state X, (¢) of the root node at time ¢ > 0 is a deterministic
function of the initial states S; of the agents j in generation ¢.

4.1

In this subsection we first introduce a random graph model
with rooted directed tree structure, to be referred to as
the two-stage branching process 7p,. Then, we provide a
complete theoretical analysis of the TM dynamics on 7, that
will be the basis for then analysing, in the next subsection,
the configuration model ensemble C, , which exhibits a
local tree-like structure.

Let p be the network statistics with average degree d and

1
dk,r,s = ﬁ Z dpd,k:,ns P
d>0

The TM on the two-stage branching process

Pk,r,s = Zpd,k:,r,sa
d>0

for 0 < r < k, s = 0,1, be the fractions of agents
and, respectively, of links pointing to agents, of out-degree
k, threshold r, and initial state s. In order to define the
associated two-stage branching process 7,, we start from
a root node vg and randomly generate a directed tree graph



according to the following rule (compare Figure 3). First, we
assign to the root node vy a random out-degree x,, = Ko,
threshold p,, = Ry and initial state o,, = Sp such that the
triple (Ko, R, So) has joint probability distribution

P(KO = k, RO =T, S() = 8) (16)

for 0 < r < k and s = 0,1. Then, we connect the root
node vy with K, directed links pointing to new nodes
v1,...,VK,, and assign to each such generation-1 node vy,
1 < h < K, out-degree k,, = Kj, threshold p,, = Rp,
and initial state o, = S}, such that the triples (K}, Ry, Sh)
are mutually independent, independent from (Ko, Ry, So),
and identically distributed with

P(Kp =k, Ry =7,5, = 5) = Qs (17)

for 0 < r < k and s = 0,1. We then connect each of the
generation-1 nodes v, with K}, directed links pointing to
distinct new nodes, and assign to such generation-2 nodes
VJ+1y -3 U]y, where J; = Ky and Jo, = ZOSjSJl Kj,
out-degree k,, = Kjp, threshold p,, = Rp, and initial
state 0,, = S) such that the triples (Kp, Rp,Sy), for
Ji +1 < h < Jj, are mutually independent, indepen-
dent from (Ko, Ry, So), - ., (K, Ry, Sy ), and identically
distributed with ]P(Kh = kR, = 1,85, = S) = Qk,r,s
for k > 0,0 < r <k and s = 0,1. We then keep on
repeating the same procedure over and over, thus generat-
ing, in a breadth-first manner, a possibly infinite random
tree network 7, with node set V = {vg, v1, ...}, thresholds
Puos Pos s - - - and initial states o, 04,,.... For t > 0, we
let 7p: be the finite random tree network obtained by
truncating 7, at the ¢-th generation. Observe that the specific
realization of the two-stage branching process is uniquely
determined by the sequence of mutually independent triples
(Ko, RQ, S())7 (Kl, Rl, Sl), (Kz, RQ, SQ) ey which are dis-
tributed according to P(Ky = k,Ryp = r, S0 = 8) = Pk.rs
and P(Kj, = k,R;, =7,5, = $) = qgr,s for h > 1.

The following result shows that the state x(t) and output
y(t) of the recursion (7) coincide with the exact expected
states of the TM dynamics on 7,. Observe that the TM
dynamics (4) is a deterministic process, hence the only
randomness concernes the generation of 7.

= pk,r,s 9

Proposition 1. Let p be the network statistics and T, =
(V,E,p,0) be the associated two-stage branching process with
node set V = {vg, v1, ...}, where vy is the root node. Let Z(t),
for t > 0, be the state vector of the TM dynamics on Tp, and let
x(t) and y(t) be respectively the state and output of the recursion
(7). Then, for every fixed time t > 0, the following holds:

(i) For every i € V), the states {Z;(t)};. i jyees of the
offsprings v; of v; in Ty are independent and identically
distributed Bernoulli random wvariables with expected
value x(t);

(i) Thestate Z,,(t) of the root node vy is a Bernoulli random
variable with expected value y(t).

Proof. (i) First notice that the state Z;(t) of any node i € V
is a deterministic function of the threshold and of the initial
states of the descendants of node 7 in T, up to generation ¢.
It follows that, given any two non-root nodes j,! € V\ {vg},
Z;(t) and Z;(t) are Bernoulli random variables with iden-
tical distribution, since the two subnetworks of their de-
scendants are branching processes with the same statistics.

