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Abstract

This paper presents refined one-dimensional models with node-dependent kinematics. The three-
dimensional displacement field is discretized into two domains, namely cross-section domain and axis
domain. The mechanical behaviors of the beam can be firstly captured by the cross-section functions
then interpolated by the nodal shape functions of the beam element. Such a feature makes it possible
to adopt different types of cross-section functions on each element node, obtaining node-dependent
kinematic finite element models. Such models can integrate Taylor-based and Lagrange-type nodal
kinematics on element level, bridging a less-refined model to a more refined model without using spe-
cial coupling methods. FE governing equations of node-dependent models are derived by applying the
Carrera Unified Formulation. Some numerical cases on metallic and composite beam-like structures are
studied to demonstrate the effectiveness of node-dependent models in bridging a locally refined model
to a global model when local effects should be accounted for.

1 Introduction

Application of composite materials has attracted significant attention over the past several decades
to improve the structural efficiency. However, the anisotropy of multi-layered structures makes it
computational costly to capture their responses under external loads.

One of the most important issues in numerical modeling is saving computational costs. A major
approach is only using refined higher-order models in regions where sophisticated effects have to be
described, while employing less refined models in the rest of the structure. Some noticeable methods
have been proposed to couple different models. Slender structures can be approximated with beam
models. The most classical beam model is Euler-Bernoulli beam, which applies to isotropic beam-like
structures with high slenderness ratio. For stubby beam-like structures the shear effects can be captured
with Timoshenko [1] beam model. However, to better capture the behavior of composite laminated
beams, more reliable models are needed.

Over the last several decades, many refined beam models have been proposed. To consider the
deformation of cross-sections, Vlasov [2] proposed the use of warping functions for beam models, this
approach has been applied by Friberg [3], Ambrosini et al. [4] and Mechab et al. [5] to capturing
the key phenomenon of cross-sectional warping of thin-walled structures. Kim and Lee[6] recently
applied a hybrid model based on Euler-Bernoulli and Vlasov models to the study of thin-walled beam
including functionally graded materials. Schardt [7] proposed Generalized Beam Theory (GBT) by
expanding the displacement field with reference to the mid-plane of the cross-section thin-walled beam.
GBT was also adopted by Davies and Leach [8] and Davies et al. [9], and then further extension to
the analysis of composite structures was proposed by Silvestre and Camotim [10]. Berdichevsky [11]
proposed the Variation Asymptotic Method (VAM) which uses a characteristic cross-section parameter
to construct an asymptotic expansion of the solution, this approach was also adopted by Giavotto et

al. [12]. Volovoi et al. [13], Yu et al. [14] and Yu and Hodges [15] further applied VAM to composite
beam-like structures.

Carrera [16] and Carrera et al. [17] proposed a new methodology, which is known as Carrera
Unified Formulation (CUF), as a new framework to construct 1D and 2D models for the analysis of
multi-layered composites. For 1D (beam) models, CUF introduces functions Fτ (x, z) (based either on
series expansion or interpolation polynomials) to approximate a cross-section. Numerical accuracy can
be improved by increasing the number of expansions in a convenient way as demonstrated by Carrera et

al. [18], while cumbersome derivation of governing equations can be avoided thanks to the introduction
of Fundamental Nucleus, FN, which is the core unit of the structural stiffness matrix. Such an advantage
leads to a variety of models with variable kinematics, including both 1D models by Carrera et al. [19]
and 2D models by Cinefra et al. [20] and Cinefra and Valvano [21].
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The above-described refined models improve the numerical accuracy at the expense of increasing the
computational costs. For example, CUF-based FE models increase the number of degrees of freedom
at each node to better approximate the structural responses. Composite material may undergo to local
effects as delamination [22], cracks [23] or local buckling [24], these phenomena require accurate models
to be predicted. If refined models are only used in specific regions with sophisticated effects (such as high
gradients of stress) to be captured leaving the rest of the structure modeled with lower-order models,
a compromise between accuracy and consumption can be reached. The coupling of two computational
domains has attracted significant attention, leading to various global-local analysis methods.

To enforce the compatibility of the displacements at the interface of the two domains, Prager [25]
used a set of Lagrange multipliers, which was further extended to beam models in the framework of
CUF [26]. Aminpour et al. [27], and Ransom [28] employed a spline method to couple two domains with
different meshes. Similar approaches in the framework of three-field formulation were also reported by
Brezzi and Marini[29]. Blanco et al. [30, 31] presented an eXtended Variational Formulation (XVF) to
couple non-matching kinematic models based on Lagrange multiplier method, which was also adopted
by Wenzel et al. [32].