7

Moreover, for every node i € V, let N; be the set of its
out-neighbors in 7, and observe that the variables Z;(t),
for j € N;, are mutually independent since each pair of the
subnetworks of their descendants have empty intersection.
Let ((t) = E[Z;(t)], 7 € V \ {vo}, be the expected value of
all these r.v.’s. For any 7 € V and j € N, (4)) implies that

Ct+1) =P (XhepAnZn(t) > pj)
- Z Z qk,rI[D (ZheN]Zh(t) >r ’ k?j = k7 pj = 7«) .

k>00<r<k

Now, observe that the conditional probability in the right-
most summation above is simply the probability that a
sum of k independent and identically distributed Bernoulli
random variables having mean ((t) is not below the thresh-
old r. Therefore, such conditional probability is equal to
@k, (C(t)). Substituting we get

CE+D) =D D arrprr(C() = o(C(1)).
k>00<r<k
Since ¢(0) = P(Z;(0) = 1) = P(o; = 1) = z(0), it follows

that ((t) :Z( t) for every t > 0.
(ii) Put v(t) = E[Z,,(t)]. Then, (4) and point (i) yield

V(t + 1) = P(ZhevAvthh(t) > pvo)
= Z Z pk,T]P)(ZheNUO Zn(t) = pog | koo =k, pu, = T)
k>00<r<k
=Y > perere(C) =0 (1),
k>00<r<k
thus completing the proof. O

4.2 The TM on the configuration model

We analyse, in this subsection, the configuration model
ensemble C,, , introduced in Section 3 and prove Theorem 1.

Lemma 3. Let N be a network sampled from the configuration
model ensemble C,, p, of compatible size n and statistics p. For
t > 0, let N; be the depth-t neighborhood of a node in N
chosen uniformly at random from the node set V, and let iy, its
probability distribution. Let Ty, ; be a two-stage branching process
truncated at depth t, and let T, be its distribution. Then, the
total variation distance ||y, — o7, , || v between i, and pr,
satisfies
'Yt dmdxkifjf

HMM ,qutHTV =5, Ve = 7{1 ,

where dyax = max{d >0 : Zkﬂ._s Pd.k,r,s > 0} is the maxi-
mum in-degree and kyax = max{k > 0: >, Pdkrs > 0}
is the maximum out-degree.

Proof. We will construct a coupling of the configuration
model C,, , and the two-stage branching process 7 such that
the depth-t neighborhood A; of a uniform random node in
N and the depth-t truncated branching process T, ; satisfy
P(N: # Tpt) < vi/n. The claim will then follow from the
well-known bound ||pa, — pr,,||7v < P(N; # Tp,e) valid
for every coupling of N and 7, ; (cf. [30, Proposition 4.7]).

In order to sample a network N from C, , and define
the coupling altogether, let us assign in-degree d;, out-
degree k;, threshold p;, and initial state o; to each of the
n nodes ¢ € V in such a way that there are exactly npg i r s



nodes of in-degree d, out-degree k, threshold r, and initial
state s. Let | = nd = 1’5, L = {1,2,...,1}, and let
v : L — V be a map such that [v71(i)| = §;. Let wo be a
random node chosen uniformly from V, and let Koy = Ky,
Ro = puw, and Sy = oy, be its out-degree, threshold,
and initial state, respectively. Let (Ly,)p=1,2,... be a sequence
of mutually independent random variables with identical
uniform distribution on the set £ and independent from wy.
Let (M},)p=1,2,...; be a finite sequence of L-valued random
variables such that, conditioned on wqy, Li,...,L; and
Ml, ey thl, one has Mh = Lh if Lh ¢ {Ml, ey thl}/
while, if L, € {Ma,...,My_1}, My, is conditionally uni-
formly distributed on the set £\ {Mj, ..., M,_1}. Notice
that the marginal probability distributions of the two se-
quences (Lp)p=12,.. and (Mp)p=1,2...; correspond to sam-
pling with replacement and, respectively, sampling without
replacement, from the same set £ (note that (Mp)p=1,2,.
represents a permutation on £). Moreover, for 1 < h </,

~|=>

P(Lnt1#Mpya|(La, ..., L) = (My, ..., My)) < —. (18)

Let 7,: be the random directed tree whose root v
has out-degree K, threshold Ry and initial state Sy, and
that is then generated starting from vy in a breadth-first
fashion, by assigning to each node vy, h > 1 at generation
1 < u <t out-degree Kj, = k,(r,), threshold Ry, = p,(r,)
and initial state S, = o0,(1,). Observe that the triples
(Kp, Ry, Sp) for h > 0 are mutually independent and have
distribution P(Ky = k,Ry = 1,5 = S) = pgrs and
P(Kh =k, Ry = 1,5, = 3) = %Zd dpd,k,r,s = dk,r,s for
h > 1. Hence, 7p: generated in this way has indeed the
desired distribution p7, ,.

On the other hand, let the network N, and hence N, be
generated starting from wp and exploring its neighborhood
in a breadth-first fashion. First let the Jy = Kj outgoing
links of vy point to the nodes v; = v(My),...,v5, =
v(My,); then let the J; links outgoing from the set
{v1,-..,v5,} \ {vo} of new out-neighbors of vy point to
the nodes v(Mj,41),...,v(Mj,+4,); then let the Jy links
outgoing from the set {vj,+1,---, Vsg+ } \ {vo,v1,... v}
point to the nodes v(My,+7,41),---,V(Mjy4+s,+.0,), and
so on, possibly restarting from one of the unreached
nodes in V if the process has arrived to a point where
Ju = 0 and Y ., Jn < ! (so that not all nodes have
been reached from vg). Now, let H; = >, <;_; Ju and
N = [{vo,v1,...,vm,}| be the total number of links and,
respectively, nodes in N;. Observe that N; is a directed tree
if and only if N; = H; 4 1, which is in turn equivalent to
v(My) #v(Mp) #wo forall 1 <h < h/ < N,.

If we define the events

Eh = {(Ll,...,Lh):(Ml,...,Mh)},
Fh+1 = V(Mthl) S {’(1)071/(M1),. . .,V(Mh)},

we notice that, for 0 < h < |,

(h+1)(dmax—1) +1 .

P(Fy41|En and Lyy1=Mp41) < i

The above together with (18) gives

Sh :=P(Lps1 # Mpqq or Fry1|Ep)
=P(Lpt1 # Mpi1|Ep)
+]P(Lh+1 = Mh+1 and Fh+1’Eh)
< P(Lp+1 # Mps1|Ep) + P(Fri1|En)
-1 l - l
The key observation is that, upon identifying node v}, €
N with node wy, € Tpy forall 0 < h < Ny, in order for
N # Tp it is necessary that either Ny # H; + 1 (in which
case M, is not a tree) or (L1,...,Ly,) # (My,...,Mpy,)
(in which case the nodes v;, and wj, might have different
outdegree, threshold, or initial state). In order to estimate

the probability that any of this occurs, first observe that a
standard induction argument shows that .J,, < k%F! for all

u>0,s0 that Hy < 3oy kit < k5EL. Then,
kf]j;;(—l
PN: £ Tpe) < P U ERUE < Y
1<h<H, h=0
K t4+1 (41
< Za dnlaxh — dmaxkn;;x(lin;;x J’» 1)
Zzl l 2nd
g Ll
2nd
Hence, the claim follows from the above and the afore-
mentioned bound on ||ux;, — p7,,, ||Tv O

As a consequence of Lemma 3, we get the following.

Proposition 2. Let N be a network sampled from the configu-
ration model ensemble C,, p, of compatible size n and statistics p.
Let Z(t), for t > 0, be the state vector of the TM dynamics (4) on
N, z(t) = L3, Zi(t) be the fraction of state-1 adopters at time

t, and Z(t) = E[z(t)] be its expectation. Then,

- Tt
t)—y(t) < =—
=)~y < 2L
where y(t) is the output of the recursion (7) and ~; =
dmaxk?E3 /d as in Lemma 3.

max

Proof. Observe that, in the TM dynamics, the state Z;(t) of
an agent 7 in a network N' = (V, &, p, o) is a deterministic
function of the initial states Z;(0) = o; of the agents j
reachable from ¢ with ¢ hops in NV and of the thresholds
pi. of the agents k reachable from ¢ with less than ¢ hops in
N In particular, if N{ is the depth-t neighborhood of node i
in V, then Z;(t) = x(N}), where x is a certain deterministic
{0,1}-valued function. It follows that, if A/ is a network
sampled from the configuration model ensemble C,, p,, NV; is
the depth-t neighborhood of uniform random node in N,
and pp, is its distribution, then

o) =E [i )

%

_ / X(@)dps, ().

On the other hand, it follows from Proposition 1 that, if
Tp.+ is a two-stage directed branching process with offspring
distribution py s = >.;Pdkrs for the first generation
and gy r s = % Y >0 APd,k,r,s for the following generations,



truncated at depth ¢, and M7, , is its distribution, then the
output y(t) of the recursion (7) satisfies

y(0) = [ Xw)dpr, (@),

It then follows from the fact that x is a {0, 1}-valued random
variable and Lemma 3 that

2(t) — y(2)|
‘/ 2) diai (@) - /(X(w)—%)dun,t(m

Y
— 1, v < o

thus completing the proof. O

< |lpns

The following result establishes concentration of the
fraction of state-1 adopters in the TM dynamics on a random
network drawn from the configuration model ensemble and
its expectation.

Proposition 3. Let n and p be compatible network size and
statistics. Then, for all € > 0, for at least a fraction

1—2e7 =" with B = (32dd*

max)

of networks N from the configuration model ensemble C,, ,, the
fraction of z(t) = L 3.\, Zi(t) of state-1 adopters in the TM
dynamics (4) on N satisfies

2(t) —2()] < /2,
where Z(t) is the average of z(t) over the choice of N from Cy, p.