Fish et al. [33] developed an accelerated multi-grid method to speed up the iterative process
when sharing the information between coarse and fine meshes. Fish [34] put forward s-version finite
element method, which improves the accuracy in the local domain by superimposing additional elements
with higher-order hierarchical kinematics on the global model, and continuity of displacement can be
guaranteed by imposing homogeneous boundary conditions on the superimposed field. Park et al.

[35] proposed a similar method which also refines the local mesh without using transition region nor
multi-point constraint. The s-version FE method was also used in combination with h-version [36] and
p-version models [29], leading to simultaneous multiple model approaches, as summarized by Reddy
and Robbins [37] and Reddy [38].

By introducing an overlapping zone to bridge the two domains, Ben Dhia [39] and Ben Dhia and
Rateau [40] suggested Arlequin method to impose compatibility within the overlapping domain with
Lagrange multipliers. Such an approach has also been implemented in CUF-based models by Biscani
et al. for beam models [41] and plate models [42, 43]. Hu et al. [44, 45] applied Arlequin method in
the linear and non-linear multi-scale analysis of sandwich structures. He et al. [46] adopted Arlequin
method to bridge low- and high-order models constructed in the framework of CUF, and Constrained
Variational Principle (CVP) was used to derive beam elements for layered structures with independent
kinematic description in each layer.

Some special techniques that can be used to mix elements with different mesh refinement or of differ-
ent types have also been implemented in commonly used commercial software. In Rigid Beam Element
(RBEi) and Multi-Point Constraints (MPCs) (such as in NX NASTRAN), the dependent degrees of
freedom are expressed as a linear function of the independent degrees of freedoms. Such approaches
can be used to connect two sets of incompatible elements in simultaneous analyses. ABAQUS provides
so-called “Shell-to-solid coupling” which allows for a transition from 2D modelling to 3D modelling.
This method uses a set of internally defined distributing coupling constraints to connect nodes along
the edge of a 2D model to a set of nodes on a solid surface. Submodeling is a two-step technique, in
which the local model is driven on the boundaries nodes by the displacement field obtained with an
aforehand global model. The drawback of such an approach is that the change of stiffness of the local
model cannot be updated in the global model. A superelement can be treated as an individual element
that is defined by grouping a set of elements, and condensing the so-called internal degrees of freedom.
Such a technique suits the analysis of large-scale structures and parallel computation. All these ap-
proaches adopt special coupling functions on the interfaces between the local and the global model or
employ special matrix operation techniques. Meanwhile, at least two sets of separately meshed models
are needed.

CUF-type displacement functions make it possible to implement node-dependent kinematic FE
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models. When it comes to refined 1D (beam) models, cross-section functions defined on different
nodes can be integrated into the same 1D element by the nodal Lagrangian shape functions. By the
introduction of fundamental nucleus, as has been elucidated in [47], the governing equation can be
derived and expressed in a compact way. Such a methodology permits the possibility of connecting to
domains with different kinematics by commonly used nodal shape functions without using any specially
designed coupling methods, which reduces the complexity of the numerical methods significantly. Such
an approach was firstly presented by Carrera and Zappino [48], then extended to the global-local
analysis of laminated composite plates by Zappino et al. [49] as well as [50]. As a simplified case,
through-the-thickness variable kinematics was discussed by Dehkordi et al. [51] for sandwich plates,
and by Carrera et al. [52] for laminated shells.

In the present work, node-dependent kinematic one-dimensional models are applied to construct
global-local FE models, and special attention is paid to the analysis of composite structures where the
use of refined models is mandatory to obtain accurate results. The governing equations for beam mod-
els with node-dependent kinematics are firstly derived by applying Principal of Virtual Displacement
(PVD). Numerical results on thin-walled isotropic beam and multi-layered composite beam, as well as
a composite thin-walled beam are reported.

2 Preliminaries

Consider a slender structure as shown in Fig. 1, in which the axial direction is along the y direction,
the displacement vector can be expressed as:

Figure 1: Reference system of a laminated beam model.

uT = {ux(x, y, z), uy(x, y, z), uz(x, y, z)} (1)

where ux, uy and uz are the three displacement components. The strain and stress components are
arranged as follows:

ǫT = {ǫxx, ǫyy, ǫzz, ǫxz, ǫyz, ǫyx} (2)

σT = {σxx, σyy, σzz, σxz, σyz, σyx} (3)

The strain vector ǫp and ǫn can be obtained via the geometrical equation:

ǫ = Du (4)

the explicit expressions of the differential operator matrices are as follows:
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The stress components can be attained by means of the constitutive equation as follows:

σ = C̃ǫ (6)

where C̃, is the matrix of the material coefficients defined in the general physical system (x, y, z) rotated
from the material coordinate system (1,2,3), and their explicit expressions can be found in [53].

3 Refined one-dimensional models

One-dimensional models describe kinematics of beam-like slender structures with cross-section functions
Fτ (x, z) and axial displacement functions uτ (y), and in a compact way the displacement field can be
approximated with the following displacement functions:

u = uτ (y)Fτ (x, z), τ = 1, · · · ,M (7)

where Fτ (x, z) are the expanded functions over the cross-section domain defined on (x, y), and uτ (y)
is the unknown vector along the axis of the beam. M is the number of expansion terms used to
describe the cross-section behavior. Both series expansion theories and interpolation polynomials can
be described in such a framework. When applied to FE models, the axial displacement function uτ can
be approximated by the nodal Lagrangian shape functions Ni(y), namely:

u = Ni(y)Fτ (x, z)uiτ , τ = 1, · · · ,M ; i = 1, · · · , Nn (8)

in which Ni(y) is the shape function of node i, and Nn is the number of nodes in an element. uiτ is the
vector of nodal unknowns, or mathematically weighting factors of the expansion terms. Correspondingly
the virtual variation of the displacement can be written as:

δu = Nj(y)Fs(x, z)δujs s = 1, · · · ,M ; j = 1, · · · , Nn. (9)

A variety of theories can be implemented with CUF and the fundamental nucleus can be adjusted to
different theories conveniently. In the context of composite laminates, CUF can be used to describe
Equivalent Single Layer (ESL) models with series expansions, and Layer-Wise (LW) models with inter-
polation polynomials. The most commonly used theories are Taylor series and Lagrange expansions,
which are also adopted in the analysis reported in the following sections.

3.1 Taylor expansion models (TE)

The one-dimensional models based on Taylor Expansions (TE) use function series with the form xmzn

(where m and n are positive integers) to describe the kinematics over the cross-section. Taking a set
of displacement functions of the second order as an example, the displacement field is assumed to be
as following:











ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6

uz = uz1 + wuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6

(10)

in which the series expansion Fτ are:

F1 = 1, F2 = x, F3 = z, F4 = x2, F5 = xz, F6 = z2 (11)

TE models can be represented by TEn, where n indicates the highest order of the polynomials adopted.
Timoshenko and Euler-Bernoulli beam theories can be treated as a particular case of TE model.
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Figure 2: Global-local method.

3.2 Lagrange expansion models (LE)

Lagrange interpolation polynomials can also be adopted as cross-section functions, leading to LE

models. The displacement field of a quadrilateral cross-section can be assumed as:

F1 =
1

4
(1 − ξ)(1 − η); F2 =

1

4
(1 + ξ)(1 − η);

F3 =
1

4
(1 + ξ)(1 + η); F4 =

1

4
(1 − ξ)(1 + η).

(12)

where ξ and η are the coordinates in the natural reference system of a quadrilateral element, that
is F1(−1,−1) = 1, F2(1,−1) = 1, F3(1, 1) = 1, and F3(−1, 1) = 1. When displacement-based LE
models are employed, the degrees of freedom of the FE models are the physical displacement of the
nodes (interpolation points). With LE4 and LE9 are denoted the four- and the nine-node element
respectively, about which more details can be found in [17] and in [47].

4 CUF-based beam element with node-dependent kinematics

FE subdivides the whole domain into elements (sub-domains) to approximate the displacement field.
In each element domain, based on the interpolation among a set of nodes, the displacement field can
be approximated. Usually to save the computational costs, engineers tends to use detailed models only
within those regions of interest (such as constrained ends, loaded surfaces or regions with other local
effects like embed components), which can be denoted as Ωβ in Figure Fig. 2(a), and employ less-refined
mesh or low order models in the outer region Ωα.

Distinguished from the coupling methods discussed in the introduction, in this section an innovative
approach to obtain variable kinematic models based on the CUF is presented. Instead of using an
overlap between the two domains, node dependent kinematic elements are used to connect zones with
different kinematics, as shown in Fig. 2(b). Within the transition zone, the elements employ node-
dependent kinematics, which means that the kinematic description on each node is independent and a
natural kinematic variation can be realized over the domain of an element. The kinematic variation can
be achieved with the commonly used Lagrangian shape functions, which avoids any ad hoc assumption
and leads to advanced models with compact FE formulations.

In the context of one-dimensional FE modeling, to approximate a cantilever beam with localized
effects to be considered at the free end, as shown in Fig. 3, refined models can be used only in the local
region, and connected to the rest part by a bridging zone. This approach allows the computational costs
to be reduced. According to the one-dimensional displacement approximation, see Eq. (9) and Eq. (8),
the mechanical behavior of the cross-section associated at the node i is approximate by the correspond-
ing cross-section expansion Fτ (x, z), then interpolate over the beam axis by the FE shape functions
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Figure 3: A CUF-based B4 element for transition with node-dependent kinematics.