Proof. Leta(t) = nz(t) = Y_;cy Zi(t) be the total number of
agents in state 1 at time ¢ in the network /' drawn uniformly
from the configuration model ensemble, and let a(t) = nz(¢)
be its average over the ensemble. In order to prove the result
we will construct a martingale Ag, A1, ..., A;, where | = nd
is the total number of links, such that Ay = a(t), 4; = a(t),
and

2d},

max

Ap — Ap_1| < ——fmax
| h h1|_a7 dmax_l’

o=

(19)
The result will then follow from the Hoeffding-Azuma in-
equality [31, Theorem 7.2.1] which implies that the fraction
of networks from the configuration model ensemble for

which |4y — 4;| > n = ne/2 is upper bounded by

2 2
7 ne
2 — =2 ——
P < 21@2) P ( 8da2>
2
= 2exp (f ne

<2 exp(—EQﬁn) ,

32dd2!

max

where 3 = (32dd?,, ).

In order to define the aforementioned martingale, let

= {1,2,...,1} and recall that the configuration model
ensemble is defined starting from in-degree, out-degree,
threshold, and initial state vectors 6, k, p, 0 € R™ with em-
pirical frequency coinciding with the prescribed distribution
{Pd.k.rs} and two maps v, X : L — V such that [v~1(i)| = §;
and |[A\71(i)] = k; for all i € V. The ensemble is then
defined by taking a uniform permutation 7 of the set £

9

and wiring the h-th link from node A(h) to node v(7w(h))
for h = 1,...,1. Let mpp) = (7(1),7(2),...,m(h)) be the
vector obtained by unveiling the first i values of 7. Then,
define Ay, = Ela(t)|mp)], for h = 0,1,...,1 and observe
that Ao, A1,..., 4; is indeed a (Doob) martingale, generally
referred to as the link-exposure martingale. It is easily
verified that Ag = E[a(t)] = a(t) and A; = E[a(t)|7] = a(?).
What remains to be proven is the bound (19). For a
given h = 1,...,[, let ™ be a random permutation of £
which is obtained from 7 by choosing some j uniformly at
random from the set £\ {m(1),...,m(h — 1)} and putting
7(h) = j and 7#(7~1(j)) = w(h), and 7 (k) = 7(k) for all
k € £\{h,7~1(j)}. Notice that 7 and 7 differ in at most two
positions, h and 7~ 1(j) > h, the latter inequality following
from the fact that j € £\ {n(1),...,7(h — 1)}. Hence, in
particular, 7j;,_1; = 7[p_1]- Moreover, T and 7 have the
same conditional distribution given ;_) (since they both
correspond to choosing a bijection of {h,h + 1,...,l} to
L\ A{r(1),...,7(h — 1)} uniformly) and 7 is conditionally
independent from 7, given 7(;,_1). Therefore,

An = Anoy = ELAW®) Imp) — E [A®) |-
— E[A(®lmp] ~ Bl
— E[A(®) — AWy, 0)

forallh=1,...,L.

Now, observe that the value of 7(h) affects the depth-t
neighborhoods of the node A(h), of its in-neighbors, the in-
neighbors of its in-neighbors and so on, until those nodes
from which A(h) can be reached in less than ¢ hops, for a
total of at most

Z dmax -

nodes in N . Analogously, the value of j affects the depth-
t neighborhoods of the node A(7~1(j)) as well as its in-
neighbors, the in-neighbors of its in-neighbors and so on,
for a total of less than ¢ nodes in V.. It follows that, if A(t) =
S Zi(t) where Z(t) is the state vector of the TM dynamics
on the network N associated to the permutation 7 in the
configuration model, then |A(t)—A(t)| < 2c. It then follows
from (20) and the above that

|Ap — An1| < )E ) -
<E[|A®)

-1 dt

max

dmax - 1

max

=C
m'}xil

)] |
—A t)||7r[h]} < 2c.

which proves (19). The claim follows from the Hoeffding-
Azuma inequality as outlined earlier. O

By combining Propositions 2 and 3 we get the proof of
Theorem 1, which was stated at the end of Section 3.

Proof of Theorem 1. Proposition 3 1mphes that |z(t) — z(¢)| <
/2 for all but at most a fraction 2e ¢ *An of networks from
the configuration model ensemble C,, ,,. On the other hand,
Proposition 2 implies that [Z(t) —y(t)| < e/2forv < ne. O

4.3 Extentions

We conclude this section by discussing how Theorem 1 can
be extended to including two variants of the model: undi-
rected configuration model and time-varying thresholds.



4.3.1 The PTM on the undirected configuration model

While Theorem 1 concerns the approximation of the average
fraction of state-1 adopters in the TM dynamics for most
networks in the directed configuration model ensemble
Cy p, for the PTM only the result can be extended to the
undirected configuration model ensemble as defined below.

Let ug s = Prkrs for k>0,0<r <k ands € {0,1},
denote the fraction of agents of degree k, threshold r and
initial state s in an undirected network. We shall refer to
u = {ug,s} as undirected network statistics. A network
size n and undirected network statistics « are said to be
compatible if nuy s is an integer for all 0 < r < k and
s =0,1,and I = 3 350> 0<pr<k Ds—0,1 KUk i even.
For compatible undirected network statistics u and size n,
let V = {1,...,n} be a node set and let «, p, and o be
designed vectors of degrees, thresholds, and initial states,
such that there is exactly a fraction uy s of agents ¢ € V
with (ki, pi,00) = (k,r,s). Put £ = {1,2,...,1}, and let
A : £ — V be a map such that [\71(i)| = ; for all agents
i € V. Let 7 be a uniform random permutation of £ and let
the network A = (V, &, p, o) have node set V, link multiset
£ = {(A(r(2h — 1)), A(m(2h))), (A\(T(2h)), A(m(2h — 1)) :
1 < h < 1/2}, threshold vector p, and initial state vector o.
Observe that, for every realization of the permutation 7, the
resulting network N is undirected, has size n and statistics
u. We refer to such network A as being sampled from the
undirected configuration model ensemble M, ,,.

The key step for extending Theorem 1 to the PTM dy-
namics on undirected configuration model ensemble M,, ,,
is the following result showing that the PTM dynamics on a
rooted undirected tree coincides with PTM dynamics on the
directed version of the tree.

Lemma 4. For every network T = (V, &, p, o) with undirected
tree topology and every node i € V), the state vector Z(t) of the
PTM dynamics (5) on T satisfies

Zity=2"1), t>0

where Z)(t) is the state vector of the PTM dynamics on the
network Ty = (V, ), p, o) with directed tree topology rooted
in i, obtained from T by making all its links directed from nodes
at lower distance from i to nodes at higher distance from it.

Proof. We proceed by induction on t. The case ¢t = 0 is trivial
as the initial condition is the same Z;(0) = o; = Zi(z)(O)
for all i € V. Now, assuming that, for some given ¢ > 0,
the PTM dynamics on every network with undirected tree
topology satisfies

Zi(t) =204, Vievy
we will prove that
Zit+1) =20t +1), Viey

for all networks with undirected tree topology 7T =
(V,&,p,0). We separately deal with the two cases: (a)
Z(t) = Zt) = 1; and () Zi(t) = Z(t) = 0. Since
we are considering the PTM dynamics, case (a) is easily
dealt with, as Z;(t) = 1 = Zi(i)(t) implies Z;(t + 1) =
1= ZZ-(i)(t + 1). On the other hand, in order to address
case (b), let J be the set of neighbors of ¢ in 7, which
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coincides with the set of offsprings of node % in ’777; For
every j € J, let 7; jy = (Vi j),€i.5)» 0, p) be the network
obtained by restricting 7;) to node j and all its offsprings,
let 7.5y = Vi), €a.,j)» 0, p) be the undirected version of
Ty, and let W(t) and WU)(t) be the vector states of
the PTM dynamics on 7(; jy and 7(; ;), respectively. Now,
note that Z;Z)(t) = Wj(] )(t), since j has the same t-depth
neighborhood in the two networks. On the other hand, note
that, if the state of the PTM dynamics on 7 is such that
Zi(t) = 0, then Z;(s) = 0 for all 0 < s < t, so that
the state of node j in the PTM dynamics on 7 depends
only on the thresholds p;, and the initial states oy, of agents
h € V. ), and is the same as the state of node j in PTM
dynamics on the original network 7(; ;y, i.e., Z;(t) = W;(t).
Finally, observe that the inductive assumption applied to

the restricted network 7; ;) implies that W;(t) = Wj(ﬂ) ().
It then follows that, if Z;(t) = Zi(l)(t) =0, then
Zt)y=w;(t)=wP () =20, Vvied.

This implies, by the structure of the recursive equation (5)
that Z;(t + 1) = Zi(z)(t + 1). This completes the proof. O

Using Lemma 4 it is straightforward to extend Propo-
sition 1 to the undirected two-stage branching process.
Then, the results in Section 4.2 carry over to the undirected
configuration model ensemble without signficant changes,
leading the following result.

Theorem 2. Let N be a network sampled from the undirected
configuration model ensemble M., o, of size n and statistics u. Let
Z(t), for t > 0 be the state vector of the PTM dynamics (5) on N,
let 2(t) = £ 37, Z;(t), and let y(t) be the output of the recursion
(7). Then, for e > 0 and n > ~; /¢ where v, = k212 /k,

max

|2(t) —y(t) <€

for all but at most a fraction 2P of networks N from the
M, o, where 3 = (32kk?2!

max)il'

We stress the fact that the proposed extension of the ap-
proximation results for the undirected configuration model
ensemble is strictly limited to the PTM and does not apply
to the general TM. The key step where the structure of the
PTM model is used is in the proof of Lemma 4 which allows
one to reduce the study of the PTM on undirected trees
to the one of PTM on directed trees. An analogous result
does not hold true for the TM without permanent activation
and indeed the analysis on undirected trees is known to
face relevant additional challenges, see [26] for the majority
dynamics (that can be considered a special case of the TM).