Ni(y). If Fτ (x, z) is further related to the node i, leading to node-dependent cross-section kinematics
F i
τ (x, y), thus the displacement field of the node-dependent kinematic one-dimensional models can be

expressed as follows:

u(x, y, z) = Ni(y) · F i
τ (x, z) ·Uiτ (13)

When a B4 element is considered, as shown in Fig. 3 as an example, on each of the four nodes a
different cross-section approximation can be adopted (namely TE2, TE4, LE9 and 9LE4, respectively).
Here a L9 refers to a nine-nodes quadrilateral element; while 9LE4 indicates 9 quadrilateral sub-domains
on the cross-section, each described by a four-node Lagrangian element. The nodal kinematics are
further integrated by the FE Lagrangian shape functions Ni(y) to construct an element for transition
purpose. Such a bridging method can naturally lead to continuous displacement field.

Simpler cases can be B2 or B3 elements with a lower number of cross-section functions, as shown
in Fig. 4. The cross-section functions associated to each node can be assumed to be any applicable
theory. For the purpose of transition, higher-order theories can be used on the side connected to the
local model, while lower-order models on the side lies in the outer region. In this work, TE and LE
models are mainly discussed in the numerical cases, leading to B4 elements as shown in Fig. 5.
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B2 B3 B4

High-order kinematics Low-order kinematicsNote:

Figure 4: Variable kinematic elements:B2, B3 and B4.

A B4 for transition

LE TENote:

A B4 with LEA B4 with TEn

Figure 5: Three types of B4 elements used in the FE model.

4.1 FE governing equations

The governing equations are derived by applying the Principal of Virtual Displacements (PVD). For a
static problem:

δLint = δLext (14)

where Lint represents the strain energy due to the deformation, and Lext stands for the work done by
the external loads on the virtual displacement. δ indicates the virtual variation. The internal work can
be expressed as:

δLint =

∫

V

δǫTσdV (15)

By introducing the displacement description Eq. (13), the geometrical relations Eq. (4) and the consti-
tutive equations Eq. (6), the variation on internal work can be written as:

δLint = δuT
js ·

∫

V

NjF
j
sD

TCDF i
τNidV · uiτ = δuT

js ·K
ijτs · uiτ (16)

in which Kijτs is a 3 × 3 matrix, which is also known as fundamental nucleus in the context of CUF,
acting as the core unit of the stiffness matrix. By applying the Einstein’s summation convention, the
element stiffness matrix can be constructed. uiτ and δujs are the displacement vector and its virtual
variation. The explicit expression of Kijτs has been given in Appendix.

Considering the work done by the external load p, the virtual variation of external work can be
expressed as:

δLext =

∫

V

δuTpdV (17)

By introducing the displacement functions Eq. (13), one can obtain:

δLext = δuT
js

∫

V

NjF
j
s pdV = δuT

js
P js (18)

where Pjs is the expression of the load vector. Thus, the governing equation can be written as:

δujs : Kijτs · uiτ = P js (19)

4.2 Assembly of the stiffness matrix

As has been discussed in the above section, the fundamental nucleus is a core unit of the stiffness
matrix. By looping on the superscripts, the stiffness matrix on node and element level can be obtained,
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τi=1 
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Kzz

Kyz

Kxx Kxy Kxz
p x

Figure 6: Assembly of the stiffness matrix and load vector of models with node-dependent kinematics.

then further assembled on the structure level. Such an assembly technique has been elaborated in the
authors’ former work [47].

When various node-dependent kinematics are used on different nodes within one element, consider-
ing a general unit of the stiffness matrix Kij, if Mi 6= Mj, K

ij would be rectangular rather than square.
For example, if the number of expansion terms on node i is Mi = 3, while Mj = 4, then the dimension
of Kii is 9× 9, Kjj is a 12× 12 matrix and Kij is a 9× 12 while Kji a 12× 9. In a more explicit form,
the shapes of these four matrices have been illustrated in Fig. 6. The shape of the load vector should
be compatible with the stiffness matrix, as shown in Fig. 6.

5 Numerical results

In this section results of three numerical cases obtained with node-dependent kinematic beam models
are reported. The first numerical case is an isotropic thin-walled C-section beam, and the following two
include an eight-layered composite beam and a one-cell thin-walled composite beam. In all the cases,
point loads are imposed to the structures, which lead to strong local stress concentration. Displacements
and/or stresses are evaluated in the vicinity of the loading points. The regions that adopt refined models
are chosen as: a) in and near the loaded area; b) in and near the constrained region; c) in the area
of interest. The structures analyzed are discretized into B4 elements along the axis direction. FE
models with node-dependent kinematics are denoted by LE

×a
-TEn×b, where the superscripts stand

for the number of beam elements adopting the corresponding kinematics. Comparisons are made among
results obtained with models adopting a) uniform Lagrange expansions; b) full Taylor expansions; and
c) variable nodal LE/TE kinematics. In each numerical case only one set of FE mesh is used, and the
local model is refined by adopting higher-order nodal kinematics, which is one of the major advantages
over traditional global-local approaches.

9



x

z

y

P

0.4mm(7xB4 elements)

0.2mm(8xB4 elements)

0.2mm(7xB4 elements)

z

x

o

z

x

TE

P=1000N

A(a-t,b/2,h/2)

B(a-t,b/2,h/2-t)

o

t=0.005ma=0.1m

t=0.005m

h=0.1m

LE

1D

Modeling

B4 fo
r tr

ansit
ion

Figure 7: FE discritization of the isotropic beam with node-dependent kinematics.

5.1 A thin-walled isotropic beam with C-shaped cross-section

Firstly, an isotropic thin-walled beam-like structure with a C-shaped cross-section is considered. The
used material is aluminum alloy, which has a Young modulus E = 71.7GPa and Poisson’s ratio, ν =
0.3. The structure is clamped at two ends and loaded by a concentrated load P = 1000N at point
A(a − t, b

2
, h
2
) as shown in Fig. 7. Fig. 7 also illustrates that the structure is discretized into twenty-

two B4 elements, including two B4 elements to connect the local inner region with stress field of high
gradient to the outer zone. In the inner region refined models with LE models are used, while in
the outer area Taylor-based kinematics, TE, are adopted. Three groups of node-dependent kinematic
models are used, they use 13, 9, and 5 elements respectively in the central area where local effects are
expected. This implies a large, a middle-size and a small zone where refined beam models are used.

Accordingly, the three groups of FE models are denoted as LE×13-TEn×7, LE×9-TEn×11, and
LE×5-TEn×15. To better capture the local stress field, when LE kinematics are adopted, the domain
sub-division near the loading point is refined. The evaluation of displacement w and σyy at point B(a−
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Table 1: Displacement and stress evaluation of the thin-walled isotropic beam.

Model
w[mm] σyy[102MPa]

DOFs
B(a− t,

b

2
,
h

2
− t) B(a− t,

b

2
,
h

2
− t)

ABAQUS-3D -3.441 2.598 924399

LE -3.326 2.180 15075

TE2 -0.04912 -0.02217 1206
TE3 -0.09333 0.07481 2010
TE4 -0.5705 0.5681 3015
TE5 -0.7969 1.039 4221
TE6 -1.817 1.787 5628
TE7 -2.248 1.646 7236
TE8 -2.487 1.867 9045

LE×13-TE2×7 -2.941 2.130 9693
LE×13-TE3×7 -3.011 2.143 10005
LE×13-TE4×7 -3.227 2.174 10395
LE×13-TE5×7 -3.242 2.174 10963
LE×13-TE6×7 -3.291 2.178 11409
LE×13-TE7×7 -3.309 2.180 12033
LE×13-TE8×7 -3.317 2.180 12735

LE×9-TE3×11 -2.378 2.155 7665
LE×9-TE4×11 -2.767 2.204 8235
LE×9-TE5×11 -2.857 2.199 8919
LE×9-TE6×11 -3.129 2.188 9717
LE×9-TE7×11 -3.206 2.190 10629
LE×9-TE8×11 -3.248 2.189 11655

LE×5-TE4×15 -1.493 2.152 6075
LE×5-TE5×15 -1.725 2.168 6975
LE×5-TE6×15 -2.530 2.195 8025
LE×5-TE7×15 -2.786 2.197 9225
LE×5-TE8×15 -2.938 2.199 10575

t, b
2
, h
2
− t) are reported in Table 1. To verify the proposed models, results attained with an ABAQUS

3D model are also listed, which uses uniformly meshed second-order brick elements (C3D20R). In the
3D model, five layers of elements are used through the thickness of each wall, and two hundred of
elements are employed along the longitudinal direction.