4.3.2 Time-varying thresholds

We first observe that, while we have not made it explicit yet,
all the results discussed in this section carry over, along with
their proofs, also for networks with time-varying thresholds
pi(t). In this case, the network statistics

1, .
Pdk,r,s(t) = - HieV:6 =d, ki=k, pi(t)=r, 0, =s}|,



ford >0, 0 <r <k, s=0,1, become time-varying, and
so do their marginals

pk,r(t) = Z Z pd,k,r,s(t)7

d>0s=0,1

qk,r<t) = %Z Z dqd,k,r,s(t)7

d>0s=0,1
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for k,r > 0. In contrast, pg ks = > .g<,<k Pd.k,rs(t) remains
constant in time since so do the degrees d; and «; and the
initial states o; of all agents i. For networks with such time-
varying thresholds, Theorem 1 continues to hold true with
y(t) equal to the output of the modified recursion

{w@+¢)=¢@@%ﬂ,
y(t+1) = ¥(z(b),1),

where ¢(z,t) 1= D450 2,50 Tr(H)pk,(2) and P(z,t) ==
2 k>0 230 Py (8)@r,r (2) -

A note of caution concerns extensions of Lemma 2 to
networks with time-varying thresholds. This result, allow-
ing one to identify the TM dynamics with the progressive TM
(PTM) dynamics whenever the condition p; < §;(1 — o;)
is met for all agents i, continues to hold true for time-
varying networks only with the additional assumption that
the thresholds are monotonically non-increasing in time, i.e.,
pi(t + 1) < p;(t) for every node i and time instant ¢ > 0.

t>0, 22)

5 NUMERICAL SIMULATIONS ON A REAL NETWORK

In this section, we discuss some numerical simulations
testing the prediction capability of our theoretical results
for the TM on the topology of the online social network
Epinions.com. This was a general consumer review website
with a community of users, operating until 2014. Members
of the community could submit product reviews for any
of over 100000 products, rate other reviews and list the
reviewers they trusted. The directed graph of trust relation-
ships between users, called the “Web of Trust”, was used in
combination with the review’s ratings to determine which
reviews were shown to the users. The entire “Web of Trust”
directed graph was obtained by crawling the website and
is available from the online collection of [32]. The dataset®
is a list of directed links representing the who-trusts-whom
relations between users: the list contains 508837 directed
links corresponding to n = 75879 different users.

From the dataset topology, we computed the empirical
joint degree statistic pgr = n~ ' |{i:§; =d,k; = k}|, ie,
the fractions of nodes with in-degree d and out-degree k.
The marginals >, pq.x and >, pax follow an approximate
power law distribution with exponent 1.6. About 32% of
nodes has no in-neighbors while about 20% of nodes has
no out-neighbors; 99% of the nodes have in and out-degree
within 0 < d,k < 150. The maximum in-degree and out-
degree are 3035 and 1801 respectively; the average in/out-
degree is 6.705. We also computed the fraction of links point-
ing to nodes with given in-degree d and out-degree k, i.e. the
in-degree weighted, joint degree statistic g4 1 = dpa.x/d.

To simulate the TM we chose thresholds and initial states
as follows. We introduce a vector © € [0,1]", of normalized
thresholds with cumulative distribution function F () :=

3. Retrieved from snap.stanford.edu/data/soc-Epinions1.html.
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Fig. 4. Simulations of the TM dynamics on the Epinions.com topology,
with agents endowed with the thresholds p; = [%nﬂ. The initial states
are randomly selected, conditioned on a fraction v = 0.475 of nodes
having o; = 1. The plot contains the simulations of the fraction of
state-1 adopters z(¢) (thin black lines) and the corresponding fraction
of links pointing to state-1 adopters a(t) (thin dotted lines). These
simulations shall be compared with the recursion’s output dynamic y(¢)
(thick red line) and with the recursion’s state dynamic z(t) (thick blue
line) respectively; the latter is initialized using ¢ = w. The recursion
captures the qualitative behavior of these simulations fairly well, with
a mismatch of about 15% between the limit of y(¢) and the values to
which the simulated z(¢) are about to settle. A close look reveals that
somer simulations show a little ripple with period two.

L1{i : ©; < 6}|. Given the fraction v € [0,1], we consider
the binary vector ¥ € {0,1}" such that v = 1 37, %;, ie. a
fraction v of entries is equal to one. We define the network
N = (V,&,p,o) as follows. The agents’ set V and the links’
set & are those of the Epinions.com dataset. Let 7’ and 7/
be two independent and uniformly chosen permutations
on the set V = {1,2,...,n} The threshold vector p has
entries p; = [©,/(;)k;], and the initial state vector o has
entries 0; = Y. (;). Given N, we compute the evolution
of the configuration Z(t) € {0,1}" according to (4) until a
fixed time horizon T'. From Z(t) we compute the fraction
z(t) of state-1 adopters at time t, as well as the fraction
a(t) := ﬁ > 0:Z;(t) of links pointing to state-1 adopters.

The following examples describe three group of simula-
tions. We will use h(x) to denote the right-continuous unit
step function, h(xz) =1 for x > 0, h(z) = 0 for x < 0.

Example 1. In the first group of simulations we assume that
every agent has normalized threshold ©; = 0.500, corresponding
to a distribution function F (0) = h(6 — 5). Hence, the threshold
of agent i is p; = [4k;]. Given v € [0,1], each simulation
consists in choosing a random initial state assignment such that
exactly a fraction v of nodes has o; = 1 and in computing the
TM dynamic until a prearranged time horizon T'. For each v we
typically produce some simulations and compare them with the
dynamic predicted with the recursion, initialized with £ = wv.
Figure 4 represents some simulations with v = 0.475: the top
plot contains the simulated dynamics a(t) to be compared with
the recursion’s state dynamic x(t); the bottom plot contains
the corresponding simulated fraction of active nodes, z(t), to be
compared with the recursion’s output dynamic y(t). The recursion
captures the qualitative behavior of the simulations. The top plot
of Figure 5 represents the recursion’s functions ¢(x) and (z)
corresponding to this group of simulations. The bottom plot of
the same figure compares the asymptotic activation predicted by
the recursion with several simulations, obtained for various v and
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Fig. 5. The top plot reports the functions ¢(x) (solid blue) and (z)
(dashed red), corresponding to the Epinions.com network where each
agent ¢ is endowed with the thresholds p; = f%ni]. The bottom plot
compares the values reached by the simulations at the time horizon
T = 100, for various value of the fraction v of initially active nodes,
with the asymptotic activation predicted by the recursion initialized with
¢ = wv. The black crosses represent z(T), i.e., the fraction of state-
1 adopters, to be compared with the recursion limits y*(¢) in dashed
red. The black circles represent a(T), i.e., the fraction of links pointing
to state-1 adopters, to be compared with the recursion limits z*(£) in
dashed red. Near the discontinuity, predicted in £¢* ~ 0.487 and well
matched by the simulations, the starting values of v are more dense.

using a time horizon T' = 100. The fractions of state-1 adopters
z(T') shall be compared with the recursion’s output asymptotic
value y* (&), while the corresponding fraction of links pointing at
state-1 adopters, a(T), shall be compared with the recursion’s
state asymptotic value x*(§). The simulations match well the
discontinuity predicted in £* ~ 0.487. Before the discontinuity,
the simulated values of z(T) are higher that the limit y*(§),
showing an increasing trend. The same trend is present in the
corresponding values of a(T'), that are however closer to the limit
x*(&). After the discontinuity, simulations and limits agree.

Example 2. In the second group of simulations we allow the nor-
malized thresholds to take two different values: to 40% of the nodes
we assign § as normalized threshold; the remaining 60% of nodes
gets 3. The choice corresponds to the cumulative distribution of
the normalized threshold F(0) = {5h(6 — 1) + Sh(6 — 2).
The top plot of Figure 6 represents the functions ¢(x) and 1 (z)
corresponding to the thresholds chosen: the recursion predicts the
presence of two discontinuities in the asymptotic activation for
the TM, for the seed values £ ~ 0.241 and &5 ~ 0.7482, that
correspond to the unstable equilibria of ¢(x). The bottom plot
of Figure 6 compares the predicted asymptotic activation with
the simulations, computed for various v up to time T = 100.
The fractions of state-1 adopters z(T') shall be compared with the
recursion’s output asymptotic value y* (&), while the correspond-
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Fig. 6. The top plot contains the functions ¢(x) (solid blue) and (z)
(dashed red), corresponding to the Epinions.com network where 40%
of the nodes is endowed with the normalized threshold i and the

remaining 60% by %. The bottom plot compares the values reached
by the simulations at the time horizon T' = 100, for various value of
the fraction v of initially active nodes, with the asymptotic activation
predicted by the recursion initialized with ¢ = v. The black crosses
represent the fraction of state-1 adopters z(7T'), to be compared with
the recursion limits y*(¢) in dashed red. The black circles represent
the fraction of links pointing to state-1 adopters a(T), to be compared
with the recursion limits z* () in dashed red. The predicted limits y* (&)
and z* (&) are discontinuous for £ ~ 0.241 and &5 =~ 0.7482, which
are the two unstable equilibria of ¢(z) (cf. top plot). The discontinuities
are well matched by the simulations, except for one point obtained with
v = 0.310. Apart from matching the discontinuities, the simulated values
show a slowly increasing trend, unexpected from the recursion limits.

ing fraction of links pointing at state-1 adopters, a(T), is nearly
superimposed to recursion’s state asymptotic value x*(§). The
plot shows a good agreement between a(T) and x* (), while z(T')
seems a bit underestimated by y*(€). The values z(T) and a(T') of
a simulation with v = 0.310 settled to a smaller limit, compatible
with those obtained for v < 0.270. Apart from this simulation,
the discontinuities are matched well. Also here the values of z(T')
(and less markedly those of a(T')) show an increasing trend with
respect to the fraction of initially active nodes v, a behavior not
predicted by the recursion limits.