Fig. 8 presents the contour plot of w, which also shows that the deformation only occurs in a limited
area. By observing results in Table 1, it can be found that FE beam models with uniform LE and
node-dependent TE/LE approximations lead to reasonable results with much fewer degrees of freedom,
whereas Taylor-based models give erroneous evaluation especially in low-order cases. Models employing
Taylor series show poor convergence with the increase of the polynomial order, which demonstrates that
such models are less efficient compared with Lagrange-type kinematics in capturing the responses of
thin-walled beams with open sections. With the FE beam models adopting variable TE/LE descriptions
based on node-dependent kinematics, evaluation of w and σyy reach the desired accuracy gradually with
the increase of order of Taylor-based cross-section functions, and stress σyy reaches convergence faster.
Fig. 9 presents the variation of w and σyy along edge (a, y, h − t) obtained with different FE models.
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Displacements Z[m]

Figure 8: Contour plot of displacement of the beam with C-shaped section, obtained with uniform LE
kinematics.

Table 2: Properties of the materials used in the eight-layered cantilever beam.

EL[GPa] ET [GPa] νLT GLT [GPa]

Material-1 30 1 0.25 0.5
Material-2 5 1 0.25 0.5

Since TE models fail to give reasonable evaluation, the corresponding results are not plotted. It can be
observed that, the distribution of w obtained with different models agree well with each other, and the
variation is continuous. Meanwhile, for σyy, in the region out of the transition zone, a good estimation
can be achieved. It should be noted that, along the axis of the beam, within the elements where
different kinematics are used, σyy shows some oscillations, but accurate evaluation of σyy can still be
achieved in the critical region. The oscillations of stresses in the bridging zone could be reduced by a
gradual kinematic transition from refined model to lower-order theories. Whereas considering that the
transition will be assigned to the area of less interest, such efforts are not necessary.

Fig. 10 shows the trend of the error (compared with full LE model) with the increases of the
number of degrees of freedom used in FE models. It is obvious that node-dependent TE and LE
kinematics reach a compromise between computational costs and accuracy, especially for stress σyy in
the local region. With node-dependent kinematics, mixed TE/LE model reduced the error of σyy to
a value lower than 2.0%. If the transition zone is properly selected (as in LE×13-TEn×7), with the
increase of the expansion order in the outer and transition region, the error in the stress evaluation
can be further reduced. From an engineering point of view, LE×13-TE2×7 and LE×9-TE3×11 can
already give satisfactory stress evaluation. LE×5-TE2×15 models lead to less accurate estimations,
which demonstrates that the transition zone should be chosen considerately to guarantee the solution
accuracy. Generally area with comparatively low stress gradients is appropriate, and in some situations
numerical trials are necessary.

5.2 An eight-layered cantilever composite beam

In this section an eight-layers laminated cantilever beam is considered. The geometry and stacking
sequence of the structure are shown in Fig. 11. The beam is loaded by an concentrated load of
P = 0.2N at the central point of the free end, and clamped at the other end. The material properties
are listed in Table 2. The axial direction of the two types of layers are along the longitudinal direction
of the beam (y direction in Fig. 11).
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Figure 9: Variation of w and σyy along edge (a, y, h− t) on the beam with C-shaped section.
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Figure 11: Geometry and FE modeling of the eight-layered cantilever beam.

For the convenience of comparison with results reported by various authors [54, 55, 56, 57], in this
work the stress σyy is reported on point B(0, b

2
, h
2
), σyz on point C (0, b

2
, 0), and w on E(0, b, 0). At the

same time, since stress concentration exists at the clamped and loading ends, σyy is reported also at
point A(0, 0, h

2
).

In FE models, the structure is discretized into ten B4 elements with node-dependent kinematics.
Since the regions of interest are the two ends and the center of the beam, LE kinematics are applied to
these regions, as demonstrated in Fig. 11. The case a adopts four elements with full LE description,
and two elements completely based on TE kinematics, a) LE×4-TEn×2. For comparison purposes, FE
model b) LE×3-TEn×4 is also adopted. The B4 elements with variable kinematic are annotated in
Fig. 11 together with the nodal kinematic descriptions. By observing results summarized in Table 3,
it can be found that in this case, both LE and TE models can give good approximations. Differently
from the thin-walled beam case discussed above, LE kinematics do not have obvious advantage over
TE model considering both the accuracy and computational costs, and TE5 can lead to results with
satisfactory accuracy.

Considering the through-the-thickness distribution of σyy and σyz at (0, b
2
, z̄) shown in Fig. 12, it can

be seen that an accurate description of σyy can be achieved with all the models considered. Otherwise,
when the distribution of σyz is considered, the use of LE models is mandatory to obtain an accurate
stress distribution. In this last case the use of the variable kinematic models could lead to a reduction of
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Table 3: Displacement and stress evaluation of the eight-layered cantilever beam.