Example 3. Finally, we present a group of simulations where we
allow the normalized thresholds to take three different values: 30%
of the nodes are endowed with the normalized threshold %, 30%
by & and the remaining 40% by 2. The corresponding cumulative
distribution is F(0) = $5h(0 — )+ 15h(0 — 3) + 15h(0 — 3).
The top plot of Figure 7 represents the functions ¢(x) and
Y(x), with ¢(x) showing seven fixed points. The bottom plot
of the same figure contains the dynamic of the fraction of state-
1 node z(t), starting from a fraction v = 0.700 of initial
adopters. The simulations are compared with the output y(t) of
the recursion: the majority of the simulations tend to a limit
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Fig. 7. Top: the functions ¢(z) (solid blue) and ¢ (z) (dashed red),
corresponding to the Epinions.com network where 30% of the nodes is
endowed with the normalized threshold £, 30% by 3 and the remaining
40% by %. Bottom: some simulations (thin black lines) of the dynamic of
the fraction of state-1 adopters, z(¢), starting from a fraction v = 0.700
of nodes with state one. The majority of these simulations tend to a limit
just above the recursion and some show a ripple with period two; three
simulations tend to a smaller value. The simulations are compared with
the output y(t) of (7) (thick red line).

just above the recursion, while showing a ripple with period
two; three simulations tend to a smaller value. With this choice
of normalized thresholds, the recursion predicts the presence of
three discontinuities in the asymptotic activation for the TM, in
&7 =~ 0.201, & ~ 0.509 and &3 =~ 0.789. Figure 8 compares
the simulations with the predicted asymptotic activation. The top
plot represents the simulated values of z(T') at time T = 100,
for various v, and the limit y*(§), obtained assuming the initial
condition & = v. The bottom plot represents the corresponding
simulated values of a(T'), at T = 100, and the recursion’s limit
x*(&). Some of the simulations in Figure 8 settle to values smaller
than the those of the points having similar v, values that might be
expected from a smaller initial condition.

Overall, the simulations of the TM on Epinions.com give
some interesting insights and are in good agreement with
the prediction obtained with the recursion (7). A few differ-
ences between the simulations and the predictions remain.
In several simulations we observed that the dynamics of z(¢)
and a(t) presents an oscillation of period two, superimposed
to the settling value. For few simulations, in particular in the
last example, the supposed settling value, evaluated with
z(T) and a(T) at time T = 100, seemed to be smaller
that what expected.Finally, besides the expected jumps, the
values z(T') and a(T) seem to have an increasing trend with
respect to the initial value v while the values z(T') seem to
be a little but consistently underestimated by the recursion.

There are some possible reasons for these behaviors.
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Fig. 8. Comparison between the predicted asymptotic activation and
the actual simulations, on the Epinions.com graph where 30% of the
nodes is endowed with the normalized threshold %, 30% by 3 and
the remaining 40% by %. The top plot contains the simulated values
of the fraction of state-1 adopters z(7T') at time 7' = 100 (black crosses),
for various v, compared with the limit y*(£) (red dashed line) of the
recursion output, obtained assuming £ = v. The bottom plot represents
the values of the fraction of links pointing to state-1 adopters, a(t), for the
corresponding simulations, to be compared with the asymptotic value of
the recursion’s state z*(£). We observe that some simulationst settle to
values that are smaller than those of the points having similar v. With
this choice of normalized thresholds, the limits y*(¢) and z*(£) have
three discontinuities, in £} ~ 0.201, £5 ~ 0.509 and 5 ~ 0.789.

The graph used in these simulations comes from an online
network which is not a completely random network. The re-
cursion does not take into account the community structure
of the network, which may play a role in the oscillations
observed as well as in the increasing trend of the set-
tling values. Furthermore, the network contains few nodes
with extremely high in/out-degree. These nodes can bias a
simulation depending on their initial state and threshold.
This may contribute to explain the presence of trajectories
with smaller-than-expected settling value. The recursion has
however a good predicting capability: the discontinuities in
the settling values of the simulations match well with the
jumps in the recursion’s limits.

6 CONCLUSION

We have shown that, for all but an asymptotically vanish-
ing fraction of networks with given degree and threshold
statistics, the fraction of state-1 adopters in the TM can be
approximated by the output of a one-dimensional nonlinear
recursion. Our results apply both to the original TM and to
the Progressive TM on the configuration model ensemble
of directed networks and for the Progressive TM (but not
to the original TM) on the configuration model ensemble of



undirected networks. Simulations run on the social network
Epinions.com confirm the validity of our theoretical results.
Ongoing work is concerned with the use of the obtained
one-dimensional recursion for the design of feedback con-
trol policies for the TM — see [33, ch. 4] for preliminary
results. Another direction consists in applying our approach
to large-scale networks containing communities, [25], [34].
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