Model σyy [MPa] σyy×103[MPa] σyz×102[MPa] w×10−2[mm] DOFs

A(0, 0, h
2
) B(0, b

2
, h
2
) C(0, b

2
, 0) E(0, b, 0)

Surana and Nguyen [54] 720 -3.03
Carrera et al.[58] 730 -2.79 -3.05 4743

LE 1.689 729.6 -2.794 -3.049 4743

TE2 1.460 729.6 -1.999 -2.985 588
TE3 1.597 729.6 -2.822 -3.029 930
TE4 1.597 729.6 -2.822 -3.033 1395
TE5 1.671 729.7 -2.750 -3.034 1953

LE×4-TE2×2 1.663 737.1 -2.482 -3.016 2583
LE×4-TE3×2 1.689 730.9 -2.799 -3.048 2775
LE×4-TE4×2 1.689 730.9 -2.799 -3.048 3015

LE×3-TE2×4 1.460 737.1 -2.482 -3.014 2043
LE×3-TE3×4 1.597 730.9 -2.799 -3.047 2283
LE×3-TE4×4 1.597 730.9 -2.799 -3.047 2583

Table 4: Properties of the material used in the single-cell box beam.

EL ET , EZ νLT , νLZ , νTZ GLT , GLZ , GTZ

69.0 GPa 10.0 GPa 0.25 6.0 GPa

the computational cost maintaining a detailed result. Model LE×3-TE3×4 is able to properly describe
the stress field using less than 50% of the DOFs required by the LE model.

It can be found that FE models with node-dependent TE and LE kinematics can reach a balance
between TE and LE models regarding the accuracy and computation costs. LE×4-TE3×2 and LE×3-
TE3×4 can reduce the number of degrees of freedom to a great extent while guaranteeing the accuracy.
Results also show that if stress at the clamped end is not of interest, a lower order model can be used
in this part of the structure without affecting the accuracy of results where an higher-order model is
required.

5.3 A composite single-cell box beam

In this section a thin-walled composite beam with a cross-section in the shape of a single-cell box is
considered. The structure is clamped at one end and loaded with two vertical concentrated loads in
the upper corners on the other end, as shown in Fig. 15.

The dimensions of the beam are: length L=242 mm, height h=13.6 mm, width a=24.2 mm and
thickness t=0.762 mm. Fig. 15 shows the cross-sectional geometry. The thin-walled beam is built with
a composite material which has the properties reported in Table 4. Two different laminations have
been used: [0◦/90◦] lay-up for the webs and [45◦/+45◦] lay-up for the flanges. Results obtained using
different models have been considered and compared. Fig. 15 show the cross-sectional discretization
used when an LE approximation is used. Fig. 15a shows a model which uses 16 L9 elements while, in
Fig. 15b, is reported a more refined model created with 24 L9 elements. Ten B4 elements have been
used along the beam axis. Results have been compared with those from literature, see [58], obtained
with refined one-dimensional models with constant nodal kinematics. Moreover, a refined solid model
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Figure 12: Plots of stresses distribution obtained with different models for the eight-layered cantilever
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Figure 14: Layup of the cross-section of the single-cell box beam.
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(a) 16LE (b) 24LE

Figure 15: Domain discritization of the cross-section of the single-cell box beam.

Table 5: Displacement and stress evaluation of the single-cell composite beam.

Model -uz[mm] σyy[MPa] σyy[MPa] σyz[MPa] DOFs
(0, L, h/2) (0, L/2, h/2) (0, 0, h/2) (b/2, L/2, h/4)

ABAQUS-3D 7.199 85.086 161.205 -8.413 326160
Carrera et al.[58] 7.16 85.30 165.77 -8.94 2604

TE2 7.044 84.50 166.7 -8.895 558
TE3 7.094 84.64 163.8 -9.705 930
TE4 7.126 85.73 166.4 -7.950 1395
TE5 7.162 85.47 166.9 -8.105 1953
TE6 7.159 85.14 163.6 -7.945 2604
TE7 7.157 85.42 159.5 -8.239 3348
TE8 7.150 85.29 163.4 -9.155 4185
TE9 7.159 85.75 161.8 -8.411 5115
TE10 7.157 85.963 161.571 -8.314 6138

16L9 7.123 85.615 165.827 -7.445 7440
24L9 7.123 85.797 167.116 -10.975 11160

TE3/TE6 7.140 84.949 163.678 -8.326 1686
TE3/16L9 7.138 85.112 163.809 -7.363 3660

has been developed using the commercial code ABAQUS.
Table 5 shows results obtained using different structural models. The displacement evaluated at

the free tip, point (0, L, h/2), has been reported in the second column. Columns three to four report
the normal stress and at the mid-span, point (0, L/2, h/2), and at the root, point (0, 0, h/2). Column
five shows the shear stress at the mid-span, point (b/2, L/2, h/4), while the last column reports the
number of DOFs. At first TE models with order form 2 to 10 have been considered. Results show
that models with order higher than 5 are able to provide excellent results in terms of stresses and
displacements. Some oscillation can still be seen in the shear stress. Results obtained with these
models can be successfully compared with those from the solid model. Two LE models have also been
considered; the first has 16 L9 elements on the cross-section while the second uses 24 L9 elements.
These models provide accurate results but the computational costs are much higher than those of the
TE models. Two node-dependent kinematic models have been introduced to reduce the computational
costs preserving the same accuracy. Both the models use the lower-order model at the beam ends, in
particular at the first and the last three elements. The higher order model is used in the four central
elements, where results are evaluated. Results obtained using these models are reported in the last two
rows of Table 5.
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Table 6: Degrees of freedom, nonzeros of the stiffness matrix and solution times for different models.

Model DOFs Nonzeros Solution time
×103 [s]

TE2 558 49 0.01
TE3 930 136 0.03
TE4 1395 306 0.08
TE5 1953 599 0.14
TE6 2604 1065 0.26
TE7 3348 1761 0.43
TE8 4185 2752 0.68
TE9 5115 4111 1.05
TE10 6138 5919 1.81

16L9 7440 1477 0.35
24L9 11160 2217 0.51

TE3/TE6 1686 531 0.13
TE3/16L9 3660 753 0.22

Table 6 reports some details about the computational costs. The number of degrees of freedom is
compared with the nonzeros of the stiffness matrix and the solution times. The results show that, even
if LE models have a high number of DOFs, they provide a more sparse matrix, that is the solution
times are lower with respect a TE models with the same number of DOFs. Otherwise, low order TE
models are still more convenient that LE models, that is, the node-dependent approach provide a good
compromise between the low computational cost of the low-order TE models and the high accuracy of
the LE models.

Fig. 16 shows the shear stress distribution through the flange thickness. Results show that the
mixed model TE3/TE6 is able to describe the stress distribution accurately. Even if the TE3 model
is cheaper than the other models considered, it is not able to provide accurate results. TE8 and 16L9
also produce accurate results but they require a higher number of DOFs with respect to the TE3/TE6
model.

Fig. 17 and Fig. 18 show the shear stress distribution through the outer and inner layers of the
flange. As observed in the previous figure, also in this case the use of a node-dependent kinematics
allows accurate results to be obtained with a lower computational cost.

6 Conclusions

Through the introduction of cross-section functions into refined beam models, and further defining
cross-section function upon specific nodes, Carrera Unified Formulation (CUF) makes it convenient to
develop node-dependent kinematic models, in which the kinematic description can be different from
node to node. Through Lagrangian nodal shape functions, node-dependent cross-section functions are
interpolated on the axial domain to construct an advanced beam element. FE models with variable
ESL/LW kinematic capabilities can be constructed without using any ad hoc assumptions, which can
reduce the computational efforts without losing accuracy. These types of FE models are appropriate
to be employed in the analysis of composite structures with local effects to be captured.

In this paper, FE models with node-dependent kinematics are used in three numerical cases, includ-
ing both isotropic and composite laminated structures, both classical and thin-walled beams. Based on
the above assessments, the following conclusions ca be drawn:
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� Node-dependent kinematics provide a solution to integrate the accuracy of the LE models and
the low computational cost of the TE models to obtain optimal beam models in a natural way.

� When used to bridge a locally refined model with LE to a global model with lower-order kine-
matics, such beam models can reduce the computational costs of FE analysis while guaranteeing
the approximation accuracy.

� Such an approach can guarantee the continuity of the displacement field in the bridging zone
naturally without using special coupling methods, leading to compact FE formulations for the
analysis of structures with local effects to be addressed.

� The use of the Carrera Unified Formulation allows the formulation of the node-dependent kine-
matic models to be derived in a general form able to deal with any cross-sectional kinematic
assumption.

� When used in global-local analysis, the proposed approach adopts only one set of FE mesh, and
the local region will be approximated by adopting refined nodal kinematics.

In a word, as an innovative and versatile approach, node-dependent kinematics can act as a new
method to be applied to build more efficient FE models in global-local analysis.
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8 Appendix: Fundamental nucleus for node-dependent kinematic 1D

FE models

The fundamental nucleus in the case of node-dependent kinematic and orthotropic material can be
written in the following form:
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The integrals of the product of the cross-section functions defined on the transverse domain Ω or
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the thickness domain of a layer Ωk are defined as:
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and the integrals of the nodal shape functions along y over the axial domain L of a beam element

are denoted as:
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